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Abstract

We review the time and storage costs of search and clustering algorithms. We exemplify

these, based on case-studies in astronomy, information retrieval, visual user interfaces, chemical

databases, and other areas. Theoretical results developed as far back as the 1960s still very

often remain topical. More recent work is also covered in this article. This includes a solution

for the statistical question of how many clusters there are in a dataset. We also look at

one line of inquiry in the use of clustering for human-computer user interfaces. Finally, the

visualization of data leads to the consideration of data arrays as images, and we speculate on

future results to be expected here.

`Now', said Rabbit, `this is a Search, and I've Organised it {'

`Done what to it?' said Pooh.

`Organised it. Which means { well, it's what you do to a Search,

when you don't all look in the same place at once.'

A.A. Milne, The House at Pooh Corner (1928) { M.S. Zakaria
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1 Introduction

Nearest neighbor searching is considered in sections 2 to 6 for one main reason: its utility for the
clustering algorithms reviewed in sections 7 to 10 and, partially, 11. They are the building blocks
for the most eÆcient implementations of hierarchical clustering algorithms, and they can be used
to speed up other families of clustering algorithms.

The best match or nearest neighbor problem is important in many disciplines. In statistics,
k-nearest neighbors, where k can be 1, 2, etc., is a method of non-parametric discriminant analysis.
In pattern recognition, this is a widely-used method for unsupervised classi�cation (see Dasarathy,
1991). Nearest neighbor algorithms are the building block of clustering algorithms based on nearest
neighbor chains; or of e�ective heuristic solutions for combinatorial optimization algorithms such
as the traveling salesman problem, which is a paradigmatic problem in many areas. In the database
and more particularly data mining �eld, NN searching is called similarity query, or similarity join
(Bennett et al., 1999).

In section 2, we begin with data structures where the objective is to break the O(n) barrier
for determining the nearest neighbor (NN) of a point. A database record or tuple may be taken
as a point in a space of dimensionality m, the latter being the associated number of �elds or
attributes. These approaches have been very successful, but they are restricted to low dimensional
NN-searching. For higher dimensional data, a wide range of bounding approaches have been
proposed, which remain O(n) algorithms but with a low constant of proportionality.

We assume familiarity with basic notions of similarity and distance, the triangular inequality,
ultrametric spaces, Jaccard and other coeÆcients, normalization and standardization. For an im-
plicit treatment of data theory and data coding, see Murtagh and Heck (1987). Useful background
reading can be found in Arabie et al. (1996). In particular output representational models include
discrete structures, e.g. rooted labeled trees or dendrograms, and spatial structures (Arabie and
Hubert, 1996), with many hybrids.

Sections 2 to 6 relate to nearest neighbor searching, an elemental form of clustering, and a
basis for clustering algorithms to follow. Sections 7 to 11 review a number of families of clustering
algorithm. Sections 12 to 14 relate to visual or image representations of data sets, from which a
number of interesting algorithmic developments arise.

2 Binning or Bucketing

In this approach to NN-searching, a preprocessing stage precedes the searching stage. All points
are mapped onto indexed cellular regions of space, so that NNs are found in the same or in closely
adjacent cells. Taking the plane as as example, and considering points (xi; yi), the maximum and
minimum values on all coordinates are obtained (e.g. (xmin

j ; ymin

j )). Consider the mapping (Fig. 1)

xi �! fb(xij � xmin

j )=rcg

where constant r is chosen in terms of the number of equally spaced categories into which the
interval [xmin

j ; xmax

j ] is to be divided. This gives to xi an integer value between 0 and b(xmax

ij �
xmin

ij )=rc for each attribute j. O(nm) time is required to obtain the transformation of all n points,
and the result may be stored as a linked list with a pointer from each cell identi�er to the set of
points mapped onto that cell.
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Point (22,32) is mapped onto cell (2,3); point (8,13) is mapped onto cell (0,1).

Figure 1: Example of simple binning in the plane.

NN-searching begins by �nding the closest point among those which have been mapped onto
the same grid cell as the target point. This gives a current NN point. A closer point may be
mapped onto some other grid cell if the distance between target point and current NN point is
greater than the distance between the target point and any of the boundaries of the cell containing
it. Some further implementation details can be found in Murtagh (1993a).

A powerful theoretical result regarding this approach is as follows. For uniformly distributed
points, the NN of a point is found in O(1), or constant, expected time (see Delannoy, 1980, or Bent-
ley et al., 1980, for proof). Therefore this approach will work well if approximate uniformity can
be assumed or if the data can be broken down into regions of approximately uniformly distributed
points.

Simple Fortran code for this approach is listed, and discussed, in Schreiber (1993). The search
through adjacent cells requires time which increases exponentially with dimensionality (if it is
assumed that the number of points assigned to each cell is approximately equal). As a result, this
approach is suitable for low dimensions only. Rohlf (1978) reports on work in dimensions 2, 3, and
4; and Murtagh (1983) in the plane. Rohlf also mentions the use of the �rst 3 principal components
to approximate a set of points in 15-dimensional space.

From the constant expected time NN search result, particular hierarchical agglomerative clus-
tering methods can be shown to be of linear expected time, O(n) (Murtagh, 1983). The expected
time complexity for Ward's minimum variance method is given as O(n logn). Results on the
hierarchical clustering of up to 12,000 points are discussed.

The limitation on these very appealing computational complexity results is that they are only
really feasible for data in the plane. Bellman's curse of dimensionality manifests itself here as
always. For dimensions greater than 2 or 3 we proceed to the situation where a binary search tree
can provide us with a good preprocessing of our data.

3 Multidimensional Binary Search or kD Tree

A multidimensional binary search tree (MDBST) preprocesses the data to be searched through by
two-way subdivision, and subdivisions continue until some prespeci�ed number of data points is
arrived at. See example in Fig. 2. We associate with each node of the decision tree the de�nition
of a subdivision of the data only, and we associate with each terminal node a pointer to the
stored coordinates of the points. Using the approximate median of projections keeps the tree
balanced, and consequently O(logn) levels, at each of which O(n) processing is required. Hence
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Figure 2: A MDBST using planar data.

the construction of the tree takes O(n logn) time.
The search for a NN then proceeds by a top-down traversal of the tree. The target point is

transmitted through successive levels of the tree using the de�ned separation of the two child nodes
at each node. On arrival at a terminal node, all associated points are examined and a current NN
selected. The tree is then backtracked: if the points associated with any node could furnish a
closer point, then subnodes must be checked out.

The approximately constant number of points associated with terminal nodes (hyper-rectangular
cells in the space of points) should be greater than 1 in order that some NNs may be obtained
without requiring a search of adjacent cells (other terminal nodes). Friedman et al. (1977) suggest
a value of the number of points per bin between 4 and 32 based on empirical study.

The MDBST approach only works well with small dimensions. To see this, consider each
coordinate being used once and once only for the subdivision of points, i.e. each attribute is
considered equally useful. Let there be p levels in the tree, i.e. 2p terminal nodes. Each terminal
node contains approximately c points by construction and so c2p = n. Therefore p = log

2
n=c. As

sample values, if n = 32768; c = 32; then p = 10. I.e. in 10-dimensional space, using a large number
of points associated with terminal nodes, more than 30000 points will need to be considered. For
high dimensional spaces, two alternative MDBST speci�cations are as follows.

All attributes need not be considered for splitting the data if it is known that some are of
greater interest than others. Linearity present in the data may manifest itself via the variance
of projections of points on the coordinates; choosing the coordinate with greatest variance as the
discriminator coordinate at each node may therefore allow repeated use of certain attributes. This
has the added e�ect that the hyper-rectangular cells into which the terminal nodes divide the space
will be approximately cubical in shape. In this case, Friedman et al. (1977) show that search time
is O(log n) on average for the �nding of a NN. Results obtained for dimensionalities of between 2
and 8 are reported on in Friedman et al. (1977), and in the application of this approach to minimal
spanning tree construction in Bentley and Friedman (1978). Lisp code for the MDBST is discussed
in Broder (1990).

The MDBST has also been proposed for very high dimensionality spaces, i.e. where the di-
mensionality may be greater than the number of points, as could be the case in a keyword-based
system. Keywords (coordinates) are batched, and the following decision rule is used: if some one

of a given batch of node-de�ning discriminating attributes is present, then take the left subtree,
else take the right subtree. Large n, well in excess of 1400, was stated as necessary for good results
(Weiss, 1981; Eastman and Weis, 1982). General guidelines for the attributes which de�ne the
direction of search at each level are that they be related, and the number chosen should keep the
tree balanced. On intuitive grounds, our opinion is that this approach will work well if the clusters
of attributes, de�ning the tree nodes, are mutually well separated.

An MDBST approach is used by Moore (1999) in the case of Gaussian mixture clustering.
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Figure 3: Two-dimensional example of projection-based bound. Points with projections within
distance c of given point's (*) projection, alone, are searched. Distance c is de�ned with reference
to a candidate or current nearest neighbor.

Over and above the search for nearest neighbors based on Euclidean distance, Moore allows for the
Mahalanobis metric, i.e. distance to cluster centers which are \corrected" for the (Gaussian) spread
or morphology of clusters. The information stored at each node of the tree includes covariances.
Moore (1999) reports results on numbers of objects of around 160,000, dimensionalities of between
2 and 6, and speedups of 8-fold to 1000-fold. Pelleg and Moore (1999) discuss results on some
430,000 two-dimensional objects from the Sloan Digital Sky Survey (see section 10 below).

4 Projections and Other Bounds

4.1 Bounding using Projection or Properties of Metrics

Making use of bounds is a versatile approach, which may be less restricted by dimensionality.
Some lower bound on the dissimilarity is eÆciently calculated in order to dispense with the full
calculation in many instances.

Using projections on a coordinate axis allows the exclusion of points in the search for the NN of
point xi. Points xk, only, are considered such that (xij�xkj)2 � c2 where xij is the jth coordinate
of xi, and where c is some prespeci�ed distance (see Fig. 3).

Alternatively more than one coordinate may be used. The prior sorting of coordinate values on
the chosen axis or axes expedites the �nding of points whose full distance calculation is necessitated.
The preprocessing required with this approach involves the sorting of up to m sets of coordinates,
i.e. O(mn log n) time.

Using one axis, it is evident that many points may be excluded if the dimensionality is very
small, but that the approach will disimprove as the latter grows. Friedman et al. (1975) give
the expected NN search time, under the assumption that the points are uniformly distributed, as
O(mn1�1=n). This approaches the brute force O(nm) as n gets large. Reported empirical results
are for dimensions 2 to 8.

Marimont and Shapiro (1979) extend this approach by the use of projections in subspaces of
dimension greater than 1 (usually about m=2 is suggested). This can be further improved if the
subspace of the principal components is used. Dimensions up to 40 are examined.

The Euclidean distance is very widely used. Two other members of a family of Minkowski metric
measures require less computation time to calculate, and they can be used to provide bounds on
the Euclidean distance. We have:

d1(x; x
0) � d2(x; x

0) � d1(x; x0)

where d1 is the Hamming distance de�ned as
P

j j xj � x0j j ; the Euclidean distance is given by

the square root of
P

j(xj � x0j)
2 ; and the Chebyshev distance is de�ned as maxj j xj � x0j j .
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Kittler (1978) makes use of the following bounding strategy: reject all points y such that

d1(x; y) �
p
(m)Æ where Æ is the current NN d2-distance. The more eÆciently calculated d1-

distance may thus allow the rejection of many points (90% in 10-dimensional space is reported on
by Kittler). Kittler's rule is obtained by noting that the greatest d1-distance between x and x0 is
attained when

j xj � x0j j2= d2
2
(x; x0)=m

for all coordinates, j. Hence d1(x; x
0) = d2(x; x

0)=
p
m is the greatest d1-distance between x and

x0. In the case of the rejection of point y, we then have:

d1(x; y) � d2(x; y)=
p
m

and since, by virtue of the rejection,
d1(x; y) �

p
mÆ

it follows that Æ � d2(x; y).
Yunck (1976) presents a theoretical analysis for the similar use of the Chebyshev metric.

Richetin et al. (1980) propose the use of both bounds. Using uniformly distributed points in
dimensions 2 to 5, the latter reference reports the best outcome when the rule: reject all y such

that d1(x; y) � Æ precedes the rule based on the d1-distance. Up to 80% reduction in CPU time
is reported.

4.2 Bounding using the Triangular Inequality

The triangular inequality is satis�ed by distances: d(x; y) � d(x; z) + d(z; y), where x, y and z are
any three points. The use of a reference point, z, allows a full distance calculation between point
x, whose NN is sought, and y to be avoided if

j d(y; z)� d(x; z) j � Æ

where Æ is the current NN distance. The set of all distances to the reference point are calculated
and stored in a preprocessing step requiring O(n) time and O(n) space. The above cut-o� rule is
obtained by noting that if

d(x; y) � j d(y; z)� d(x; z) j
then, necessarily, d(x; y) � Æ. The former inequality above reduces to the triangular inequality
irrespective of which of d(y; z) or d(x; z) is the greater.

The set of distances to the reference point, fd(x; z) j xg, may be sorted in the preprocessing
stage. Since d(x; z) is �xed during the search for the NN of x, it follows that the cut-o� rule will
not then need to be applied in all cases.

The single reference point approach, due to Burkhard and Keller (1973), was generalized to
multiple reference points by Shapiro (1977). The sorted list of distances to the �rst reference point,
fd(x; z

1
) j xg, is used as described above as a preliminary bound. Then the subsequent bounds are

similarly employed to further reduce the points requiring a full distance calculation. The number
and the choice of reference points to be used is dependent on the distributional characteristics of
the data. Shapiro (1977) �nds that reference points ought to be located away from groups of points.
In 10-dimensional simulations, it was found that at best only 20% of full distance calculations were
required (although this was very dependent on the choice of reference points).

Hodgson (1988) proposes the following bound, related to the training set of points, y, among
which the NN of point x is sought. Determine in advance the NNs and their distances, d(y;NN(y))
for all points in the training set. For point y, then consider Æy = 1

2
d(y;NN(y)). In seeking

NN(x), and having at some time in the processing a candidate NN, y0, we can exclude all y from
consideration if we �nd that d(x; y0) � Æy0 . In this case, we know that we are suÆciently close to
y0 that we cannot improve on it.
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We return now to the choice of reference points: Vidal Ruiz (1986) proposes the storing of
inter-point distances between the members of the training set. Given x, whose NN we require,
some member of the training set is used as a reference point. Using the bounding approach based
on the triangular inequality, described above, allows other training set members to be excluded
from any possibility of being NN(x). Mic�o et al. (1992) and Ramasubramanian and Paliwal (1992)
discuss further enhancements to this approach, focused especially on the storage requirements.

Fukunaga and Narendra (1975) make use of both a hierarchical decomposition of the data set
(they employ repeatedly the k-means partitioning technique), and bounds based on the triangular
inequality. For each node in the decomposition tree, the center and maximum distance to the
center of associated points (the \radius") are determined. For 1000 points, 3 levels were used, with
a division into 3 classes at each node.

All points associated with a non-terminal node can be rejected in the search for the NN of point
x if the following rule (Rule 1) is not veri�ed:

d(x; g)� rg < Æ

where Æ is the current NN distance, g is the center of the cluster of points associated with the node,
and rg is the radius of this cluster. For a terminal node, which cannot be rejected on the basis of
this rule, each associated point, y, can be tested for rejection using the following rule (Rule 2):

j d(x; g)� d(y; g) j � Æ:

These two rules are direct consequences of the triangular inequality.
A branch and bound algorithm can be implemented using these two rules. This involves deter-

mining some current NN (the bound) and subsequently branching out of a traversal path whenever
the current NN cannot be bettered. Not being inherently limited by dimensionality, this approach
appears particularly attractive for general purpose applications.

Other rejection rules are considered by Kamgar-Parsi and Kanal (1985). A simpler form of
clustering is used in the variant of this algorithm proposed by Niemann and Goppert (1988). A
shallow MDBST is used, followed by a variant on the branching and bounding described above.

Bennett et al. (1999) use the nearest neighbor problem as a means towards solving the Gaussian
distribution mixture problem. They consider a preprocessing approach similar to Fukunaga and
Narendra (1975) but with an important di�erence: to take better account of cluster structure in
the data, the clusters are multivariate normal but not necessarily of diagonal covariance structure.
Therefore very elliptical clusters are allowed. This in turn implies that a cluster radius is not of
great bene�t for establishing a bound on whether or not distances need to be calculated. Bennett
et al. (1999) address this problem by seeking a stochastic guarantee on whether or not calculations
can be excluded. Technically, however, such stochastic bounds are not easy to determine in a high
dimensional space.

An interesting issue raised in Beyer et al. (1999) is discussed also by Bennett et al. (1996):
if the ratio of the nearest and furthest neighbor distances converges in probability to 1 as the
dimensionality increases, then is it meaningful to search for nearest neighbors? This issue is not all
that di�erent from saying that neighbors in an increasingly high dimensional space tend towards
being equidistant. In section 5, we will look at approaches for handling particular classes of data
of this type.

4.3 Fast Approximate Nearest Neighbor Finding

Kushilevitz et al. (1998), working in Euclidean and L1 spaces, propose fast approximate nearest
neighbor searching, on the grounds that in systems for content-based image retrieval, approximate
results are adequate. Projections are used to bound the search. Probability of successfully �nding
the nearest neighbor is traded o� against time and space requirements.
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5 The Special Case of Sparse Binary Data

\High-dimensional", \sparse" and \binary" are the characteristics of keyword-based bibliographic
data, with maybe values in excess of 10000 for both n and m. Such data is usually stored as list
data structures, representing the mapping of documents onto index terms, or vice versa. Commer-
cial document collections are usually searched using a Boolean search environment. Documents
associated with particular terms are retrieved, and the intersection (AND), union (OR) or other
operations on such sets of documents are obtained. For eÆciency, an inverted �le which maps
terms onto documents must be available for Boolean retrieval. The eÆcient NN algorithms, to be
discussed, make use of both the document-term and the term-document �les.

The usual algorithm for NN-searching considers each document in turn, calculates the distance
with the given document, and updates the NN if appropriate. This algorithm is shown schemat-
ically in Fig. 4 (top). The inner loop is simply an expression of the fact that the distance or
similarity will, in general, require O(m) calculation: examples of commonly used coeÆcients are
the Jaccard similarity, and the Hamming (L1 Minkowski) distance.

If �m and �n are, respectively, the average numbers of terms associated with a document, and
the average number of documents associated with a term, then an average complexity measure,
over n searches, of this usual algorithm is O(n �m). It is assumed that advantage is taken of some
packed form of storage in the inner loop (e.g. using linked lists).

Croft's algorithm (see Croft, 1977, and Fig. 4) is of worst case complexity O(nm2). However
the number of terms associated with the document whose NN is required will often be quite small.
The National Physical Laboratory test collection, for example, which was used in Murtagh (1982)
has the following characteristics: n = 11429, m = 7491, �m = 19.9, and �n = 30.4. The outermost
and innermost loops in Croft's algorithm use the document-term �le. The center loop uses the
term-document inverted �le. An average complexity measure (more strictly, the time taken for
best match search based on an average document with associated average terms) is seen to be
O(�n �m2).

In the outermost loop of Croft's algorithm, there will eventually come about a situation where
{ if a document has not been thus far examined { the number of terms remaining for the given
document do not permit the current NN document to be bettered. In this case, we can cut short
the iterations of the outermost loop. The calculation of a bound, using the greatest possible
number of terms which could be shared with a so-far unexamined document has been exploited by
Smeaton and van Rijsbergen (1981) and by Murtagh (1982) in successive improvements on Croft's
algorithm.

The complexity of all the above algorithms has been measured in terms of operations to be
performed. In practice, however, the actual accessing of term or document information may be
of far greater cost. The document-term and term-document �les are ordinarily stored on direct
access �le storage because of their large sizes. The strategy used in Croft's algorithm, and in
improvements on it, does not allow any viable approaches to batching together the records which
are to be read successively, in order to improve accessing-related performance.

The Perry-Willett algorithm (see Perry and Willett, 1983) presents a simple but e�ective solu-
tion to the problem of costly I/O. It focuses on the calculation of the number of terms common to
the given document x and each other document, y, in the document collection. This set of values
is built up in a computationally eÆcient fashion. O(n) operations are subsequently required to
determine the (dis)similarity, using another vector comprising the total numbers of terms associ-
ated with each document. Computation time (the same \average" measure as that used above) is
O(�n �m+ n). We now turn attention to numbers of direct-access reads required.

In Croft's algorithm, all terms associated with the document whose NN is desired may be read
in one read operation. Subsequently, we require �n �m reads, giving in all 1+�n �m. In the Perry-Willett
algorithm, the outer loop again pertains to the one (given) document, and so all terms associated
with this document can be read and stored. Subsequently, �m reads, i.e. the average number of
terms, each of which demands a read of a set of documents, are required. This gives, in all, 1+ �m.
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Usual algorithm:

Initialize current NN

For all documents in turn do:

... For all terms associated with the document do:

... ... Determine (dis)similarity

... Endfor

... Test against current NN

Endfor

Croft's algorithm:

Initialize current NN

For all terms associated with the given document do:

... For all documents associated with each term do:

... ... For all terms associated with a document do:

... ... ... Determine (dis)similarity

... ... Endfor

... ... Test against current NN

... Endfor

Endfor

Perry-Willett algorithm:

Initialize current NN

For all terms associated with the given document, i, do:

... For all documents, i', associated with each term, do:

... ... Increment location i' of counter vector

... Endfor

Endfor

Figure 4: Algorithms for NN-searching using high-dimensional sparse binary data.
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Figure 5: Five points, showing NNs and RNNs.

Since these reads are very much the costliest operation in practice, the Perry-Willett algorithm
can be recommended for large values of n and m. Its general characteristics are that (i) it requires,
as do all the algorithms discussed in this section, the availability of the inverted term-document
�le; and (ii) it requires in-memory storage of two vectors containing n integer values.

6 Hierarchical Agglomerative Clustering

The algorithms discussed in this section can be characterized as greedy (Horowitz and Sahni, 1979).
A sequence of irreversible algorithm steps is used to construct the desired data structure.

We will not review hierarchical agglomerative clustering here. For essential background, the
reader is referred to Murtagh and Heck (1987), Gordon (1999), or Jain and Dubes (1988). This
section borrows on Murtagh (1992).

One could practically say that Sibson (1973) and Defays (1977) are part of the prehistory of
clustering. Their O(n2) implementations of the single link method and of a (non-unique) complete
link method, respectively, have been widely cited.

In the early 1980s a range of signi�cant improvements were made to the Lance-Williams, or
related, dissimilarity update schema (de Rham, 1980; Juan, 1982), which had been in wide use
since the mid-1960s. Murtagh (1985) presents a survey of these algorithmic improvements. We will
briey describe them here. The new algorithms, which have the potential for exactly replicating
results found in the classical but more computationally expensive way, are based on the construction
of nearest neighbor chains and reciprocal or mutual NNs (NN-chains and RNNs).

A NN-chain consists of an arbitrary point (a in Fig. 5); followed by its NN (b in Fig. 5); followed
by the NN from among the remaining points (c, d, and e in Fig. 5) of this second point; and so
on until we necessarily have some pair of points which can be termed reciprocal or mutual NNs.
(Such a pair of RNNs may be the �rst two points in the chain; and we have assumed that no two
dissimilarities are equal.)

In constructing a NN-chain, irrespective of the starting point, we may agglomerate a pair of
RNNs as soon as they are found. What guarantees that we can arrive at the same hierarchy
as if we used traditional \stored dissimilarities" or \stored data" algorithms? Essentially this is
the same condition as that under which no inversions or reversals are produced by the clustering
method. Fig. 6 gives an example of this, where s is agglomerated at a lower criterion value (i.e.
dissimilarity) than was the case at the previous agglomeration between q and r. Our ambient
space has thus contracted because of the agglomeration. This is due to the algorithm used { in
particular the agglomeration criterion { and it is something we would normally wish to avoid.

This is formulated as:

Inversion impossible if: d(i; j) < d(i; k) or d(j; k)) d(i; j) < d(i [ j; k)
This is essentially Bruynooghe's reducibility property (Bruynooghe, 1977; see also Murtagh,

1984). Using the Lance{Williams dissimilarity update formula, it can be shown that the minimum
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d1                            d2

q     r     s                  q     r     s

d2                            d1

Figure 6: Alternative representations of a hierarchy with an inversion. Assuming dissimilarities,
as we go vertically up, criterion values (d1, d2) decrease. But here, undesirably, d2 > d1.

variance method does not give rise to inversions; neither do the linkage methods; but the median
and centroid methods cannot be guaranteed not to have inversions.

To return to Fig. 5, if we are dealing with a clustering criterion which precludes inversions,
then c and d can justi�ably be agglomerated, since no other point (for example, b or e) could have
been agglomerated to either of these.

The processing required, following an agglomeration, is to update the NNs of points such as b
in Fig. 5 (and on account of such points, this algorithm was dubbed algorithme des c�elibataires in
de Rham, 1980). The following is a summary of the algorithm:

NN-chain algorithm

Step 1 Select a point arbitrarily.

Step 2 Grow the NN-chain from this point until a pair of RNNs are obtained.

Step 3 Agglomerate these points (replacing with a cluster point, or updating the dissimilarity
matrix).

Step 4 From the point which preceded the RNNs (or from any other arbitrary point if the �rst
two points chosen in Steps 1 and 2 constituted a pair of RNNs), return to Step 2 until only
one point remains.

In Murtagh (1983, 1984, 1985) and Day and Edelsbrunner (1984), one �nds discussions of
O(n2) time and O(n) space implementations of Ward's minimum variance (or error sum of squares)
method and of the centroid and median methods. The latter two methods are termed the UPGMC
and WPGMC criteria by Sneath and Sokal (1973). Now, a problem with the cluster criteria used by
these latter two methods is that the reducibility property is not satis�ed by them. This means that
the hierarchy constructed may not be unique as a result of inversions or reversals (non-monotonic
variation) in the clustering criterion value determined in the sequence of agglomerations.

Murtagh (1984) describes O(n2) time and O(n2) space implementations for the single link
method, the complete link method and for the weighted and unweighted group average methods
(WPGMA and UPGMA). This approach is quite general vis �a vis the dissimilarity used and can
also be used for hierarchical clustering methods other than those mentioned.

Day and Edelsbrunner (1984) prove the exact O(n2) time complexity of the centroid and median
methods using an argument related to the combinatorial problem of optimally packing hyperspheres
into an m-dimensional volume. They also address the question of metrics: results are valid in a
wide class of distances including those associated with the Minkowski metrics.
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The construction and maintenance of the nearest neighbor chain as well as the carrying out of
agglomerations whenever reciprocal nearest neighbors meet, both o�er possibilities for paralleliza-
tion. Implementations on a SIMD machine were described by Willett (1989).

Evidently both coordinate data and graph (e.g., dissimilarity) data can be input to these
agglomerativemethods. Gillet et al. (1998) in the context of clustering chemical structure databases
refer to the common use of the Ward method, based on the reciprocal nearest neighbors algorithm,
on data sets of a few hundred thousand molecules.

Applications of hierarchical clustering to bibliographic information retrieval are assessed in
GriÆths et al. (1984). Ward's minimum variance criterion is favored.

From details in White and McCain (1997), the Institute of Scienti�c Information (ISI) clusters
citations (science, and social science) by �rst clustering highly cited documents based on a single
linkage criterion, and then four more passes are made through the data to create a subset of a
single linkage hierarchical clustering.

7 Graph Clustering

Hierarchical clustering methods are closely related to graph-based clustering. For a start, a den-
drogram is a rooted labeled tree. Secondly, and more importantly, some methods like the sinlge
and complete link methods can be displayed as graphs, and are very closely related to mainstream
graph data structures.

An example of the increasing prevalence of graph clustering in the context of data mining on the
web is presented in Fig. 7: Amazon.com provides information on what other books were purchased
by like-minded individuals.

The single link method was referred to in the previous section, as a widely-used agglomerative,
hence hierarchical, clustering method. Rohlf (1982) reviews algorithms for the single link method
with complexities ranging from O(n logn) to O(n5). The criterion used by the single link method
for cluster formation is weak, meaning that noisy data in particular give rise to results which are
not robust.

The minimal spanning tree (MST) and the single link agglomerative clustering method are
closely related: the MST can be transformed irreversibly into the single link hierarchy (Rohlf,
1973). The MST is de�ned as of minimal total weight, it spans all nodes (vertices) and is an
unrooted tree. The MST has been a method of choice for at least four decades now either in
its own right for data analysis (Zahn, 1971), as a data structure to be approximated (e.g. using
shortest spanning paths, see Murtagh, 1985, p. 96), or as a basis for clustering. We will look at
some fast algorithms for the MST in the remainder of this section.

Perhaps the most basic MST algorithm, due to Prim and Dijkstra, grows a single fragment
through n � 1 steps. We �nd the closest vertex to an arbitrary vertex, calling these a fragment
of the MST. We determine the closest vertex, not in the fragment, to any vertex in the fragment,
and add this new vertex into the fragment. While there are fewer than n vertices in the fragment,
we continue to grow it.

This algorithm leads to a unique solution. A default O(n3) implementation is clear, and O(n2)
computational cost is possible (Murtagh, 1985, p. 98).

Sollin's algorithm constructs the fragments in parallel. For each fragment in turn, at any stage
of the construction of the MST, determine its closest fragment. Merge these fragments, and update
the list of fragments. A tree can be guaranteed in this algorithm (although care must be taken
in cases of equal similarity) and our other requirements (all vertices included, minimal total edge
weight) are very straightforward. Given the potential for roughly halving the data remaining to be
processed at each step, not surprisingly the computational cost reduces from O(n3) to O(n2 logn).

The real interest of Sollin's algorithm arises when we are clustering on a graph and do not have
all n(n� 1)=2 edges present. Sollin's algorithm can be shown to have computational cost m logn
where m is the number of edges. When m� n(n�1)=2 then we have the potential for appreciable
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gains.
The MST in feature spaces can of course make use of the fast nearest neighbor �nding methods

studied earlier in this article. See Murtagh (1985, section 4.4) for various examples.
Other graph data structures which have been proposed for data analysis are related to the

MST. We know, for example, that the following subset relationship holds:

MST � RNG � GG � DT

where RNG is the relative neighborhood graph, GG is the Gabriel graph, and DT is the Delaunay
triangulation. The latter, in the form of it's dual, the Voronoi diagram, has been used for analyzing
the clustering of galaxy locations. References to these and related methods can be found in Murtagh
(1993b).

8 Nearest Neighbor Finding on Graphs

Clustering on graphs may be required because we are working with (perhaps complex non-Euclidean)
dissimilarities. In such cases where we must take into account an edge between each and every pair
of vertices, we will generally have an O(m) computational cost where m is the number of edges.
In a metric space we have seen that we can look for various possible ways to expedite the nearest
neighbor search. An approach based on visualization { turning our data into an image { will be
looked at below. However there is another aspect of our similarity (or other) graph which we may
be able to turn to our advantage. EÆcient algorithms for sparse graphs are available. Sparsity
can be arranged { we can threshold our edges if the sparsity does not suggest itself more naturally.
A special type of sparse graph is a planar graph, i.e. a graph capable of being represented in the
plane without any crossovers of edges.

For sparse graphs, algorithms with O(m log logn) computational cost were described by Yao
(1975) and Cheriton and Tarjan (1976). A short algorithmic description can be found in Murtagh
(1985, pp. 107{108) and we refer in particular to the latter.

The basic idea is to preprocess the graph, in order to expedite the sorting of edge weights (why
sorting? { simply because we must repeatedly �nd smallest links, and maintaining a sorted list of
edges is a good basis for doing this). If we were to sort all edges, the computational requirement
would be O(m logm). Instead of doing that, we take the edge set associated with each and every
vertex. We divide each such edge set into groups of size k. (The fact that the last such group will
usually be of size < k is taken into account when programming.)

Let nv be the number of incident edges at vertex v, such that
P

v nv = 2m.
The sorting operation for each vertex now takes O(k log k) operations for each group, and we

have nv=k groups. For all vertices the sorting requires a number of operations which is of the
order of

P
v nv log k = 2m log k. This looks like a questionable { or small { improvement over

O(m logm).
Determining the lightest edge incident on a vertex requires O(nv=k) comparisons since we have

to check all groups. Therefore the lightest edges incident on all vertices are found with O(m=k)
operations.

When two vertices, and later fragments, are merged, their associated groups of edges are simply
collected together, therefore keeping the total number of groups of edges which we started out with.
We will bypass the issue of edges which, over time, are to be avoided because they connect vertices
in the same fragment: given the fact that we are building an MST, the total number of such
edges-to-be-avoided cannot surpass 2m.

To �nd what to merge next, again O(m=k) processing is required. Using Sollin's algorithm,
the total processing required in �nding what to merge next is O(m=k logn). The total processing
required for grouping the edges, and sorting within the edge-groups, is O(m log k), i.e. it is one-o�
and accomplished at the start of the MST-building process.
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The total time is O(m=k logn)+O(m log k). Let's �x k = logn (aha!). Then the second term
dominates and gives overall computational complexity as O(m log logn).

This result has been further improved to near linearity in m by Gabow et al. (1986), who
develop an algorithm with complexity O(m log log log : : : n) where the number of iterated log terms
is bounded by m=n.

Motwani and Raghavan (1995, chapter 10) base a stochastic O(m) algorithm for the MST on
random sampling to identify and eliminate edges that are guaranteed not to belong to the MST.

Let's turn our attention now to the case of a planar graph. For a planar graph we know that
m � 3n� 6 for m > 1. (For proof, see for example Tucker, 1980, or any book on graph theory).

Referring to Sollin's algorithm, described above, O(n) operations are needed to establish a least
cost edge from each vertex, since there are only O(n) edges present. On the next round, following
fragment-creation, there will be at most ceil(n=2) new vertices, implying of the order of n=2
processing to �nd the least cost edge (where ceil is the ceiling function, or smallest integer greater
than the argument). The total computational cost is seen to be proportional to: n+n=2+n=4+: : :=
O(n).

So determining the MST of a planar graph is linear in numbers of either vertices or edges.
Before ending this review of very eÆcient clustering algorithms for graphs, we note that al-

gorithms discussed so far have assumed that the similarity graph was undirected. For modeling
transport ows, or economic transfers, the graph could well be directed. Components can be de-
�ned, generalizing the clusters of the single link method, or the complete link method. Tarjan
(1983) provides an algorithm for the latter agglomerative criterion which is of computational cost
O(m logn).

9 K-Means and Family

The non-technical person more often than not understands clustering as a partition. K-means
looked at in this section, or the distribution mixture approach looked at section 10, provide solu-
tions.

A mathematical de�nition of a partition implies no multiple assignments of observations to
clusters, i.e. no overlapping clusters. Overlapping clusters may be faster to determine in practice,
and a case in point is the one-pass algorithm described in Salton and McGill (1983). The general
principle followed is: make one pass through the data, assigning each object to the �rst cluster
which is close enough, and making a new cluster for objects that are not close enough to any
existing cluster.

Broder et al. (1997) use this algorithm for clustering the web. A feature vector is determined
for each HTML document considered, based on sequences of words. Similarity between documents
is based on an inverted list, using an approach like those described in section 5. The similarity
graph is thresholded, and components sought.

Broder (1998) solves the same clustering objective using a thresholding and overlapping clus-
tering method similar to the Salton and McGill one. The application described is that of clustering
the Altavista repository in April 1996, consisting of 30 million HTML and text documents, com-
prising 150 GBytes of data. The number of serviceable clusters found was 1.5 million, containing 7
million documents. Processing time was about 10.5 days. An analysis of the clustering algorithm
used by Broder can be found in Borodin et al. (1999), who also considers the use of approximate
minimal spanning trees.

The threshold-based pass of the data, in its basic state, is susceptible to lack of robustness.
A bad choice of threshold leads to too many clusters or two few. To remedy this, we can work
on a well-de�ned data structure such as the minimal spanning tree. Or, alternatively, we can
iteratively re�ne the clustering. Partitioning methods, such as k-means, use iterative improvement
of an initial estimation of a targeted clustering.

A very widely used family of methods for inducing a partition on a data set is called k-means,
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c-means (in the fuzzy case), Isodata, competitive learning, vector quantization and other more gen-
eral names (non-overlapping non-hierarchical clustering) or more speci�c names (minimal distance
or exchange algorithms).

The usual criterion to be optimized is:

1

j I j
X
q2Q

X
i2q

k~�� ~qk2

where I is the object set, j : j denotes cardinality, q is some cluster, Q is the partition, and q denotes
a set in the summation, whereas ~q denotes some associated vector in the error term, or metric norm.
This criterion ensures that clusters found are compact, and therefore assumed homogeneous. The
optimization criterion, by a small abuse of terminology, is ofter referred to as a minimum variance
one.

A necessary condition that this criterion be optimized is that vector ~q be a cluster mean, which
for the Euclidean metric case is:

~q =
1

j q j
X
i2q

~�

A batch update algorithm, due to Lloyd (1957), Forgy (1965), and others, makes assignments
to a set of initially randomly-chosen vectors, ~q, as step 1. Step 2 updates the cluster vectors,
~q. This is iterated. The distortion error, equation 1, is non-increasing, and a local minimum is
achieved in a �nite number of iterations.

An online update algorithm is due to MacQueen (1967). After each presentation of an obser-
vation vector,~�, the closest cluster vector, ~q, is updated to take account of it. Such an approach is
well-suited for a continuous input data stream (implying \online" learning of cluster vectors).

Both algorithms are gradient descent ones. In the online case, much attention has been devoted
to best learning rate schedules in the neural network (competitive learning) literature: Darken and
Moody (1991, 1992), Darken et al. (1992), Fritzke (1997).

A diÆculty, less controllable in the case of the batch algorithm, is that clusters may become
(and stay) empty. This may be acceptable, but also may be in breach of our original problem
formulation. An alternative to the batch update algorithm is Sp�ath's (1985) exchange algorithm.
Each observation is considered for possible assignment into any of the other clusters. Updating
and \downdating" formulas are given by Sp�ath. This exchange algorithm is stated to be faster to
converge and to produce better (smaller) values of the objective function. Over decades of use, we
have also veri�ed that it is a superior algorithm to the minimal distance one.

K-means is very closely related to Voronoi (Dirichlet) tesselations, to Kohonen self-organizing
feature maps, and various other methods.

The batch learning algorithm above may be viewed as

1. An assignment step which we will term the E (estimation) step: estimate the posteriors,

P (observations j cluster centres)

2. A cluster update step, the M (maximization) step, which maximizes a cluster center likeli-
hood.

Neal and Hinton (1998) cast the k-means optimization problem in such a way that both E- and
M-steps monotonically increase the maximand's values. The EM algorithm may, too, be enhanced
to allow for online as well as batch learning (Sato and Ishii, 1999).

In Thiesson et al. (1999), k-means is implemented (i) by traversing blocks of data, cyclically, and
incrementally updating the suÆcient statistics and parameters, and (ii) instead of cyclic traversal,
sampling from subsets of the data is used. Such an approach is admirably suited for very large data
sets, where in-memory storage is not feasible. Examples used by Thiesson et al. (1999) include the
clustering of a half million 300-dimensional records.
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10 Fast Model-Based Clustering

It is traditional to note that models and (computational) speed don't mix. We review recent
progress in this section.

10.1 Modeling of Signal and Noise

A simple and applicable model is a distribution mixture, with the signal modeled by Gaussians,
in the presence of Poisson background noise.

Consider data which are generated by a mixture of (G � 1) bivariate Gaussian densities,
fk(x; �) � N (�k;�k), for clusters k = 2; : : : ; G, and with Poisson background noise corresponding
to k = 1. The overall population thus has the mixture density

f(x; �) =

GX
k=1

�kfk(x; �)

where the mixing or prior probabilities, �k, sum to 1, and f1(x; �) = A�1, where A is the area of
the data region. This is the basis for model-based clustering (Ban�eld and Raftery, 1993, Dasgupta
and Raftery, 1998, Murtagh and Raftery, 1984, Banerjee and Rosenfeld, 1993).

The parameters, � and �, can be estimated eÆciently by maximizing the mixture likelihood

L(�; �) =

nY
i=1

f(xi; �);

with respect to � and �, where xi is the i-th observation.
Now let us assume the presence of two clusters, one of which is Poisson noise, the other Gaussian.

This yields the mixture likelihood

L(�; �) =
nY
i=1

"
�1A�1 + �2

1

2�
pj�j exp

�
�1

2
(xi � �)T��1(xi � �)

�#
;

where �1 + �2 = 1.
An iterative solution is provided by the expectation-maximization (EM) algorithm of Dempster

et al. (1977). We have already noted this algorithm in informal terms in the last section, dealing
with k-means. Let the \complete" (or \clean" or \output") data be yi = (xi; zi) with indicator set
zi = (zi1; zi2) given by (1; 0) or (0; 1). Vector zi has a multinomial distribution with parameters
(1;�1; �2). This leads to the complete data log-likelihood:

l(y; z; �; �) = �n
i=1�

2

k=1zik[log�k + log fk(xk ; �)]

The E-step then computes ẑik = E(zik j x1; : : : ; xn; �), i.e. the posterior probability that xi is in
cluster k. The M-step involves maximization of the expected complete data log-likelihood:

l�(y; �; �) = �n
i=1�

2

k=1ẑik[log �k + log fk(xi; �)]:

The E- and M-steps are iterated until convergence.
For the 2-class case (Poisson noise and a Gaussian cluster), the complete-data likelihood is

L(y; z; �; �) =
nY
i=1

h�
1

A
izi1 " �2

2�
pj�j exp

�
�1

2
(xi � �)T��1(xi � �)

�#zi2

The corresponding expected log-likelihood is then used in the EM algorithm. This formulation of
the problem generalizes to the case of G clusters, of arbitrary distributions and dimensions.
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Fraley (1999) discusses implementation of model-based clustering, including publicly available
software.

In order to assess the evidence for the presence of a signal-cluster, we use the Bayes factor for
the mixture model, M2, that includes a Gaussian density as well as background noise, against the
\null" model, M1, that contains only background noise. The Bayes factor is the posterior odds
for the mixture model against the pure noise model, when neither is favored a priori. It is de�ned
as B = p(xjM2)=p(xjM1), where p(xjM2) is the integrated likelihood of the mixture model M2,
obtained by integrating over the parameter space. For a general review of Bayes factors, their use
in applied statistics, and how to approximate and compute them, see Kass and Raftery (1995).

We approximate the Bayes factor using the Bayesian Information Criterion (BIC) (Schwartz,
1978). For a Gaussian cluster and Poisson noise, this takes the form:

2 logB � BIC = 2 logL(�̂; �̂) + 2n logA� 6 logn;

where �̂ and �̂ are the maximum likelihood estimators of � and �, and L(�̂; �̂) is the maximized
mixture likelihood.

A review of the use of the BIC criterion for model selection { and more speci�cally for choosing
the number of clusters in a data set { can be found in Fraley and Raftery (1998).

An application of mixture modeling and the BIC criterion to gamma-ray burst data can be
found in Mukherjee et al. (1998). So far around 800 observations have been assessed, but as
greater numbers become available we will �nd the inherent number of clusters in a similar way, in
order to try to understand more about the complex phenomenon of gamma-ray bursts.

10.2 Application to Thresholding

Consider an image or a planar or 3-dimensional set of object positions. For simplicity we consider
the case of setting a single threshold in the image intensities, or the point set's spatial density.

We deal with a combined mixture density of two univariate Gaussian distributions fk(x; �) �
N (�k; �k). The overall population thus has the mixture density

f(x; �) =

2X
k=1

�kfk(x; �)

where the mixing or prior probabilities, �k, sum to 1.
When the mixing proportions are assumed equal, the log-likelihood takes the form

l(�) =

nX
i=1

ln

"
2X

k=1

1

2�
pj�kj exp

�
� 1

2�k
(xi � �k)

2

�#

The EM algorithm is then used to iteratively solve this (see Celeux and Govaert, 1995). This
method is used for appraisals of textile (jeans and other fabrics) fault detection in Campbell et
al. (1999). Industrial vision inspection systems potentially produce large data streams, and fault
detection can be a good application for fast clustering methods. We are currently using a mixture
model of this sort on SEM (scanning electron microscope) images of cross-sections of concrete to
allow for subsequent characterization of physical properties.

Image segmentation, per se, is a relatively straightforward application, but there are novel and
interesting aspects to the two studies mentioned. In the textile case, the faults are very often
perceptual and relative, rather than \absolute" or capable of being analyzed in isolation. In the
SEM imaging case, a �rst phase of processing is applied to de-speckle the images, using multiple
resolution noise �ltering.

Turning from concrete to cosmology, the Sloan Digital Sky Survey (SDSS, 1999) is producing
a sky map of more than 100 million objects, together with 3-dimensional information (redshifts)
for a million galaxies. Pelleg and Moore (1999) describe mixture modeling, using a k-D tree
preprocessing to expedite the �nding of the class (mixture) parameters, e.g. means, covariances.
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11 Noise Modeling

In Starck et al. (1998) and in a wide range of papers, we have pursued an approach for the noise
modeling of observed data. A multiple resolution scale vision model or data generation process is
used, to allow for the phenomenon being observed on di�erent scales. In addition, a wide range of
options are permitted for the data generation transfer path, including additive and multiplicative,
stationary and non-stationary, Gaussian (\read out" noise), Poisson (random shot noise), and so
on.

Given point pattern clustering in two- or three-dimensional spaces, we will limit our overview
here to the Poisson noise case.

11.1 Poisson noise with few events using the �a trous transform

If a wavelet coeÆcient wj(x; y) is due to noise, it can be considered as a realization of the sumP
k2K nk of independent random variables with the same distribution as that of the wavelet func-

tion (nk being the number of events used for the calculation of wj(x; y)). This allows comparison of
the wavelet coeÆcients of the data with the values which can be taken by the sum of n independent
variables.

The distribution of one event in wavelet space is then directly given by the histogram H1 of
the wavelet  . As we consider independent events, the distribution of a coeÆcient wn (note the
changed subscripting for w, for convenience) related to n events is given by n autoconvolutions of
H1:

Hn = H1 
H1 
 :::
H1

For a large number of events, Hn converges to a Gaussian.
Fig. 8 shows an example of where point pattern clusters { density bumps in this case { are

sought, with a great amount of background clutter. Murtagh and Starck (1998) refer to the fact
that there is no computational dependence on the number of points (signal or noise) in such a
problem, when using a wavelet transform with noise modeling.

Some other alternative approaches will be briey noted. The Haar transform presents the
advantage of its simplicity for modeling Poisson noise. Analytic formulas for wavelet coeÆcient
distributions have been derived by Kolaczyk (1997), and Jammal and Bijaoui (1999). Using a new
wavelet transform, the Haar �a trous transform, Zheng et al. (1999) appraise a denoising approach
for �nancial data streams, { an important preliminary step for subsequent clustering, forecasting,
or other processing.

11.2 Poisson noise with nearest neighbor clutter removal

The wavelet approach is certainly appropriate when the wavelet function reects the type of object
sought (e.g. isotropic), and when superimposed point patterns are to be analyzed. However, non-
superimposed point patterns of complex shape are very well treated by the approach described in
Byers and Raftery (1998). Using a homogeneous Poisson noise model, they derive the distribution
of the distance of a point to its kth nearest neighbor.

Next, Byers and Raftery (1998) consider the case of a Poisson process which is signal, super-
imposed on a Poisson process which is clutter. The kth nearest neighbor distances are modeled
as a mixture distribution: a histogram of these, for given k, will yield a bimodal distribution if
our assumption is correct. This mixture distribution problem is solved using the EM algorithm.
Generalization to higher dimensions, e.g. 10, is also discussed.

Similar data was analyzed by noise modeling and a Voronoi tesselation preprocessing of the data
in Allard and Fraley (1997). It is pointed out there how this can be a very useful approach where
the Voronoi tiles have meaning in relation to the morphology of the point patterns. However,
it does not scale well to higher dimensions, and the statistical noise modeling is approximate.
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Ebeling and Wiedenmann (1993), reproduced in Dobrzycki et al. (1999), propose the use of a
Voronoi tesselation for astronomical X-ray object detection and characterization.

12 Cluster-Based User Interfaces

Information retrieval by means of \semantic road maps" was �rst detailed by Doyle (1961). The
spatial metaphor is a powerful one in human information processing. The spatial metaphor also
lends itself well to modern distributed computing environments such as the web. The Kohonen
self-organizing feature map (SOM) method is an e�ective means towards this end of a visual
information retrieval user interface. We will also provide an illustration of web-based semantic
maps based on hyperlink clustering.

The Kohonen map is, at heart, k-means clustering with the additional constraint that cluster
centers be located on a regular grid (or some other topographic structure) and furthermore their
location on the grid be monotonically related to pairwise proximity (Murtagh and Hern�andez-
Pajares, 1995). The nice thing about a regular grid output representation space is that it lends
itself well as a visual user interface.

Fig. 9 shows a visual and interactive user interface map, using a Kohonen self-organizing feature
map (SOM). Color is related to density of document clusters located at regularly-spaced nodes of
the map, and some of these nodes/clusters are annotated. The map is installed as a clickable
imagemap, with CGI programs accessing lists of documents and { through further links { in many
cases, the full documents. In the example shown, the user has queried a node and results are
seen in the right-hand panel. Such maps are maintained for (currently) 12000 articles from the
Astrophysical Journal, 7000 from Astronomy and Astrophysics, over 2000 astronomical catalogs,
and other data holdings. More information on the design of this visual interface and user assessment
can be found in Poin�cot et al. (1998, 1999).

Guillaume (Guillaume andMurtagh, 1999) developed a Java-based visualization tool for hyperlink-
based data, consisting of astronomers, astronomical object names, article titles, and with the pos-
sibility of other objects (images, tables, etc.). Through weighting, the various types of links could
be prioritized. An iterative re�nement algorithm was developed to map the nodes (objects) to a
regular grid of cells, which as for the Kohonen SOM map, are clickable and provide access to the
data represented by the cluster. Fig. 10 shows an example for an astronomer (Prof. Jean Heyvaerts,
Strasbourg Astronomical Observatory).

These new cluster-based visual user interfaces are not computationally demanding. They are
not however scalable in their current implementation. Document management (see e.g. Cartia,
1999) is less the motivation as is instead the interactive user interface.

13 Images from Data

It is quite impressive how 2D (or 3D) image signals can handle with ease the scalability limitations
of clustering and many other data processing operations. The contiguity imposed on adjacent
pixels bypasses the need for nearest neighbor �nding. It is very interesting therefore to consider
the feasibility of taking problems of clustering massive data sets into the 2D image domain. We
will look at a few recent examples of work in this direction.

Church and Helfman (1993) address the problem of visualizing possibly millions of lines of com-
puter program code, or text. They consider an approach borrowed from DNA sequence analysis.
The data sequence is tokenized by splitting it into its atoms (line, word, character, etc.) and then
placing a dot at position i; j if the ith input token is the same as the jth. The resulting dotplot,
it is argued, is not limited by the available display screen space, and can lead to discovery of
large-scale structure in the data.

When data do not have a sequence we have an invariance problem which can be resolved by
�nding some row and column permutation which pulls large array values together, and perhaps
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furthermore into proximity to an array diagonal. Berry et al. (1996) have studied the case of large
sparse arrays. Gathering larger (or nonzero) array elements to the diagonal can be viewed in terms
of minimizing the envelope of nonzero values relative to the diagonal. This can be formulated
and solved in purely symbolic terms by reordering vertices in a suitable graph representation of
the matrix. A widely-used method for symmetric sparse matrices is the Reverse Cuthill-McKee
(RCM) method.

The complexity of the RCM method for ordering rows or columns is proportional to the product
of the maximum degree of any vertex in the graph representing the array values and the total
number of edges (nonzeroes in the matrix). For hypertext matrices with small maximum degree,
the method would be extremely fast. The strength of the method is its low time complexity but
it does su�er from certain drawbacks. The heuristic for �nding the starting vertex is inuenced
by the initial numbering of vertices and so the quality of the reordering can vary slightly for the
same problem for di�erent initial numberings. Next, the overall method does not accommodate
dense rows (e.g., a common link used in every document), and if a row has a signi�cantly large
number of nonzeroes it might be best to process it separately; i.e., extract the dense rows, reorder
the remaining matrix and augment it by the dense rows (or common links) numbered last. Elapsed
CPU times for a range of arrays and permuting methods are given in Berry et al. (1996), and as
an indication show performances between 0.025 to 3.18 seconds for permuting a 4000� 400 array.
A review of public domain software for carrying out SVD and other linear algebra operations on
large sparse data sets can be found in Berry et al. (1999, section 8.3).

Once we have a sequence-respecting array, we can immediately apply eÆcient visualization
techniques from image analysis. Murtagh et al. (2000) investigate the use of noise �ltering (i.e. to
remove less useful array entries) using a multiscale wavelet transform approach.

An example follows. From the Concise Columbia Encyclopedia (1989 2nd ed., online version)
a set of data relating to 12025 encyclopedia entries and to 9778 cross-references or links was used.
Fig. 11 shows a 500 � 450 subarray, based on a correspondence analysis (i.e. ordering of projections
on the �rst factor).

This part of the encyclopedia data was �ltered using the wavelet and noise-modeling methodol-
ogy described in Murtagh et al. (2000) and the outcome is shown in Fig. 12. Overall the recovery of
the more apparent alignments, and hence visually stronger clusters, is excellent. The �rst relatively
long \horizontal bar" was selected { it corresponds to column index (link) 1733 = geological era.
The corresponding row indices (articles) are, in sequence:

SILURIAN PERIOD

PLEISTOCENE EPOCH

HOLOCENE EPOCH

PRECAMBRIAN TIME

CARBONIFEROUS PERIOD

OLIGOCENE EPOCH

ORDOVICIAN PERIOD

TRIASSIC PERIOD

CENOZOIC ERA

PALEOCENE EPOCH

MIOCENE EPOCH

DEVONIAN PERIOD

PALEOZOIC ERA

JURASSIC PERIOD

MESOZOIC ERA

CAMBRIAN PERIOD

PLIOCENE EPOCH

CRETACEOUS PERIOD

The work described here is based on a number of technologies: (i) data visualization techniques;
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(ii) the wavelet transform for data analysis; and (iii) data matrix permuting techniques. The
wavelet transform has linear computational cost in terms of image row and column dimensions,
and is independent of the pixel values.

14 Conclusion

Viewed from a commercial or managerial perspective, one could justi�ably ask where we are now in
our understanding of problems in this area relative to where we were back in the 1960s? Depending
on our answer to this, we may well proceed to a second question: Why have all important problems
not been solved by now in this area { are there major outstanding problems to be solved?

As described in this chapter, a solid body of experimental and theoretical results have been built
up over the last few decades. Clustering remains a requirement which is a central infrastructural
element of very many application �elds.

There is continual renewal of the essential questions and problems of clustering, relating to
new data, new information, and new environments. There is no logjam in clustering research
and development simply because the rivers of problems continue to broaden and deepen. Clus-
tering and classi�cation remain quintessential issues in our computing and information technology
environments (Murtagh, 1998).
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Figure 7: Example of graph clustering in a data mining perspective at Amazon.com: \Customers
who bought this book also bought..."
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Figure 8: Data in the plane. The 256 � 256 image shows 550 \signal" points { two Gaussian-
shaped clusters in the lower left and in the upper right { with in addition 40,000 Poisson noise
points added. Details of recovery of the clusters is discussed in Murtagh and Starck (1998).
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Figure 9: Visual interactive user interface to the journal Astronomy and Astrophysics. Original in
color.

Figure 10: Visual interactive user interfaces, based on graph edges. Map for astronomer Jean
Heyvaerts. Original in color.
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Figure 11: Part (500� 450) of original encyclopedia incidence data array.
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Figure 12: End-product of the �ltering of the array shown in the previous Figure.
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