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Abstract

The paper introduces a way of re-constructing a loss function from predictive com-
plexity. We show that a loss function and expectations of the corresponding predic-
tive complexity w.r.t. the Bernoulli distribution are related through the Legendre
transformation. It is shown that if two loss functions specify the same complexity
then they are equivalent in a strong sense. The expectations are also related to the
so called generalized entropy.

1 Introduction

In this paper we consider the on-line prediction framework. A prediction al-
gorithm tries to predict outcomes ω1, ω2, . . . , ωn that occur one after another.
Each time before observing the outcome ωi the algorithm outputs a prediction
γi. We assume that the ranges of outcomes and predictions, Ω and Γ, are some
sets fixed in advance.

To measure the discrepancy between predictions and outcomes we use a loss
function λ(ω, γ). The performance of an algorithm on a sequence of outcomes
ω1, ω2, . . . , ωn is measured by the cumulative loss

∑n
i=1 λ(ωi, γi). Consider the

problem of formalising the difficulty of predicting elements of a sequence
ω1, ω2, . . . , ωn irrespective of a particular prediction algorithm. This could
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have been done if we had at our disposal a certain universal prediction algo-
rithm that suffers minimal possible loss. The loss of such an algorithm could
have been treated as the intrinsic difficulty of predicting a sequence.

Unfortunately no natural universal algorithm exists in most cases. It is easy to
see that for every prediction algorithm there is another algorithm that suffers
much smaller loss on some sequences. However the difficulty of predicting can
be formalised by the concept of predictive complexity. Intuitively, predictive
complexity is the loss of a “strategy” that is allowed to work infinitely long
but can be approached in the limit. The loss suffered by any actual prediction
algorithm on a sequence is at least the predictive complexity of the sequence
up to an additive constant. Predictive complexity may be considered as an
inherent measure of “learnability” of a string in the same way as Kolmogorov
complexity reflects the “simplicity” of a string.

Predictive complexity was introduced in [VW98]. The universal “strategy” is
constructed as a mixture of ordinary prediction strategies and thus the theory
of predictive complexity is a natural development of prediction with expert
advice (cf. [CBFH+97,HKW98,LW94]).

This paper addresses the problem of relations between a loss function and
the corresponding predictive complexity (we fix the set of outcomes Ω to be
{0, 1}). Suppose that there exists predictive complexity K specified by a loss
function λ (this is not always the case as some loss functions do not specify
complexities at all; however many natural loss functions such as the squared
deviation do). Can the same complexity be specified by another loss function
or can we recover the loss function from predictive complexity?

We solve this problem considering the “complexity per element” 1
n
K(ζ), where

ζ is a string of n elements distributed according to the Bernoulli law and n
is large. We show that 1

n
K(ζ) and the loss function λ are related through the

Legendre transformation (Appendix B contains a brief introduction to the
theory of the Legendre transformation in the one-dimensional case).

We show that if two loss functions specify the same complexity then they are
equivalent in a very strong sense, namely, they are mere parameterisations
of the same geometrical image. This observation allows us to show that the
variants of Kolmogorov complexity, namely, plain, prefix, and monotone, do
not correspond to any game and thus are not predictive complexities while
another variant of Kolmogorov complexity, the minus logarithm of Levin’s a
priori semimeasure, is known to be the predictive complexity specified by the
logarithmic game.
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2 Preliminaries

2.1 Games and Superpredictions

A game G is a triple 〈Ω, Γ, λ〉, where Ω is called an outcome space, Γ stands for
a prediction space, and λ : Ω× Γ → R∪ {+∞} is a loss function. We suppose
that a definition of computability over Ω and Γ is given and λ is computable
according to this definition.

In this paper we are interested in the binary case Ω = B = {0, 1}. We will
denote elements of B

∗ (i.e., finite strings of elements of B) by bold letters, e.g.,
x, y. The length (i.e. the number of elements) of a string x is denoted by |x|.
The number of zeros in x is denoted by ]0x and the number of ones is denoted
by ]1x. We denote logarithm to the base 2 by log without a subscript.

We impose the following restrictions on games in order to exclude degenerate
cases:

(1) The set of possible predictions Γ is a compact topological space.
(2) For every ω ∈ Ω, the function λ(ω, γ) is continuous (w.r.t. the standard

topology of R ∪ {+∞}) in the second argument.
(3) There exists γ ∈ Γ such that, for every ω ∈ Ω the inequality λ(ω, γ) <

+∞ holds.
(4) If there are γ0 ∈ Γ, ω0 ∈ Ω such that λ(ω0, γ0) = +∞, then there is a

sequence of γn ∈ Γ, n = 1, 2, . . . , such that γn → γ0 as n → +∞ and
λ(ω0, γn) < +∞.

If a game satisfies these conditions, we call it regular.

Conditions 1–3 have been taken from [Vov98]. Condition 2 can in fact be
derived from computability of λ because most natural definitions of com-
putability imply continuity. Condition 3 prohibits some degenerated games.
Condition 4 essentially means that λ accepts the infinite value only in ex-
ceptional situations that can be approximated by finite cases. Appendix A
discusses one more aspect of Condition 4.

We say that a pair (s0, s1) ∈ [−∞, +∞]2 is a superprediction if there exists
a prediction γ ∈ Γ such that s0 ≥ λ(0, γ) and s1 ≥ λ(1, γ). If we let P =
{(p0, p1) ∈ [−∞, +∞]2 | ∃γ ∈ Γ : p0 = λ(0, γ) and p1 = λ(1, γ)} (cf. the
canonical form of a game in [Vov90]), the set S of all superpredictions is the
set of points that lie “north-east” of some point in P .

The set of superpredictions for a regular game is closed. This follows from
Conditions 1 and 2. Even a stronger statement is true: the set S ⊆ [−∞, +∞]2
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is a closure of its finite part S ∩ R
2. This follows from Condition 4.

Condition 3 implies that S contains finite points.

Let us describe the intuition behind the concept of a game. Consider a pre-
diction algorithm A working according to the following protocol:

for t = 1, 2, . . .
(1) A chooses a prediction γt ∈ Γ
(2) A observes the actual outcome ωt ∈ Ω
(3) A suffers loss λ(ωt, γt)

end for

Over the first T trials, A suffers the total loss

LossA(ω1, ω2, . . . , ωT ) =
T
∑

t=1

λ(ωt, γt) . (1)

By definition, put LossA(Λ) = 0, where Λ denotes the empty string.

The function LossA(x) can be treated as the predictive complexity of x in the
game G w.r.t. A. We will call these functions loss processes. Unfortunately,
the set of loss processes has no minimal elements except in degenerate cases.
The set of loss processes should be extended to the set of superloss processes.

2.2 Superloss Processes and Predictive Complexity

Take a game G. A function L : Ω∗ → R ∪ {+∞} is called a superloss process
w.r.t. G (see [VW98]) if the following conditions hold:

• L(Λ) = 0,
• for every x ∈ Ω∗, the pair (L(x0)−L(x), L(x1)−L(x)) is a superprediction

w.r.t. G, and
• L is semicomputable from above.

We will say that a superloss process K is universal if for any superloss pro-
cess L there exists a constant C such that ∀x ∈ Ω∗ : K(x) ≤ L(x) + C.
The difference between two universal superloss processes w.r.t. G is bounded
by a constant. If universal superloss processes w.r.t. G exist, we may pick
one and denote it by KG. It follows from the definition that, for every pre-
diction algorithm A, there is a constant C such that for every x we have
KG(x) ≤ LossG

A
(x) + C, where LossG denotes the loss w.r.t. G. One may call

KG (predictive) complexity w.r.t. G.
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It is worth mentioning that the regularity conditions are not restrictive from
the point of view of predictive complexity. It is shown in Appendix A that a
game that does not satisfy Condition 4 will not specify predictive complexity.

2.3 Mixability and the Existence of Predictive Complexity

Mixability was introduced in [Vov98,VW98]. Take a parameter β ∈ (0, 1) and
consider the homeomorphism Bβ : (−∞, +∞]2 → [0, +∞)2 specified by

Bβ(x, y) = (βx, βy) . (2)

A regular game G with the set of superpredictions S is called β-mixable if the
set Bβ(S) is convex. A game G is mixable if it is β-mixable for some β ∈ (0, 1).

It can be shown that if a game G is β-mixable, L1, L2, . . . is an effective
sequence of superloss processes w.r.t. G and p1, p2, . . . ∈ [0, 1] is a computable
sequence of weights such that

∑+∞

i=1 pi = 1, then there is a superloss process
L0 such that

L0(x) ≤ Li(x) +
ln (1/pi)

ln (1/β)
(3)

for each i = 1, 2, . . . . This was proved in [VW98] as a part of the proof of the
following statement:

Proposition 1 ([VW98]) If a game G with the set of superpredictions S is
mixable then there is predictive complexity w.r.t. G.

Examples of mixable games are the logarithmic game with Γ = [0, 1] and

λ(ω, γ) =











− log(1 − γ) if ω = 0 ,

− log γ if ω = 1 ,

and the square-loss game with Γ = [0, 1] and λ(ω, γ) = (ω − γ)2. They spec-
ify the logarithmic complexity Klog and the square-loss complexity Ksq, re-
spectively (see [VW98]). Logarithmic complexity coincides with the negative
logarithm of Levin’s a priori semimeasure (see [V’y94,LV97] for the defini-
tion). The negative logarithm of Levin’s a priori semimeasure is a variant of
Kolmogorov complexity. Thus we may say that Kolmogorov complexity is a
special case of predictive complexity.
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3 Convergence to the Entropy

For each game 〈Ω, Γ, λ〉 we define its generalized entropy to be the function

H(p) = inf
γ∈Γ

((1 − p)λ(0, γ) + pλ(1, γ)), p ∈ [0, 1]

(cf. [GD02]). In the case of the logarithmic game, the generalized entropy
coincides with the regular entropy. The entropy for the square-loss game cor-
responds to Brier entropy from [GD02].

The following theorem shows the connections between the loss functions and
complexities.

Theorem 2 Let G = 〈Ω, Γ, λ〉 be a mixable game with generalized entropy H
and predictive complexity K. Then for every p ∈ (0, 1)

lim
n→+∞

K(ξ
(p)
1 . . . ξ(p)

n )

n
= H(p) a.s. , (4)

where ξ
(p)
1 , ξ

(p)
2 , . . . are results of independent Bernoulli trials with the proba-

bility of 1 being equal to p.

PROOF. Fix p ∈ (0, 1) and let ε > 0. First we prove that

K(ξ
(p)
1 . . . ξ(p)

n )

n
< H(p) + ε (5)

from some n on. Let γ0 be a computable prediction such that

(1 − p)λ(0, γ0) + pλ(1, γ0) < H(p) + ε/2 (6)

(Condition 2 on p. 3 implies that the set

{γ | (1 − p)λ(0, γ) + pλ(1, γ) < H(p) + ε/2}

is open; therefore, it contains a computable element). By the definition of
predictive complexity and the Borel strong law of large numbers, we have
with probability one:

K(ξ
(p)
1 . . . ξ(p)

n )≤λ(0, γ0)]0(ξ
(p)
1 . . . ξ(p)

n ) + λ(1, γ0)]1(ξ
(p)
1 . . . ξ(p)

n ) + O(1) (7)

≤λ(0, γ0)((1 − p)n + o(n)) + λ(1, γ0)(pn + o(n)) + O(1)(8)

< (H(p) + ε/2)n + o(n) ; (9)

this implies (5).

6



It remains to prove that

K(ξ
(p)
1 . . . ξ(p)

n )

n
> H(p) − ε

from some n on. Consider a superprediction (s0, s1). By definition there is
γ ∈ Γ such that s0 ≥ λ(0, γ) and s1 ≥ λ(1, γ) and thus for every p ∈ (0, 1) we
get (1 − p)s0 + ps1 ≥ H(p). Since

(

K(ξ
(p)
1 . . . ξ

(p)
n−10) −K(ξ

(p)
1 . . . ξ

(p)
n−1),K(ξ

(p)
1 . . . ξ

(p)
n−11) −K(ξ

(p)
1 . . . ξ

(p)
n−1)

)

is a superprediction,

E
(

ηn | ξ
(p)
1 . . . ξ

(p)
n−1

)

≥ H(p) , (10)

where
ηn = K(ξ

(p)
1 . . . ξ(p)

n ) −K(ξ
(p)
1 . . . ξ

(p)
n−1) .

Now we are going to apply the martingale strong law of large numbers. This
law can be found in [Shi96] as Theorem VII.5.4. Here we formulate a special
case that is sufficient for the purposes of this paper:

Proposition 3 Let ξ1, ξ2, . . . be some sequence of random variables and let
f1, f2, . . . be a sequence of functions such that fn is a measurable function of
n arguments and

E(fn(ξ1, . . . , ξn−1, ξn) | ξ1, . . . , ξn−1) = 0 a.s. (11)

for all n = 1, 2, . . . . If

+∞
∑

n=1

E(f 2
n(ξ1, . . . , ξn−1, ξn) | ξ1, . . . , ξn−1)

n2
< +∞ a.s. , (12)

then

1

n

n
∑

i=1

fi(ξ1, . . . , ξi) → 0 as n → +∞ a.s. (13)

In order to show that (12) holds for fn(ξ
(p)
1 . . . ξ(p)

n ) = ηn−E
(

ηn | ξ
(p)
1 . . . ξ

(p)
n−1

)

,
n = 1, 2, . . . , we need the following lemma.

Lemma 4 If K is predictive complexity w.r.t. a mixable game G, then there
is a positive constant c such that

|K(xb) −K(x)| ≤ c ln n

for all n = 1, 2, . . . and x ∈ B
n and b ∈ B.
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PROOF of Lemma 4. Take a superprediction (s, s) ∈ S ∩ R
2 and consider

the superloss processes Ln, where n = 1, 2, . . . , defined as follows. For every x

such that |x| ≤ n, we let Ln(x) = K(x) while for each x of length n and b ∈ B

we let Ln(xb) = K(x) + s (the behaviour of Ln on strings longer than n + 1
is of no importance). Since the game is mixable, we can take the sequence
pn = 6/(π2n2), n = 1, 2, . . . and by using (3) obtain a superloss process L0

and a constant a > 0 such that

L0(x) ≤ Ln(x) + a lnn .

The observation that K(x) ≤ L0(x) + C for some constant C completes that
proof. 2

We can now apply Proposition 3:

K(ξ
(p)
1 . . . ξ(p)

n )

n
=

1

n

n
∑

i=1

ηi (14)

=
1

n

n
∑

i=1

E
(

ηi | ξ
(p)
1 . . . ξ

(p)
i−1)

)

+ o(1) (15)

≥H(p) + o(1) (16)

with probability one ((10 was used to obtain the last line). This completes the
proof. 2

In the special case of the logarithmic game Theorem 2 is a well-known re-
sult in the theory of Kolmogorov complexity (cf. [LV97], Exercise 2.8.3). In
combination with Lebesgue’s theorem it implies

Corollary 5 Let G = 〈Ω, Γ, λ〉 be a mixable game with generalized entropy

H, p ∈ (0, 1), and ξ
(p)
1 , ξ

(p)
2 , . . . be results of independent Bernoulli trials with

the probability of 1 equal to p. Then

lim
n→+∞

K(ξ
(p)
1 . . . ξ(p)

n )

n
= H(p)

in L1 and

lim
n→+∞

EK(ξ
(p)
1 . . . ξ(p)

n )

n
= H(p) .

Note that in the proof of Theorem 2 we used mixability only in Lemma 4. One
can see from the proof (by taking expectations of (7) and (14) and applying
(6) and (10)) that if we do not postulate mixability it is still possible to show
the following.
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Theorem 6 Let G = 〈Ω, Γ, λ〉 be a regular game with generalized entropy H,

p ∈ (0, 1), and ξ
(p)
1 , ξ

(p)
2 , . . . be results of independent Bernoulli trials with the

probability of 1 equal to p. Then

lim
n→+∞

EK(ξ
(p)
1 . . . ξ(p)

n )

n
= H(p) .

Consider a regular game with the set of superpredictions S. Take the function
f : R → R ∪ {+∞} defined by the formula

f(x) = inf{y | (x, y) ∈ S} (17)

for each real x (here we let inf ∅ = +∞). Since the game satisfies the condi-
tions, the real part of S coincides with the epigraph {(x, y) ∈ R

2 | y ≥ f(x)}
of f and thus f uniquely determines S∩R

2, which in turn uniquely determines
S. Note that we need Condition 4 to claim that S can be reconstructed from
its finite part S ∩ R

2.

It turns out that the generalized entropy H can be defined using the Legendre
transformation of f . Recall that Appendix B contains an overview of the
Legendre transformation. In order to apply the Legendre transformation, we
should make sure that f is convex and closed. Convexity is implied by the
following lemma while closeness follows from Conditions 1–4.

Lemma 7 If a regular game G specifies predictive complexity, then the inter-
section of its set of superpredictions S and R

2 is convex.

The proof is in Appendix C.

Now we can state the expression of H in terms of f .

Proposition 8 Let G = 〈Ω, Γ, λ〉 be a regular game with generalized entropy
H. Let G specify complexity K and let S be the set of superpredictions for G.
Then for every p ∈ (0, 1)

H(p) = −pf ∗

(

p − 1

p

)

,

holds, where f ∗ is the function conjugate to f specified by (17).

PROOF. It suffices to notice that
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H(p)= inf
γ∈Γ

((1 − p)λ(0, γ) + pλ(1, γ))

= inf
(x,y)∈S

[(1 − p)x + py]

= inf
x∈R

[(1 − p)x + pf(x)]

=−p sup
x∈R

[

p − 1

p
x − f(x)

]

=−pf ∗

(

p − 1

p

)

.

2

Corollary 9 Let G1 and G2 be regular games. Suppose they have the sets of
superpredictions S1 and S2 and specify complexities K1 and K2. If there is a
function δ(n) = o(n) as n → +∞ such that for every x ∈ B

∗ the inequality

|K1(x) −K2(x)| ≤ δ(|x|) (18)

holds, then S1 = S2 and complexities K1 and K2 are equal up to a constant.

PROOF. For every p ∈ (0, 1) we have

lim
n→+∞

∣

∣

∣

∣

∣

∣

E
[

K1(ξ
(p)
1 . . . ξ(p)

n ) −K2(ξ
(p)
1 . . . ξ(p)

n )
]

n

∣

∣

∣

∣

∣

∣

≤ δ(n)

n
= o(1) (19)

as n → +∞, where ξ
(p)
1 , . . . , ξ(p)

n are as above. This implies that for every
p ∈ (0, 1) the equality f̃1(p) = f̃2(p) holds, where f̃1 and f̃2 are defined for the
games G1 and G2 as the limit in (4).

Let f1 and f2 be defined for the games G1 and G2 by (17). Consider the
conjugated functions f ∗

1 and f ∗

2 . The equalities we have for f̃1 and f̃2 together
with Theorem 6 and Proposition 8 imply that f ∗

1 (t) = f ∗

2 (t) for all t ∈ (−∞, 0).
For every t > 0 the equality f ∗

1 (t) = f ∗

2 (t) = +∞ holds. Since f ∗

1 and f ∗

2 are
closed, we have f ∗

1 (0) = f ∗

2 (0).

It follows from a fundamental property of conjugate functions, namely, f ∗∗ = f
(Proposition 11 from Appendix B), that the functions f1 and f2 coincide. 2

Corollary 10 There is no regular game specifying plain Kolmogorov com-
plexity K, prefix complexity KP, or monotone complexity Km as its predictive
complexity.

PROOF. The difference between any of these functions and the negative
logarithm of Levin’s a priori semimeasure is bounded by a term of logarithmic
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order of the length of a string. If K is of the complexities K, KP, or Km, then
there is a constant c > 0 such that the inequality |K(x)−KM(x)| ≤ c log |x|
holds (see [V’y94,LV97]).

As we mentioned above, the function KM coincides with Klog, which is com-
plexity w.r.t. the logarithmic game (see [VW98]). If K is predictive complexity
w.r.t. a game G, we can apply Corollary 9. Hence the set of superpredictions
for G coincides with the set of superpredictions for the logarithmic game and
the absolute value of the difference K(x)−KM(x) is bounded by a constant.

However neither of the differences between these functions and KM can be
bounded by a constant (see [V’y94,LV97]). 2
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Appendix A: A Note on Games that Are not Regular

Let us prove that a game that does not satisfy Condition 4 does not specify
predictive complexity. Assume the converse. Consider a game that satisfies
Conditions 1–3 but does not satisfy Condition 4 and let K be complexity
w.r.t. this game.

Let S be the set of superpredictions for this game. At least one of the following
cases is true:

(1) there are numbers a and ∆ > 0 such that S contains the point (a, +∞)
but for every finite (x, y) ∈ S we have x ≥ a + ∆, and

(2) there are numbers a and ∆ > 0 such that S contains the point (+∞, a)
but for every finite (x, y) ∈ S we have y ≥ a + ∆.

We will consider the first case. The second one can be dealt with in the same
fashion.

Since the finite part of S is not empty by Condition 3, there is a superloss
process L such that L(x) is finite for all x ∈ B

∗. Therefore K(x) is finite for all
x too. This means that the point (K(x0)−K(x),K(x1)−K(x)) belongs to the
finite part of S for all x. Thus for all x ∈ B

∗ we have K(x0)−K(x) ≥ a+∆. If
xn is the string consisting of n zeroes (n = 1, 2, . . . ), then K(xn) ≥ (a + ∆)n.
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Fig. 1. Evaluation of the Legendre transformation

On the other hand, the function

L(x) =











an if x = xn

+∞ otherwise

is a superloss process because (a, +∞) ∈ S. We have L(xn) = an and this
contradicts the lower bound on K(xn) we have just derived.

This remark shows that as far as predictive complexity is concerned, Condition
4 is not restrictive.

Appendix B: Legendre transformation

The Legendre(–Young–Fenchel) transformation may be defined for functionals
on a locally convex space. However all we need in this paper is just the simplest
one-dimensional case. We will follow the treatment of the one-dimensional case
in [RV73]; the general theory of this transformation and conjugate functions
may be found in [Roc70,ATF87].

Consider a convex function f : R → [−∞, +∞]. The conjugate function f ∗ :
R → [−∞, +∞] is defined by

f ∗(t) = sup
x∈R

(xt − f(x)) . (20)

A function g : R → [−∞, +∞] is called proper if ∀x ∈ R : g(x) > −∞ and
∃x ∈ R : g(x) < +∞. A proper convex function g is closed if its epigraph
{(x, y) ∈ R

2 | y ≥ f(x)} is closed w.r.t. the standard topology of R
2 (cf.

Section 7 of [Roc70])
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Figure (1) provides an example. In the picture we have

f(x) =







1
x

if x > 0,

+∞ otherwise

and we evaluate f ∗(−1/2). The supremum in (20) is achieved at x =
√

2.

Proposition 11 (see [RV73,Roc70]) If f : R → [−∞, +∞] is a proper
convex function, the following properties hold:

(i) f ∗ is convex, proper and closed, and
(ii) if f is closed, f ∗∗ = f .

Appendix C: On a Necessary Condition for the Existence of Predic-
tive Complexity

PROOF (of Lemma 7). Assume the converse. Consider a game G with
the set of superpredictions S such that S ∩ R

2 is not convex but there exists
complexity K w.r.t. G.

There exist points B0, B1 ∈ S such that the segment [B0, B1] is not a subset
of S. Without loss of generality we may assume that B0 = (b0, 0), B1 = (0, b1)
(see Fig. 2). Indeed, a game G with the set of superpredictions S specify
complexity if and only if a game G′ with the set of superpredictions S ′ which
is a shift of S (i.e., there are a, b ∈ R such that S ′ = {(x′, y′) ∈ (−∞, +∞]2 |
∃(x, y) ∈ S : x′ = x + a, y′ = y + b}) specifies complexity.

There exists a point A = (a0, a1) with a0, a1 > 0 on the boundary of S and
above the straight line passing through B0 and B1. Let us denote this line by l
and let us assume that it has the equation α0x+α1y = ρ, where α0, α1, ρ > 0.
Let l′ be the line parallel to l and passing through A. The equation of l′ can
be written as α0x + α1y = ρ + δ, where δ > 0.

Let us denote the numbers of 1s and 0s in a string x by ]1x and ]0x, respec-
tively. Since the functions b0]0x and b1]1x are superloss processes, there is
C > 0 such that, for every x ∈ B

∗, the inequalities

K(x) ≤ b0]0x + C (21)

K(x) ≤ b1]1x + C (22)

holds. At the same time, there is a sequence of strings x1, x2, . . . such that
for any n ∈ N we have |xn| = n and

K(xn) ≥ a0]0xn + a1]1xn . (23)
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a0

Aa1

b0

S

x

y

b1

l

l′

Fig. 2. A set of superpredictions S that is not convex

The construction of xn is by induction. Let x0 = Λ. Suppose we have con-
structed xn. The point (K(xn0) − K(xn),K(xn1) − K(xn)) should lie in at
least one of the half-planes {(x, y) | x ≥ a0} or {(x, y) | y ≥ a1} i.e., at least
one of the inequalities

K(xn0) −K(xn) ≥ a0 (24)

K(xn1) −K(xn) ≥ a1 (25)

hold. We define xn+1 to be either xn0 or xn1 accordingly.

Combining (21), (22) and (23) we get

a0]0xn + a1]1xn ≤ b0]0xn + C (26)

a0]0xn + a1]1xn ≤ b1]1xn + C (27)

for every n ∈ N. Since (b0, 0), (0, b1) ∈ l, we get α0b0 = α1b1 = ρ, while A ∈ l′

implies that α0a0 + α1a1 = ρ + δ. Therefore

b0 =
α0a0 + α1a1

α0

− δ

α0

(28)

b1 =
α0a0 + α1a1

α1

− δ

α1

. (29)

If we multiply (26) by α0/a1, (27) by α1/a0, add the equations together, and
substitute the expressions (28) and (29) for b0 and b1, we obtain

δ

a1
]0xn +

δ

a0
]1xn ≤ C1 , (30)

where C1 > 0 is a constant. This is a contradiction since δ/a1 > 0, δ/a0 > 0,
and at least one of the values ]0xn, ]1xn is unbounded. 2
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