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Abstract

We show that the known matrix representations of the stationary state algebra of the

Asymmetric Simple Exclusion Process (ASEP) can be interpreted combinatorially as vari-

ous weighted lattice paths. This interpretation enables us to use the constant term method

(CTM) and bijective combinatorial methods to express many forms of the ASEP normali-

sation factor in terms of Ballot numbers. One particular lattice path representation shows

that the coefficients in the recurrence relation for the ASEP correlation functions are also

Ballot numbers. Additionally, the CTM has a strong combinatorial connection which leads

to a new “canonical” lattice path representation and to the “ω-expansion” which provides a

uniform approach to computing the asymptotic behaviour in the various phases of the ASEP.

The path representations enable the ASEP normalisation factor to be seen as the partition

function of a more general polymer chain model having a two parameter interaction with a

surface.

∗

email: r.brak@ms.unimelb.edu.au, j.essam@rhul.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28890113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We show, in the case α = β = 1, that the probability of finding a given number of particles

in the stationary state can be expressed via non-intersecting lattice paths and hence as a

simple determinant.

PACS numbers: 05.50.+q, 05.70.fh, 61.41.+e

Key words: Asymmetric simple exclusion process, lattice paths, constant term

method, enumerative combinatorics
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1 Background and notation.

The Asymmetric Simple Exclusion Process (ASEP) is a simple hard core hopping particle model.

It consists of a line segment with r sites. Particles are allowed to hop on to site 1 if it is empty,

with rate α. Any particles on sites 1 to r − 1 hop on to a site to their right if it is empty, with

rate 1. A particle on site r hops off with rate β – as illustrated in figure 1. The state of the

system at any time is defined by the set of indicator variables {τ1, · · · , τr}, where

τi =











1 if site i is occupied

0 otherwise

and the probability, P (~τ ; s) of the system being in state ~τ = (τ1, · · · , τr) at time s, given some

initial state at s = 0, satisfies a master equation (see [1] for details).

α β1 1

1 r

Figure 1: The ASEP model.

The model goes back at least as far as Macdonald, Gibbs and Pipkin [2] who used it in their

study of kinetics of protein synthesis. For reviews of the extensive physics literature, including

applications and analytical techniques, for this model and further developments of the model, see

Schültz [3, 4], Derrida and Evans [5], Derrida [6], Stinchcombe [7]. The mathematical literature

placing the model in the context of Markov chain theory may be found in the Liggett’s book [8].

A significant step forward in the understanding of the mathematical aspects of the model

was made with the realization, by Derrida et al [1], that a stationary state solution, PS(~τ), of

the master equation could be determined by the matrix product Ansatz

PS(~τ) = 〈W |
r

∏

i=1

(τiD + (1 − τi)E)|V 〉/Z2r (1.1)

with normalisation factor Z2r given by

Z2r = 〈W |(DE)r|V 〉 (1.2)

provided that D and E satisfy the DEHP algebra

D + E = DE (1.3a)
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where 〈W | and |V 〉 are the eigenvectors

〈W |E =
1

α
〈W |, D|V 〉 =

1

β
|V 〉. (1.3b)

These equations are sufficient to determine PS(~τ ) but Derrida et al [1] also gave several inter-

esting matrix representations of D and E and the vectors |V 〉 and 〈W |, any one of which may

be used to determine PS(~τ).

The primary result of this paper is to show that each of the three matrix representations of

the DEHP algebra can be interpreted as a transfer matrix for a different weighted lattice path

problem. This then allows the normalisation, correlation function and other properties of the

ASEP model to be interpreted combinatorially as certain weighted lattice path configuration

sums – see section 2. One of the path connections is similar to that discussed in Derrida et. al.

[9]

The lattice path interpretation has two primary consequences: The first is that it provides

a starting point for a new method (the “constant term” or CT method) for calculating the

normalisation and correlation functions – see section 3. This reproduces several existing results

(but by a new method) and also provides several new results. One of note, the “ω-expansion”,

arises from a rearrangement of the constant term expression which leads to a form of the nor-

malisation in terms of the variables ωc ≡ α(1 − α) and ωd ≡ β(1 − β). The coefficients in this

expansion are Catalan numbers, the asymptotic form of which enables a uniform approach to

computing the asymptotic behaviour of Z2r as r → ∞ in the various phases of the ASEP model

– see section 5. The results agree with those found in [1], by steepest descent methods.

A bonus following from the lattice path interpretation of the algebra representations is that

one of the lattice path interpretations (a slight variation of representation 3) has a natural

interpretation as a polymer chain having a two parameter (κ1, κ2) interaction with a surface.

In this context Z2r is a partition function for the “two-contact” polymer model – see section

4. We also obtain recurrence relations (on the length variable) for the partition function of this

polymer model and hence also for the ASEP normalisation. Our formulae for the single polymer

chain may be used to construct the partition function for a polymer network interacting with a

surface (see conclusion). In particular, in a subsequent paper we will discuss the application to

vesicles and compact percolation clusters [10] near a damp wall.

The second primary consequence of the lattice path interpretation follows from the CT

method itself, as the CT method has very natural combinatorial interpretations. For example,
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the normalisation can be written in several different polynomial forms depending on which

variables you use:

Z2r =
∑

n,m

p(1)
n,mᾱnβ̄m (see – (4.24)) (1.4)

Z2r =
∑

n,m

p(2)
n,mcndm (see – (4.31)) (1.5)

Z2r =
∑

n,m

p(3)
n,mκn

1κm
2 (see – (4.20)) (1.6)

Z2r =
∑

n,m

p(4)
n,mκ̄n

1 κ̄2
m (see – (4.21)) (1.7)

where all the polynomial coefficients, p
(i)
n,m, are integers. (All the variables in these polynomials

are related by simple equations eg. ᾱ = 1/α, c = ᾱ − 1 etc. – see above and in later sections).

Since, in each of these cases, the normalisation arises from a weighted lattice configuration sum,

all the above coefficients have a direct combinatorial interpretation as enumerating a particular

subset of the paths (eg. those with exactly m steps with the first weight and exactly n steps

with the second weight).

However, we show that each of the above polynomial coefficients has an alternative combi-

natorial interpretation which corresponds to enumerating a different, unweighted, set of lattice

paths, eg. in [1] the coefficient p
(1)
m,n was given as

p
(1)
n,m−n =

m(2r − m − 1)!

r!(r − m)!

which, with a simple rearrangement, can be seen to be a particular “Ballot number”

p
(1)
n,m−n = B2r−m−1,m−1

where Bs,h enumerates Ballot paths (see section 3.1 for details) of length s and height h. Thus

p
(1)
n,m−n which enumerates a special set of paths with m weights of type ᾱ and n− m weights of

type β̄ = 1/β is seen to be determined in terms of the much simpler combinatorial problem of

enumerating unweighted Ballot paths of length 2r−m−1 and height m−1. This correspondence

between the two combinatorial problems (one pair for each coefficient) arises as a bijection

between the two path problems. This result may be turned around: If a bijection between a

particular Ballot path problem and the weighted path problem can be proved then it provides

an alternative derivation of the normalisation polynomial.
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In section 6, the recurrence relations for the ASEP correlation functions derived in [1] are

shown to follow from the lattice path interpretations. The coefficients of the terms in the

recurrence relation are also seen to be various Ballot numbers.

Finally, in section 7, for the case α = β = 1, we show that the probability of finding the

system in some particular state ~τ is related to non-intersecting pairs of paths and the probability

of finding the system in a state with exactly k particles is related to a simple determinant. This

provides a connection with Derrida et. al. Brownian excursions [9].

2 Matrix Representations and Lattice Path Transfer Matrices.

Derrida et al [1], provided three different matrix representations for the ASEP algebra. Repre-

sentation one,

D1 =























β̄ β̄ β̄ β̄ β̄ · · ·
0 1 1 1 1 · · ·
0 0 1 1 1 · · ·
0 0 0 1 1 · · ·
...

...
...

...























E1 =























0 0 0 0 0 · · ·
1 0 0 0 0 · · ·
0 1 0 0 0 · · ·
0 0 1 0 0 · · ·
...

...
...

...























(2.1)

〈W1| = (1, ᾱ, ᾱ2, ᾱ3, . . .) |V1〉 = (1, 0, 0, 0, . . .)T (2.2)

where

ᾱ = 1/α, β̄ = 1/β,

representation two,

D2 =























1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...























E2 =























1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...























(2.3)

〈W2| = κ(1, c, c2, c3, . . .) |V2〉 = κ(1, d, d2, d3, . . .)T (2.4)

where

c = ᾱ − 1, d = β̄ − 1,
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and representation three

D3 =























β̄ κ 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
0 0 0 1 1 · · ·
...

...
...

...























E3 =























ᾱ 0 0 0 0 · · ·
κ 1 0 0 0 · · ·
0 1 1 0 0 · · ·
0 0 1 1 0 · · ·
...

...
...

...























(2.5)

〈W3| = (1, 0, 0, 0, . . .) |V3〉 = (1, 0, 0, 0, . . .)T (2.6)

where

κ2 = ᾱ + β̄ − ᾱβ̄ = 1 − cd.

Since these matrices and vectors satisfy the algebraic relations (1.3), the normalisation factor

(1.2) for the ASEP model, can be evaluated using any of the three formulae

Z
(j)
2r = 〈Wj |(DjEj)

r|Vj〉, j = 1, 2, 3. (2.7)

E =





























0 2 4 6

1 3 5 7

1

3

5

7

0

2
4
6

D





























0 1 2 3 4 5

1

2

3

6

D

E E

E

D D

=

Figure 2: a) Action of D and E matrices on the square lattice, b) the labelling of the matrix

elements.

Each of these three representations can be interpreted as the transfer matrix of a particular

weighted lattice path problem. If the rows of the Dj matrix and the columns of the Ej matrix

are labelled with odd integers Zodd ≡ {1, 3, 5, ...} and the columns of Dj and rows of Ej are

labelled with even integers Zeven ≡ {0, 2, 4, ...}, then (Dj)k,` is the weight of a step from an odd

height k to even height ` and (Ej)k,` is the weight of a step from an even height j to an odd
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height ` – see figure 2. Since the rows and columns are labelled with non-negative integers the

steps are only in the upper half of Z
2.

Similarly, the elements of 〈Wj | and |Vj〉 are labelled by Zodd and are the weights attached to

the initial and final vertices of the paths. The matrices Dj and Ej act successively to the left

on the initial vector 〈Wj| and 〈Wj |(DjEj)
r|Vj〉 is the weighted sum over all paths of length 2r

which begin and end at odd height above the x−axis.

An example path for each of the three representations is shown in figure 3. Notice that for

the first representation the paths with non-zero weight begin at any odd height and end at unit

height, for the second they both begin and end at any odd height and for the third they begin

and end at unit height. All these paths are defined explicitly below.

κc
κ κ κ κ κ κ

κd2

1

α

1

β

1

β

1

β 1

α

1

β

1

β

1

α

Figure 3: Examples of the paths for each of the three representations a) representation one,

“Jump step paths”, b) representation two, “Cross paths” and c) representation three, “One up

paths”.

Derrida et. al. gave another expression for the normalisation factor (see equation (39) of [1]).

This form does not arise directly from any of the above three representations, however, we will

show (corollary 5) that it is the partition function Z
(5)
2r , defined in (2.16), corresponding to a

“canonical” path representation (see figure 6 for an example). In [11] we provide a combinatorial

derivation of the equivalence of the above three and a number of other path representations of

the normalisation factor to the “canonical” representation.

2.1 The Lattice Path Definitions.

We consider paths whose steps are between the vertices of the half plane square lattice Ξ =

{(x, y)|x ∈ Z, y ∈ Z
+}, where Z (resp. Z

+) is the set of integers (resp. non-negative integers).

Definition 1 (Lattice paths). A lattice path, ω, of length t ≥ 0 is a sequence of vertices

(v0, v1, . . . , vt) where vi ≡ (xi, yi) ∈ Ξ, and for t > 0, vi − vi−1 ∈ Sp
i where {Sp

i , i = 1, . . . , t} is
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the set of allowed steps. For a particular path, ω, denote the corresponding sequence of steps by

E(ω) = e1e2 . . . et, ei = (vi−1, vi). A subpath of length k of a lattice path, ω, is a path defined

by a subsequence of adjacent vertices, (vi, vi+1, . . . , vi+k−1, vi+k), of ω.

a) Dyck path b) Ballot path c) Cross path

g) One Up Path h) Jump Step path

h

d) Anchored Cross path

intersects y = 1

e) Hovering path

above y = 0

f)

2p

vertex (marked)separating

Separated Hovering paths

i) Marked separated hovering path

Figure 4: An example of a) a Dyck path, b) a Ballot path, c) a Cross path, d) an Anchored Cross

path, e) a Hovering path, f) a Separated Hovering path, g) a One Up path, h) a Jump Step path

and i) a Marked separated hovering path.

Definition 2 (Dyck P
(D)
2r , Ballot P

(B)
t;h , & Cross P

(C)
t;h1,h2

paths). The set of length 2r

Dyck paths, P
(D)
2r ; length t and height h Ballot paths P

(B)
t;h , and length t and heights h1 and h2

Cross paths P
(C)
t;h1,h2

all have step set SD
i = {(1, 1), (1,−1)}. Dyck paths have v0 = (0, 0) and

v2r = (2r, 0), Ballot paths have v0 = (0, 0) and vt = (t, h) and Cross paths have v0 = (0, h1) and

vt = (t, h2), h1, h2 ≥ 0. Denote, P
(C)
2r =

⋃

h1,h2∈Zodd
P

(C)
2r;h1,h2

Definition 3 (Elevated Dyck path (Bubble)). An elevated Dyck path or Bubble, is a

subpath, (vi, . . . , vi+k), k ≥ 0, for which yi = yi+k and yj ≥ yi for all i < j < i + k, k > 0. If

k = 0 then the elevated Dyck path is a single vertex.

Definition 4 (Anchored Cross P
(aC)
t;h1,h2

paths). The subset P
(aC)
t;h1,h2

⊂ P
(C)
t;h1,h2

of Anchored

Cross Paths is defined as all the paths in P
(C)
t;h1,h2

with at least one vertex in common with the
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line y = 1. Denote, P
(aC)
2r =

⋃

h1,h2∈Zodd
P

(aC)
2r;h1,h2

Definition 5 (One Up P
(O)
2r paths). The set of One Up paths, P

(O)
2r is the set of lattice

paths of length 2r which have step set SD
i = {(1, 1), (1,−1)}, v0 = (0, 1) and v2r = (2r, 1), i.e.

P
(O)
2r = P

(C)
2r;1,1.

Definition 6 (Jump Step P
(J)
t;h paths). The set of Jump Step paths of length t, P

(J)
t;h , is the

set of lattice paths which have step set

SJ
i =







{(1,−1)} for i even

{(1,−1)} ∪ {(1, 2` + 1)|` ∈ Z
+} for i odd

with v0 = (0, h), h ∈ Zodd, vt = (t, 1) . The “height”, gi, of a step ei = (vi−1, vi) is defined as

yi − yi−1. Odd steps with gi ∈ {3, 5, . . . } will be called “jump” steps. If gi = 1 (resp. gi = −1)

the step is called an “up” (resp. “down”) step. Denote, P
(J)
2r =

⋃

h∈Zodd
P

(J)
2r;h

Note: Jump step paths never visit the x-axis since such a visit can only occur on an odd

step and return to y = 1 is impossible since all even steps are down.

Definition 7 (Hovering P
(H)
2r , Separated Hovering P

(sH)
2r;2p and Marked Separated Hov-

ering P
(mH)
2r;2p paths). Hovering paths, P

(H)
2r are One Up paths with no vertex on the x-axis.

Separated Hovering paths, P
(sH)
2r;2p , 0 ≤ p ≤ r, are the subset of the Hovering paths which have

v2p = (2p, 1). The vertex v2p is marked (with an empty circle – see figure 4f ) and known as the

separating vertex. Marked separated hovering paths, P
(mH)
2r;2p , are obtained from P

(sH)
2r;2p by

marking (with an solid circle – see figure 4i ) subsets of the steps (or vertices) which return to

y = 1.

Note: For all paths considered xi + yi is either odd for all i or even for all i, i.e. the paths

are confined either to the odd sublattice or the even sublattice.

Definition 8 (Contacts, Returns). A vertex of a Ballot or Dyck path in common with the x-

axis is called a contact. All contacts except the initial one are called returns. The polynomial

Rt(h;κ) =
∑

ω∈P
(B)
t;h

κρ(ω), where ρ(ω) is the number of returns for the path ω, is called the

return polynomial for Ballot paths.

2.2 Weights and lattice path representations.

For each of the three different representations the following lemma converts the matrix formula

(2.7) for the normalization factor into a sum over one of the path sets defined above, where the
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summand is a product of the step weights wstep
j (ei), an initial vertex weight wi

j(v0), and a final

vertex weight wf
j (vt).

Lemma 1. The normalisation factor, Z
(j)
2r for each of the three matrix representations, j =

1, 2, 3, can be written as

Z
(j)
2r =

∑

ω∈P
(j)
2r

W (j)(ω) (2.8)

with

W (j)(ω) = wi
j(v0)

[

2r
∏

i=1

wstep
j (ei)

]

wf
j (v2r) (2.9)

where P
(1)
2r = P

(J)
2r , P

(2)
2r = P

(C)
2r , and P

(3)
2r = P

(O)
2r , and the weight W (j)(ω) of a particular path

ω with step sequence, E(ω) = e1 . . . e2r is defined, for each of the three cases, as follows.

For j = 1

wi
1

(

(0, 2k + 1)
)

= ᾱk k ∈ Z
+ (2.10a)

wstep
1 (ei) =











β̄ if ei =
(

(i − 1, 1), (i, 2k)
)

, k ∈ Z
+ and i odd

1 otherwise

(2.10b)

wf
1 ((2r, 1)) = 1, (2.10c)

for j = 2

wi
2

(

(0, 2k + 1)
)

= κ ck k ∈ Z
+ (2.11a)

wstep
2 (ei) = 1 (2.11b)

wf
2

(

(2r, 2k + 1)
)

= κdk k ∈ Z
+ (2.11c)

and for j = 3

wi
3((0, 1)) = 1 (2.12a)

wstep
3 (ei) =











































κ if ei =
(

(i − 1, 1), (i, 2)
)

or ei =
(

(i − 1, 2), (i, 1)
)

β̄ if ei =
(

(i − 1, 1), (i, 0)
)

ᾱ if ei =
(

(i − 1, 0), (i, 1)
)

1 otherwise

(2.12b)

wf
3 ((2r, 1)) = 1 (2.12c)
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Proof. The above lemma is a direct consequence of the lattice path interpretation of the Dj and

Ej matrices as transfer matrices.

The equivalence of the different expressions is a consequence of the invariance of the nor-

malisation factor under similarity transformations relating the different matrix representations

of D and E.

In order to compute Z
(3)
2r , it turns out to be a little more convenient to rearrange the weights

associated with representation three – see figure 5. If we do so we obtain the following corollary.

κ1 κ1

κ2 κ2κ2

Figure 5: An example of a representation three, one up path, with the weights re-organised

Corollary 1. An equivalent set of weights for Z
(3)
2r , is

wi
4((0, 1)) = 1 (2.13)

wstep
4 (ei) =



























κ1 = ᾱβ̄ if ei =
(

(i − 1, 0), (i, 1)
)

κ2 = κ2 if ei =
(

(i − 1, 2), (i, 1)
)

1 otherwise

(2.14)

wf
4 ((0, 1)) = 1 (2.15)

Note: this rearrangement of the weights is only valid for computing Z
(3)
2r . For correlation

functions one has less freedom in the weight rearrangement.

2s

1

α

1

β

1

α

1

β

Figure 6: An example of a canonical path – a Separated Hovering path with a W (5) weighting.

Later in the paper (corollary 5) we will show that the normalisation factor can also be

expressed in terms of Separated Hovering paths.

Z
(5)
2r =

r
∑

p=0

∑

ωp∈P
(sH)
2r;2p

W (5)(ωp) (2.16)
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where W (5)(ωp) is defined by (2.9) with

wi
5((0, 1)) = 1 (2.17a)

wstep
5 (ei) =



























ᾱ if ei =
(

(i − 1, 2), (i, 1)
)

and i ≤ 2p

β̄ if ei =
(

(i − 1, 2), (i, 1)
)

and i > 2p

1 otherwise

(2.17b)

wf
5 ((0, 1)) = 1 (2.17c)

Thus, for any particular path, ωp, all the ᾱ weighted steps (if any) occur to the left of vertex

(2p, 1) and all the β̄ weighted steps (if any) occur to the right of (2p, 1). We call this combina-

tion of paths and weights the “canonical” path representation of the normalisation factor. An

example is shown in figure 6.

Lemma 2. Let P
(mH)
2r;2p be the set of marked separated hovering paths obtained from P

(sH)
2r;2p by

marking subsets of the steps which return to y = 1 then

Z
(2)
2r =

r
∑

p=0

∑

ωp∈P
(mH)
2r;2p

W (2a)(ωp) (2.18)

where the weight W (2a)(ωp) has a factor c for each marked return step which occurs to the the

left of v2p and a factor d for the other marked return steps.

The lemma is proved in [11] in two stages. First an involution on P
(C)
2r for which P

(aC)
2r is

the fixed set and then a bijection between P
(aC)
2r and

⋃r
p=0 P

(mH)
2r;2p .

Corollary 2.

Z
(2)
2r = Z

(5)
2r

∣

∣

∣

ᾱ=1+c,β̄=1+d

Proof. Substituting ᾱ = 1 + c, β̄ = 1 + d in the weight attached to a path ωp ∈ P
(sH)
2r;2p and

expanding leads to a sum of terms obtained by weighting each return step to the right of v2p

(if any) with either 1 or d and the remaining returns (if any) by 1 or c. Marking the subsets of

steps weighted c or d determines a set of paths belonging to P
(mH)
2r;2p .

3 Methods.

In this section we briefly review methods to be used and results obtained previously [12] as they

will be required in the next section. One additional new lemma is stated.

12



3.1 The constant term method.

Definition 9. The constant term operation, CT [·], is defined by

CT [f(z)] = the constant term in the Laurent expansion of f(z) about z = 0.

The number of t−step lattice paths with step set SD
i which begin at (0, 0) and end at (t, y)

with no further constraint (i.e. replacing the constraint y ∈ Z
+ in the definition of Ξ by y ∈ Z)

is the binomial coefficient
(

t
1
2
(t−y)

)

for which the constant term formula is

(

t
1
2 (t − y)

)

= CT [(z + 1/z)tzy]. (3.1)

By the reflection principle [13], the number of t−step Ballot paths of height h is obtained

by subtracting the number of unrestricted paths which begin at (0,−2) from those beginning at

(0, 0), both ending at (t, h).

Bt,h ≡ |P (B)
t;h | = CT [(z + 1/z)tzh] − CT [(z + 1/z)tzh+2] = CT [Λtzh(1 − z2)] (3.2)

where Λ = z + 1/z. Differencing the binomial coefficients expresses Bt,h in terms of factorials;

for t + h even

Bt,h =
(h + 1)t!

(1
2(t + h) + 1)!(1

2 (t − h))!
. (3.3)

Dyck paths are Ballot paths ending at (t, 0) so the number Dyck paths with 2r steps is

|P (D)
2r | = CT [Λt(1 − z2)] =

1

r + 1

(

2r

r

)

= Cr, (3.4)

a Catalan number.

Instead of using the reflection principle the Ballot numbers may be obtained as the solution

of the equations, t, h ≥ 1,

B0,h = δh,0 (3.5a)

Bt,0 = Bt−1,1 (3.5b)

Bt,h = Bt−1,h−1 + Bt−1,h+1, (3.5c)

all of which are solved by CT [Λtzh(1 − z2)].

Historically, Ballot numbers arise in the combinatorial problem of a two candidate election.

If you ask how many ways can t votes be cast such that the first candidate ends h votes ahead

of the second candidate and at any stage of the voting never has fewer votes that the second

candidate.

13



3.2 Partition function for the one contact model.

Previously [12] we proved the following proposition concerning the return polynomial (see defi-

nition 8).

Proposition 1. The return polynomial for Ballot paths of length t and height h is given by

Rt(h;κ) = CT [
Λtzh(1 − z2)

1 − (κ − 1)z2
] (3.6)

Proof. For t, h ≥ 1, Rt(h;κ) is determined by the recurrence relations

R0(h;κ) = δh,0 (3.7a)

Rt(0;κ) = κRt−1(1, κ) (3.7b)

Rt(h;κ) = Rt−1(h − 1;κ) + Rt−1(h + 1;κ). (3.7c)

The first and last equations are the same as for the unweighted Ballot paths and are satisfied

by CT [Λtzh(1 − z2)g(z)] provided that on expansion g(z) has no negative powers and g(0) = 1

(which will be the case). We have introduced the factor g(z) to allow the second equation to be

satisfied. But z + 1/z = κz + (1 − (κ − 1)z2)/z and choosing g(z) = 1/(1 − (κ − 1)z2)

CT [Λt(1 − z2)g(z)] = CT [Λt−1(z + 1/z)(1 − z2)g(z)]

= κCT [Λt−1z(1 − z2)g(z)] + CT [Λt−1(1/z − z)].

The result follows since the last term may be evaluated to give zero.

Corollary 1 ([12]).

Rt(h;κ) =

1
2
(t−h)
∑

m=0

Bt,h+2m(κ − 1)m =

1
2
(t−h)
∑

m=0

Bt−m−1,m+h−1κ
m. (3.8)

Proof. The first equality follows by expanding (3.6) in powers of (κ− 1)z2 and using (3.2). The

second is obtained by rewriting the constant term formula as

Rt(h;κ) = CT [
Λt−1zh−1(1 − z2)

1 − κz/Λ
] (3.9)

and then expanding in powers of κz/Λ. This result suggests a bijection between Ballot paths

of length t with m returns and Ballot paths of length t − m − 1 and height m + h − 1 and

hence suggests a combinatorial proof. Such a bijection was given in [14]. A Ballot path can

be represented schematically as shown in figure 7. The Bubbles (see definition 3) represent a,

14



t

a) b)

h

t

h

Figure 7: a) An example of a Ballot path showing the “terraces” which define the Bubbles shown

schematically in b) which represents of a Ballot path of length t and height h = 4.

return edge

m returns

b)a) c)

delete
delete

2r −2r m −12r m−

m − 1
m

Figure 8: a) Schematic representation of a Dyck path with m = 3 returns. b) All return steps

deleted c) First step deleted produces a Ballot path of height m − 1 and length 2r − m − 1.

possibly empty, arbitrary elevated Dyck path. Using this schematic representation, proving (3.8)

is then straightforward. For simplicity we show the bijection in the case h = 0 in figure 8. The

expansion in powers of κ − 1 was also obtained by bijection in [14]. In this case the bijection is

between Ballot paths with at least m returns, m of which are marked, and Ballot paths of the

same length but of height h + 2m.

The above methodology is typical of that used for the more complicated two parameter case

in the next section. A constant term formula will be derived and then rewritten in four different

ways each giving rise to an expansion in pairs of different variables the coefficients of which are

Ballot numbers and are shown, by bijection, to enumerate various types of lattice path.

In the next section we will also need the following lemma.

Lemma 3. Let P
(sH)
2r;2s be the set of Separated Hovering paths (definition 7 ) then

r
∑

s=0

|P (sH)
2r;2s | = |P (D)

2r+2| (3.10)

Proof. Since we can shift any Hovering path down on to the x-axis to give a Dyck path with

vertex (2s, 0) marked, the lemma says the number of Dyck paths with one contact marked is

equal to the number of (unmarked) Dyck paths two steps longer. A sketch of the bijective

15



t

m marked returns b)

c)

a)

t t

h

2m + h

rotated up

Figure 9: a) An example of a marked return Ballot path of height h = 1 with m = 2 marked

returns and b) its schematic representation in terms of bubbles. c) Each marked return rotated

through 90 degrees anti-clockwise (or equivalently replaced by an up step) producing a Ballot path

of height 2m + h and length t.

combinatorial proof is shown in figure 10. The construction is a bijection, since, given any

length 2r+2 Dyck path a unique length 2r marked contact Dyck path is determined by deleting

the rightmost step and the rightmost step from y = 0 to y = 1 (and marking the left vertex of

the latter step).

a) c)b)

marked contact edge at markinserted added edge

Figure 10: a) Dyck (or hovering) path with one marked contact, b) insert an up step at the mark

produces a unique height one Ballot path (length 2r+1) and c) adding a final down step produces

a unique Dyck path of length 2r + 2

4 The two contact model.

We begin by computing Z
(3)
2r using the W (4) weights – we will refer to this as the two contact

model. We will generalise the model by allowing arbitrary starting and ending heights for the
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paths. In particular, let the paths be of length t, start at (0, yi) with yi ∈ Zodd and terminate

at (t, yf ), t + yf ∈ Zodd, i.e. Cross paths in P
(C)

t;yi,yf .

This model can also be thought of as a polymer model with two different surface interactions,

or “contacts”. The path interacts with the “thickened” surface y = 0, 1 via two parameters, κ1

and κ2 and the partition function is defined by

Zt(y
f |yi;κ1, κ2) =

∑

ω∈P
(C)

t;yi,yf

W (4)(ω) (4.1)

where the sum is over Cross paths of length t with given initial and final heights yi and yf and

the weight W (4)(ω) is defined by (2.9) and (2.13). This is a generalisation of the ASEP partition

function Z
(3)
2r thus

Z
(3)
2r = Z2r(1|1; ᾱβ̄, κ2) (4.2)

This generalisation allows this partition function to be determined by recurrence relations

similar to those for the return polynomial of Ballot paths. By considering paths of length t − 1

which can reach the point (t, y) by adding one more step the partition function Zt(y
f |yi;κ1, κ2)

may be seen to satisfy the equations,

Z1(1|yi;κ1, κ2) = 0 (4.3)

Z0(y|yi;κ1, κ2) = δy,yi (4.4)

Zt(0|yi;κ1, κ2) = Zt−1(1|yi;κ1, κ2) (4.5)

Zt(1|yi;κ1, κ2) = κ1Zt−1(0|yi;κ1, κ2) + κ2Zt−1(2|yi;κ1, κ2), t ≥ 2 (4.6)

and for t = 1, 2, . . . ; y = 2, 3, . . . and t + y odd

Zt(y|yi;κ1, κ2) = Zt−1(y − 1|yi;κ1, κ2) + Zt−1(y + 1|yi;κ1, κ2). (4.7)

These partial difference equations can be solved for Zt(y
f |yi;κ1, κ2) by using the constant

term method.

Proposition 2. With κ̄i = κi − 1, z̄ = 1/z and Λ = z + z̄, for yi ∈ Zodd and y ≥ 1

Zt(y|yi;κ1, κ2) = CT [Λt(zy−yi − zy+yi−2)] + (δyi,1 + κ2(1 − δyi,1))CT [zy+yi−2ΛtG(z)] (4.8)

where

G(z) =
(1 − z2)zΛ

1 − (κ̄1 + κ̄2)z2 − κ̄2z4
(4.9)
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Note: For yi = 0 and y ≥ 1

Zt(y|0;κ1, κ2) = κ1Zt−1(y|1;κ1, κ2) (4.10)

Proof. Substituting (4.8) into the partial difference equations and noting that G(z) may be

expanded in even powers of z with no inverse powers shows that (4.3), (4.4) and (4.7) are satisfied.

(4.5) may be taken as the definition of Zt(0|yi;κ1, κ2) and (4.6) may then be transformed into

Zt(1|yi;κ1, κ2) = κ1Zt−2(1|yi;κ1, κ2) + κ2Zt−1(2|yi;κ1, κ2), t ≥ 2 (4.11)

To verify that this equation is also satisfied we note that

Λ2G(z) = Λ(1/z − z) + (κ1 + κ2zΛ)G(z) (4.12)

In the case yi = 1 this gives

Zt(1|1;κ1, κ2) = CT [ΛtG(z)] = CT [Λt−1(1/z − z)] + κ1Zt−2(1|yi;κ1, κ2) + κ2Zt−1(2|yi;κ1, κ2)

and (4.11) follows since the first term is zero.

Otherwise yi = 3, 5, . . . in which case

Zt−1(2|yi;κ1, κ2) = CT [(z2−yi − zyi

)Λt−1] + κ2CT [zyi

Λt−1G(z)]

and using this together with (4.12) and the fact that the first term in (4.8) vanishes when y = 1

Zt(1|yi;κ1, κ2) = κ2CT [zyi−1ΛtG(z)]

= κ2CT [zyi−1(1/z − z)Λt−1] + κ1Zt−2(1|yi;κ1, κ2) + κ2
2CT [zyi

Λt−1G(z)]

= κ2CT [(zyi−2 − (1/z)y
i−2)Λt−1] + κ1Zt−2(1|yi;κ1, κ2) + κ2Zt−1(2|yi;κ1, κ2)

and again (4.11) follows since the first term evaluates to zero.

An alternative constructive proof of this proposition is given in appendix B.

Corollary 2. The number of t−step Cross paths which begin at vi = (0, h1) and end at vf =

(t, h2) is given by

Zt(h2|h1; 1, 1) =

(

t
1
2(t − h2 + h1)

)

−
(

t
1
2 (t − h2 − h1) − 1

)

(4.13)

in terms of which we can write, Zt(y|yi;κ1, κ2) as

Zt(y|yi;κ1, κ2) = Zt(y − 2|yi − 2; 1, 1) + (δyi,1 + κ2(1 − δyi,1))Z
a
t (y|yi;κ1, κ2) (4.14)
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where

Za
t (y|yi;κ1, κ2) = CT

[

Λtzy+yi−2G(z)
]

(4.15)

is the partition function restricted to Anchored Cross paths except that for yi > 1 the step leading

to the first visit to y = 1 has weight 1.

In particular

Zt(y|1;κ1, κ2) = Za
t (y|1;κ1, κ2) = CT

[

ΛtG(z)zy−1
]

. (4.16)

Notes:

• It follows from the constant term formula that

Za
t (y|yi;κ1, κ2) = Zt(y + yi − 1|1;κ1, κ2) (4.17)

• Setting κ1 = κ2 = 1 gives the number of unweighted paths starting at height 1.

Zt(y|1; 1, 1) = CT [Λt(1 − z4)zy−1) = CT [Λt+1(1 − z2)zy ] = Bt+1,y

as expected since the paths biject to Ballot paths by adding an initial up step.

Proof. With κ1 = κ2 = 1, G(z) = 1 − z4 and substituting in (4.8) gives

Zt(y|yi; 1, 1) = CT
[

Λt(zy−yi − zy+yi+2)
]

(4.18)

which yields (4.13).

Zt(y− 2|yi − 2; 1, 1) is the number of Cross paths which avoid y = 1. This follows since such

paths are in simple bijection with the paths starting at height yi − 2 and ending at height y− 2,

eg. just push the whole path down (or up) two units. The second term in (4.14) is therefore the

partition function for Anchored Cross paths. In the case yi > 1 Anchored Cross paths always

have a first visit to y = 1 and the step leading to this visit has a factor κ2. Removing this factor

leaves Za
t (y|yi;κ1, κ2) which is therefore the partition function for Anchored Cross paths except

that for yi > 1 the step leading to the first visit to y = 1 has weight 1. Setting yi = 1 in (4.14)

gives (4.16) since the first term vanishes.

19



Corollary 3.

Za
t (y|yi;κ1, κ2) = CT

[

(1 − z2)Λt−1zy+yi−3

1 − (κ1 + zΛκ2)(z/Λ)2

]

(4.19)

=

(t−y−yi)/2+1
∑

j=0

(t−y−yi)/2−j+1
∑

k=0

κj
1κ

k
2

(

j + k

k

)

Bt−2j−k−1,y+yi+k−3 (4.20)

Note:When y = yi = 1 and j = t/2, k = 0 the coefficient B−1,−1 is indeterminate but setting

B−1,−1 = 1 gives the correct answer. This corresponds to the path which alternates between

y = 0 and y = 1. Notice that replacing the factorials in the definition of Bt,h by Gamma

functions gives Bt,t = 1 for all t > −1.

Proof. Rewrite G(z) in the form

G(z) =
1 − z2

(zΛ)(1 − (κ1 + zΛκ2)(z/Λ)2)
,

expand in powers of κ1 and κ2 and use the CT formula (3.2) for Ballot numbers.

Equation (4.20) may also be proved by a combinatorial argument. To simplify the proof we

only consider the ASEP case y = yi = 1. The extension to general y, yi is straightforward.

Recall that, from the weight definition, (2.13), the returns to y = 1 are weighted with κ1 or κ2

depending on whether the return is from below or from above y = 1. The binomial coefficient

corresponds to choosing a particular sequence of κ1 and κ2 weighted returns. For each particular

sequence of returns we need to show there are Bt−2j−k−1,k−1 possible path configurations.

We first represent a particular sequence schematically and then show any path corresponding

to the schematic can be bijected to a Ballot path with the correct height and length. Schemat-

ically an example of a particular sequence of κ1 and κ2 returns is shown in figure 11.

κ
2κ

1
κ

1

κ
2

κ
2κ

1

Figure 11: Schematic representation of a one-up path corresponding to the return sequence

κ2
1κ

2
2κ1κ2.

We now perform three operations to biject a given sequence into a Ballot path.

• First delete all κ2 return steps, see figure 12a). This produces a path of length t − k and

height k + 1.
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• Next, delete the first up step above y = 1 (if any – which is the case if k > 0), see figure

12b). This produces a path of length t − k − 1 and height k.

• Finally, delete all 2j steps originally below y = 1, see figure 12c). This produces a Ballot

path of length t − k − 1 − 2j and height k − 1 as required.

Given the sequence of κ1 and κ2 the reverse direction for the bijection is obtained by simply

reversing the forward mapping – see figure 12.

a)

delete

delete

delete

k + 1

k − 1 k

b)

c)d)

t − k

t − k − 1 − 2j t − k − 1

κk
2

:

κj
1

:

Figure 12: Bijection of first example sequence in figure 11 to a Ballot path: a) Delete all κ2

return steps, then b) delete first up step above y = 1, then c) delete all steps originally below

y = 1, to give d) the final Ballot path.

Corollary 4.

Za
t (y|yi;κ1, κ2) =

(t−y−yi)/2+1
∑

j=0

(t−y−yi)/2−j+1
∑

k=0

κ̄j
1κ̄

k
2

(

j + k

k

)

Bt+k+1,y+yi+2j+3k−1 (4.21)

Proof. Rewrite G(z) in the form

G(z) =
(1 − z2)zΛ

1 − (κ̄1 + zΛκ̄2)z2
,

expand in powers of κ̄1 and κ̄2 and use the CT formula (3.2) for Ballot numbers.

As with corollary 3, the result, (4.21), may also be proved combinatorially as follows. Again,

in order to simplify the proof we consider only the ASEP case y = yi = 1. The substitution
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κi = 1 + κ̄i means that a return which was weighted with κi is now weighted with either κ̄i or

1. The factor
(

j + k

k

)

Bt+k+1,2j+3k+1 (4.22)

is the number of paths with a subset of exactly j of the returns from below marked and exactly

k of the returns from above marked corresponding to the choice of weight κ̄i or 1. The bino-

mial coefficient in (4.22) is the number of ways of choosing a particular sequence of κ̄1 and κ̄2

weighted marks (reading the path from left to right), whilst, for a given sequence, the Ballot

number represents the number of paths corresponding to the sequence. The most general path

a) c)b)

d) e) f)

κ̄2

κ̄1

κ̄2

κ̄1

Figure 13: a) Schematic One Up path or “frying pan” with no steps marked. b) Schematic One

Up path with only the last step κ̄1 marked. c) Schematic One Up path with only the last step

κ̄2 marked. d ) An example showing how the schematic frying pan represents a, possibly empty,

One Up path. e) An example showing a frying pan followed by a down step and an up step

(which forms a κ̄1 marked return). f) An example showing a frying pan followed by an up step,

then a Bubble then a final down step (which forms a κ̄2 marked return).

corresponding to a given sequence can be represented schematically by concatenating the cor-

responding schematic sub-paths shown in figure 13b) and 13c) with a final “frying pan” shown

in figure 13a). Examples of sub-paths corresponding to the three types of schematics are illus-

trated in figures 13d) – 13f). Note, the shaded regions of the schematics represent any number

(possibly zero) of steps. Examples of two possible sequences are illustrated in figure 14.

Thus, for a given return sequence we need to show that there are Bt+k+1,2j+3k+1 return

marked paths. Without loss of generality we choose a typical sequence and represent it schemat-

ically as shown in figure 14.
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a)

b)

κ̄2

κ̄1

κ̄2

κ̄1

κ̄2

κ̄1 κ̄1 κ̄1 κ̄1

Figure 14: Schematic κ̄1 – κ̄2 marked hovering path. a) For the sequence κ̄2κ̄1κ̄1κ̄2 and b) for

the sequence κ̄1κ̄1κ̄2κ̄1κ̄1.

Thus to prove the Ballot number factor in (4.22) we need to biject any schematic marked

return sequence to a Ballot path of length t + k + 1 and height 2j + 3k + 1. We do this by

bijecting each schematic in the sequence to a sub-Ballot path (plus, possibly, an extra step) and

then concatenate them all together.

• Thus, the last frying pan, of length say, 2r′, bijects to a height 1, length 2r′ + 1 Ballot

path – see figure 15.

a) b) c)

added edge

Figure 15: Bijection of a “frying pan” to a height one Ballot path. The final path is one step

longer than the original.

• A marked κ̄2 schematic of length 2r1 bijects to a height 2, Ballot path with an additional

final up step (see figure 16). The final length is 2r1 + 1 as an extra step has to be added.

• Finally, a marked κ̄1 schematic of length 2r2 bijects to a height 1, Ballot path with an

additional final up step (see figure 17). The final length is unchanged.

Putting these moves all together is illustrated in figure 18, which shows clearly that a Ballot

path of length t + k + 1 and height 2j + 2k + k + 1 is obtained.
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a)

c)

b)

d) rotated last mark

added edge
κ̄2

Figure 16: Bijection of a κ̄2 schematic to a height two Ballot path, with a final up step. The

final path is one step longer than the original.

rotate

move edge to front

edge
a) c)b)

κ̄1

Figure 17: Bijection of a κ̄1 schematic to a height one Ballot path, with a final up step.

An explicit evaluation of the partition function of the canonical path representation, defined

by (2.16), is the case yi = yf = 1 of the following result.

Corollary 5. With κ1 = ᾱβ̄ and κ2 = ᾱ + β̄ − ᾱβ̄

Za
t (yi|yf ;κ1, κ2) =

1
2
(t−yi−yf )+1

∑

m=0

Bt−m−1,m+yi+yf−3

ᾱm+1 − β̄m+1

ᾱ − β̄
(4.23)

=

1
2
(t−yi−yf )+1

∑

m=0

Bt−m−1,m+yi+yf−3

m
∑

j=0

ᾱj β̄m−j (4.24)

Notes:

• For the ASEP model (yi = yf = 1, t = 2r) with r ≥ 1, (4.24) reduces to the result of

Derrida et al [1] equation (39)

Z2r(1|1;κ1, κ2) =

r
∑

m=1

m(2r − m − 1)!

r!(r − m)!

m
∑

j=0

ᾱj β̄m−j = Z
(5)
2r (4.25)

which they obtained directly from the algebra (1.3) ([1] appendix A1, equation (A12))

without the use of a matrix representation. An equivalent formula was also given by
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a)

c)

b)

d)

move edge

added edge

added edgeadded edge

rotated edge rotated edge

move edge

1 + 3k + 2j

t

t

t + k + 1

t + k + 1

κ̄j
1

:

κ̄k
2

:

1 + 2j

1 + 2j + k

Figure 18: Bijection between a One Up path with a given sequence of marked κ̄1 and κ̄2 steps

and a Ballot path. a) The marked One Up path. b) After the application of move illustrated in

figure 17. c) After the application of move illustrated in figure 16. e) Final Ballot path after

rotating the remaining marks.

Liggett [15], page 252, as part of his expression for the current [1] cr = Z2r−2/Z2r. In his

notation Z2r = (ᾱβ̄)nhr(α, β) and α = λ, β = 1 − ρ.

• An equivalent formula was also given by Schutz and Domany [16] equation (2.17). They

solved the recurrence relations of Derrida, Domany and Mukamel [17] who only obtained

an exact solution in the special case α = β = 1. A similar recurrence relation was given
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by Liggett [15].

• The result for the ASEP model may be written in terms of the return polynomial for

Ballot paths, thus

Z2r(1|1;κ1, κ2) =

r
∑

j=0

ᾱj
r−j
∑

`=0

B2r−j−`−1j + ` − 1β̄`

=
r

∑

j=0

R2r−j(j; β̄)ᾱj . (4.26)

This formula may also be derived using a path representation based on the recurrence

relations of Derrida, Domany and Mukamel [17].

Proof. By definition of ᾱ and β̄

1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4 = [1 − (ᾱ − 1)z2][1 − (β̄ − 1)z2] = z2(Λ − ᾱz)(Λ − β̄z) (4.27)

and from (4.9)

G(z) =
(1 − z2)z̄Λ

(Λ − ᾱz)(Λ − β̄z)
=

(1 − z2)z̄2

ᾱ − β̄

(

1

1 − ᾱz/Λ
− 1

1 − β̄z/Λ

)

(4.28)

The result follows by expanding in powers of ᾱ and β̄, substituting in (4.15) and using the CT

formula (3.2) for Ballot numbers.

In the ASEP case yi = yf = 1, t = 2r the coefficient B2r−m−1,m−1 in (4.24) is equal to the

number of Dyck paths with m returns to y = 0 (see (3.8)). The equality of Z2r(1|1;κ1, κ2) with

Z
(5)
2r , defined by (2.16), follows by raising the Dyck paths so that they become hovering paths

ω ∈ P
(H)
2r with returns to y = 1. The factor ᾱj β̄m−j in (4.24) corresponds to weighting the

first j returns of ω with ᾱ and the remainder with β̄. The sum over s in (2.16) is obtained

by partitioning the weighted paths according to the position (2s, 1) of the jth return (ie. the

separation vertex).

The equality of Z
(3)
2r and Z

(5)
2r is also shown directly in [11] by involution.

Corollary 6. Let ᾱ = c + 1 and β̄ = d + 1 then κ1 = (c + 1)(d + 1), κ2 = 1 − cd and

Za
t (y|yi;κ1, κ2) =

(t−y−yi+2)/2
∑

m=0

Bt+1,y+yi+2m−1

m
∑

j=0

cjdm−j (4.29)

=

(t−y−yi+2)/2
∑

m=0

Bt+1,y+yi+2m−1
(cm+1 − dm+1)

c − d
(4.30)
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in particular, in the ASEP case

Z2r(1|1; (c + 1)(d + 1), 1 − cd) = Z
(2)
2r =

r
∑

m=0

B2r+1,2m+1

m
∑

j=0

cjdm−j (4.31)

Note: Equation (4.31) is not given in [1] but (34) and (35) of [1] together give the related

formula

< W |Cr|V >= (1 − cd)
∞
∑

i=1

∞
∑

j=1

((

2r

r + i − j

)

−
(

2r

r + i + j

))

ci−1dj−1 (4.32)

This expression involves an infinite series whereas our expression is finite. By corollary 2 the

coefficient in (4.32) is the number of Cross paths of length 2r with h1 = 2i − 1 and h2 = 2j − 1

and the double sum extends over P
(C)
2r . The factor 1 − cd restricts the sum to Anchored Cross

paths. The equivalence of (4.32) and (4.31) is shown in [11] by constructing an involution on

P
(C)
2r having P

(aC))
2r as is its fixed point set.

Proof. From (4.27)

1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4 = (1 − cz2)(1 − dz2)

and substitution in (4.9) gives

G(z) =
(1 − z2)zΛ

(1 − cz2)(1 − dz2)
(4.33)

The result follows from (4.15) using the expansion

1

(1 − cz2)(1 − dz2)
=

1

c − d

(

c

1 − cz2
− d

1 − dz2

)

, (4.34)

expanding in powers of z and using the CT formula (3.2) for Ballot numbers..

Again a combinatorial proof is possible which for simplicity we only give in the ASEP case.

The equality with Z
(2)
2r follows from corollary 2. To obtain the Ballot number formula we obtain a

bijection between
⋃r

s=0 P
(mH)
2r;2s and the set of Ballot paths of length 2r+1 and height h = 2m+1.

An example of the schematic representation of a path ωs ∈ P
(mH)
2r;2s with a given number of

c and d marked return steps and a separating vertex v2s is shown in figure 19. As there are no

steps below y = 1 we have pushed the hovering path down by unit height and consider it as a

Dyck path.

As in the proof of lemma 3, inserting an up step in each path at the position of v2s and

taking the union over all possible positions of v2s starting at the last c return and up to but

not including the first d return (or from the beginning if there are no c returns and to the end

if there are no d returns) replaces the pair of Bubbles on either side of the separating vertex by
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dc c d

separating vertex

Figure 19: An example of a schematic representation of a Dyck path with a given number of c

and d marked returns and a marked separating vertex v2s.

the set Ballot paths of height one and one step longer, see figure 20a,b). Replacing each marked

return step with an up step (and hence increasing the height of the path by 2 each time) then

produces a Ballot path of length 2r + 1 and height 2m + 1 as required, see figure 20c).

dc c d

sum on position

2r

2r + 1

2m + 1

2r + 1

a)

b)

c)

Figure 20: a) Taking the union over positions of the marked separating vertex produces a

schematic height one Ballot path as in b), replacing each marked c and d return by an up

step produces a Ballot path of length 2r + 1 and height 2m + 1 as in c).

Corollary 7.

Z2r(1|1;κ1, κ2) = −1

2
(1 − cd)CT

[

Λ2r(z2 − z̄2)2

((1 + c)2 − cΛ2)((1 + d)2 − dΛ2)

]
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Note: This converts to the integral formula of Derrida et al [1] (B10) with z2 = eiθ and and using

a contour integral to pick out the constant term. It is related to the ω expansion (see later).

(B10) was obtained by finding the eigenvectors of C2 and is therefore an evaluation of Z(2).

Proof. With w ≡ z2 in (4.33) and using (4.16)

Z2r(1|1;κ1, κ2) = CT

[

Λ2r(1 − w2)

(1 − cw)(1 − dw)

]

Now symmetrize the denominator by multiplying numerator and denominator by (1 − cw̄)(1 −
dw̄).

The result follows using

(1 − w2)(1 − cw̄)(1 − dw̄) = 1 − cd − w2 + cdw̄2 + (c + d)(w − w̄)

Because the rest of the expression is now symmetric the contribution from the last term vanishes

by replacing w̄ by w and both w2 and w̄2 can be replaced by (w2 + w̄2)/2.

5 The “ω” expansion and phase diagram of the ASEP model.

With ωc = c/(1 + c)2 corollary 7 may be written in the form

Z2r(1|1;κ1, κ2) =
ωc − ωd

c − d
CT

[

Λ2r+2(1 − z2)

(1 − ωcΛ2)(1 − ωdΛ2)

]

. (5.1)

which may be expanded to give

Z2r(1|1;κ1, κ2) =
Z2r(ωc) − Z2r(ωd)

c − d
(5.2)

where

Z2r(ω) = CT

[

Λ2r(1 − z2)

1 − ωΛ2

]

. (5.3)

The asymptotic form of Z2r(ω) as r → ∞ was obtained in [18] and will now be used to study

the phase diagram for the ASEP model. First we outline the method by which the asymptotic

form was obtained.

Notice that expanding the factor (1 − ωΛ2)−1 in (5.3) in powers of ω gives an infinite series

which is only valid for c ≤ 1 which is the point at which ω as a function of c passes through its

maximum value 1
4 . Instead we use (5.3) to obtain a recurrence relation. Thus noting that

ωΛ2r

1 − ωΛ2
= −Λ2r−2 +

Λ2r−2

1 − ωΛ2
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and substituting in (5.3) gives

ωZ2r(ω) = −Cr−1 + Z2r−2(ω). (5.4)

where Cr is the Catalan number, (3.4). Solving (5.4) with Z2 = (1 + c)2 gives

Z2r(ωc) = ω−r
c (1 + c −

r−1
∑

j=0

Cjω
j
c) (5.5)

which on substituting for ωc in terms of c must give a polynomial in c. Comparing this with [18]

equation (3.59) it may be seen that Z2r(ωc) is the contact polynomial ẐS
2r(ᾱ) for Dyck paths of

length 2r.

For the ASEP model ωc = α(1 − α) and

∞
∑

j=0

Cjω
j
c =

1 −
√

1 − 4ωc

2ωc
=

1 − |1 − 2α|
2α(1 − α)

=







1
α α > 1

2

1
1−α α ≤ 1

2

so

Z2r(ωc) = ω−r
c





1

α
− (

∞
∑

j=0

Cjω
j
c −

∞
∑

j=r

Cjω
j
c)



 (5.6)

= ω−(r+1)
c (1 − 2α) θ(1 − 2α) +

∞
∑

j=r

Cjω
j−r
c (5.7)

where θ(.) is the unit step function. This is [18] equation (3.61).

The asymptotic form for r → ∞ was obtained using

Cr ∼ 4r

√
πr3/2

and may be written

Z2r(ωc) ∼























f<(α) = 1−2α
ωr+1

c
α < 1

2

f= = 2√
π

4r

r
1
2

α = 1
2

f>(α) = 4r

√
πr

3
2

(1 − 4ωc)
−1 α > 1

2

(5.8)

These results agree with [1] equations (48)-(50). A similar analysis has been given by Liggett

[8] using a recurrence relation equivalent to (5.4).
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Note: In [18] the contact polynomial for Dyck paths was the partition function for a polymer

chain attracted to a surface. There the factor 1− 4ωc in (5.8) was replaced by log(1/4ωc) which

arose from approximating the sum in (5.7) by an integral. Although this gives the correct scaling

behaviour near the binding transition of the polymer chain which occurs at ᾱ = 1
2 , it breaks

down near ᾱ = 1.

In the phase diagram there are therefore

• three special regions R1 = {α > 1
2 , β > 1

2}, R2 = {α > β, β < 1
2}, R3 = {α < β,α < 1

2}

The partition function in R3 is obtained from that in R2 by interchanging α and β.

• three special lines L1 = {α = β < 1
2}, L2 = {β = 1

2 , α > 1
2}, L3 = {α = 1

2 , β > 1
2} The

partition function on L3 is obtained from that on L2 by interchanging α and β.

• a special point where the lines meet P = {α = 1
2 , β = 1

2}

R1

R2

L2

L1

L3

P
R3

α

β

Figure 21: The various regions of the ASEP phase diagram.

Table 1 shows the asymptotic form of Z2r(1|1;κ1, κ2) for the above cases
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R3 : f<(α)
ᾱ−β̄

L3 : f=

2−β̄
R1 : f>(α)−f>(β)

ᾱ−β̄

P : 4r L2 : f=

2−ᾱ

L1 : −α2f ′
<(α) ∼ r(1−2α)2

ωr+2
c

R2 : f<(β)
β̄−ᾱ

Table 1: Asymptotic forms of Z2r(1|1;κ1, κ2) in the regions defined in the phase diagram in

figure 21.

6 Recurrence relations for the partition function and correlation

functions.

6.1 Recurrence relations for the partition function.

The various formulae for G(z) when substituted in (4.16) yield recurrence relations for Zt(y|1;κ1, κ2).

For example, using the identity

1

(1 − ωcΛ2)(1 − ωdΛ2)
= 1 +

(ωc + ωd)Λ
2 − ωcωdΛ

4

(1 − ωcΛ2)(1 − ωdΛ2)
,

substitution in (5.1) and using the CT formula (3.4) for Catalan numbers leads to, for r = 0, 1, . . .

Z2r(1|1;κ1, κ2) =
ωc − ωd

c − d
Cr+1 + (ωc + ωd)Z2r+2(1|1;κ1, κ2) − ωcωd Z2r+4(1|1;κ1, κ2). (6.1)

Substitution in terms of κ1 and κ2 yields, for r = 2, 3, . . .

(κ2 − 1)Z2r(1|1;κ1, κ2) = (κ2(κ1 + κ2) − 2κ1)Z2r−2(1|1;κ1, κ2) + κ2
1Z2r−4(1|1;κ1, κ2) − κ2Cr−1

(6.2)

which may be initialised by Z0(1|1;κ1, κ2) = 1 and Z2(1|1;κ1, κ2) = κ1 + κ2.

The following identity

1

(1 − ᾱz/Λ)(1 − β̄z/Λ)
= 1 +

(ᾱ + β̄)z/Λ − ᾱβ̄z2/Λ2

(1 − ᾱz/Λ)(1 − β̄z/Λ)
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when substituted in (4.28) gives, using the CT formula (3.2) for Ballot numbers, for y = 1, 2, . . .

and odd t + y ≥ 3

Zt(y|1;κ1, κ2) = Bt−1,y−2 + (ᾱ + β̄)Zt−1(y + 1|1;κ1, κ2) − ᾱβ̄Zt−2(y + 2|1;κ1, κ2) (6.3)

which relates partition functions on lines of constant t + y. The partition function for y = 1 is

determined by (6.1) and the following proposition then determines Zt(2|1;κ1, κ2) which provides

the initial condition for (6.3).

Proposition 3. For r = 1, 2, . . .

ᾱZ2r−1(2|1;κ1, κ2) = Z2r(1|1;κ1, κ2) − Z2r(1|1; 0, β̄)

Proof. From corollary 5, for r = 1, 2, . . .

Za
2r(1|1;κ1, κ2) =

r
∑

m=1

B2r−m−1,m−1

m
∑

i=1

ᾱiβ̄m−i +

r
∑

m=1

B2r−m−1,m−1β̄
m

= ᾱ
r−1
∑

m=0

B2r−m−2,m

m
∑

i=0

ᾱiβ̄m−i + Z2r(1|1; 0, β̄)

and the result follows from corollary 5 with t = 2r − 1, y = 2.

Finally, substituting the identity

1

(1 − cz2)(1 − dz2)
= 1 +

(c + d)z2 − cdz4

(1 − cz2)(1 − dz2)
(6.4)

in (4.33) and using (4.16) leads to the recurrence, for t = 0, 1, 2, . . . , and odd t + y ≥ 1

Zt(y|1;κ1, κ2) = Bt+1,y + (c + d)Zt(y + 2|1;κ1, κ2) − cdZt(y + 4|1;κ1, κ2). (6.5)

which relates partition functions along lines of constant t and may be initialised using the above

relations to find the partition functions for y = 1, 2, 3 and 4.

6.2 Recurrence relations for the correlation functions of the ASEP model.

The probability of finding particles at positions i1, i2, . . . , in is, using (1.1),

Pr(τi1 = 1, τi2 = 1, . . . , τin = 1) =
Gn(i1, i2, . . . , in; r)

Z2r(1|1; ᾱβ̄, κ2)
(6.6)

where the un-normalised n-point correlation function Gn(i1, i2, . . . , in; r) is given by [1]

Gn(i1, i2, . . . , in; r) =< W |Ci1−1DCi2−i1−1D . . . Cin−in−1−1DCr−in|V > . (6.7)
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where C = DE. This expression may be thought of as replacing C by D in < W |Cr|V > at each

of the positions ik, k = 1, . . . , n which is equivalent to replacing the Ej matrix in a Cj = DjEj

product by a unit matrix. Thus in the path representations Gn(i1, i2, . . . , in; r) is obtained by

modifying the allowed step definition such that for k = 1, . . . , n, the step sk ≡ e2ik (beginning

at x = 2ik − 1 and ending at x = 2ik) is always an up step and has weight 1. We will say that

sk is a forced up step. This is illustrated in figure 22.

2i1 2i3 2i4

up

up
up

up

2i2−1 −1 −1 −1

Figure 22: The n-point correlation path interpretation (n = 4 is shown above): each step starting

at x = 2ik − 1, k = 1, . . . , n must be an up step with weight one.

.

6.2.1 The case α = β = 1

In the case α = β = 1, or κ1 = κ2 = 1, it is shown in [1] that

Z2r(1|1; 1, 1) ≡< W |Cr|V > |α=β=1 = Cr+1, (6.8)

a Catalan number. This may also be seen in terms of the third path representation (correspond-

ing to the third matrix representation of section 2). < W3|(D3E3)
r|V3 > |α=β=1 is just the

total number of One Up paths of length 2r and these biject to Dyck paths of length 2r + 2 by

adding an up step at the beginning and a down step at the end of each path (the dotted steps

in figure 22). The result follows since number of Dyck paths of length 2p is well known to be

the Catalan number Cp. The result also follows from (4.29) by setting c = d = 0 and noting

that B2r+1,1 = Cr+1 which is the m = 0 term.

It is also shown in [1], equation (88) that

Gn(i1, i2, . . . , in; r) =

r−in
∑

pn=0

CpnGn−1(i1, i2, . . . , in−1; r − pn − 1) (6.9)

This may be derived combinatorially as follows. Again we use the third path representation and

to avoid special cases we imagine that the paths are extended to y = 0 by a further down step.
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For each path which contributes to Gn(i1, i2, . . . , in; r) we determine a subpath ωn which starts

with the last forced up step, sn, and ends when the path returns to the same height for the first

time. This subpath contains a Bubble which we suppose has length 2pn so that the subpath has

length 2pn +2– see figure 23a. Immediate return corresponds to pn = 0 and the maximum value

of pn is determined by the condition, (2in − 1) + (2pn + 2) = 2r + 1, that there are no further

steps beyond ωn.

− 2pn − 2

delete

up

a) b)

2pn + 2

2in − 1

2r 2r

Figure 23: a) Schematic path picture for the correlation functions for α = β = 1, showing the

bubble following the last forced up step. b) Removing the bubble leaves a shorter Dyck path

We can now define a new path obtained by deleting ωn and joining the two (possibly empty)

resulting sub-paths which remain. This path contributes to Gn−1(i1, i2, . . . , in−1; r − pn − 1).

The result follows by partitioning the paths contributing to Gn according to the value of pn. For

a given value of pn the number of configurations is therefore the product Gn−1 and the number

of configurations of ωn which is equal to the number, Cpn , of Dyck paths of length 2pn.

For k = 1, 2, . . . n, let

qk = n − k +
n

∑

j=k

pj (6.10)

then as pointed out in [1], equation (6.9) may be iterated or, combinatorially, n Bubbles may

be removed, to give the explicit formula

Gn(i1, i2, . . . , in; r) =
∑

p1≥0

· · ·
∑

pn≥0

Cp1Cp2 . . . CpnCr−q1 (6.11)

where the upper limits are pk = r − ik − qk+1 with qn+1 = 0.

This formula was previously conjectured by Derrida and Evans [19] on the basis of computer

calculations up to r = 10.
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6.2.2 General α and β.

Equation (45) of [1] is the case n = 2 of the following proposition which we now prove using a

lattice path representation. An algebraic proof was given in [1].

Proposition 4. For 1 ≤ i1 < i2 < · · · < in ≤ r − 1

Gn(i1, i2, . . . , in; r) =

r−in−1
∑

p=0

CpGn−1(i1, i2, . . . , in−1; r − p − 1)

+β̄Gn−1(i1, i2, . . . , in−1; in − 1)

r−in
∑

p=0

B2r−2in−p−1, p−1β̄
p (6.12)

=

r−in−1
∑

p=0

CpGn−1(i1, i2, . . . , in−1; r − p − 1)

+β̄Gn−1(i1, i2, . . . , in−1; in − 1)R2(r−in)(0; β̄) (6.13)

where Rt(h;κ) is the return polynomial for Ballot paths for which an explicit formula is given

in (3.8).

(6.14)

Notes:

• When n = 1, G0(s) should be replaced by Z2s(1|1; ᾱβ̄, κ2). This yields [1] equation (43).

• The case in = r reduces to Gn(i1, i2, . . . , in−1, r ; r) = β̄Gn−1(i1, i2, . . . , in−1; r − 1), since

the first sum is empty and R0(0; β̄) = 1.This reduces to [1] equation (44) when n = 1.

• When α = β = 1 this reduces to (6.9) since using

k
∑

p=0

B2k−p−1,p−1 = Ck

the second sum of (6.12) is just the missing term p = r − in of the first sum.

• The case n = 1 was also considered by Schütz and Domany [16]. They solved the difference

equations of [17] and used the solution to find a simple expression for the density gradient.

Noting that their coefficient bNN (r) is the Ballot number BN+r−1,N−r−1 it follows that

equation (3.3) of [16] is equivalent to

G1(i + 1; r) − G1(i, r) = (ᾱβ̄ − ᾱ − β̄)R2i−1(1; ᾱ)R2r−2i−1(1; β̄). (6.15)

It may be seen that this expression follows immediately by noting a cancellation of the

cross paths which occur in path representation two of G1(i; r).
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• In constructing a proof it was found that the first representation in terms of Jump-Paths

was simpler to use than the third which we used in the special case of the previous section.

It was explained after definition 6 , that Jump-Step paths (representing Z2r) never intersect

y = 0. However this is not the case in calculating Gn(i1, i2, . . . , in; r) since the paths are

modified by the forced up steps. This allows y = 0 to be visited and then a forced up step

returns the path to y = 1. Notice that the down step leading to y = 0 has a weight β̄.

Proof. Partition the modified Jump-Step configurations according as the last forced up step, sn,

which starts at height y = 2k, k ≥ 1 (case A) or y = 0 (case B) – see figure 24.

delete

2k

up

up

a)

b)

2pn + 2

2in − 1

2in − 1

1

β

1

β

1

β

1

β

Figure 24: a) Case A: Last forced up step starts at y = 2k, k ≥ 1. b) Case B: Last forced up

step starts at y = 0. Note, the “bubbles” represent Jump Step subpaths.

Case A: A subpath ωn may be identified in exactly the same way as in the case α = β = 1

but in this case the Bubble of length 2p obtained by deleting the first and last steps of ωn is not

an elevated Dyck path since it may contain jump steps. However the number of configurations

of ωn is still equal to Cp (see below) for any value of k and since ωn avoids y = 1 its steps are

unweighted. Thus on partitioning the paths according to the length (2p+2, p = 0, 1, . . . r−in−1)

of ωn a factor Cp may be removed from the sum over paths having the same value of p. When
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ωn is deleted the remaining steps form a weighted path of length 2r − 2p − 2 which has only

n − 1 forced up steps. Summing over configurations of this path for given k and then summing

over k ≥ 1 gives Gn−1(i1, i2, . . . , in−1; r − p − 1). The first term of the proposition formula is

thus derived provided that we can show that the number of configurations of ωn is Cp.

Now the paths ωn of length 2p + 2 biject to P
(J)
2p;1 by vertical translation through distance 2k

and from (2.10) and (2.13)

|P (J)
2p;1| = Z

(1)
2p |ᾱ=0,β̄=1 = Z

(3)
2p |κ1=0,κ2=1 = Cp. (6.16)

The last equality follows since when κ1 = 0 the One Up paths which visit y = 0 have zero weight

and the remaining paths, which have weight 1 when κ2 = 1, biject to Dyck paths by vertical

translation through unit distance. This result is also proved combinatorially in [11].

Case B: The weighted sum over paths may be factorised into three parts.

(i) A factor which arises from the subpath consisting of the first 2in − 2 steps. The subpath

ends at y = 1 and has only n − 1 forced up steps, therefore the sum over these subpaths

yields Gn−1(i1, i2, . . . , in−1; in − 1).

(ii) A factor β̄ which arises from the next two steps which visit y = 0 and return to y = 1.

The second of these is the last forced up step sn having weight 1.

(iii) A factor arising from the subpath consisting of the remaining 2r − 2in steps which is a

jump step path beginning and ending at y = 1, avoiding y = 0. The weighted sum over

these paths is obtained by setting ᾱ = 0 in the normalising factor for paths of length

2r − 2in, thus using corollary 5

Z2r−2in |ᾱ=0 =

r−in
∑

m=1

B2r−2in−m−1, m−1β̄
m.

The product of these three factors yields the second term of the formula.

7 Non-intersecting paths and the stationary state probability

distribution: α = β = 1

In this section we show, for the case α = β = 1, that the probability of finding the system

in a particular state ~τ is related to the combinatorial problem of enumerating the number of
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configurations of a particular type of pairs of non-intersecting paths. If we do not specify

the exact state, but only the number of particles, then the probability of finding the system

in a stationary state with a fixed number of particles (in any position) is given by a simple

determinant.

Most paths in this section will not be restricted to the upper half plane, such paths are called

called binomial paths. More precisely we have the following definition.

Definition 1 (Binomial path). Let ω = (u0, u1, . . . , ut) where ui ≡ (xi, yi) ∈ Z × Z with

ui − ui−1 ∈ {(1,−1), (1, 1)}. The path ω is called a binomial path.

The number of binomial paths such that u0 = (0, 0), ut = (t, y) is given by

|{ω}| =



























( t
(t+y)/2

)

if t + y is even,

0 otherwise.

(7.1)

We will be interested in binomial paths defined by the state of the system. To this end we

define a “state path” as follows.

Definition 2 (State path). Let ~τ be the ASEP state on a line segment with r sites. A state

path, ω(~τ) = (v0, v1, . . . , vr), is a particular binomial path where

vi − vi−1 =











(1, 1) if τi = 0,

(1,−1) if τi = 1.

(7.2)

Thus a particle contributes a down step and a vacancy contributes an up step. An example

of a state path is shown in figure 25a). We will also need the following definition.

Definition 3 (Non-intersecting path pair). Let ω1 = (u0, u1, . . . , ut) and ω2 = (v0, v1, . . . , vt)

be two t length binomial paths with ω1 starting at (0, 0) and ending at (t, yf1) and ω2 starting at

(0, 2) and ending at (t, yf2). If there are no vertices in common between the two paths then they

are said to be a non-intersecting path pair.

An example of a pair of non-intersecting paths is shown in figure 25b). For convenience, if

vi−vi−1 = (1, 1) we will represent the up step by “U” and if vi−vi−1 = (1,−1) we will represent

the down step by “D”. An example of a state path and the corresponding “UD” word is shown

in figure 25a).
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UD DU UD

b)a)

D

Figure 25: a) A state path and UD word, DUUDDUD corresponding to the state, ~τ =

(1, 0, 0, 1, 1, 0, 1). b) A pair of non-intersecting square lattice paths of length 7.

We now have the following proposition giving the probability of finding the system in some

state.

Proposition 5. Let α = β = 1 then, in the stationary state of the ASEP, the probability, Pr(~τ)

of finding the system of r sites in configuration ~τ having k particles is given by

Pr(~τ ) = |{(ω1, ω2)}|/Cr+1 (7.3)

where {(ω1, ω2)} is the set of all pairs of non-intersecting paths where ω2 is any binomial path

(with no vertices in common with ω1) that ends at (r, 2r − k + 2), and ω1 is the state path

corresponding to state ~τ . Cr+1 is a Catalan number.

An example of the two non-intersecting path configurations giving rise to the numerator of

P3((0, 1, 0)) = 2/14 is shown in in figure 26d).

Proof. As noted in section 6.2 the probability of finding particles at positions i1, i2, . . . , in is

determined by enumerating weighted one-up paths were the steps sk ≡ e2ik must be up steps

with weight one. Similarly, if we require there to be no particle at position i (ie. τi = 0), then

in the weighted one-up path the step ending at 2i − 1 must be a down step (ie. e2i−1 must be

a down step) with weight one. Since, we only consider the case α = β = 1 all the weights are

unity.

These up and down step constraints are conveniently represented by a sequence of characters

as illustrated in figure 26a). A particle contributes the pair “–U” and a vacancy the pair “D–”,

where the dash represents an up or down step (all possibilities consistent with the one-up path

constraint). An example of one choice of up and down steps for the dashes, and the corresponding

one-up path, is shown in 26b). The constrained steps are shown in bold. From any sequence of

U’s and D’s representing a path we can construct a pair of paths (ω1, ω2). This process is shown

in 26c). ω1 is defined to start at (0, 0) and consist of the sub-sequence of constrained steps with

up steps replaced by down steps and vice versa; this is just the state path ω(~τ). ω2 is defined to
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-U D -

a)

c)

b)

d)

D - -U -U D - -U

DU DU DUUUDUDD DU

DU DU DUUUDUDD DU

UD U U D D D

UDU D UD U

UD U D UD D

Figure 26: a) The correspondence with a particle configuration and a set of one-up lattice paths.

The bold letter ”U” and ”D” are fixed steps, the dash represents and arbitrary step. b) An

example of one possible choice of the “dashes” and the corresponding one-up path. c) The

equivalent non-intersecting configuration of paths. The sub-sequence of bold (fixed) steps fixes

the lower state path (note the “U” and “D”’s are interchanged first) and the subsequence of plain

characters determine the upper path. d) The two non-intersecting path configurations giving rise

to the numerator for P3((0, 1, 0)) = 2/14

start at (0, 2) and consist of the subsequence of unconstrained steps (arising from the “dashes”).

We will refer to ω2 as the “upper” path.

It now remains to prove that the path pair (ω1, ω2) is non-intersecting. Clearly the length

of each path is r. The ending height of the state path is the difference between the number of

vacancies (which contribute an up step) and the number of particles (which contribute a down

step), y = (r − k) − k = r − 2k. Since the initial path is a one-up path the number of U’s and

D’s must me equal and hence the difference between the number of unconstrained up and down

steps is also r − 2k. Since we start the upper path at y = 2, it will end at y = r − 2k + 2. The

non-intersection is proved as follows. Consider the case of a one-up Dyck path with a single

constrained up step in some given column. Referring to figure 27 this up step is between A and

B. Since it is a one-up path, it does not go below y = 0. Now, delete the up step, AB and
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A
B

C D E F

A

C F
G

D
H

Figure 27: A one-up path with a single constrained up step, showing the process of deleting it

and moving the “floor” down to y = −1

shorten the path. The new path clearly does not go below CD and also does not go below GH

(rather than DF), is one step shorter, and ends at (2r − 1, 0).

Now, returning to the original one-up path (with half the steps constrained), we repeat,

moving left to right, the process of deleting the constrained steps. If the deleted step is up, then

the “floor” from that x coordinate on, moves down one unit (as in the GH of figure 27) and

if the constrained step is down the floor, from that x coordinate on, moves up on unit. This

deletion process is equivalent to replacing successive pairs of steps of the original one-up path

by single steps (the “dashed” step) and simultaneously adjusting the floor as shown in figure

28. The new floor defines a second path, made of a sequence of, and “steps”. The

important point is that at the completion of this process the path (with half the steps removed)

never steps below (ie. no edges below) the new floor. Thus if we push the upper path up one

unit (so it starts at (0, 2)) it will have no vertices in common with the new floor. Finally, replace

a pair with a single up step and with a single down step – see 27i). The resulting

path is the precisely the state path and the upper path is a binomial path – see 27j) – with no

vertices in common with the state path.

Proposition 6. Let α = β = 1 then, in the stationary state of the ASEP, the probability, Pr,k,

of finding k particles is given by the determinant.

Pr,k =
∑

~τ :k(~τ)=k

Pr(~τ ) =
1

Cr+1
det

∣

∣

∣

∣

∣

∣

(r
k

) ( r
k−1

)

( r
k+1

) (r
k

)

∣

∣

∣

∣

∣

∣

=
1

(r + 1)Cr+1

(

r + 1

k

)(

r + 1

r − k

)

. (7.4)

where the sum is over all states such that the number of particles in state ~τ , k(~τ) = k.

Proof. Summing over all possible positions of the k particles is equivalent to summing over all

possible state paths that end at (r, r−2k). For each possible state path we are also summing over

all possible positions of ω1, ending at (r, r − 2k + 2) which do not intersect the state path. This

double sum is thus equivalent to summing over all non-intersecting path pairs where ω1 and ω2
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a) b) c)

d) e) f) g)

h) i) j)

Figure 28: a) – h) showing the action of repeatedly deleting the constrained up and down steps

(shown bold) i) The horizontal and vertical steps of the new floor are replaced by up and down

steps (shown bold). j) The floor steps have been removed and the upper path has been moved up

one unit so it starts at (0, 2) giving a non-intersecting pair of binomial paths – the lower path is

the state path

are binomial paths. The number of such non-intersecting paths is given by the Gessel-Viennot

determinant [21].

8 Conclusion

We have shown that the normalisation of the ASEP can be interpreted as various lattice path

problems. The lattice path problems can then be solved using the constant term method (CTM).

The combinatorial nature of the CTM enables us to interpret the coefficients of the normalisa-

tion polynomials as various un-weighted lattice path problems – usually as Ballot paths. One

particular form has a natural interpretation as an equilibrium polymer chain adsorption model.

The “ω” form of the normalisation is particularly suited to finding the asymptotic expansion of

normalisation and hence the phase diagram. We also formulate a combinatorial interpretation

of the correlation functions.

The lattice path interpretations enable us to make connections with many other models. In

particular, because of the strong combinatorial nature of the CTM we are able to find a new
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“canonical” lattice path representation. In a further paper [20] we show that this representation

leads to an understanding of a non-equilibrium model (the ASEP model) in terms of a related

equilibrium polymer model. Also, having extended the polymer chain model so that the end-

points have arbitrary displacements from the surface the method of Gessel and Viennot [21],

[22] (see also [23]) may be used to express the partition function of a network of non-intersecting

paths as a determinant. In particular, the case of two paths gives the partition function for a

vesicle model with a two parameter interaction with a surface. A bijection between these vesicles

and compact percolation clusters [10] then enables an analysis of the properties of the clusters

attached to damp wall to be made. These applications will also be the subject of a subsequent

publication.

It is also of combinatorial interest to understand how the various path problems might be

related. Clearly they are related algebraically as they are all just representations of the same

algebra (and thus related by different similarity transformations). In a subsequent paper, [11],

we show combinatorially (using bijections and involutions) how the various path representations

are combinatorially equivalent.
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APPENDIX

A Specimen partition functions.

Z0(1|1;κ1, κ2) =1 (A.1)

Z2(1|1;κ1, κ2) =κ1 + κ2 (A.2)

Z4(1|1;κ1, κ2) =κ1
2 + κ2 + 2κ1 κ2 + κ2

2 (A.3)

Z6(1|1;κ1, κ2) =κ1
3 + 2κ2 + 2κ1 κ2 + 3κ1

2 κ2 + 2κ2
2 + 3κ1 κ2

2 + κ2
3 (A.4)

Z8(1|1;κ1, κ2) =κ1
4 + 5κ2 + 4κ1 κ2 + 3κ1

2 κ2

+ 4κ1
3 κ2 + 5κ2

2 + 6κ1 κ2
2 + 6κ1

2 κ2
2 + 3κ2

3 + 4κ1 κ2
3 + κ2

4 (A.5)

Z0(3|1;κ1, κ2) =0 (A.6)

Z2(3|1;κ1, κ2) =1 (A.7)

Z4(3|1;κ1, κ2) =2 + κ1 + κ2 (A.8)

Z6(3|1;κ1, κ2) =5 + 2κ1 + κ1
2 + 3κ2 + 2κ1 κ2 + κ2

2 (A.9)

Z8(3|1;κ1, κ2) =14 + 5κ1 + 2κ1
2 + κ1

3 + 9κ2 + 6κ1 κ2 + 3κ1
2 κ2 + 4κ2

2

+ 3κ1 κ2
2 + κ2

3 (A.10)

Zt(1|3;κ1, κ2) =κ2Zt(3|1;κ1, κ2) (A.11)

Z0(3|3;κ1, κ2) =1 (A.12)

Z2(3|3;κ1, κ2) =2 (A.13)

Z4(3|3;κ1, κ2) =5 + κ2 (A.14)

Z6(3|3;κ1, κ2) =14 + 4κ2 + κ1 κ2 + κ2
2 (A.15)

Z8(3|3;κ1, κ2) =42 + 14κ2 + 4κ1 κ2 + κ1
2 κ2 + 5κ2

2 + 2κ1 κ2
2 + κ2

3 (A.16)

B Constructive proof of proposition 2.

The formula

Zt(y|yi;κ1, κ2) = CT [Λtzy(z̄yi

+ U(z)zyi

)]
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clearly satisfies the general equation (4.7) and the initial condition (4.4) provided that

CT [zy+yi

U(z)] = 0. (B.1)

In order to satisfy the boundary condition (4.11)

CT [Λtz(z̄yi

+ U(z)zyi

)] = κ1CT [Λt−2z(z̄yi

+ U(z)zyi

)] + κ2CT [Λt−1z2(zyi

+ U(z)zyi

)]

or

CT [Λt−2z̄yi−1(Λ2 − κ1 − κ2zΛ)] = −CT [Λt−2V (z)zyi−1]

where

V (z) = (1 − (κ̄1 + κ̄2)z
2 − κ̄2z

4)U(z).

Replacing z by z̄ everywhere under the CT operation leaves the value unchanged so

V (z) = −(Λ2 − κ1 − Λz̄κ2) = z̄2(κ2 − 1 + (κ̄1 + κ̄2)z
2 − z4)

and (B.1) is satisfied provided that y + yi > 2 or yi > 1 since y ≥ 1. Hence in this case yi > 1

U(z) = z̄2(−1 + κ2G(z)).

When yi = 1 the boundary condition is satisfied if

CT [Λt−2(Λ2 − κ1 − κ2zΛ)] ≡ CT [Λt−2(z̄2 − 2 + z2 − κ1 − κ2(1 + z2))] = −CT [Λt−2V (z)]

and replacing z̄2 by z2 in the second expression gives

V (z) = κ̄1 + κ̄2 + κ̄2z
2 − z2

which satisfies (B.1) and hence

U(z) = z̄2(−1 + G(z)).
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