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Abstract
Despite their structural and chemical commonalities, p-chloro-β-methylphenethylamine and

p-methoxy-β-methylphenethylamine display distinct inhibitory and substrate activities upon

MAO-B binding. Density Functional Theory (DFT) quantum chemical calculations reveal

that β-methylation and para-substitution underpin the observed activities sustained by cal-

culated transition state energy barriers, attained conformations and key differences in their

interactions in the enzyme’s substrate binding site. Although both compounds meet sub-

strate requirements, it is clear that β-methylation along with the physicochemical features of

the para-substituents on the aromatic ring determine the activity of these compounds upon

binding to the MAO B-isoform. While data for a larger set of compounds might lend general-

ity to our conclusions, our experimental and theoretical results strongly suggest that the

contrasting activities displayed depend on the conformations adopted by these compounds

when they bind to the enzyme.

Introduction
The biogenic amine levels in human cells are controlled in part by their oxidation by ubiqui-
tous enzymes known as monoamine oxidases (MAOs). Since the discovery of the antidepres-
sant activities of certain molecules acting as MAO inhibitors (MAOi) around 1950 [1], these
enzymes have been associated with neurological and neurodegenerative pathologies such as
depression, Parkinson’s and Alzheimer’s diseases [2]. These enzymes, inserted in the outer
membrane of mitochondria, use flavin adenine dinucleotide (FAD) as a cofactor [3]. Even
though the clinically most relevant endogenous substrates of MAOs are serotonin (5-HT) and
dopamine (DA), these enzymes are able to oxidize other monoamines such as benzylamine
(BA), phenylethylamine (PEA) and their derivatives [4–8]. Human MAO exists in two iso-
forms, known as A and B, sharing ca. 70% of sequence identity. Although several MAO crystal
structures are available [9–22], the mechanisms of selectivity regarding substrates and inhibi-
tors for each isoform have not yet reached a consensus. New insights regarding the possible
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catalytic mechanisms for the oxidative deamination of neurotransmitter amines by mono-
amine oxidase B have recently become available [23–26]. Earlier investigations focused largely
on the active site of MAOs, located in a cavity lined mainly by hydrophobic residues [27, 28]. A
special sector of this active site consists of the so-called “aromatic cage” which contains the
FAD cofactor and two tyrosine residues with their rings perpendicular to the isoalloxazine
moiety of FAD. It is known that many MAO substrates become inhibitors when they are α-
methylated, and most of these products inhibit MAO-A selectively. In contrast, β-methylation
of MAO substrates often generates selective MAO-B inhibitors [29]. Almost 30 years ago,
Kinemuchi et al. [30] studied 5-fluoro-α-methyltryptamine (5-FMT) and p-chloro-β-methyl-
phenethylamine (p-CMP). These authors found that both molecules act as selective and revers-
ible inhibitors of MAO-A and MAO-B, respectively. Later results by Kim et al. [31] confirmed
that p-CMP was a short-acting, probably reversible, MAO-B selective inhibitor. In this article,
we report the interesting change in the biological activity displayed by a couple of β-methylphe-
nylalkylamines, where the inhibitor p-CMP becomes a substrate when a methoxyl group
replaces its para-chloro substituent.

Materials and Methods

Biological evaluation
MAO-B was expressed in Pichia pastoris and purified as described previously by Newton-Vin-
son et al. [32] The final step in the preparation of MAO-B used 50 mM potassium phosphate
buffer pH 7.4, 50% glycerol, and 0.8% n-octyl-β-d-glucopyranoside (w/v). MAO activity assays
were performed by monitoring the rate of product formation over time at 25°C using a Perkin-
Elmer Lambda 2 spectrophotometer. p-Methoxy-β-methylphenethylamine oxidation was
monitored spectrometrically using the horseradish peroxidase-coupled Amplex Red assay
(Δε = 54 000 M−1•cm−1, λ = 560 nm). A similar experiment was carried out with kynuramine
(Δε = 12 000 M-1•cm−1, λ = 316 nm) to obtain a control value by monitoring its oxidation.

General methods
1H and 13C NMR spectra were recorded on a Bruker Avance 500 MHz spectrometer at 300 K.
Coupling constants in Hz were measured from-one dimensional spectra. HRMS-ESI analyses
were carried out using a Thermo Scientific Exactive Plus Orbitrap spectrometer with a constant
nebulizer temperature of 250°C. The experiment was carried out in positive ion mode at high
resolution (resolving power: 140,000 (full width half-maximum peak width at m/z 300, Rfwhm).
The samples were infused directly into the ESI source using a syringe pump at flow rates of
5 μL min-1. All chemicals were reagent grade and used without further purification (S1 Fig).

2-(4-Methoxyphenyl)propan-1-aminium chloride. 1 g (0,006 mol) of 4-methoxynitros-
tyrene was dissolved in 50 mL of dry tetrahydrofuran (THF). To this solution, a mixture of 6
mL of a 3 M solution of methylmagnesium bromide (CH3MgBr) in diethyl ether was added
(3:1 ratio), stirring overnight at room temperature. Silica gel column and thin layer chromatog-
raphy (9:1 ethanol:methanol) were used to purify the main product. Once separated, the sol-
vent was removed using a rotary evaporator and the product weighed. This intermediate,
dissolved in dry THF, was slowly added to a suspension of lithium aluminium hydride
(LiAlH4; 1:1 in mass), and the mixture was refluxed overnight. Once the reduction was com-
plete, drops of saturated aqueous sodium hydroxide (NaOH) and isopropyl alcohol (IPA) were
added to form a solid cake that was then washed with THF and filtered. The solvent (mainly
THF) fraction was concentrated as before, and the amine residue was distilled (190°C at 10
Torr). The distilled product was neutralized using a saturated solution of hydrochloric acid in
methanol to obtain a white solid (43% overall yield). 1H NMR (400 MHz, MeOH-d4) δ 7.25 (d,
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J = 8.4 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 3.80 (s, 3H), 3.162 (m, 2H), 3.02 (m, 1H), 1.34 (d,
J = 6.4 Hz, 3H). 13C NMR (125 Hz, MeOH-d4, 300 K): δ 159.13, 133.54, 127.89, 114.15 (ArC),
δ 54.37 (OCH3), δ 47.63 (CH2NH2), δ 37.36 (CH), δ 18.64 (CH3) ppm. HRMS for C10H16NO
[M-Cl]+ m/z Calcd: 166.1226. Observed: 166.1223 (S2 Fig).

Theoretical calculations
To obtain structural and energetic information regarding the MAO-B/p-CMP and MAO-B/p-
MMP complexes, we applied the quantum chemical cluster approach for modeling enzyme
reactions. This methodology considers a selected part of the enzyme (ca. 229 atoms for p-
CMP, 233 atoms for p-MMP) provided that this small cluster behaves like the real system (S3
and S4 Figs), taking into account two the steric constraints imposed by the enzyme on the
active site and long-range polarization effects. Steric constraints consider all the side chain Cαs
of the cluster residues for MAO-B as locked into their crystallographic positions. Long range
polarization effects take into account solvation effects using the CPCM conductor-like polariz-
able continuum model [33,34] with two dielectric constants, i.e. ε = 4 and ε = 80, performing
single-point calculations on the optimized structures. The strength of this methodology makes
the cluster selection independent of the dielectric constant [35]. Cluster selection was carried
out using the crystal structure of human MAO-B expressed in Pichia pastoris complexed with
p-nitrobenzylamine (NBA) (PDB code 2C70) [22]. NBA is bound to the binding site with its
side chain pointing towards the FAD cofactor. Since no crystal structures are available for p-
CMP and p-MMP, the pose adopted by NBA was used to locate their aromatic moieties. The
active site models included the isoalloxazine ring, Tyr398 and Tyr435, Tyr188, Gln206, Lys296,
Cys172, Ile199 and Tyr326 and six water molecules present in this crystal structure, further
verified by the WaterDock [36] script in the Vina Docking program.

All calculations were carried out using the meta-hybrid GGA functional M06-2X [37]
implemented in the Gaussian09 suite of programs [38]. Geometries were optimized using the
6-31G(d,p) basis set. In order to get more accurate energies, single-point calculations were car-
ried out on the optimized geometries using the larger 6–311+G(2d,2p) basis set. Frequencies
were computed analytically at the same level of theory as the geometry optimizations to con-
firm whether the obtained structures were minima or transition states and to obtain zero-point
energy (ZPE) corrections. The final reported energies consist of the large basis set energies cor-
rected for ZPE, solvation, and dispersion effects. In order to unequivocally assign reactants and
products we scaled the transition state frequencies, which then were optimized and confirmed
as local minima. Imaginary frequencies of the enzymatic transition states were -1153.3, and
-1048.8 cm-1 for p-CMP and p-MMP, respectively.

The reaction rate constant (k) can be expressed as:

k ¼ kbT
h

e
�DG 6¼
RT ð1Þ

For enzymatic reactions, the calculated reaction barrier can be compared with the experi-
mental kinetic results, provided kcat is available. Thus, the experimental Gibbs free energy bar-
rier was obtained from kinetic rate constants using Eq 2.

DG 6¼
exp ¼ �RTln

kh
kbT

� �
ð2Þ

where k = rate constant; kb = Boltzmann constant; T = temperature; ΔG 6¼ = free energy of acti-
vation; h = Planck’s constant; R = gas constant. This equation is valid for simple transition
state theory where the transmission coefficient is approximated to unity [39].
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NCIPLOT software was used to understand the anchoring of the studied compounds at the
active site. This program calculates the NCI indexes, which are based on the reduced density
gradient defined as s(ρ) (Eq 3) at low densities and accounting for non-covalent interactions
such as van der Waals, steric clashes and hydrogen bonds.

s ¼ 1

2ð3p2Þ1=3
rr
r4=3

ð3Þ

In order to recognize the nature of the non-bonded interactions, the sign of the second
eigenvalue (λ2) of the Laplacian of the density is related to: 1) hydrogen bonds if λ2< 0, 2) ste-
ric repulsion if λ2> 0 and 3) van der Waals interactions if λ2� 0. Therefore, ρ�sign(λ2)
ranges from negative to positive values and the density itself is used to evaluate the strength of
the interaction [40,41]. Analysis of NCI peaks is needed to differentiate between interaction
types. The sign of the Laplacian of the density (r2ρ) indicates whether the net gradient flux is
entering (r2ρ< 0) or leaving (r2ρ> 0) an infinitesimal volume around a reference point.
Hence, it highlights whether the density is concentrated or depleted at that point, relative to
the surrounding environment [42].

Results and Discussion
In order to study the influence of the para-substituent on the activity of β-methylphenylalkyla-
mines, we prepared p-methoxy-β-methylphenethylamine (p-MMP) where the chlorine atom is
replaced by a sterically similar methoxyl group on the aromatic ring. As mentioned before, Kine-
muchi et al. and Kim et al. [30, 31] found that p-CMP was a highly selective MAO-B-inhibitor.
However, we found that its p-methoxyl counterpart behaves like a selective substrate, with a low
kcat of 14 min-1 and a Michaelis constant of 87 μM compared to phenylethylamine (PEA) which
is described as a good MAO-B substrate (Kcat 300 min-1 and Km 0.016 mM) [21]. According to
these experimental results, we hypothesize that the nature of the para-substituent determines the
agonist or antagonist character displayed by these substrate analogues with MAO-B. Table 1
shows that p-chlorophenethylamine (p-CP), as a model of compounds lacking the β-methyl
group, is a poor substrate with a Kcat of 3.41 min-1, and β-methylation (as in the case of p-CMP)
turns this molecule into an inhibitor (Ki = 0.55 μM) as reported by Kinemuchi et al. [30]

We modelled the rate-determining step and calculated the reactant, transition state and
product energies and free Gibbs energy barriers for the MAO-B/p-CMP and MAO-B/p-MMP
complexes (S1 Table). All states were confirmed as ground or transition states according to
their calculated frequencies. Our results show that the p-chloro derivative displays a higher
activation energy compared to its p-methoxylated counterpart (35 kcal/mol vs 19.5 kcal/mol).

Table 1. p-CMP and p-MMP kinetic constants for MAO-B and experimental and calculated free Gibbs energy barriers.

Molecule Ki (μM) kcat (min-1) Km (μM) ΔG‡
exp

e (kcal/mol) ΔG‡
theo

e (kcal/mol)

PEA N.D. 228 ± 0.9a 16 ± 1a 16.7b 17.1b

p-CPc N.D. 3.41 ± 0.12 2.4 ± 0.2 19.15 N.C.

p-CMP 0.55d N.D. N.D. N.D. 35.0

p-MMP N.D. 14 ± 1 87 ± 8 18.3 19.5

a Constants reported by Li et al. [21].
b Constants reported by Zapata et al. [23].
c Constants reported by Heuson et al. [43].
d Constants reported by Kinemuchi et al. [30].
e See Electronic Supplementary Information. N.D. = Not Determined. N.C. = Not Calculated.

doi:10.1371/journal.pone.0154989.t001
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The lower energy barrier displayed by p-MMP is in agreement with the obtained experimental
value of 18.3 kcal/mol (Table 1). It is worth mentioning that energy barriers higher than 25
kcal/mol make enzyme catalysis very unlikely [44]. Also, NCI (non-covalent interaction)
indexes were evaluated to provide information regarding weak ligand-enzyme interactions
based on the reduced density gradient in low-density regions [40–42]. These interactions are
important since they govern, not only the anchorage, but also the stabilization of the substrate
orientations at the binding site. Inspection of the obtained TS geometries of both complexes
(Fig 1) shows that the bound p-CMP ring is rotated by ca. 60° with respect to that of p-MMP.

This conformation is best explained by the non-covalent interactions established in the
active site by p-CMP. Also, taking into account the anisotropic electronic distribution on the
chlorine atom [45], the generation of a positive σ hole at the far end of the C-Cl bond allows a
specific and orthogonal hydrogen bond to form. Specifically, a weak hydrogen bond can be
seen between the chlorine atom of p-CMP and the amide moiety of Cys172 (S5 Fig). Fig 1
shows that the prevailing interactions for p-CMP are van der Waals in nature according to the
NCI indexes (light green coloured).

On the other hand, the methoxyl oxygen atom of p-MMP also interacts with the thiol
hydrogen of Cys172; however, its methyl group is located opposite to the position of the chlo-
ride atom of p-CMP (Fig 1B and 1D, and S6 Fig).

The differences described above are directly related to the interactions established in the
reactive region of the TS structures, which comprises N5 and C4a of FAD, and the amine nitro-
gen (Nam), Cα and Hα of the substrate (Fig 2). In Fig 1A and 1C it can be seen that p-MMP
displays stronger interactions than p-CMP. Specifically, p-MMP exhibits a strong hydrogen
bond between O4 of FAD and a conserved water molecule linking FAD to Lys296.

This water molecule has been reported to be important in catalysis, stabilising the TS by
linking Lys296 to FAD [23]. Additionally, we note that both p-CMP and p-MMP display an
interaction between Nam and C4a of the flavin, which has been suggested to occur in the polar
nucleophilic mechanism (S7 Fig) [23]. Also, it should be emphasized that the TS of p-MMP is
stabilized by a strong hydrogen bonding network of water molecules, which in the case of p-
CMP is almost absent (Fig 3). This loss of hydrogen bonding interactions explains the calcu-
lated difference in the activation energies of both molecules (ca. 15 kcal/mol).

Our findings indicate that β-methyl substitution on phenethylamines allows substrates to
adopt a suitable orientation to undergo catalysis; i.e. leaving the pro-R Hα pointing towards
N5 of FAD. However, the other interactions established only by p-MMP allow the proper ori-
entation of its aromatic ring parallel to the two tyrosine residues of the aromatic cage, thus
mimicking other MAO-B substrates [23]. Therefore, conformational constraints imposed by
β-methylation in combination with the restricted interaction displayed by the p-chlorine sub-
stituent and the breaking of the water network place p-CMP in the substrate pocket but with
features that do not allow the oxidation to occur. These results are in agreement with previous
conclusions of Edmondson et al. [46] who argue that the para-position of the bound substrate
is in a hydrophobic domain of limited size. With these restrictions, bound p-MMP can adopt
an orientation that favors its substrate character.

Conclusions
In conclusion, although both p-CMP and p-MMP meet the structural requirements for
MAO-B substrates, it is clear that the combined presence of a β-methyl group and para-substit-
uents of similar volume but different electronic properties on the aromatic ring, determines the
agonist or antagonist activity of these compounds. While experimental data for a larger set of
compounds would most likely enrich this discussion, our experimental and theoretical results
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Fig 1. Non-covalent interaction (NCI) surface for binding site models in TS complexes with p-CMP and p-MMP after QM optimization. Red
squares indicate hydrogen bonds (blue surfaces) and favorable van der Waals interactions (light green surfaces). a) the reactive region of p-CMP; b)
p-substituent region of p-CMP, c) the reactive region of p-MMP and d) p-substituent region of p-MMP. p-CMP is depicted in cyan ball and sticks while
p-MMP is depicted in yellow ball and sticks. NCI indexes isovalues range from 0.035 to -0.035 (au). p-MMP (p-methoxy-β-methylphenylethylamine);
p-CMP (p-chloro-β-mehtylphenylethylamine), respectively.

doi:10.1371/journal.pone.0154989.g001
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strongly suggest that the different activities displayed by these two very similar compounds
depends on the conformation they can adopt upon binding in the MAO-B catalytic site.

Supporting Information
S1 Fig. HRMS-ESI spectrum.HRMS-ESI analyses were carried out by using a Thermo Scien-
tific Exactive Plus Orbitrap spectrometer with a constant nebulizer temperature of 250° C. The
experiment was carried out in positive ion mode at high resolution (resolving power: 140,000
(full width half-maximum peak width atm/z 300, Rfwhm). The samples were infused directly
into the ESI source using a syringe pump at flow rates of 5 μL min-1.
(PDF)

S2 Fig. Plots of 1H and 13C NMR spectra.
(PDF)

S3 Fig. Cluster considered for the transition state structure for p-CMP. Atoms and bonds
are depicted as balls and sticks. p-CMP in cyan. All other atoms are depicted as follows: carbon

Fig 2. Structure and nomenclature. a) isoalloxazine ring of FAD. b) p-CMP or p-MMP.

doi:10.1371/journal.pone.0154989.g002

Fig 3. Hydrogen bond network. In a) p-CMP and b) p-MMP at the active site of MAO-B.

doi:10.1371/journal.pone.0154989.g003
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atoms in grey, oxygen atoms in red, nitrogen atoms in blue and hydrogen atoms in white.
(PDF)

S4 Fig. Cluster considered for the transition state structure for p-MMP. Atoms and bonds
are depicted as balls and sticks. p-MMP in yellow. All other atoms are depicted as follows: car-
bon atoms in grey, oxygen atoms in red, nitrogen atoms in blue and hydrogen atoms in white.
(PDF)

S5 Fig. Full NCI indexes of the transition state of p-CMP at the active site. NCI indexes col-
oured ranging from 0.035 to -0.035 (au). For the sake of clarity some amino acid side-chains
have been deleted from the figure.
(PDF)

S6 Fig. Full NCI indexes of the transition state of p-MMP at the active site. NCI indexes iso-
values coloured ranging from 0.035 to -0.035 (au). For the sake of clarity some amino acid
side-chains have been deleted from the figure.
(PDF)

S7 Fig. Proposed polar nucleophilic mechanism. This mechanism involves a proton transfer
by means of a Nam-C4a adduct.
(PDF)

S1 Table. Calculated contributions to free energy of activation for p-CMP and p-MMP
complexed with MAO-B.
(PDF)

Acknowledgments
This research was supported by FONDO NACIONAL DE DESARROLLO CIENTIFICO Y
TECNOLOGICO (FONDECYT) Grant 1120280.

Author Contributions
Conceived and designed the experiments: AF DEE CCB MRF GZT. Performed the experi-
ments: AF DEE CCBMRF GZT. Analyzed the data: AF DEE CCB MRF GZT. Contributed
reagents/materials/analysis tools: AF DEE CCB MRF GZT. Wrote the paper: AF DEE CCB
MRF GZT. DFT Calculations and analysis of results: GZT CCB. Synthesis: MRF. Kinetic con-
stants measurements for MAO-B: AF DEE.

References
1. Pletscher A. The discovery of antidepressants: a winding path. Experientia. 1991; 47: 4–8. PMID:

1999242

2. Song MS, Matveychuk D, MacKenzie EM, Duchcherer M, Mousseau DD, Baker GB. An update on
amine oxidase inhibitors: multifaceted drugs. Prog Neuropsychopharmacol Biol Psychiatry. 2013; 44:
118–24. doi: 10.1016/j.pnpbp.2013.02.001 PMID: 23410524

3. Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat
Rev Neurosci. 2006; 7: 295–309. PMID: 16552415

4. Edmondson DE, Binda C, Wang J, Upadhyay AK, Mattevi A. Molecular and mechanistic properties of
the membrane-bound mitochondrial monoamine oxidases. Biochemistry. 2009; 48: 4220–4230. doi:
10.1021/bi900413g PMID: 19371079

5. Miller JR, Edmondson DE. Structure-activity relationships in the oxidation of para-substituted benzyla-
mine analogues by recombinant human liver monoamine oxidase A. Biochemistry. 1999; 38: 13670–
13683. PMID: 10521274

6. Walker MC, Edmondson DE. Structure-activity relationships in the oxidation of benzylamine analogs by
bovine liver mitochondrial monoamine oxidase B. Biochemistry. 1994; 33: 7088–7098. PMID: 8003474

p-OMe- and p-Cl-β-Methylphenethylamines Activities upon MAO-B Binding

PLOS ONE | DOI:10.1371/journal.pone.0154989 May 6, 2016 8 / 10

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154989.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154989.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154989.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154989.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0154989.s008
http://www.ncbi.nlm.nih.gov/pubmed/1999242
http://dx.doi.org/10.1016/j.pnpbp.2013.02.001
http://www.ncbi.nlm.nih.gov/pubmed/23410524
http://www.ncbi.nlm.nih.gov/pubmed/16552415
http://dx.doi.org/10.1021/bi900413g
http://www.ncbi.nlm.nih.gov/pubmed/19371079
http://www.ncbi.nlm.nih.gov/pubmed/10521274
http://www.ncbi.nlm.nih.gov/pubmed/8003474


7. Nandigama RK, Edmondson DE. Structure-activity relations in the oxidation of phenethylamine ana-
logues by recombinant human liver monoamine oxidase A. Biochemistry. 2000; 39: 15258–15265.
PMID: 11106506

8. Yang HYT, Neff NH. β-Phenylethylamine: a specific substrate for type B monoamine oxidase of brain. J
Pharmacol Exp Ther. 1973; 187: 365–371. PMID: 4748552

9. De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of
human monoamine oxidase A (MAO-A): relation to the structures of rat MAO A and humanMAO-B.
Proc Natl Acad Sci USA. 2005; 102: 12684–12689. PMID: 16129825

10. Milczek EM, Bonivento D, Binda C, Mattevi A, McDonald IA, Edmondson DE. Structural and Mechanis-
tic Studies of Mofegiline Inhibition of Recombinant Human Monoamine Oxidase B. J Med Chem. 2008;
51: 8019–8026. doi: 10.1021/jm8011867 PMID: 19053775

11. Binda C, Hubálek F, Li M, Herzig Y, Sterling J, Edmondson DE, et al. Binding of rasagiline-related inhib-
itors to human monoamine oxidases: a kinetic and crystallographic analysis. J Med Chem. 2005; 48:
8148–8154. PMID: 16366596

12. Binda C, Wang J, Li M, Hubálek F, Mattevi A, Edmondson DE. Structural and Mechanistic Studies of
Arylalkylhydrazine Inhibition of Human Monoamine Oxidases A and B. Biochemistry. 2008; 47: 5616–
5625. doi: 10.1021/bi8002814 PMID: 18426226

13. Binda C, Aldeco M, Geldenhuys WJ, Tortorici M, Mattevi A, Edmondson DE. Molecular insights into
human monoamine oxidase B inhibition by the glitazone antidiabetes drugs. ACSMed Chem Lett.
2011; 3: 39–42. PMID: 22282722

14. Binda C, Wang J, Pisani L, Caccia C, Carotti A, Salvati P, et al. Structures of humanmonoamine oxi-
dase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med
Chem. 2007; 50: 5848–5852. PMID: 17915852

15. Hubálek F, Binda C, Khalil A, Li M, Mattevi A, Castagnoli N, et al. Demonstration of isoleucine 199 as a
structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible
inhibitors. J Biol Chem. 2005; 280: 15761–15766. PMID: 15710600

16. Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T. Structure of humanmonoamine
oxidase A at 2.2-Å resolution: the control of opening the entry for substrates/inhibitors. Proc Natl Acad
Sci USA. 2008; 105: 5739–5744. doi: 10.1073/pnas.0710626105 PMID: 18391214

17. Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of
human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci
USA. 2003; 100: 9750–9755. PMID: 12913124

18. Milczek EM, Binda C, Rovida S, Mattevi A, Edmondson DE. The ‘gating’residues Ile199 and Tyr326 in
human monoamine oxidase B function in substrate and inhibitor recognition. FEBS Journal. 2011; 278:
4860–4869. doi: 10.1111/j.1742-4658.2011.08386.x PMID: 21978362

19. Binda C, Aldeco M, Mattevi A, Edmondson DE. Interactions of monoamine oxidases with the antiepilep-
tic drug zonisamide: specificity of inhibition and structure of the humanmonoamine oxidase B complex.
J Med Chem. 2010; 54: 909–912. doi: 10.1021/jm101359c PMID: 21175212

20. Esteban G, Allan J, Samadi A, Mattevi A, Unzeta M, Marco-Contelles J, et al. Kinetic and structural
analysis of the irreversible inhibition of human monoamine oxidases by ASS234, a multi-target com-
pound designed for use in Alzheimer's disease. BBA-Proteins Proteom. 2014; 1844: 1104–1110.

21. Li M, Binda C, Mattevi A, Edmondson DE. Functional role of the “aromatic cage” in humanmonoamine
oxidase B: structures and catalytic properties of Tyr435 mutant proteins. Biochemistry. 2006; 45:
4775–4784. PMID: 16605246

22. Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, et al. Potentiation of ligand
binding through cooperative effects in monoamine oxidase B. J Biol Chem. 2010; 285: 36849–36856.
doi: 10.1074/jbc.M110.169482 PMID: 20855894

23. Zapata-Torres G, Fierro A, Barriga-González G, Salgado JC, Celis-Barros C. Revealing Monoamine
Oxidase B Catalytic Mechanisms by Means of the Quantum Chemical Cluster Approach. J Chem Inf
Mod. 2015; 55: 1349–1360.

24. Atalay VE, Erdem SS. A comparative computational investigation on the proton and hydride transfer
mechanism of monoamine oxidase using model molecules. Comput Biol Chem. 2013; 47: 181–191
doi: 10.1016/j.compbiolchem.2013.08.007 PMID: 24121676

25. Repic M, Vianello R, Purg M, Duarte F, Bauer P, Kamerlin SCL, et al. Empirical valence bond simula-
tions of the hydride transfer step in the monoamine oxidase B catalyzed metabolism of dopamine. Pro-
teins: Struct Funct Bioinf. 2014, 82:3347–3355

26. Abad E, Zenn RK, Kästner J. Reaction Mechanism of Monoamine Oxidase from QM/MMCalculations,
J Phys Chem B, 2013, 117:14238–14246 doi: 10.1021/jp4061522 PMID: 24164690

p-OMe- and p-Cl-β-Methylphenethylamines Activities upon MAO-B Binding

PLOS ONE | DOI:10.1371/journal.pone.0154989 May 6, 2016 9 / 10

http://www.ncbi.nlm.nih.gov/pubmed/11106506
http://www.ncbi.nlm.nih.gov/pubmed/4748552
http://www.ncbi.nlm.nih.gov/pubmed/16129825
http://dx.doi.org/10.1021/jm8011867
http://www.ncbi.nlm.nih.gov/pubmed/19053775
http://www.ncbi.nlm.nih.gov/pubmed/16366596
http://dx.doi.org/10.1021/bi8002814
http://www.ncbi.nlm.nih.gov/pubmed/18426226
http://www.ncbi.nlm.nih.gov/pubmed/22282722
http://www.ncbi.nlm.nih.gov/pubmed/17915852
http://www.ncbi.nlm.nih.gov/pubmed/15710600
http://dx.doi.org/10.1073/pnas.0710626105
http://www.ncbi.nlm.nih.gov/pubmed/18391214
http://www.ncbi.nlm.nih.gov/pubmed/12913124
http://dx.doi.org/10.1111/j.1742-4658.2011.08386.x
http://www.ncbi.nlm.nih.gov/pubmed/21978362
http://dx.doi.org/10.1021/jm101359c
http://www.ncbi.nlm.nih.gov/pubmed/21175212
http://www.ncbi.nlm.nih.gov/pubmed/16605246
http://dx.doi.org/10.1074/jbc.M110.169482
http://www.ncbi.nlm.nih.gov/pubmed/20855894
http://dx.doi.org/10.1016/j.compbiolchem.2013.08.007
http://www.ncbi.nlm.nih.gov/pubmed/24121676
http://dx.doi.org/10.1021/jp4061522
http://www.ncbi.nlm.nih.gov/pubmed/24164690


27. Geha RM, Chen K, Wouters J, Ooms F, Shih JC. Analysis of conserved active site residues in mono-
amine oxidase A and B and their three-dimensional molecular modeling. J Biol Chem. 2002; 277:
17209–17216. PMID: 11861643

28. Binda C, Mattevi A, Edmondson DE. Structural properties of human monoamine oxidases A and B. Int
Rev Neurobiol. 2011; 100: 1–11. doi: 10.1016/B978-0-12-386467-3.00001-7 PMID: 21971000

29. Kalgutkar AS, Dalvie DK, Castagnoli N, Taylor TJ. Interactions of nitrogen-containing xenobiotics with
monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem
Res Toxicol. 2001; 14: 1139–1162. PMID: 11559028

30. Kinemuchi H, Arai Y, Toyoshima Y, Tadano T, Kisara K. Studies on 5-fluoro-α-methyltryptamine and p-
chloro-β-methylphenethylamine: Determination of the MAO-A or MAO-B selective inhibition in vitro.
JPN J Pharmacol. 1988; 46: 197–199. PMID: 3379831

31. Kim SK, Toyoshima Y, Arai Y, Kinemuchi H, Tadano T, Oyama K, et al. Inhibition of monoamine oxi-
dase by two substrate-analogues, with different preferences for 5-hydroxytryptamine neurons. Neuro-
pharmacology. 1991; 30: 329–335. PMID: 1852266

32. Newton-Vinson P, Hubálek F, Edmondson DE. High-level expression of human liver monoamine oxi-
dase B in Pichia pastoris. Protein Express Purif. 2000; 20: 334–345.

33. Cossi M, Rega N, Scalmani G, Barone V. Energies, structures, and electronic properties of molecules
in solution with the C‐PCM solvation model. J Comput Chem. 2003; 24: 669–681. PMID: 12666158

34. Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a
conductor solvent model. J Phys Chem A. 1998; 102: 1995–2001.

35. Siegbahn PE, Himo F. Recent developments of the quantum chemical cluster approach for modeling
enzyme reactions. J Biol Inorg Chem. 2009; 14: 643–651. doi: 10.1007/s00775-009-0511-y PMID:
19437047

36. Ross GA, Morris GM, Biggin PC. Rapid and accurate prediction and scoring of water molecules in pro-
tein binding sites. PLoS One. 2012; 7:e32036. doi: 10.1371/journal.pone.0032036 PMID: 22396746

37. Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermo-
chemical kinetics, noncovalent interactions, excited states, and transition elements: two new func-
tionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc.
2008; 120: 215–241.

38. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman
JR, et al. Gaussian, Inc., Wallingford CT, 2009.

39. Anslyn EV, Dougherty DA. Modern physical organic chemistry. Eds.; University Science Books:
United States, 2006.

40. Contreras-García J, Johnson ER, Keinan S, Chaudret R, Piquemal JP, Beratan DN, et al. NCIPLOT: a
program for plotting noncovalent interaction regions. J Chem Theory Comput. 2011; 7: 625–632 PMID:
21516178

41. Johnson ER, Keinan S, Mori-Sanchez P, Contreras-Garcia J, Cohen AJ, YangW. Revealing noncova-
lent interactions. Journal of the American Chemical Society, 132(18), 6498–6506. J Am Chem Soc.
2010; 13: 6498–6506 doi: 10.1021/ja100936w PMID: 20394428

42. Contreras-García J, YangW. Analysis of hydrogen-bond interaction potentials from the electron den-
sity: Integration of NCI regions J Phys Chem A, 2011, 115:12983–12990 doi: 10.1021/jp204278k
PMID: 21786796

43. Heuson E, Storgaard M, Huynh TH, Charmantray F, Gefflaut T, Bunch L. Profiling substrate specificity
of two series of phenethylamine analogs at monoamine oxidase A and B. Org Biomol Chem. 2014;
12:8689–8695 doi: 10.1039/c4ob01377h PMID: 25253656

44. Liao RZ. Quantum Chemical Cluster Modeling of Enzymatic Reactions. Ph.D. Thesis, Stockholm Uni-
versity, Stockholm, Sweden, 2010. Available: https://www.diva-portal.org/smash/get/diva2:353152/
FULLTEXT01.pdf

45. Celis-Barros C, Saavedra-Rivas L, Salgado JC, Cassels BK, Zapata-Torres G. Molecular dynamics
simulation of halogen bonding mimics experimental data for cathepsin L inhibition. J Comp Aided Mol
Des. 2015; 29: 37–46.

46. Edmondson DE, Bhattacharrya AK, Xu J. Evidence for alternative binding modes in the interaction of
benzylamine analogues with bovine liver monoamine oxidase B. BBA Protein Struct Mol Enzym. 2000;
1479:52–58.

p-OMe- and p-Cl-β-Methylphenethylamines Activities upon MAO-B Binding

PLOS ONE | DOI:10.1371/journal.pone.0154989 May 6, 2016 10 / 10

http://www.ncbi.nlm.nih.gov/pubmed/11861643
http://dx.doi.org/10.1016/B978-0-12-386467-3.00001-7
http://www.ncbi.nlm.nih.gov/pubmed/21971000
http://www.ncbi.nlm.nih.gov/pubmed/11559028
http://www.ncbi.nlm.nih.gov/pubmed/3379831
http://www.ncbi.nlm.nih.gov/pubmed/1852266
http://www.ncbi.nlm.nih.gov/pubmed/12666158
http://dx.doi.org/10.1007/s00775-009-0511-y
http://www.ncbi.nlm.nih.gov/pubmed/19437047
http://dx.doi.org/10.1371/journal.pone.0032036
http://www.ncbi.nlm.nih.gov/pubmed/22396746
http://www.ncbi.nlm.nih.gov/pubmed/21516178
http://dx.doi.org/10.1021/ja100936w
http://www.ncbi.nlm.nih.gov/pubmed/20394428
http://dx.doi.org/10.1021/jp204278k
http://www.ncbi.nlm.nih.gov/pubmed/21786796
http://dx.doi.org/10.1039/c4ob01377h
http://www.ncbi.nlm.nih.gov/pubmed/25253656
https://www.diva-portal.org/smash/get/diva2:353152/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:353152/FULLTEXT01.pdf

