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1. Introduction

Dualities in string theory have become a very important property in string the-

ory. They allow to show equivalence between different types of strings implying, in this

way, a unifying criteria in string theory. One of these dualities is the target (T-)duality

which makes type IIA equivalent to type IIB [1]. From the world-sheet point of view, T-

dualities imply equivalence between different types of string theory backgrounds following

the Buscher procedure [2]. The idea is to consider a background independent of some direc-

tion and then introduce a gauge field for it. By integrating out these gauge fields, we can

obtain the T-dual background. All this work nicely because it is done in the bosonic string

theory. In the superstring theory case, the situation is more involved because is difficult to

work with Ramond backgrounds. This difficulty is avoided if we have a superstring theory

formalism similar to the bosonic string. Such formalism is claimed to be the pure spinor

formalism [3]. This covariant formalism for the superstring was invented some time ago

by Berkovits. It uses the superspace coordinates as basic free world-sheet variables. Since

this system is not conformal invariant, it is needed to introduce new bosonic variables λα

constrained to satisfy (λγmλ) = 0, where γm are the symmetric 16 × 16 gamma matrices

in ten dimensions. These variable are named as pure spinors. Conformal invariance is

not enough to quantize this sting theory. The new ingredient is to postulate the nilpotent

charge Q =
∮
λαdα (with dα being the world-sheet generator of translations in superspace)

as BRST charge of the system. Although it is necessary to break ten-dimensional Poincare

invariance to solving the pure spinor constraint, it can be shown that the physical spectrum

[4] and scattering amplitudes are manifestly super Poincare invariant [5].

Strings in curved backgrounds can be constructed in this formalism [6], where it was

shown that BRST invariance implies that the background fields satisfy the corresponding

ten-dimensional supergravity constraints. It was shown that this system preserves one-

loop conformal invariance in the heterotic [7] and type II [8] strings as consequence of the

classical BRST constraints found in [6]. It was also shown in [9] that the quantum BRST

invariance is modified consistently after using cohomological methods2.

In this note we will study the quantum preservation of the bosonic [11] and fermionic

[12] T-dualities in the pure spinor formalism. Note that a combination of bosonic and

fermionic T-dualities was used in [12] to show that the AdS5×S5 background of type IIB

2 In [10], the gauge field contribution to the one-loop BRST invariance of the effective action

was obtained.

1



string theory remains invariant explaining in this way the so called “dual superconformal

symmetry” of certain planar scattering amplitudes in N = 4, d = 4 SYM theory [13] [14]

(see also the review [15]).

In the next section we will review the bosonic T-duality of [11] and the fermionic

duality of [12] for the heterotic superstring. Then we will explicitly check that the classical

BRST constraints are preserved after a T-duality transformation. Finally we will prove

that quantum conformal and quantum local symmetries are preserved under T-duality.

2. T-duality for the Heterotic Pure Spinor Superstring

We review the T-dualities discovered in [11] and [12] for the heterotic string case. The

sigma model action in this case is given by

S =
1

2πα′

∫
d2z

1

2
∂ZM∂ZN (G

NM
(Z) +B

NM
(Z)) + ∂ZMJ

I
A
IM

(Z) + dα∂Z
ME

M
α(Z)

(2.1)

+dαJ
I
Wα
I (Z) + λαωβ∂Z

MΩ
Mα

β(Z) + λαωβJ
I
UIα

β(Z) + L(J, λ, ω) + LFT ,

where ZM are the coordinates of the ten-dimensional heterotic superspace, J
I

is the current

for the heterotic fermions, dα is the world-sheet generator for superspace translations, λα

is the pure spinor and ωα is its conjugate momentum. The term L(J, λ, ω) is the action

for the pure spinor variables and heterotic fermions in flat space. The term LFT is the

Fradkin-Tseytlin term and it is given by

LFT = α′
RΦ(Z), (2.2)

where R is the two-dimensional scalar curvature and Φ is the dilaton superfield. The

background fields G,B, ... satisfy the supergravity equations of motion as consequence

of the BRST invariance of (2.1). This symmetry is generated by the nilpotent charge

Q =
∮
λαdα.

Now we will perform a combination of bosonic T-duality, as in [11], and then a

fermionic T-duality, as in [12]. In both cases, we will see that the action (2.1) preserves its

form.
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2.1. Bosonic T-duality in the pure spinor string

We assume that the background fields are independent of some bosonic direction, say

X1, and we split ZM = (X1, YM ). As it was noted in [2], the T-dual action is obtained

after gauging the X1-direction by introducing a purely gauge fields A and A as

S =
1

2πα′

∫
d2z

1

2
AAG11(Y )+

1

2
A∂YMLM1(Y )+

1

2
∂YMAL1M (Y )+

1

2
∂YM∂Y NLNM (Y )

(2.3)

+AJ
I
AI1(Y ) + ∂YMJ

I
AIM (Y ) + dαAE1

α(Y ) + dα∂Y
MEM

α(Y ) + dαJ
I
Wα
I (Y )

+λαωβAΩ1α
β(Y )+λαωβ∂Y

MΩMα
β(Y )+λαωβJ

I
UIα

β(Y )+
1

2
X̃1(∂A−∂A)+L(J, λ, ω)+LFT ,

where L
NM

= G
NM

+B
NM

and X̃1 is a lagrange multiplier which enforces the pure gauge

condition. In fact, if we integrate out this field, we recover the original action (2.1) if

A = ∂X1, A = ∂X1.

In order to obtain the T-dual sigma model action, we integrate out the gauge fields instead.

By varying respect to A and A, we obtain

A = (∂X̃1
− ∂YML1M − 2dαE1

α
− 2λαωβΩ1α

β)
1

G11
, (2.4)

A = (−∂X̃1
− ∂YMLM1 − 2J

I
AI1)

1

G11
.

We plug this in the action (2.3) to get

S =
1

2πα′

∫
d2z

1

2
∂X̃1∂X̃1G′

11(Y ) +
1

2
∂X̃1∂YML′

M1(Y ) +
1

2
∂YM∂X̃1L′

1M (Y ) (2.5)

+
1

2
∂YM∂Y NL′

NM (Y )+∂X̃1J
I
A′

I1(Y )+∂YMJ
I
A′

IM (Y )+dα∂X̃
1E′

1
α(Y )+dα∂Y

ME′

M
α(Y )

+dαJ
I
W ′α

I (Y ) + λαωβ∂X̃
1Ω′

1α
β(Y ) + λαωβ∂Y

MΩ′

Mα
β(Y )

+λαωβJ
I
U ′

Iα
β(Y ) + L(J, λ, ω) + L

′
FT ,

where the transformed fields are given by

3



G′

11 =
1

G11
, L′

M1 =
LM1

G11
, L′

1M = −
L1M

G11
, L′

NM = LNM −
LN1L1M

G11
, (2.6)

A′

I1 =
AI1

G11
, A′

IM = AIM −
AI1L1M

G11
, E′

1
α = −

E1
α

G11
, E′

M
α = EM

α
−
LM1E1

α

G11
,

Ω′

1α
β = −

Ω1α
β

G11
, Ω′

Mα
β = ΩMα

β
−
LM1Ω1α

β

G11
,

W ′α
I = Wα

I − 2
AI1E1

α

G11
, U ′

Iα
β = UIα

β
− 2

AI1Ω1α
β

G11
.

It remains to determine the bosonic component of the supervielbein E
M
a. It can be

obtained through the definition

G
NM

= E
N
aE

M
bηab. (2.7)

Following [11], we determine this supervielbein as

E′

M

a = Q
M
NE

N
a, (2.8)

where the matrix Q is determined by

E′

M

α = Q
M
NE

N
α. (2.9)

According to (2.6), the matrix Q has the entries

Q1
1 = −

1

G11
, Q1

M = 0, QM
1 = −

LM1

G11
, QN

M = δM
N . (2.10)

In this way we obtain

E′

1
a = −

E1
a

G11
, E′

M
a = EM

a
−
LM1E1

α

G11
. (2.11)

As verification, we need to obtain the transformations given in (2.6) for the supermetric

by using the definition of (2.7) and (2.11). In fact, doing this

G′

11 =
1

G11
, G′

1M =
BM1

G11
, G′

NM = GNM +
BN1BM1 −GN1GM1

G11
.
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which are compatible with (2.6). Note that we need to perform a shift in de dilaton

superfield too because of the term involving AA in (2.3) is not one. As it was shown in

[2], the dilaton is transformed according to

Φ′ = Φ + log
2πα′

G11
. (2.12)

We will also need the inverse of the super vielbein. It was found that E′

M

A =

Q
M
NE

N
A where the matrix Q is given in (2.10). The inverse E′

A
M = EA

N (Q−1)
N
M ,

where the entries for the matrix Q−1 are

(Q−1)1
1 = −G11, (Q−1)1

M = 0, (Q−1)M
1 = −LM1, (Q−1)M

N = δM
N . (2.13)

2.2. Fermionic T-duality

Let us consider now a fermionic T-duality [12]. We assume that the background in

the sigma model action (2.1) is independent of a fermionic direction, say θ1. As in the

bosonic case, we gauge this isometry by introducing a pair of fermionic gauge field (A,A)

and by adding a fermionic Lagrange multiplier which enforces a pure gauge condition on

the gauge fields. The action now is

S =
1

2πα′

∫
d2z

1

2
AAB11(Y )+

1

2
A∂YMLM1(Y )+

1

2
∂YMAL1M (Y )+

1

2
∂YM∂Y NLNM (Y )

(2.14)

+AJ
I
AI1(Y ) + ∂YMJ

I
AIM (Y ) + dαAE1

α(Y ) + dα∂Y
MEM

α(Y ) + dαJ
I
Wα
I (Y )

+λαωβAΩ1α
β(Y )+λαωβ∂Y

MΩMα
β(Y )+λαωβJ

I
UIα

β(Y )+
1

2
θ̃1(∂A−∂A)+L(J, λ, ω)+LFT .

Integrating out the fermionic Lagrange multiplier θ̃1, we obtain the action (2.1) because

A = ∂θ1, A = ∂θ1.

We now integrate the gauge fields. The equations of motion for them determine

A = (∂θ̃1
− (−1)M∂YML1M − 2dαE1

α + 2λαωβΩ1α
β)

1

B11
, (2.15)

A = (∂θ̃1
− ∂YMLM1 − 2J

I
AI1)

1

B11
,
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where (−1)M is −1 if M is a bosonic index and is +1 if M is a fermionic index. We plug

these values in the action (2.14) to obtain the fermionic T-dual background

S =
1

2πα′

∫
d2z

1

2
∂θ̃1∂θ̃1B′

11(Y ) +
1

2
∂θ̃1∂YML′

M1(Y ) +
1

2
∂YM∂θ̃1L′

1M (Y ) (2.16)

+
1

2
∂YM∂Y NL′

NM (Y )+∂θ̃1J
I
A′

I1(Y )+∂YMJ
I
A′

IM (Y )+dα∂θ̃
1E′

1
α(Y )+dα∂Y

ME′

M
α(Y )

+dαJ
I
W ′α

I (Y ) + λαωβ∂θ̃
1Ω′

1α
β(Y ) + λαωβ∂θ̃

1Ω′

1α
β(Y ) + λαωβ∂Y

MΩ′

Mα
β(Y )

+λαωβJ
I
U ′

Iα
β(Y ) + L(J, λ, ω) + L

′
FT ,

where the fermionic T-dual background is given by

B′

11 = −
1

B11
, L′

M1 =
LM1

B11
, L′

1M =
L1M

B11
, L′

NM = LNM −
LN1L1M

B11
, (2.17)

A′

I1 =
AI1

B11
, A′

IM = AIM −
AI1L1M

B11
, E′

1
α =

E1
α

B11
, E′

M
α = EM

α
−
LM1E1

α

B11
,

Ω′

1α
β =

Ω1α
β

B11
, Ω′

Mα
β = ΩMα

β
−
LM1Ω1α

β

B11
,

W ′α
I = Wα

I − 2
AI1E1

α

B11
, U ′

Iαβ = UIα
β
− 2

AI1Ω1α
β

B11
.

We note that these transformations are very similar to those in the bosonic case. In the

fermionic case, the B11 plays the role of G11 in the bosonic case. It remains to determine

the bosonic component of the supervielbein. As in the bosonic case, we note that is given

by (2.8) where the matrix Q is determined by (2.9) and the transformations of (2.17). The

entries of Q are

Q1
1 =

1

B11
, Q1

M = 0, QM
1 = −

LM1

B11
, QN

M = δM
N . (2.18)

Therefore,

E′

1
a =

E1
a

B11
, E′

M
a = EM

a
−
LM1E1

α

B11
. (2.19)

From the definition (2.7), we determine that the transformations of the supersymmetric

components are
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G′

M1 =
GM1

B11
, G′

NM = GNM −
GN1B1M +BN1G1M

B11
.

which are compatible with (2.17). As before, the dilaton superfield is shifted as

Φ′ = Φ − log
2πα′

B11
. (2.20)

Here the relative sign is reverted respect to (2.12) because the measure for the gauge field

is grassmannian, then the jacobian of the transformation is inverted [12].

3. Classical BRST Invariance

In the previous section it was shown how the T-dualities are realized in the pure

spinor heterotic string. The classical BRST invariance of the sigma model action puts

them background field on-shell [6]. Since the BRST charge Q =
∮
λαdα is unaffected by

the T-duality transformations, then the T-dual background is also a solution of the N = 1

ten-dimensional supergravity/SYM equations of motion. Therefore, we expect that the

T-dual sigma model action, both bosonic and fermionic, is also BRST invariant. Now it

will be shown that this is the case.

The classical BRST invariance of the action implies that the background fields satisfy

the constraints [6] (see also [16]3

λαλβTαβ
A = λαλβHαβA = λαλβFIαβ = λαλβλγRαβγ

δ = 0. (3.1)

Now it will be shown that these constraints remain after a T-dual transformation of the

background. Consider the bosonic T-duality of (2.6), the fermionic case is analogous.

Let’s start with λαλβFIαβ = 0. We use that

F ′

Iαβ = (−1)M+1E′

β
ME′

α
NF ′

INM
.

Now we split the index M into (1,M) and we use the definition of F in terms of the gauge

potential A together with the transformations of (2.6) to obtain

F ′

Iαβ = FIαβ −
1

G11
(Hαβ1 + Tαβ

aE1
bηab)AI1.

3 The constraints coming from the holomorphicity of the BRST current are implied by these

and Bianchi identities.
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If we hit this expression with λαλβ we obtain

λαλβF ′

Iαβ = λαλβFIαβ = 0.

Consider now the constraint involving H. Starting from

H ′

αβA = (−1)M+1E′

A
PE′

β
NE′

α
MH ′

MNP
,

by splitting the index M as (1,M), the definition of H in terms of B and the T-dual

transformations (2.6) we obtain

H ′

αβA = HαβA +
1

G11
Eα

MG
M1E1

aTβA
bηab = HαβA.

Then, the constraint λαλβHαβA = 0 is preserved.

Consider the torsion constraint in (3.1). Starting from

T ′

αβ
A = (−1)M+1E′

β
ME′

α
NT ′

NM

A,

using the definition of the torsion as the covariant derivative of the vielbein and splitting

index M into (1,M) we obtain

T ′

αβ
A = Tαβ

A
−

1

G11
(Hαβ1 + Tαβ

aE1
bηab)E1

A,

from which we obtain

λαλβT ′

αβ
A = λαλβTαβ

A.

Finally, consider the torsion constraint in (3.1). Starting from

R′

αβγ
δ = (−1)M+1E′

β
ME′

α
NR′

NMγ

δ,

using the definition of R in terms of the connection Ω and splitting the index M into (1,M)

we obtain

R′

αβγ
δ = Rαβγ

δ
−

Ω1γ
δ

G11
(Hαβ1 + Tαβ

aE1
bηab),

then, we get

λαλβR′

αβγ
δ = λαλβRαβγ

δ.
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4. Quantum super T-duality

In this section we discuss the preservation of some symmetries of the sigma model

action (2.1) under background T-duality transformations. We consider the conformal,

gauge and local Lorentz symmetries

4.1. One-loop conformal invariance

As we have already stated, the classical BRST invariance of the sigma model action

puts the background fields on-shell [6]Ṡince the BRST charge Q =
∮
λαdα is unaffected by

the T-duality transformations, then the T-dual background is also a solution of the N = 1

ten-dimensional supergravity/SYM equations of motion. As it was shown in [7], the one-

loop conformal invariance of the sigma model action is a consequence of the classical BRST

invariance. Therefore, we expect that the T-dual sigma model action, both bosonic and

fermionic, is also BRST invariant. Now it will be shown that this is the case.

The classical BRST invariance of the action implies that the background fields sat-

isfy the constraints (3.1). Recall that the Ω connection here involves the usual Lorentz

connection and a connection for the scaling invariance of (2.1) through

ΩMα
β = ΩMδα

β +
1

4
(γab)α

βΩMab. (4.1)

After performing a covariant background field expansion, it was shown in [7] that the

one-loop UV divergence of the effective action vanishes after using the constraints of (3.1),

Bianchi identities and the relation

∇αΦ = 4 Ωα, (4.2)

where Φ is a superfield which appears in the Fradkin-Tseytlin term in (2.2) and Ωα =

Eα
MΩM . The relation (4.2) can be obtained by requiring the vanishing of the ghost

number anomaly as it was discussed in [6] and [8].

In the T-dual background, the BRST constraints are equivalent to (3.1) but with

the curvatures constructed the T-dual connections of (2.6) in the bosonic case or the

connections of (2.17) in the fermionic case. Now one can perform a covariant background

field expansion and demonstrate the vanishing of the one-loop effective action. In order to

do this, it is necessary to use the relation (4.1) in the T-dual background, that is

∇
′

αΦ′ = 4 Ω′

α, (4.3)
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where the covariant derivative is defined with the T-dual transformed connections of (2.6)

or (2.17), and Φ′ is given by (2.12) or (2.20). There is an apparent contradiction because

if one uses the rules for transforming the background field under a T-dual transformation,

the rhs of (4.3) remains invariant. Let us prove this assertion in the bosonic case. In the

fermionic case, the proof can be done in parallel.

Using this,

Ω′

α = E′

α
MΩ′

M
= −G11Eα

1Ω′

1 − Eα
NLN1Ω

′

1 + Eα
MΩ′

M = Ωα.

Analogously, the lhs of (4.3) transforms as

∇
′

αΦ′ = ∇αΦ −
1

G11
∇αG11.

By combining both transformations, we find a contradiction with (4.2). This is solved

by recalling that the action of (2.1) is invariant under a scaling transformations where

δλα = ǫλα, δωα = −ǫωα, . . . and δΩM = −∂M ǫ. Using this symmetry, we just change

ΩM → ΩM −
1
4
∇M logG11 to preserve the equation (4.2).

4.2. Gauge and local Lorentz symmetries

The action of the pure spinor heterotic string (2.1) is invariant under local gauge and

local Lorentz transformations. Under the former, the background field A
IM

transforms as

a connection and all other fields carrying an index I transform in the adjoint representation

of the gauge group. Of course, fields without an index I are inert under the gauge group.

Under a local Lorentz transformation, Ω is the connection and all other fields transform

homogenously.

It is well known that the effective action is potentially anomalous because these sym-

metries act on chiral fermions. Consider first the heterotic fermions in the action of (2.1).

The effective action is determined by performing a covariant background expansion and

then integrating out the quantum fluctuations (see [17] and references therein). It turns

out the part of the effective action involving the heterotic fermions is given by

e−Seff [a] =

∫
Dρ e

1

4πα′

∫
d2z Tr(ρ∇ρ)

, (4.4)

where the trace is over the vector representation of the gauge group, the heterotic fermions

belong to this representation, the covariant derivative is given by ∇ρ = ∂ρ + aρ, where

a = aIK
I with KI denoting the generators of the gauge group and

10



aI = ∂ZMA
IM

+ dαW
α
I + λαωβUIα

β , (4.5)

which is determined in the covariant background field expansion performed in [7]. The

gauge anomaly is given by making a gauge transformation with the gauge field in the

combination of (4.5). Now it will be shown that this world-sheet field is invariant under

the bosonic T-duality (2.6). In fact,

a′I = ∂X̃1A′

I1 + ∂YMA′

IM + dαW
′α
I + λαωβU

′

Iα
β = ∂X̃1AI1

G11
+ ∂YM (AIM −

AI1L1M

G11
)

+dα(Wα
I − 2

AI1E1
α

G11
) + λαωβ(UIα

β
− 2

AI1Ω1α
β

G11
),

by using the equations (2.4) and that A = ∂X1, A = ∂X1, we obtain that a′I = aI .

Therefore, the anomalies determined by this world-sheet field are invariant under the

bosonic T-duality of (2.6).

Consider now the fermionic T-duality case. We obtain

a′I = ∂θ̃1A′

I1 + ∂YMA′

IM + dαW
′α
I + λαωβU

′

Iα
β = ∂θ̃1AI1

B11
+ ∂YM (AIM −

AI1L1M

B11
)

+dα(Wα
I − 2

AI1E1α

B11
) + λαωβ(UIα

β
− 2

AI1Ω1α
β

B11
),

by using the equations (2.15) and that A = ∂θ1, A = ∂θ1, we obtain that a′I = aI .

Therefore, we have verified that the T-dualities do not affect the gauge anomaly in the

heterotic string case

Now we consider the local Lorentz symmetry of the action (2.1). We have two poten-

tially anomalous chiral systems, one coming from the expansion of (dα, Z
ME

M
β) and the

other from the expansion of the pure spinor ghosts (ωα, λ
β). In both cases, the effective

action is of the form

e−Seff [∆] =

∫
DψDϕ e

−
1

2πα′

∫
d2z ψα∇ϕα

, (4.6)

where (ϕα, ψβ) is (ZME
M
α, dβ) or (λα, ωβ) and the covariant derivative is given by ∇ϕα =

∂ϕα + ϕβ∆β
α with the connection given by

11



∆α
β = ∂ZMΩ

Mα
β + J

I
UIα

β . (4.7)

Now it will be shown that (4.7) is invariant under T-dualities. Using the rules of (2.6)

for the bosonic T-duality we obtain

∆
′

α
β = ∂X̃1Ω′

1α
β + ∂YMΩ′

Mα
β + J

I
U ′

Iα
β = −∂X̃1 Ω1α

β

G11
+ ∂YM (ΩMα

β
−
LM1Ω1α

β

G11
)

+J
I
(UIα

β
− 2

AI1Ω1α
β

G11
) = ∆α

β ,

where we have used the equations of (2.4) and A = ∂X1.

Analogously, the fermionic T-duality also leaves invariant the world-sheet field ∆.

Then, we can conclude that the anomalies which depend on ∆, as the local Lorentz anom-

aly, will not be affected by T-dualities.
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