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Abstract.- In primary producers, diverse stressors cause an over-production of methylglyoxal (MG), which is principally detoxified
by glyoxalase I (GLO1) activity. A recent proteomic study found that GLO1 was up-regulated during natural desiccation in the red
seaweed Pyropia orbicularis, which inhabits the upper intertidal rocky zone and compared to other species, is highly tolerant to air
exposure. To better understand and determine differential responses to desiccation stress, this study evaluated MG concentration
and GLO1 activity in two species with contrasted vertical distribution, P. orbicularis and Lessonia spicata (lower distribution).
Results showed that P. orbicularis successfully scavenges MG via increased GLO1 activity during desiccation. In contrast, GLO1
activity in L. spicata did not increase during desiccation, resulting in MG overproduction. This study is the first to quantify MG and
GLO1 levels in seaweeds during natural stress, and partly explain the mechanisms by which P. orbicularis is dominant in the upper
rocky intertidal zone.
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INTRODUCTION

Methylglyoxal [MG; 2-oxopropanal (CH3COCHO)] is a
cytotoxic compound formed by the fragmentation and
elimination of phosphate from the phosphoenediolate form of
glyceraldehyde-3- phosphate (GA3P) and dihydroxyacetone-
phosphate (DHAP) (Thornalley 1996). It can also be produced
from aminoacetone (Sartori et al. 2008) and an ozone reaction
with aromatic hydrocarbons (Grosjean et al. 1996). MG is
both a mutagenic and genotoxic compound, since it can degrade
proteins, inactivate the antioxidant defense system, and provoke
cellular death (Martins et al. 2001) by altering macromolecules
through the modification of advanced glycation end products
(Hossain & Teixeira 2011). During cellular stress, the rate of
glycolysis increases in diverse organisms (Wu & Juurlink 2002,
Yadav et al. 2005, Singla-Pareek et al. 2006, Kumar et al.
2013), leading to an imbalance that causes a spontaneous MG
overproduction (Hossain et al. 2009). In primary producers, if
overproduced MG is not detoxified immediately after its
production in the chloroplast, it will act as an intrinsic mediator
that catalyzes the photoreduction of O2 at PS I, leading to the
production of O2 •-, which generates oxidative stress (Saito et

al. 2011). Efficient MG detoxification during normal
physiological processes or when under various stressors is one
of the adaptive stress tolerance strategies of plants (Hossain &
Teixeira 2011). Indeed, most organisms protect themselves from
the deleterious effects of MG by detoxifying it through the
glyoxalase pathway, which is comprised of 2 enzymes:
glyoxalase I (GLO1) (lactoylglutathione lyase; EC 4.4.1.5),
which uses GSH as a cofactor for the conversion of MG to S-
D lactoylglutathione, and glyoxalase II (GLO2) (hydroxyacyl
glutathione hydrolase; EC 3.1.2.6), which gives GSH back to
the system, leading to the production of D-lactate (Hossain et
al. 2009).

GLO1 activity is not stress-specific but is activated under
several environmental conditions (Blomstedt et al. 1998,
Hossain et al. 2009, 2010). In pumpkin seedlings, GLO1
activity increases under conditions of drought, salinity, and white
light, among others (Hossain et al. 2009). Additionally, mung
beans up-regulate glyoxalase pathway enzymes through
glycinebetaine- and proline-increased tolerance to cadmium
stress (Hossain et al. 2010). In Sporobolus stapfianus, a
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desiccation-tolerant plant, GLO1 transcripts increase as relative
water content diminishes (Blomstedt et al. 1998).

Desiccation is a recurrent environmental stress for seaweeds
from the intertidal rocky zone, such as Pyropia orbicularis
(Rhodophyta, Bangiales) commonly known as luche or nori
(Ramírez et al. 2014, Guillemin et al. 2016). This species is
frequently exposed to air during normal tide cycles in nature
(Contreras-Porcia et al. 2011, 2012). A series of studies using
physiological, biochemical, transcriptomic, and proteomic
approaches have been conducted on P. orbicularis, with data
revealing the mechanisms that allow this species to reside in the
upper intertidal rocky zone, where desiccation stress is more
severe than lower intertidal zones (Contreras-Porcia et al.
2012, 2013; Flores-Molina et al. 2014). Using a proteomic
approach, López-Cristoffanini et al. (2015) found for the first
time that GLO1 is up-regulated during desiccation in seaweeds,
suggesting an enzymatic control of MG levels during tidal
fluctuations. Given these findings, it has been hypothesized that
the control of MG levels in P. orbicularis is part of the tolerance
mechanisms employed by this species to grow and survive in
the upper intertidal rocky zone, contrary to many other algal
species (López-Cristoffanini et al. 2013, Flores-Molina et al.
2014, Guajardo et al. 2016). Therefore, the objectives of this
study were to determine MG levels and GLO1 activity in the
red alga P. orbicularis during the desiccation-rehydration cycle
and to compare these responses with those of Lessonia spicata
(Ochrophyta, Laminariales), a desiccation-sensitive species
(Flores-Molina et al. 2014) with a lower intertidal distribution.

MATERIALS AND METHODS

Naturally hydrated fronds of P. orbicularis and L. spicata were
collected and transported to laboratory as in Contreras-Porcia
et al. (2011). Additionally, tolerance to the daily desiccation-
rehydration cycle was assayed in vitro under 1 and 4 h of
desiccation and 2 and 4 h of rehydration; and fronds were kept
at -32°C until later use (Contreras-Porcia et al. 2011). For in
vitro desiccation, plants were initially blotted dry and exposed
to air in a growth chamber during 4 h at 12°C and with an
irradiance of 70-80 µm photon m-2 s-1. Following desiccation, a
subset of dehydrated fronds was immediately rehydrated in 0.22
µm of filtered seawater for 4 h to characterize the recovery
from oxidative stress.

The MG levels and GLO1 activity of both species were
measured in all collected fronds [natural hydration, in vitro
desiccation (1 and 4 h), and rehydration (2 and 4 h)]. For MG
extraction, 0.5 g of dry tissue (DT) samples, were frozen in
liquid nitrogen, ground with a mortar and a pestle, homogenized
on ice for 15 min with 3 mL of 0.5 M perchloric acid, and

centrifuged at 11,000 x g for 10 min at 4°C. The supernatant
was decolorized for 15 min at room temperature by adding 10
mg mL-1 charcoal, centrifuged at 11,000 x g for 10 min, and
neutralized with a saturated solution of potassium carbonate at
room temperature for 15 min, followed by centrifugation at
11,000 x g for 10 min. The supernatant was frozen at -32°C
until spectrophotometric and chromatographic determinations
of MG were performed.

Pure MG showed low radiation absorption, as determined
by spectrophotometry. Therefore, a derivatization with 1,2-
diaminobenzene was performed in order to obtain a high
absorbance molecule, 2-methylquinoxaline, as described in
Yadav et al. (2005). For this, different concentrations (5-100
µmol L-1) of pure MG (Sigma-Aldrich, USA) were derivatized,
and 2-methylquinoxaline was measured by spectrophotometry
with a UV/Visible Smartspect 3000 (BioRad, USA) at a
wavelength range of 200-700 nm to determine the maximum
value in its absorption spectra. A 2 mL reaction mixture
containing 0-100 µmol L-1 MG, 1.98 mmol L-1 1,2-
diaminobenzene, 0.5 mol L-1 perchloric acid, and double-
distilled water was used. Additionally, MG concentration was
assessed by high performance liquid chromatography coupled
to UV detection (HPLC/UV) (Shimadzu, Kioto, Japan), and
determined using a wide range standard curve (0.2-50 µmol L-

1) of pure MG that obeys the Beer-Lambert Law. The 2 mL
reaction mixture contained 0.2-50 µmol L-1 MG or the algal
extracts, 1.98 mM 1,2-diaminobenzene, 0.5 M perchloric acid,
and double-distilled water. A 20 µL aliquot was injected onto
an HPLC column (Inertsil ODS-3 RP-C18 4.6 x 250 mm, 5
µm, GL Sciences, USA) using an isocratic mobile phase
consisting of 25 mM ammonium formate buffer (pH 3.4) and
methanol 60:40% v/v, with a 1 mL min-1 flow. Derivated MG
was detected at 334 nm.

To quantify GLO1 activity, proteins from algal tissue samples
were extracted and quantified according to Contreras et al.
(2005). GLO1 activity was measured by spectrophotometry
following the initial rate of increase in absorbance at 240 nm, as
described in Arai et al. (2014) with slight modifications. Briefly,
a reaction mixture containing 0.7 mM glutathione (GSH), 0.7
mM MG, and 50 mM sodium phosphate buffer (pH 6.6) was
incubated for 10 min at 37ºC. Subsequently, 40 µg of protein
extract was added to complete a total volume of 2 mL, and
absorbance was continuously monitored for 5 min at 240 nm.
For each sample, a non-enzymatic control was included, and
GLO1 activity was calculated using the change in molar extinction
coefficient between the enzymatically generated s-
lactoylglutathione and the spontaneous reaction between MG
and GSH that forms a hemithioacetal (= 2.86 mM-1cm-1).
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RESULTS AND DISCUSSION

Since MG in algal tissue samples could not be directly identified
by spectrophotometric methods due to low radiation absorption,
it was derivatized to a quinoxaline with a strong UV absorption
band, as described by Yadav et al. (2005). This substantially
improved quantitative determinations by spectrophotometry at
low MG concentrations. Yadav et al. (2005) propose that the
maximum absorption of derivated methylglyoxal detected by
HPLC/UV is at 320 nm, but previous spectrophometric assays
have shown variable absorbance data (Cordeiro & Freire 1996).
Therefore, an absorbance curve between 200-700 nm was
performed, and maximum absorption at a low concentration (10
µM) was determined to be at 334 nm (Fig. 1). This wavelength
was used to quantify MG in the seaweeds subjected to desiccation
stress. Furthermore, HPLC/UV and spectrophotometric methods
showed acceptable selectivity since extracts without MG did not
show detectable signals (results not shown). Additionally, HPLC
methodology was optimized to determine MG content in algal
extracts (absolute calibration curve of 1-50 µmol L-1) (Fig. 2),
where the detection and quantification limits were 6 x 10-4 µmol
L-1 and 2 x 10-4 µmol L-1, respectively, with low error.

At a biological level, a slight increase of MG in P. orbicularis
occurred during desiccation (60 nmol g-1 DT); however, these
levels were not significant (ANOVA, T= 0.420, P= 0.992) in
comparison with naturally hydrated plants (55 nmol g-1 DT) (Fig.
3A). During rehydration (2 and 4 h), the MG levels were lower
than in desiccated tissue, but similar (T= 2.53, P= 0.160; T=
2.45, P= 0.179, respectively) to those registered during maximum
natural hydration (higher after 8 h of high tide hydration). In
contrast, the MG levels in L. spicata increased significantly (T=
5.74, P= 0.0014) during desiccation, from 37 nmol g-1 DT
registered during hydration to 100 nmol g-1 DT after 4 h of

Figure 1. Absorption spectra for a range of concentrations of MG /
Espectro de absorción para un rango de concentraciones de MG

Figure 2. Absolute standard calibration curve obtained for determination
of 2-methylquinoxaline, derivatized MG, by HPLC/UV at 334 nm. Values
are mean ± SD of 5 replicates / Curva de calibración estándar absoluta
obtenida para la determinación del derivado de 2-metilquinoxalina de
MG por HPLC/UV a 334 nm. Los valores son la media ± DS de 5 réplicas

desiccation (Fig. 3A). While these levels dropped 45-50% during
rehydration, the values registered during maximum hydration were
not recovered (T= 6.613, P < 0.001) due a low MG
detoxification.

GLO1 activity increased significantly during desiccation in
comparison to hydration (0.5 pg min-1 µg-1 protein) in P.
orbicularis (Fig. 3B), with maximum specific activity after 4 h of
desiccation (4 pg min-1 µg-1 protein) (T= 15.99, P < 0.001). This
activity decreased by 38% after 4 h of rehydration, but did not
reach basal levels (1.5 pg min-1 µg-1 protein; T= 4.97, P= 0.004).
In L. spicata, a slight increase in GLO1 activity was determined
after 1 h of desiccation, going only from 0.3 pg min-1 µg-1 protein
during hydration to 1 pg min-1 µg-1 protein during desiccation (T=
9.63, P < 0.001). No increased activity was observed during
rehydration (Fig. 3B).

These data provide evidence of an over-production of MG in
the desiccation-sensitive species L. spicata, concomitant with
low GLO1 activation. In contrast, GLO1 had active participation
during desiccation stress in P. orbicularis, which explains the
attenuated MG production that occurs during the natural
desiccation-rehydration cycle. The high levels of MG in L. spicata
demonstrate a low scavenging of this toxic compound, suggestive
of high cellular oxidation. In fact, higher lipid and protein oxidation
occurs in L. spicata tissue during desiccation than in P.
orbicularis (Contreras-Porcia et al. 2011, Flores-Molina et al.
2014, Guajardo et al. 2016), which impedes cellular stability
during extended air exposure. To our knowledge, this is the first
study showing GLO1 activity in a seaweed species, and the high
activity of GLO1 observed in the desiccation-stressed fronds of
P. orbicularis provides additional insights of desiccation tolerance
of seaweeds to inhabit the upper intertidal rocky zone.
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