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Abstract

We provide a fully-covariant expression for the diffeomorphic charge in 4D anti-

de Sitter gravity, when the Gauss-Bonnet and Pontryagin terms are added to the

action. The couplings of these topological invariants are such that the Weyl tensor

and its dual appear in the on-shell variation of the action, and such that the action

is stationary for asymptotic (anti) self-dual solutions in the Weyl tensor. In anal-

ogy with Euclidean electromagnetism, whenever the self-duality condition is global,

both the action and the total charge are identically vanishing. Therefore, for such

configurations the magnetic mass equals the Ashtekhar-Magnon-Das definition.

1 Introduction

Maxwell Lagrangian for electromagnetism is the simplest gauge-invariant scalar that leads

to second-order field equations. As it is well known, gauge invariance is a consequence of

using the Faraday tensor Fµν = ∂µAν − ∂νAµ , and not explicitly the gauge connection

Aµ.
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However, in four dimensions, Maxwell term is not the only Lagrangian quadratic in F

that can be considered in an electromagnetism action. We can always look at the physical

implications which come from taking an action of the form

I = −1

4

∫

M

(F µνFµν + γ ∗F µνFµν) dt d
3x , (1.1)

where the second contribution is given in terms of the field strength and its dual ∗F µν =
1
2
ǫµναβFαβ , and it is called Pontryagin density

P4 =
1

4
∗F µνFµν . (1.2)

For a given real coupling constant γ, the second part of the action (1.1) contributes just

with a surface term, such that it does not alter the bulk dynamics. Nevertheless, it

may still modify the boundary conditions in the variational problem and, eventually, the

Noether current of the theory.

In non-Abelian theories, Pontryagin is a topological term, which is added on top of

Yang-Mills Lagrangian with a pseudo-scalar coupling θ(x) (axion field) [1]. This θ-term

is responsible for violation of CP -symmetry in Quantum Chromodynamics.

In a more recent context, P4 has been considered to account for properties of a new

topological state in condensed matter physics known as Topological Insulators [2].

In the Euclidean sector of the theory (1.1), the electric field is defined as Ei = F0i, in

terms of derivatives with respect to the Euclidean time x0 = it and the spatial coordinates

{xi}. In turn, the magnetic field is the same as in the case of Lorentzian signature, that

is, Bi =
1
2
ǫ0ijkFjk. With this in mind, the Pontryagin invariant adopts the form

P4 = E ·B , (1.3)

such that the Euclidean action IE = −iI reads

IE =
1

2

∫

M

(

E2 +B2 + 2γ E ·B
)

d4x . (1.4)

An arbitrary variation of this action produces

δIE =

∫

M

(∂µF
µν + γ ∂µ

∗F µν) δAν d
4x−

∫

∂M

(F µν + γ ∗F µν) δAν dΣµ , (1.5)

where the bulk integral yields Maxwell equation and second term which vanishes due to

Bianchi identity, ∂µ
∗F µν = 0.

In order to have a well-defined action principle (δIE = 0), it is necessary that field

equations hold and that the surface term vanishes for a given boundary condition. Usually
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one fixes the vector potential on the boundary, i.e., δAµ = 0. In particular, when the

boundary is a surface separating two regions of the space, this Dirichlet condition defines

the junction conditions for the electric and magnetic fields across the surface in terms of

sources present on the boundary, i.e., the surface charge and current densities.

Another way to achieve a well-posed variational principle is to demand that an asymp-

totic (anti) self-duality condition holds at the boundary, that is,

F µν = ±∗F µν at ∂M , (1.6)

such that this argument fixes the Pontryagin coupling as γ = ∓1.

Self-duality is a global symmetry of the sourceless Maxwell equation, where the electric

and magnetic degrees of freedom are interchanged. An extension to electromagnetism with

sources should necessarily include a magnetic charge. In the Hamiltonian formulation of

Maxwell theory, self-duality is an off-shell symmetry, as shown by Deser and Teitelboim

in Ref.[3].

Using the identity

FµνF
µν =

1

2
(FµνF

µν + ∗Fµν
∗F µν) , (1.7)

the Euclidean action can be rewritten as

IE =
1

8

∫

M

(F µν ∓ ∗F µν)2 d4x . (1.8)

It is worth noticing that for a global (anti) self-duality condition, the action is identically

zero. The solutions in this case are known as Euclidean Instantons. The condition IE = 0

defines a number of ground states of the theory, where Fµν = 0 is the simplest case of

globally self-dual solution.

Invariance under a U(1) gauge transformation, where the gauge field changes as δλAν =

∂νλ, leads to a conservation law associated to this symmetry. Indeed, using the general on-

shell variation of the action (1.5) in the Noether theorem (see Appendix A), a conserved

charge can be constructed,

Q[λ] = −
∫

S2

(F µν ∓ ∗F µν) λ dΣµν , (1.9)

where dΣµν is the dual of the infinitesimal surface element in S2. Since the gauge parame-

ter λ is covariantly constant in the asymptotic region, it can be normalized as λ = 1. The

first term is the contribution due to the Noether current for Maxwell electromagnetism,

Jµ[λ] ∼ F µν∂νλ , the conservation of which produces the electric charge. The second term

is derived from a topological current, J̃µ[λ] ∼ ∗F µν∂νλ , and it corresponds to the mag-

netic flux across the sphere S2, i.e., magnetic charge [4]. Simply put, Eq.(1.9) identifies
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the Noether charge obtained from a topological term with a topological charge derived

from Bianchi identity.

It is evident from the formula (1.9) that any globally (anti) self-dual solution will have

a vanishing charge. This argument reinforces the idea that such a configuration can be

regarded as a ground state of the theory, and provides a firmer ground for the extension

of self-duality condition to AdS gravity discussed below.

2 4D AdS Gravity and Pontryagin Invariant

The addition of topological invariants, which modify the boundary dynamics of AdS grav-

ity, was considered more than fifteen years ago in Refs. [5, 6]. Indeed, the regulation of the

Noether current by the addition of the Euler density provides a generic expression for the

mass and other charges for even-dimensional asymptotically AdS (AAdS) spaces. As this

procedure was performed in first-order formalism, its relation to other approaches was not

clear at that moment, even though the equivalence to Hamiltonian charges was given in

Ref. [7]. In particular its relevance within the framework of anti-de Sitter/Conformal Field

Theory (AdS/CFT) correspondence [8] was certainly unknown. However, this approach

was later translated into metric formalism in Ref.[9], and understood as the addition

of counterterms which depend on the extrinsic curvature. It was then extended to odd

dimensions [10], giving rise to an alternative regularization scheme known as Kountert-

erms. Furthermore, the connection to Holographic Renormalization [11] in the context of

AdS/CFT correspondence was shown in Refs.[12, 13], as the asymptotic expansion of the

extrinsic curvature reproduces the standard counterterm series [14, 15].

The simplest example of regularization using topological invariants is the addition of

Gauss-Bonnet term to four-dimensional AdS action studied in Ref.[5],

I4 =
1

16πG

∫

M

d4x
√
g

[

R +
6

ℓ2
+
ℓ2

4

(

RµναβR
µναβ − 4RµνR

µν +R2
)

]

, (2.1)

where ℓ is the AdS radius and g = |det(gµν)|. This is the same as the quadratic action

given by MacDowell and Mansouri in four dimensions in Ref.[16] (see also Ref. [17]),

which was later extended to higher dimensions by Vasiliev [18].

The Gauss-Bonnet coupling is such that the action is stationary for asymptotically

locally AdS spaces, where the spacetime curvature tends to a constant, i.e., Rµν
αβ →

− 1
ℓ2
δ
[µν]
[αβ]. This is evident from the on-shell variation of I4,

δI4 =
ℓ2

64πG

∫

∂M

d3x
√
hnµ1

δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

gν2γδΓν1
γµ2

(

Rν3ν4
µ3µ4

+
1

ℓ2
δ
[ν3ν4]
[µ3µ4]

)

, (2.2)
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where nµ1
is an outward pointing unit normal to the boundary with the induced metric

hij , and h = |det(hij)|. Also, δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

is the totally anti-symmetric Kronecker delta

defined as det
[

δµ1

ν1
· · · δµ4

ν4

]

. The key argument that supports the finiteness of the action

principle is given by the fact that, for any solution of the Einstein equation Rµν = − 3
ℓ2
gµν ,

the Weyl tensor is

W αβ
µν = Rαβ

µν +
1

ℓ2
δ
[αβ]
[µν] , (2.3)

which is exactly the quantity that appears at the right hand side of Eq.(2.2). The Weyl

tensor is the only combination between the Riemann and Ricci tensors that has a suitable

asymptotic behavior. A formal proof of the finiteness of the action, however, requires

precise fall-off conditions in the metric, valid for any AAdS spacetime [12].

The appearance of the Weyl tensor in the surface term coming from the variation of

the total action (2.1) reflects the link to Conformal Mass definition in AAdS gravity [19].

Indeed, upon suitable expansion of the tensors involved, one can prove that the physical

information on the conformal boundary is encoded in the electric part of the Weyl tensor

[12, 20].

Gauss-Bonnet is not the only possible topological invariant for the Lorentz group one

can construct in four dimensions. Indeed, Pontryagin density in gravity [21], where the

Riemann tensor plays the role of the field strength in Eq.(1.2), is given by

P4 = −1

4
ǫµναβRσλ

µνRσλαβ . (2.4)

As the Pontryagin is a closed form, it can be written locally as the divergence of a Chern-

Simons density current

P4 = ∂µ

[

ǫµναβ
(

Γσ
νλ∂αΓ

λ
βσ +

2

3
Γσ
νλΓ

λ
αǫΓ

ǫ
βσ

)]

. (2.5)

We consider the addition of the Pontryagin density on top of a finite AdS action given

by Euclideanized version of Eq.(2.1), that is,

I = I4 +
ℓ2

32πG
γ

∫

M

d4xP4, (2.6)

where γ is a coupling constant yet to be determined. We emphasize the fact that, in this

case, γ is a given constant, not a function. As a consequence, the action in Eq.(2.6) does

not describe the Chern-Simons modified gravity theory developed by R. Jackiw and S.-Y.

Pi in Ref.[22], where by analogy to dynamic couplings of electromagnetic Pontryagin, one

is able to modify the gravitational field equation in the bulk.

It is direct to check that the addition of the Pontryagin density does not introduce

divergences when evaluating AAdS solutions. Indeed, P4 is zero for AdS black holes and,

at most, finite for gravitational instantons, as it will be discussed below.
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The addition of P4 produces a new surface term with respect to the one in Eq.(2.2),

which is proportional to the dual of the Riemann tensor, i.e.,

δI =
ℓ2

64πG

∫

∂M

d3x
√
hnµ1

δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

gν2γ δΓν1
γµ2

(

W ν3ν4
µ3µ4

− γ

2
√
g
ǫν3ν4αβRαβµ3µ4

)

. (2.7)

It is adequate to perform a shift in the curvature of the type Rαβµ3µ4
→ Rαβµ3µ4

+
1
ℓ2
(gαµ3

gβµ4
− gβµ3

gαµ4
), as the second term is identically zero due to the symmetry in the

indices. In doing so, the variation of the total action can be rewritten as

δI =
ℓ2

64πG

∫

∂M

d3x
√
hnµ1

δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

gν2γδΓν1
γµ2

(

W ν3ν4
µ3µ4

− γ ∗W ν3ν4
µ3µ4

)

, (2.8)

in terms of the dual of the Weyl tensor

∗Wαβµν =
1

2

√
g ǫαβσλW

σλ
µν . (2.9)

By analogy to the EM case, one can determine γ by demanding an asymptotic (anti)-

self duality condition on the Weyl tensor,

Wαβµν = ± ∗Wαβµν . (2.10)

The action is truly stationary if the field equations hold in the bulk and the surface term

vanishes at the boundary. Therefore, a well-defined action principle for the boundary

condition (2.10) implies that the Pontryagin coupling is γ = ±1 [12].

As the Weyl tensor carries information on the normalizable modes in AdS gravity, the

above condition implies a nontrivial relation between different components of the Weyl

tensor at a holographic order. Indeed, asymptotic self-duality for the Weyl tensor, which

appears naturally at the boundary when one adds Gauss-Bonnet (parity-preserving) and

Pontryagin (parity-violating) topological invariants, seems to be the ultimate reason be-

hind holographic stress tensor/Cotton tensor duality, which arises when dealing with

AdS instantons [23], hydrodynamic perturbations around AdS4 black holes [24] and elec-

tric/magnetic duality in Riemann-Cartan-AdS gravity [25].

Only for the particular value of the Pontryagin coupling discussed above, the on-shell

action adopts the compact form [12]

I =
ℓ2

512πG

∫

M

d4x
√
g δ

[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

(

W ν1ν2
µ1µ2

± ∗W ν1ν2
µ1µ2

) (

W ν3ν4
µ3µ4

± ∗W ν3ν4
µ3µ4

)

, (2.11)

in terms of the Weyl tensor and its dual, where we have used the identities

∗W µ1µ2

ν1ν2
=

1

4
δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

∗W ν3ν4
µ3µ4

, (2.12)
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and

δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

∗W ν1ν2
µ1µ2

∗W ν3ν4
µ3µ4

= δ
[µ1µ2µ3µ4]
[ν1ν2ν3ν4]

W ν1ν2
µ1µ2

W ν3ν4
µ3µ4

. (2.13)

This action has been recently studied in the context of a search for a pure-spin connection

formulation for General Relativity [26].

In what follows, we compute the Noether charges for the gravity action I using Wald’s

method [27, 28]. This is the fully-covariant version of the boundary derivation which

associates the addition of the Gauss-Bonnet term to the electric part of the Weyl tensor

and the addition of Pontryagin to magnetic part of the Weyl tensor (see Appendix B).

3 Covariant Noether charges and Topological Invari-

ants

Noether theorem provides a conserved current Jµ (∂µ(
√
gJµ) = 0), for a given symmetry

of an action. Indeed, global isometries in gravitational solutions imply the existence of a

Noether charge defined as

Q =

∫

∂M

d3x
√
hnµJ

µ. (3.1)

When Jµ can be globally written as Jµ = ∂ν(
√
hQµν) in ∂M , the Noether charge can

be expressed as an integral on the two-dimensional surface ∂Σ with the metric σmn and

σ = |det(σmn)|,
Q =

∫

∂Σ

√
σ d2xnµuν Q

µν , (3.2)

where uν is a unit timelike vector, normal at every point to Σ (see Appendix A).

For the case under study here, we follow Wald’s procedure defined in Refs. [27, 28],

which allows us to construct the Noether charges in an arbitrary gravity theory. We

consider a Lagrangian density L, which depends on the metric, curvature and covariant

derivatives of the curvature,

L = L(gµν , Rµναβ ,∇γ1Rµναβ , · · ·
· · · ,∇(γ1···∇γm)Rµναβ , ψ,∇γ1ψ,∇(γ1···γl)ψ) . (3.3)

One can also include matter fields, collectively denoted by ψ, and derivatives of them.

For this general class of theories, the conserved current corresponding to a set of Killing

vectors {ξµ}, is given by the expression (see Appendix A)

√
gJµ = Θµ(δξΓ) + Θµ(δξg) + ξµL, (3.4)
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assuming that the surface term Θµ can be split in a part that contains variations of the

Christoffel symbol and another that contains variations of the metric tensor. Due to the

fact that Θµ(δξg) is proportional to the Lie derivative of the metric, using the Killing

equation, this term can be set to zero. Then, the conserved current adopts the form

√
gJµ = 2Eµναβgαλ

δξΓ
λ
νβ + ξµL, (3.5)

where Eµναβ is the variation of L with respect to the Riemann tensor Rµναβ . The diffeo-

morphism transformation of the Christoffel symbol is given by

δξΓ
λ
νβ = −1

2
gλρ (∇β£ξgρν +∇ν£ξgρβ −∇ρ£ξgβν)

= −1

2

(

∇ν∇βξ
λ +∇β∇νξ

λ
)

+
1

2

(

Rλ
βνσ +Rλ

νβσ

)

ξσ , (3.6)

which produces a current

√
gJµ = −Eµναβ [2∇ν∇βξα − (Rαβνσ + 2Rανβσ) ξ

σ] + ξµL , (3.7)

where we have used the identity that involves the commutator of two covariant derivatives,

[∇β,∇ν ]ξα = Rβνασξ
σ . (3.8)

A minor arrangement can be performed in the above expression for the current, as the

tensor Eµναβ inherits a given symmetry in the indices which is derived from first Bianchi

identity, that is,

0 = Rαβνσ +Rβνασ +Rναβσ , (3.9)

which implies

Eµναβ (Rαβνσ − 2Rανβσ) = 0 . (3.10)

Finally, the formula for the Noether current in a generic gravity theory is given by

√
gJµ = 2Eµναβ (∇ν∇αξβ +Rαβνσξ

σ) + ξµL . (3.11)

For the case under study, we can see that the Noether current associated to the EH

Lagrangian plus GB term in Eq.(2.1) yields

Jµ
4 [ξ] =

ℓ2

64πG
δ
[µνλσ]
[αβγδ] W

γδ
λσ∇ν∇αξβ (3.12)

which, using the second Bianchi identity in the indices νλσ, can be written down as a

total derivative,

Jµ
4 [ξ] =

ℓ2

64πG
∇ν

(

δ
[µνλσ]
[αβγδ]W

γδ
λσ∇αξβ

)

. (3.13)
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Here, we have used the field equations and permutational identities in order to eliminate

additional terms in the curvature, which are coming from the Lie derivative acting on the

Christoffel symbol (3.6). Integrated on ∂Σ , the above expression produces the charge

Q4[ξ] =
ℓ2

64πG

∫

∂Σ

d2x
√
σnµuν δ

[µνλσ]
[αβγδ] ∇αξβW γδ

λσ . (3.14)

Taking now the Lagrangian density corresponding to the Pontryagin term, we have

Eµναβ
P4

= ∓ ℓ2

64πG
ǫµνλσRαβ

λσ , (3.15)

expression which determines the current associated to this term as

Jµ
P4

= ∓ ℓ2

64πG
δ
[µνλσ]
[αβγδ] ∇ν

(

∇αξβ ∗W γδ
λσ

)

. (3.16)

As a consequence, the total Noether charge computed for the AdS gravity action with the

addition of topological invariants is

Q[ξ] =
ℓ2

64πG

∫

∂Σ

d2x
√
σ nµuνδ

[µνλσ]
[αβγδ] ∇αξβ

(

W γδ
λσ ∓ ∗W γδ

λσ

)

. (3.17)

It is then that the analogy with self-dual electromagnetism becomes evident: self-dual

or anti self-dual solutions in AdS gravity have mass (and other conserved quantities)

identically zero. Such a configuration is a vacuum state, which reaches a minimum of the

Euclidean action.

3.1 Taub-NUT/Bolt AdS solutions

For static black hole and even Kerr-AdS solutions, the magnetic part of the Weyl tensor

is zero, such that there is no contribution to the current (3.16). Therefore, non-trivial

examples to evaluate the above expressions for the conserved quantities are Taub-NUT

and Taub-Bolt AdS solutions. These spaces are Euclidean gravitational solutions to the

Einstein equations characterized by a line element [29, 30, 31]

ds2 = f(r) (dτ + 2n cos θ dφ)2 +
dr2

f(r)
+
(

r2 − n2
) (

dθ2 + sin2 θ dφ2
)

, (3.18)

where the function f(r) is given by (G = 1)

f(r) =
r2 − 2Mr + n2 − 3

ℓ2

(

n4 + 2n2r2 − r4

3

)

r2 − n2
. (3.19)

9



Here, n is a parameter, and M is identified as the solution mass [5, 32]. The Taub-NUT-

AdS solution is defined by the condition f(|n|) = 0, but one still has to eliminate the

conical singularities that appear at r = |n|. By imposing a regularity condition, which is

given by f ′(|n|) = 1/2n, the electric mass takes the particular value

QNUT
4 [∂τ ] =MNUT = ±n

(

1− 4ℓ−2n2
)

. (3.20)

This value ofM is the exact point where the Weyl tensor becomes globally (anti) self-dual

[33, 34]. As a consequence, the total Noether charge (3.17) vanishes for any isometry, that

is,

QNUT[ξ] = 0 , (3.21)

as the electric mass is equal to the magnetic mass. This solution can be regarded as a

family of ground states labeled by N .

On the other hand, the Taub-Bolt AdS solution is found for r = rb > |n| and f(r =

rb) = 0. In this case, the electric mass is

QBolt
4 [∂τ ] = MBolt

=
r2b + n2

2rb
− 3

2ℓ2

(

n4

rb
+ 2n2rb −

r3b
3

)

. (3.22)

In turn, the magnetic mass for the Bolt solution remains the same as in the NUT case,

such that the total mass and angular momentum are

QBolt[∂τ ] = MBolt ±MNUT , (3.23)

QBolt[∂φ] = 0 . (3.24)

The anti self-dual case in Eq.(3.23) corresponds to the mass calculated in Ref.[32] following

a background-dependent procedure.

4 Conclusions

A fully-covariant expression for the conserved quantities for 4D AdS gravity supplemented

by Gauss-Bonnet and Pontryagin terms has been obtained à la Wald.

By analogy with electromagnetism, all the charges are identically zero for globally

self-dual solutions.

A similar expression for the Noether charges has been worked out in Refs.[35, 36]

in first-order formalism. In this Riemann-Cartan approach, the parity-violating sector

appears enlarged by the Holst and Nieh-Yang terms, which are identically vanishing in

Riemannian gravity [37]. As a consequence, a contribution associated to this new topolog-

ical invariant enters in the expression of the Noether charges with an arbitrary coupling.
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For a such a case, the surface term is not proportional to the dual of the Weyl tensor,

which implies that no considerations about the self-duality condition can be made.

We understand that, in Riemann-Cartan theory, a sensible choice of the Holst coupling

is the one that produces the dual of the Weyl tensor at the boundary for asymptotically

AdS spaces, in a similar fashion that only for the Gauss-Bonnet coupling in Eq.(2.1) the

surface term is proportional to the Weyl tensor [38].

Implications of the addition of Pontryagin term and self-duality condition for the Weyl

tensor at the level of the Euclidean action and thermodynamics of AAdS gravitational

objects will be discussed elsewhere.
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Appendices

A Noether theorem

Noether theorem states that for any action invariant under a continuous transformation,

there is a conserved current which leads to a conserved charge.

Let I[φ] =
∫

d4xL(φ, ∂φ) be an action for a set of the fields φ(x), where the Lagrangian

L may contain boundary terms added to the action. By varying the form of fields,

δφ(x) = φ′(x) − φ(x), an extremum on the action is reached for the Euler-Lagrange

equations,
δI[φ]

δφ
=
∂L

∂φ
− ∂µ

∂L

∂∂µφ
= 0 . (A.1)

The surface term in a general variation of the action

δI[φ] = e.o.m. +

∫

d4x ∂µ

(

∂L

∂∂µφ
δφ

)

≡
∫

d4x ∂µΘ
µ(φ, δφ) , (A.2)

must vanish upon suitable boundary conditions on the field φ, in order to have a well-posed

action principle.

Let us assume that the action I[φ] is invariant under the continuous transformations

xµ → x′µ = xµ + δxµ ,

φ(x) → φ′(x′) = φ(x) + δTφ(x) , (A.3)
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where the variation of the form of the field, δφ, is related to the total variation of the

field, δTφ, as

δTφ(x) = δφ(x) + ∂µφ δx
µ . (A.4)

Transformations (A.3) are a symmetry of the theory if the action is off-shell invariant,

δI[φ] =

∫

d4x′ L′(x′) −
∫

d4xL(x) = 0 . (A.5)

The Noether current is obtained by rewriting the invariance condition (A.5), and iden-

tifying the equations of motion. Using the Euler-Lagrange equations (A.1), the Lagrangian

changes as

δL =
∂L

∂φ
δφ+

∂L

∂∂µφ
∂µδφ = ∂µ

(

∂L

∂∂µφ
δφ

)

= ∂µΘ
µ(φ, δφ) , (A.6)

and the volume element changes by the Jacobian,
∣

∣

∂x′

∂x

∣

∣ ≈ 1 + ∂µδx
µ. Therefore, the total

change in the Lagrangian is

L′(x′) = L(x) + ∂µΘ
µ(φ, δφ) + ∂µL δx

µ . (A.7)

The relations (A.4–A.7) imply that the symmetry transformations change the action as a

total derivative,

δI[φ] =

∫

d4x ∂µ (Θ
µ(φ, δφ) + L δxµ) =

∫

d4x ∂µ(
√
gJµ) . (A.8)

Furthermore, the invariance condition (A.5) leads to the conservation law

∂µ (
√
gJµ) = 0 . (A.9)

The Noether current is then given by

√
gJµ = Θµ(φ, δφ) + L δxµ . (A.10)

On the contrary to the situation described in Eq.(A.5), if the action does change by a

boundary term
∫

d4x ∂µ(
√
gΩµ), the conserved current is modified as J̃µ = Jµ − Ωµ.

The computation of the conserved charge requires to specify the boundary. The

spacetime has topology M ≃ R × Σ, where Σ is the spatial section with a unit nor-

mal vector uµ = (−Ñ , 0, 0, 0). To define invariant volume element, we use the relation√
g = N

√
h = NÑ

√
σ. The conserved charge reads

Q =

∫

Σ

d3x
√
σN uµ J

µ . (A.11)
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If, in turn, the Noether current can be written as a total derivative,

√
gJµ = ∂ν

(√
hQµν

)

, (A.12)

then the charge becomes

Q =

∫

∂Σ

d2x
√
σ uµnν Q

µν . (A.13)

Here, nµ = (0, N, 0, 0) is a normal to the boundary ∂M ≃ R × ∂Σ. The quantity

d2x
√
σ nµuν is the dual surface element of ∂Σ that is antisymmetric, such that Qµν =

−Qνµ.

Electromagnetic charge. Maxwell electrodynamics with the Pontryagin term is

invariant under U(1) gauge transformations, δλAν = ∂νλ. This implies δλFµν = 0, so

that the invariance condition (A.5) of the action is fulfilled. This is an internal symmetry

(δxµ = 0), and the Noether current (A.10) reads

Jµ =
∂L

∂∂µAν

∂νλ . (A.14)

We take σ = 1. Differentiating the Lagrangian L = 1
4
(F αβFαβ + γ ∗F αβFαβ) leads to

Jµ = (F µν + γ ∗F µν) ∂νλ

= ∂ν [(F
µν + γ ∗F µν) λ] , (A.15)

where the last line is obtained using the Maxwell equations and the Bianchi identity in

order to obtain the charge tensor (A.12) as

Qµν = (F µν + γ ∗F µν) λ . (A.16)

In spherical coordinates, the boundary manifold ∂M = R×S2 has a radial normal nµ = δrµ
and the timelike normal uν = −δtν , and the parameter λ is constant on ∂Σ, such that it

can be set to 1. This enables to compute the electromagnetic charge as in Eq.(A.13).

Diffeomorphic current. An action for Riemmanian gravity, with the metric as the

only fundamental field, is invariant under an infinitesimal change of coordinates δxµ =

ξµ(x), where the metric transforms as a Lie derivative,

δξgµν = −£ξgµν = − (∇µξν +∇νξµ) . (A.17)

Since the action depends on gµν and its derivatives combined in the Cristoffel symbol

Γλ
αβ , it is convenient to separate the boundary term (A.2) which depends on δgµν from

the one that depends on δΓλ
αβ , so that the Noether current (A.10) can be written as

√
gJµ = Θµ(g, δξΓ) + Θµ(g, δξg) + L ξµ . (A.18)
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Note that Θµ(g, δξg) = 0 as a consequence of the asymptotic Killing equation, £ξgµν =

∇µξν +∇νξµ = 0, which describes isometries of the spacetime.

B Asymptotically AdS Spacetimes

We first consider a radial foliation of the spacetime, given by the normal coordinates

ds2 = N2(ρ) dρ2 + hij(ρ, x) dx
idxj , (B.1)

where hij is the induced metric on a boundary ∂M defined at ρ = Const and parametrized

by the coordinate set {xi}. In this frame, the only nonvanishing components of the

Christoffel symbol are

Γρ
ij =

1

N
Kij , Γi

ρj = −NKi
j ,

Γρ
ρρ =

d (lnN)

dr
, Γi

jl(g) = Γi
jl(h) , (B.2)

where Kij = − 1
2N
∂ρhij is the extrinsic curvature.

This spacetime foliation implies the Gauss-Codazzi relations

Riρ
jl =

1

N
(∇lK

i
j −∇jK

i
l ) ,

Riρ
jρ =

1

N
(Ki

j)
′ −Ki

nK
n
j ,

Rik
jl = Rik

jl (h)−Ki
jK

k
l +Ki

lK
k
j , (B.3)

where ∇j = ∇j(h) is the covariant derivative defined with respect to the boundary metric

and Rik
jl (h) is the intrinsic curvature of ∂M .

B.1 Asymptotic fall-off of boundary tensors

A suitable choice of the the lapse function and induced metric in Eq.(B.1) as N = ℓ
2ρ

and

hij =
1
ρ
gij, that is,

ds2 =
ℓ2

4ρ2
dρ2 +

1

ρ
gij dx

idxj , (B.4)

makes it easier to work out an asymptotic (Fefferman-Graham (FG)) form of the boundary

fields for AAdS spaces [39]. The metric defined at the asymptotic boundary (ρ = 0), can

be seen as a power-series expansion. In particular, in four spacetime dimensions,

gij(x, ρ) = g(0)ij(x) + ρ g(1)ij(x) + ρ3/2 g(3/2)ij(x) +O(ρ2) . (B.5)
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The coefficient g(3/2)ij cannot be determined from the field equations, as it corresponds

to the response to the boundary source g(0)ij , i.e., it is proportional to the stress tensor.

Because of the fact that there is no Weyl anomaly at the boundary of 4D AdS gravity,

g(3/2)ij is traceless.

In FG coordinate frame, the expansion for the relevant boundary quantities leads to

the expression
√
h =

√
g

ρ3/2
=

√
g(0)

ρ3/2
+O

(

1

ρ

)

, (B.6)

and, for the extrinsic curvature

Ki
j(h) =

1

ℓ
δij − ρℓ Si

j(g) +O(ρ2) , (B.7)

where Si
j(g) is the Schouten tensor defined as

Si
j(g) = Ri

j(g)−
1

4
δij R(g) , (B.8)

in terms of the boundary Ricci tensor and the Ricci scalar.

For the intrinsic curvature, the asymptotic expansion gives

Rik
jl (h) = ρRik

jl (g) = ρRik
jl (g(0)) +O(ρ2) , (B.9)

relation which is also valid for traces of the boundary Riemann tensor. That means that

Eq.(B.7) can be rewritten in terms of curvatures of hij in the next-to-leading order

Ki
j(h) =

1

ℓ
δij − ℓSi

j(h) +O(ρ2) . (B.10)

Equipped with the asymptotic form of the tensorial quantities involved, we can expand

the variation of the total action (2.6) and work out the holographic version of the electric

and magnetic parts of the Weyl tensor.

B.2 Holographic Stress Tensor in AdS4 Gravity

The projection in the radial foliation (B.1) of the variation of gravity action in Eq. (2.2)

can be written as

δI4 =
ℓ2

32πG

∫

∂M

d3x
√
h δ

[ikl]
[jmn]

[(

δKj
i +

1

2
Kj

qh
qsδhsi

)

Wmn
kl +NhmqδΓj

qi(h)W
ρn
kl

]

. (B.11)

The expansion of the Weyl tensor in FG frame up to quadratic order in ρ is given by

W iρ
jl = O(ρ2) ,

W iρ
jρ = −3

2

ρ3/2

ℓ2
gik(0)g(3/2)kj +O(ρ2) ,

W ik
jl = ρW ik

jl [g(0)] +
3

2

ρ3/2

ℓ2
g
[im
(0) g(3/2)m[jδ

k]
l] +O(ρ2) , (B.12)
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where the first term in the last relation is the Weyl tensor of the metric at the conformal

boundary g(0)ij .

At the same time, we can see the contribution coming from the quantities that involve

variations in the Eq.(B.11), that is,

δKj
i = O(ρ) ,

hqsδhsi = gqs(0)δg(0)si +O(ρ) ,

δΓj
qi(h) = O(1) . (B.13)

A simple power-counting argument applied to the expansion of Eq.(B.11) shows that the

first and the last terms are subleading, and actually go to zero as one approaches the

boundary ρ → 0. As expected, the finite of the variation of EH action plus GB term is

the holographic stress tensor [12, 40]

δI4 =
1

2

∫

∂M

d3x
√
g(0)

(

− 3

16πGℓ
gim(0) g(3/2)mn g

nj
(0)

)

δg(0)ij , (B.14)

where we have used the fact that any trace of the boundary Weyl tensor is zero.

We can covariantize back the above expression in terms of tensorial quantities related

to the full boundary metric hij and prove that, up to the relevant order, the variation of

I4 can be cast in the form

δI4 = − ℓ

16πG

∫

∂M

d3x
√
hW ik

jk

(

h−1δh
)j

i
. (B.15)

Using the fact that a single trace of the Weyl tensor is zero, we have that

W ik
jk = −W iρ

jρ , (B.16)

and it is easy to show that the quantity that appears at the boundary is the electric part

of the Weyl tensor

Ei
j = W iµ

jν nµn
ν , (B.17)

as we can rewrite Eq.(B.15) in the form

δI4 =
ℓ

16πG

∫

∂M

d3x
√
hEi

j

(

h−1δh
)j

i
. (B.18)

This makes manifest the link between the concept of Conformal Mass [19] and the

addition of the Gauss-Bonnet term in 4D AdS gravity [20].
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B.3 Holographic Cotton Tensor

The Pontryagin term, written as a boundary term in the coordinate frame (B.1), is ex-

pressed as

∫

M

d4xP4 =

∫

∂M

d3x
nµ

N
ǫµναβ

(

Γσ
νλ∂αΓ

λ
βσ +

2

3
Γσ
νλΓ

λ
αǫΓ

ǫ
βσ

)

=

∫

∂M

d3x ǫijk
[

−Γl
im

(

∂jΓ
m
kl +

2

3
Γm
jnΓ

n
kl

)

+ 2K l
i∇jKkl

]

. (B.19)

Using the asymptotic form of the fields in FG expansion, the last term reads

2ǫijkK l
i∇jKkl = 2ǫijk

(

1

ℓ
δli − ρℓSl

i +O(ρ2)

)

(−ℓ∇jSkl +O(ρ)) , (B.20)

in terms of a Schouten tensor and the covariant derivative defined with respect the con-

formal metric g(0)ij . Manipulating the last relation, we see that

2ǫijkK l
i∇jKkl = −2ǫijk∇iSjk +O(ρ) = O(ρ) , (B.21)

because Sjk is symmetric.

Therefore, using δΓl
im = 1

2
hln (∇iδhnm +∇mδhni −∇nδhim), the variation of the Pon-

tryagin invariant takes the form,

δP4 = −
∫

∂M

d3x ǫijkδΓl
imRm

ljk(h)

=

∫

∂M

d3x ǫijk
(

h−1δh
)l

i
∇mRm

ljk . (B.22)

As the boundary is three-dimensional, its Weyl tensor vanishes,

0 = Wml
jk (h) = Rml

jk (h)− δmj S
l
k(h) + δljS

m
k (h) + δmk S

l
j(h)− δlkS

m
j (h) , (B.23)

such that

δ

∫

M

d4xP4 =

∫

∂M

d3x ǫijk
(

h−1δh
)l

i
∇m

(

2δmj Skl − 2hljS
m
k

)

, (B.24)

where the second term in the first line identically vanishes due to the symmetry of the

indices. In doing so, the variation is written as

δ

∫

M

d4xP4 = 2

∫

∂M

d3x
√
h
(

h−1δh
)l

i
C i

l , (B.25)
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where C i
l is the Cotton-York tensor,

C i
l =

1√
h
ǫijk ∇jSkl . (B.26)

Finally, putting together the holographic stress tensor in Eq.(B.14) and by rescaling the

Cotton tensor in Eq.(B.25), we see that the finite part of the variation of the total action

is

δI =
1

2

∫

∂M

d3x
√
g(0)

(

T ij ∓ ℓ2

8πG
C ij(g(0))

)

δg(0)ij , (B.27)

where T ij is the holographic stress tensor.

In Ref.[41], the holographic reconstruction of gravity is performed for perfect-Cotton

geometries, where the Cotton tensor of the boundary geometry is proportional to the

energy-momentum tensor. A corresponding gravity theory in the bulk is characterized by

self-duality condition for the Weyl tensor.
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