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Abstract

The transfer of seaweeds from subtidal bottoms to nearby intertidal rocky shores is a com-

mon but often overlooked phenomenon. Freshly detached seaweeds often represent critical

trophic subsidies for herbivores living in upper-shore rocky intertidal areas, such as the

marine snail Diloma nigerrima. This species relies on three species of seaweeds for food

and displays feeding strategies to deal with a resource that is scarce and at times unpredict-

able. This study focused on the nutritional quality of freshly detached algae (Durvillaea ant-

arctica, Lessonia spicata and Lessonia trabeculata) and measured Diloma nigerrima’s algal

consumption rates in trials with and without choice. Absorption efficiency and growth of indi-

vidual snails fed on each alga were also measured. Durvillaea antarctica had the highest

nutritional quality and was the most consumed algae in both single and multiple-choice tri-

als. Absorption efficiency was also highest for D. antarctica but growth rates of snails fed

with this species were similar to those fed with the other algae. Combined, these results sug-

gest that D. nigerrima has the ability to discriminate among seaweeds based on their nutri-

tional quality. A potential increase in oxygen uptake when D. nigerrima is consuming the

preferred food item is also proposed as a plausible hypothesis to explain the mismatch

between snails’ preference and growth rate. These results aim to guide further studies on

trophic subsidies and their role in coastal systems.

Introduction

Local-scale processes, such as physical disturbance and species interactions, influence individ-

uals, populations and communities [1–3]. However, separate components of an ecosystem
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should not be analysed as discrete ecological units [4–6]. Local processes are often affected by

external factors as a result of the connectivity between ecotones or ecosystem components [7–

9]. Trophic subsidies or the transfer of energy between distinct ecotones [8,10] constitute a

prime example of this. Trophic subsidies are widespread in nature but become most relevant

when the ecotone receiving the subsidy is naturally poor or deprived of primary producers

(e.g. sandy beaches; [11,12]).

Given their proximity, transfer of detritus between subtidal and intertidal rocky shore areas

is expected to occur often [13]. On temperate shorelines in particular, where rich subtidal kelp

forest are common [14,15] a considerable amount of organic matter associated with detached

seaweeds is transferred to intertidal habitats [16–18]. In Southwest Africa, for example,

stranded seaweeds coming from subtidal areas support large intertidal populations of Patella
argenvillei and Patella granatina, which in turn “top-down” regulate entire algal communities

[19]. Stranded seaweeds also support populations of black sea urchins (Tetrapygus niger) in

central Chile, which in turn alleviates the pressure of these grazers on the other species of algae

in the system [9]. Despite the relevance of subsidies like fresh stranded seaweeds, we still lack a

clear understanding of their role on the feeding ecology and fitness of rocky intertidal herbi-

vores (e.g. [20,21])

Herbivores, particularly those relying on trophic subsidies from other systems, are heavily

dependent on the quality of the algae they consume [22,23,9]. In comparison to animals, sea-

weed tissues are low in proteins and some authors have even considered the diet of herbivores

to be “protein-limited” [24–27]. This has prompted herbivores to develop physiological or

behavioral strategies to fulfill their nutritional requirements in the face of limited or unpredict-

able food supplies [10]. While some species optimize their diet by choosing algae that are rich

in proteins [28,29,10,30], others increase their consumption of lower quality algae (compensa-

tory feeding [31]) or increase protein absorption efficiency [32]. A trade-off of these and other

potential strategies is particularly interesting among upper intertidal herbivores such as

Diloma nigerrima, a marine snail that relies on the supply of freshly detached seaweeds from

richer subtidal bottoms along the South American Eastern Pacific [33,34].

On central Chile rocky shores, Diloma nigerrima populations reach high densities in

upper intertidal areas [33]. This small black snail is globular in shape with indistinct spiral

lines, and feeds primarily on three species of freshly stranded algae that grow on subtidal bot-

toms: Durvillea antarctica, Lessonia spicata and Lessonia trabeculata. The reliance of D. niger-
rima on these algae raises two questions regarding its feeding ecology and fitness. Is this

marine snail able to discriminate and choose among algae based on their nutritional quality?

And then, is the nutrient absorption efficiency and ultimately snail growth a reflection of

potential differences in algal nutritional quality? Two hypotheses are proposed here to

address these questions: herbivores such as this snail consume, prefer and achieve the highest

absorption efficiency and growth rates on the alga with the best nutritional quality. Alterna-

tively, herbivores do not discriminate among algae and instead balance their growth rates by

increasing the absorption efficiency and/or consumption rates on lower quality algae (i.e.

compensatory feeding). The first hypothesis is broadly supported by literature in foraging

behavior [22,35]. Meanwhile, the absorption efficiency increase or the “compensatory feed-

ing” operating behind the second hypothesis has been demonstrated in a few cases where

herbivores lack high quality food sources [32,35,30]. These hypotheses were tested by mea-

suring the nutritional quality of the freshly detached algae mentioned above, and by measur-

ing D. nigerrima’s consumption, preference, absorption and growth rates while presented

with a diet of these algae.

Algal quality drives herbivore’s feeding ecology
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Material and methods

Collection of snails and algae

Individual snails (D. nigerrima) were manually collected from the rocky intertidal of Quintay,

Central Chile (~33˚11’S, 71˚41’W) (Fig 1) during July 2014. The specimens were transported

to the facilities of the Centro de Investigaciones Marinas de Quintay (CIMARQ; Universidad

Andres Bello) and maintained in containers with filtered seawater and scattered rocks for

acclimation. The containers were tightly covered with perforated lids to allow for air exchange.

Prior to the experiments, the specimens were starved a standard 48 h period to standardize

hunger levels and avoid the potential influence of previous in situ diets on subsequent feeding

behavior [28,10,30]. The three species of algae (D. antarctica, L. spicata and L. trabeculata)

were regularly collected from the same rocky shore area in Quintay and fresh pieces of each

species were used immediately after collection for the experiments described below. Given that

the focus of this study is on fresh subsidies of detached algae [10,30] no decomposing pieces

were used in any of the experiments. The duration of the experiments varied according to the

variables being measured (see below).

Algal nutritional quality

The nutritional quality of fresh pieces of each species of alga was assessed in terms of organic

matter and protein content. Algal samples (blades) from each species (n = 5) were dried (60˚C,

48 h) and weighed and subsequently incinerated (500˚C, 4 h) before being weighed again. The

organic fraction of these algae was then estimated by weight loss expressed as percentage. Pro-

tein content of the algae was assessed using the bicinchoninic acid method (PierceTM BCA

Protein Assay Kit) using bovine albumin serum as a standard. Samples were mixed with SDS

Fig 1. Map illustrating the approximate location of Quintay along the Chilean littoral, Southeast Pacific.

https://doi.org/10.1371/journal.pone.0196121.g001
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(0.5%), sonicated for 1.5 min and centrifuged at 5,500 rpm for 35 min. The supernatant was

incubated with BCA at 45˚C for 30 min. Protein concentration was determined colorimetri-

cally by measuring the absorbance at 562 nm. Estimates were based on replicate samples of D.

antarctica (n = 11), L. spicata (n = 5) and L. trabeculata (n = 4). The level of replication was

based on preliminary trials using each type of algae.

Snail consumption rates and preference

Consumption rates on each species of algae were measured separately (no choice trials) in

12.0 × 9.4 × 4.3 cm height plastic containers covered with perforated lids to allow for air

exchange. Each treatment had five replicates and each replicate had 25 snails and a similar

(standard) amount of algae (2–7 g of D. antarctica, L. spicata, or L. trabeculata) offered ad libbi-
tum. Before starting the experiments, algal pieces were gently blotted and weighed. Consump-

tion trials lasted 24 h under controlled temperature (17˚C; representative of the average water

temperature in the collection area) and a natural light/dark cycle. These trials were matched

with replicated controls (n = 5) with algae but not snails to calibrate for potential weight

changes due to reasons other than grazing, following published methodology [36–37]. Pieces

of algae in each container were weighed before and after the exposure to snails with a 0.001 mg

accuracy digital balance, and algal consumption rates estimated as follows: Consumption =

(Einitial—Efinal)–(Cinitial-Cfinal), where E and C stand for algae exposed to snails and those

used as controls, respectively.

For the assessment of snail consumption rates with choice (i.e. preference), gently blotted

pieces of each type of algae were weighed (approximately 2–8 g of each algal species), and

offered simultaneously to snails (1.1–1.5 mm shell length). In each replicate (n = 10), the

experimental animals (40) were placed in containers (19.3 × 12.7 × 6.7 cm height) containing

all three macroalgal species. All experiments were conducted for 24 h in the same controlled

conditions described above. The higher number of replicates for these experiments (algal

choice) followed previous observations indicating that values of consumption with choice

were in general more variable than those of consumption without choice. The higher number

of snails (40) per replicate accounted for differences in container size. Regardless, consump-

tion with and without choice were in both cases calculated as consumption rates per individual

snail. Each replicate was matched with parallel control containers with algae but without snails.

Consumption rates upon each type of algae were then calculated by algal weight difference, fol-

lowing the methodology described above.

Snail absorption efficiency and growth

Absorption efficiency was estimated from the relationship between the organic and inorganic

fractions measured in the ingested algae and the fecal material [38]. This methodology assumes

that only the organic fraction of the food is affected by the absorption process. Absorption

efficiency (AE) was then calculated as follows: AE = ([F-E] / [1-E] × F) × 100, where F and E

represent the proportion of organic matter present in food and feces, respectively. Before

beginning the experiments, the animals were maintained without food for 48 h (see Duarte

et al. [30]). To obtain fecal pellets, 25 snails were maintained in 11.7 × 7.2 cm plastic containers

with pieces of either D. antartica, L. spicata or L. trabeculata. Each treatment (i.e. each algal

species) had five replicates. After 24 h, fecal pellets were collected and frozen, while algal pieces

were replaced with fresh ones, and the procedure was then repeated for the following 4 d. To

quantify organic matter, food (algae) and fecal pellets were processed following the methodol-

ogy described above (see algal nutritional quality).

Algal quality drives herbivore’s feeding ecology
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Growth rates were measured over individual snails (1.1–1.4 cm shell length, approximately

1 g weight) fed with each species of alga separately. Snails and 4–5 g of fresh algal pieces were

placed in 11.7 × 7.2 cm plastic containers (n = 10) for 11 d, replacing algal pieces with fresh

ones on a daily basis. Growth rates were estimated by before-after snail weight difference.

Data analysis

Nutritional quality, consumption, absorption and growth rate were compared using one-way

ANOVAs [39]. For those analyses that detected significant differences between algae, a Tukey’s

HSD a posteriori test was applied to identify significant differences between individual species.

ANOVA assumptions of normality and homoscedasticity were assessed using Kolmogorov-

Smirnov and Bartlett tests, respectively. In the case of food preference experiments, and

because of their nature (algal choice), consumption rates of a given alga were not independent

from the consumption rates of the other species. Differences among algae were thus assessed

with a nonparametric Friedman’s test followed by pairwise comparisons [39]. All analyses

were conducted using R routines.

Ethics statement

No specific permits were required for the described laboratory experiments. The intertidal

area is part of the Laboratorio de Investigaciones Marinas de Quintay of the Universidad

Andres Bello and are not privately owned or designated as protected areas (reserves or parks).

No protected or endangered species were involved in this study.

Results

Algal nutritional quality

Algal organic content differed significantly among species (p<0.001; Fig 2A) such that it was

significantly higher in D. antarctica than in L. trabeculata and L. spicata (the latter two were

not significantly different). Protein content also differed significantly among algae species

(p<0.001; Fig 2B). D. antarctica exhibited higher protein concentrations than L. trabeculata
and L. spicata. In this case, all the pairwise differences were significant (p<0.001; Fig 2B).

Snail consumption rates and preference

When algae were offered separately (i.e., no choice trials), D. nigerrima consumed significantly

different amounts of algae (p<0.001; Fig 3A). Snails consumed significantly (three times)

more D. antarctica than L. spicata and L. trabeculata (consumption of the latter two algae was

not significantly different; p>0.05; Fig 3A). Similar results were obtained when the three algae

were offered simultaneously to the snail (i.e. choice trials). In this case, D. antarctica was again

the most consumed alga (p<0.001; Fig 3B), but in contrast with the experiment of consump-

tion with no choice, D. nigerrima consumed significantly more L. spicata than L. trabeculata
(p<0.05).

Snail absorption efficiency and growth

D. nigerrima’s absorption efficiency varied significantly among algae (p<0.001) such that it

was highest on D. antarctica and lowest on L. trabeculata, with intermediate values in the case

of L. spicata. Snail growth rates were not significantly different among those fed with different

algal species (p = 0.555; Fig 4B).

Algal quality drives herbivore’s feeding ecology
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Discussion

Herbivores relying on fresh trophic subsidies are interesting models for the study of feeding

behavior for at least two reasons. First, food sources originate from a different ecosystem or

ecotone [8], so their supply may be dictated by factors operating outside the habitat in which

herbivory takes place. Second, in the absence of other relevant sources of food, trophic subsi-

dies are critical and potentially drive the herbivore’s feeding behaviour, physiology, if not its

survival [40,41]. As discussed below, these elements are relevant to the system studied here,

where an upper intertidal snail relies on the stranding of fresh subtidal seaweeds. The bulk of

the results reported here supported the predictions of the first stated hypothesis: there was a

clear link between algal quality and the herbivore’s consumption and absorption efficiency,

although surprisingly, that was not reflected on growth rates. The results of this study also

rejected the second working hypothesis, as this herbivore was indeed able to discriminate

among algal species and did not exhibit signs of compensatory feeding (sensu [31,35]).

Fig 2. Mean (+S.D.) values of organic matter (A) and protein content (B) in the tissues of the three stranded algae

consumed by Diloma nigerrima: Durvillaea antarctica (Da), Lessonia spicata (Ls), and Lessonia trabeculata (Lt).

Different letters above the bars identify significant differences among means based on Tukey’s post-hoc comparisons

(p<0.05).

https://doi.org/10.1371/journal.pone.0196121.g002
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Algal quality and feeding behavior

Stranded seaweeds represent a critical source of food for various intertidal herbivore species

[19,9,20,42,10]. As a result of this, the number of studies examining herbivores’ feeding on these

seaweeds is growing [43,9,10,44,45]. In the system examined in the present study, the snail D.

nigerrima consumed at least three times more Durvillea antarctica than either Lessonia spicata
or Lessonia trabeculata, both in single and multiple choice algal trials. As predicted from the

first hypothesis, this was directly related to algal nutritional quality [46,47,29,48,49,35]. Mea-

surements of organic matter and protein content indicated that D. antarctica was a better qual-

ity food item than the two species of Lessonia, which translated on much higher feeding rates on

the former species. This is consistent with the findings of Donald et al. [50], who reported the

temporal disappearance of D. nigerrima populations from South African habitats that had

become devoid of D. antarctica.

Among nutrient indicators, the protein content of has been considered as one of the best

surrogates of algal quality for herbivores [51,52,29,30], including gastropods [53,29],

Fig 3. Mean (+S.D.) values of Diloma nigerrima consumption rates in trials without (A) and with a choice among the

three species of algae (B). Different letters above the bars identify significant differences means based on Tukey’s HSD

post-hoc comparisons (consumption) or Friedman’s test (consumption with choice). All other details as in Fig 2.

https://doi.org/10.1371/journal.pone.0196121.g003
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amphipods [54,22,10] and echinoderms [55]. In this study, protein concentration in D. antarc-
tica was ~25% and ~50% higher than that in L. trabeculata and L. spicata, respectively. Not sur-

prisingly, proteins and organic matter contents were also related to D. nigerrima’s absorption

efficiency rates. In fact, the variation in organic matter content across different species of sea-

weeds was proportionally (and almost perfectly) mirrored by the absorption efficiency mea-

sured in the snails. Such tight plant-herbivore relationships have been described before for

other species [56,57,35], and associated to various measures of fitness, including herbivore

growth rates [29,10,58].

Higher growth rate resulting from consumption of better quality algae has been docu-

mented in polychaetes [51], echinoderms [59–61], amphipods [10,30,58] and gastropods [29].

However, this did not occur in this study: despite the snail’s higher consumption, preference,

and absorption efficiency on the most nutritious alga (D. antarctica), snails that fed upon a

diet of that species alone did not grow faster or larger than those fed on either species of Lesso-
nia. One plausible hypothesis to explain the lack of differences in growth rates is a potential

Fig 4. Mean (+S.D.) values of Diloma nigerrima absorption efficiency (A) and growth rates (B) in specimens fed

separately with the three species of algae. Different letters above the bars identify significant differences means based

on Tukey’s HSD post-hoc comparisons (p<0.05). The lack of letters in (B) indicates the lack of significant differences.

All other details as in Fig 2.

https://doi.org/10.1371/journal.pone.0196121.g004
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increase in oxygen uptake while consuming D. antartica. If D. nigerrima consumes more meta-

bolic energy while processing the most nutritious alga, this may balance its growth with the

one achieved with the less nutritional algae, as could be the case in this study. Interactions with

other structural features (shape and toughness) [46,62–64] or the presence of chemical

defenses against herbivores [29,65,66] are also possible. The assessment of all those factors was

beyond the scope of this study, but their analysis may guide further research on the species

studied here.

The temperature used in the experiments (17˚C) was lower than the one used in other stud-

ies (e.g. 20˚C in amphipod growth trials) [10,30,58]. Although those 3˚C can admittedly make

a difference in growth rates, the temperature used here was based on what has been measured

in the field and thus it better reflects the natural conditions of the habitat in which snails and

algae are found. The replication and the duration of the trials (11 d) was judged suitable to

accurately measure growth rates in D. nigerrima based on repeated observations conducted

prior to the trials reported here. Hence, based on their knowledge of the species and the sys-

tem, the authors are confident that the lack of differences reported here is meaningful and

informative. However, depending on logistic feasibility, further studies should increase replica-

tion and/or duration of the trials to verify whether the snails reach a point at which growth

rates become different.

Lack of compensatory feeding and further directions

In marine invertebrates, particularly amphipods, food preference has been directly correlated

with growth rates or other measures of fitness [67,68,10,29,45]. This was not the case in this

study, where the clear preference of D. nigerrima for a particular alga (D. antarctica) was not

matched by enhanced growth rates when the snail was fed on a diet of that species. When no

direct relationship emerges between food preference and a measure of fitness, such as growth,

as in this study, an examination of individual consumption rates may shed light on other feed-

ing strategies. One of these strategies is compensatory feeding [31,35] or the increased con-

sumption of food items of comparatively lower nutritional quality in order to achieve optimal

growth in the absence of better quality food. However, in no-choice consumption trials, D.

nigerrima exhibited the same patterns of consumption as in preference trials, indicating the

absence of evidence of compensatory feeding. Other species are able to compensate by balanc-

ing growth with increased absorption efficiency of lower quality algae [30,58,31,35]. However,

this was not the case either as the snail’s absorption rates were again significantly higher on the

preferred species, D. antarctica.

The second hypothesis was therefore firmly rejected given the identification of a clear pref-

erence for one algal species and the absence of evidence of compensatory feeding. In the search

for alternative explanations, the physical and nutritional conditions of the seaweeds must be

considered. Freshly detached algae (the focus of this study) that have been “uprooted” from

their original subtidal habitat may become deposited in a harsher (less productive) upper-

intertidal environment by the virtue of the connectivity between ecosystems [69,70]. The fact

that a fraction of those algae remains stranded over the intertidal rocks and undergo decay for

an uncertain number of days cannot be ignored. The condition of these algae may vary widely

and have an effect on herbivores’ preferences and consumption [41,57]. Hence, even though

the analysis of decomposing algae is well beyond the scope of this study, it is wise to suggest

further studies addressing the role of algal decay on the feeding ecology of Diloma nigerrima.

Together, the results of this study clearly show that D. nigerrima is able to discriminate

among the three stranded seaweeds, as has been demonstrated for other marine herbivores.

Furthermore, the hypothesized increase in oxygen uptake while consuming D. antarctica is a

Algal quality drives herbivore’s feeding ecology
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plausible explanation for the mismatch between food preference and growth recorded here.

The differences in seaweed quality and snail’s feeding responses are accurate and meaningful

but, as previously indicated, do not exclude alternative factors interacting with the variables

measured here [29,46,62–66]. For upper intertidal herbivores relying on the input of freshly

detached seaweeds from other ecotones, further study of multiple factors affecting their feed-

ing strategies may become central to the understanding of herbivore-seaweed relationships.
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nario del Instituto del Mar del Perú. 205 p.
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