
Manual authentication for wireless devices

Christian Gehrmann
Ericsson Mobile Platforms

Lund, Sweden.
christian.gehrmann@ericsson.com

Chris J. Mitchell
Royal Holloway, University of London,

Egham, Surrey TW20 0EX, UK.
c.mitchell@rhul.ac.uk

Kaisa Nyberg
Nokia Research Center

Helsinki, Finland.
kaisa.nyberg@nokia.com

January 23, 2004

Abstract

Manual authentication techniques have been designed
to enable wireless devices to authenticate one another
via an insecure wireless channel with the aid of a
manual transfer of data between the devices. Manual
transfer refers to the human operator of the devices
performing one of the following procedures: copy-
ing data output from one device into the other device,
comparing the output of the two devices, or entering
the same data into both devices. Techniques currently
being standardised are described which achieve this,
and which require only small amounts of data to be
transferred between the two devices. This makes the
mechanisms particularly attractive for non-expert use,
as required for ubiquitous mobile wireless devices.

1 Introduction

Entity authentication and authenticated key establish-
ment are of fundamental importance in establishing
secure communications between a pair of communi-
cating parties. Entity authentication is normally pro-

vided when a communications link is established and,
if an authenticated key is established simultaneously,
this can be used to protect subsequently exchanged
data. The purpose of this paper is to examine how
these services might best be achieved for personal
wireless-enabled devices.

Using the terminology of Stajano [12], the problem
is that of securely ‘imprinting’ a personal device. That
is, suppose a user has two wireless-enabled devices,
e.g. a mobile phone and a Personal Digital Assistant
(PDA); suppose further that he/she wishes the two de-
vices to establish a secure association for their wire-
less communications. This will, for example, enable
the two devices to securely share personal data. The
problem is thus for the two devices to mutually au-
thenticate one another and, where necessary, to estab-
lish a shared secret key, all using a wireless commu-
nications link. A shared secret key can be used as the
basis for future secure communications between the
two devices, including further mutual authentications.

The main threat to the process is via a so-called
‘man-in-the-middle attack’ on the wireless link. Be-
cause the link uses radio, a third party with a receiver
and a powerful transmitter could manipulate the com-

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/28889775?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

munications between the devices, in a way that will
not be evident to the user. Thus, the attacker could
masquerade as the first device to the second device,
and also as the second device to the first device, and
set up separate keys with each. To prevent this, it will
be necessary for the device operator to input and out-
put data via the devices’ user interfaces (i.e. perform-
ing a manual data transfer) to enable the devices to
verify each other’s identities.

This is the context of use for the manual authentica-
tion protocols described here. We make the following
assumptions about the two devices.

• The two devices have access to a wireless com-
munications channel, which can be used to ex-
change as much data as required; however, no
assumptions are made about the security of this
channel — for example, it may be prone to ma-
nipulation by an active attacker.

• The two devices are both under the control of
either a single human user, or a pair of users
who trust one another and who share a commu-
nications channel whose integrity is protected by
some means (e.g. using handwritten notes or a
voice channel). Both devices have a means to in-
put or output a sequence of digits, i.e. they have
at least a numeric keypad or a multi-digit display.

• If a device does not have a keypad, then it must
at least have an input, e.g. a button, allowing the
successful conclusion of a procedure to be indi-
cated to the device. Similarly, if a device lacks a
multi-character display, then it must at least have
an output capable of indicating the success or
failure of a procedure (e.g. red and green lights
or a sound output).

We do not assume that the devices have any prior
keying relationship or are equipped with any keys by
their manufacturers. Of course, the problem would be-
come dramatically easier if every device had a unique

signature key pair and a certificate for their public
key signed by a widely trusted Certification Authority
(CA). However the overhead of personalising every
device in this way is likely to be prohibitive, particu-
larly for low-cost devices.

Similarly, we do not assume that the two devices
share a trusted communications link, e.g. as might be
provided by a hard-wired connection. Such a link,
even if it only guaranteed data integrity and data origin
authentication (and not confidentiality), would again
make the problem simple, since it could be used to au-
thenticate a Diffie-Hellman exchange (as described in
section 2). However, it would be unreasonable to al-
ways expect such a link to exist, since many simple
wireless devices are likely to possess no wired com-
munications interfaces.

An emerging international standard, ISO/IEC 9798-
5 [6], currently at Committee Draft ballot stage, con-
tains a set of ‘manual authentication’ solutions to the
wireless device imprinting problem. Some of the
schemes in this standard are described in sections 3
and 4 below. The same schemes may also be included
in a future version of the Bluetooth standards. The
existing Bluetooth specifications already contain a so-
lution to device imprinting, but this solution has well-
known security shortcomings if the initial exchange
between devices can be wiretapped [3, 8]. A more
detailed discussion of manual authentication can be
found in [3].

2 Using Diffie-Hellman

Perhaps the most straightforward solution to the im-
printing problem is to use the Diffie-Hellman key es-
tablishment protocol [1, 11]; this approach was first
proposed by Maher [10]. As discussed in [3], this is
also the solution proposed by Stajano and Anderson,
[12, 13]. We thus first describe such a solution.

2

2.1 Procedure

The two devices first agree on (or are pre-programmed
with) a secure set of Diffie-Hellman parameters,
namely a large primep, a large primeq dividing p−1,
and a valueg of multiplicative orderq modp. In fact
the Diffie-Hellman parameters could be standardised,
or made the subject of an industry agreement. This
would make the task of equipping all devices with the
parameters very simple, and certainly much simpler
and cheaper than giving each device an individual key
pair and certificate.

The two devices,A andB say, then both generate a
random value between 1 andq−1 — call these values
a and b. A computesga mod p and sends it toB,
andB computesgb mod p and sends it toA (in both
cases using the wireless link). FinallyA computes the
shared keyK asK = (gb)a mod p andB computes
the same key as(ga)b mod p.

Of course, as is widely understood (see, for exam-
ple, [11]) this procedure does not provide mutual au-
thentication, since the transmitted Diffie-Hellman val-
ues could have been manipulated by an interceptor
acting as a man-in-the-middle (as above). Mutual au-
thentication can be achieved by the manual exchange
of checksums, i.e. using a ‘manual authentication’
technique, as follows. Note that, apart from the au-
thentication issue, the security of the Diffie-Hellman
protocol has been widely studied. If the parameters
are chosen appropriately, then it is believed to be se-
cure.

To provide the desired authentication, Maher [10]
proposed the following additional steps. After com-
pleting the Diffie-Hellman exchange, both devices in-
put the keyK to a one-way hash-functionh, e.g. SHA-
1 [5], to obtainh(K), which can be truncated to the
desired length by taking the leftmost bits of the output
(the choice for the length is discussed below). Sup-
pose now that one device has a display and the other
a keypad. The device with a display outputs the hash-

code, e.g. as a sequence of hexadecimal digits. The
user now enters this sequence into the second device
using its keypad. The second device compares the
input hash-code with its computed value and, if they
agree, provides a positive indication to the user. If this
positive indication is received, the user inputs a suc-
cess indication into the first device. This completes
the mutual authentication process, and both devices
also now have an authenticated key.

A similar procedure can be followed if both devices
have a display. In this case both devices output their
computed hash code, and the user is then simply re-
quired to compare the values output by the two de-
vices. If they agree then the user gives a positive indi-
cation to both devices.

If one of the devices possesses neither a display nor
a keypad, then it is difficult to apply the above method.
However, in the case of a device with an audio output,
e.g. a wireless headset, it may be possible for the head-
set to ‘speak’ the digits to the user, thus providing the
functions of a display.

2.2 Issues

The main problem with the above procedure is the
number of digits that need to be typed or examined
by the user. Typing in a large number of digits to
a small numeric keypad without making an error is
a non-trivial procedure, and one that many users are
likely to find too demanding to carry out. This is
bad news for manufacturers of consumer devices. If
the device cannot operate without completing the pro-
cedure then repeated failures to perform it correctly
will cause the user to be very frustrated with the sup-
plier. Alternatively, if the device can be used with-
out a secure imprinting process, then this is a situation
which could give rise to serious security vulnerabili-
ties, which could also seriously damage the supplier’s
reputation.

3

One possible solution is to drastically truncate the
hash-code, e.g. to the first 16 or 32 bits — this would
mean that the user would only have to type in (or com-
pare) 4 or 8 hexadecimal digits, respectively. Whilst
this is attractive, it has serious security weaknesses, as
follows.

2.3 Attacking short hash-codes

Typically one device (sayA) will send its Diffie-
Hellman value first, and then wait for the response
from B. Suppose thatA first sendsga mod p to B.
Suppose also that an active interceptor of the wire-
less link, C say, prevents this from reachingB and
replaces it withga′ mod p, for some valuea′ chosen
by C.

B responds withgb mod p, andB simultaneously
computes the shared key asKB = ga′b mod p. Now
suppose thatC also interceptsgb mod p and prevents
it from reachingA. It is important to observe that,
becauseC chosea′, C is now able to compute the key
held byB, i.e.C knowsKB.

C next generates a series of random valuesb′, and
for each such value computesK ′ = (ga)b′ mod p and
h(K ′). C then compares the first 16 bits ofh(K ′)
with the first 16 bits ofh(KB). If they agree thenC
simply sendsgb′ mod p to A, who generates the key
KA = (gb′)a mod p. Because of the way in whichb′

was chosen byC, the truncated hashes computed byA
andB will match, although they do not share a secret
key. Moreover, worst of all,C will know the values of
the keys held byA andB.

This attack requires the attacker to perform a signif-
icant amount of work in a short time, i.e. beforeA and
B ‘time out’. Specifically, if the hash-function is trun-
cated tot bits, then on averageC will need to generate
2t−1 valuesb′ before one is found which yields the de-
sired hash-value. Thus fort = 16, t = 32 andt = 48
the attack requires 30,000, 2 billion and 150 trillion

trials respectively. If an attacker with significant com-
puting resources wished to attack the imprinting pro-
cess, then it might be feasible to perform one billion
trials in a second, and we might reasonably assume
the ‘time-out’ value to be at most 10 seconds, allow-
ing time for the attacker to perform 10 billion trials.

Thus using a hash-code of at least 48 bits appears to
be necessary to rule out the possibility of success in at-
tacking the imprinting process, given a well-equipped
‘man-in-the-middle’. 48 bits amounts to 12 hexadeci-
mal digits, which is already quite a significant number
for a user to enter in an error-free way, particularly
when using a very small keypad with no display to
enable the user to check the correctness of each key
depression.

Ideally we would like a solution in which such a
man-in-the-middle attack can be prevented without re-
quiring the users to type in or compare long strings of
digits. Such schemes form the focus of the remainder
of this paper.

3 Manual authentication using a
short check-value

We first describe an example of a scheme which uses
keyed check-functions having short check-values (e.g.
of around 16–20 bits) and using short keys (again
of 16-20 bits). These check-functions are essentially
MAC (Message Authentication Code) functions pro-
ducing short outputs. To maximise the provable per-
formance of the scheme, Gehrmann and Nyberg [3]
have proposed using a coding theory construction to
compute the check-values; this scheme is included in
the draft standard [6]. However, in practice, use of a
conventional MAC function (e.g. a CBC-MAC based
on use of a block cipher — see, for example, [11]) will
almost certainly be sufficiently secure (in such a case
the short key could be padded with a fixed string to
construct a block cipher key).

4

3.1 The MANA I scheme

The scheme we describe, called MANA I (for MAN-
ual Authentication) in [3] and mechanism 1 in [6], is
designed for use in the situation where one device (A)
has a display and the other (B) has a keypad, although
a simple variant (MANA II) exists for the case where
both devices have a display. MANA I and MANA II
were originally published in [2].

We also assume that the two devices wish to agree
on the value of a public data stringD. This data string
could be the concatenation ofA’s andB’s public keys,
for some asymmetric cryptosystem. This could sup-
port the registration process for a small-scale PKI, or
could simply be used as the basis for subsequent se-
cure communications. In particular the public keys
could be used, e.g. as Diffie-Hellman public keys, to
provide the basis for an authenticated secret key estab-
lishment protocol, requiring no further intervention by
the user.

We writemK(X) for the check-value computed us-
ing keyK and data stringX. The scheme operates as
follows (see also Figure1).

1. A data stringD is agreed by some means be-
tweenA andB using the wireless channel. This
would typically occur via an exchange of (unpro-
tected) messages.

2. DeviceA generates a random keyK of length
appropriate for use with the check-function (i.e.
of 16–20 bits);A also generates the check-value
mK(D). The key and check-value are then out-
put to the display by deviceA.

3. The user enters the check-value and the keyK,
read from the display of deviceA, into deviceB
(using the keypad).

4. DeviceB uses the keyK provided by the user to
recomputemK(D), and compares this with the

�

��
�������

�	�
��

��
�������

��
��

��������������	�����������
��

��	������������
���

���������
����	��
��
��

���	�����������
��

���	�	��

�
��
������������������

�����
���������

���
���	���������

������	��������	�����������
��

�
�

������	���������������������

��������������������

�������

�
��
��������	�������

����������������������	�	���������

�
��
��������	�������

������	������������

Figure 1:Manual authentication using a short check-
value

value entered by the user. The device outputs
an indication of success or failure, depending on
whether or not the check-values agree.

5. The user copies this success/failure indication
back into deviceA.

3.2 Analysis of the scheme

First note that the key and check-value are not avail-
able to any would-be attacker, who only sees the data
D. The only possible strategy for the attacker is to try
to persuadeA andB to agree on different data strings
DA andDB respectively, with the property that

mK(DA) = mK(DB)

for the largest possible number of secret keysK. In
the coding theory construction for the check-function
m (as in [3]) this largest number of keys is known.
From it an upper bound on the success probability of

5

the attacker can be determined. However to carry out
such a substitution attack, and to reach the largest suc-
cess probability, would require a lot of computation.
In practice an attacker cannot do significantly better
than choose arbitrary stringsDA and DB and hope
that the check-values computed with the key that is
unknown to the attacker will be the same. Even if
a check-value construction based on a conventional
CBC-MAC is used, it is very unlikely that the at-
tacker will be able to do much better than with the
coding theory construction, given thatA andB choose
parts ofDA andDB, respectively. If a guess fails, no
off-line computation can help the attacker any further.
Once the parties have agreed on a key, it is no longer
possible to attack the manual authentication scheme or
to persuade either party to accept an incorrect valueD.
The only possible remaining vulnerability would be in
any subsequent key exchange process based on use of
the authenticated valueD, e.g. a Diffie-Hellman key
agreement (which, as we have discussed previously, is
believed to be secure).

In summary, and assuming that the coding theory
construction is used for the check-function, the prob-
ability of a successful attack (whereA andB agree
on different data values) is less than2−13, i.e. 1 in
8,000, for 16-bit keys and check-values and less than
2−17, i.e. 1 in 130,000, for 20-bit keys and hash-codes.
More details are given in [3, 6].

3.3 Variants of the scheme

Since the data stringD is generated byA, it does not
need to be sent toB until after step 2. In fact, the
data transfer can be delayed indefinitely, and the key
and check-value transferred manually toB can act as
a ‘certificate’ for the subsequently exchanged dataD.
This might be useful, for example, where a newly pur-
chased device is ‘manually authenticated’ as soon as
it is switched on, but where public keys are only gen-
erated and exchanged at some later time.

Finally note that a variant of the above mechanism,
known as MANA II in [3] and mechanism 2 in [6],
can be devised to cover the situation where both de-
vicesA andB have a display, but neither of them has
a keypad (although they must both possess a means of
indicating successful completion of the protocol).

Briefly, in this case, the first two steps are as in
MANA I. However, in addition to displaying the key
and check-value, deviceA also sends the key to de-
viceB via the wireless channel (and hence in this case
the key is available to an attacker). DeviceB uses
the received key to recompute the check-value on its
version of the data string, and finally displays the key
received fromA together with the check value it has
computed. The user completes the process by com-
paring the values displayed by the two devices. Only
if the key and check-value agree completely does the
user give a ‘success’ indication to both devices.

4 Manual authentication using a
MAC function

A different class of manual authentication protocols
can be constructed using a conventional MAC func-
tion, such as HMAC [4] or a block cipher based CBC-
MAC.

4.1 The MANA III scheme

The scheme we describe is MANA III from [3] (it is
also specified as mechanism 3a in ISO/IEC CD 9798-
6 [6]). It is designed for use in the situation where
both devices have a keypad, although a simple variant
exists for the case where one device has a display (see
below). As previously, we assume that the two devices
wish to agree on the value of a public data stringD,
whereD could be used for agreeing public keys, as
described in section 3.1.

6

We writemK(X) for the MAC computed using key
K and data stringX. The scheme operates as follows
(see also Figure2).

Receive MAC1.

Output: Data D ready

User verifies: Both components ready.
User enters R in both devices.

Generate K1, compute MAC1,
and transmit MAC1 to B

Output: Data D ready

Receive K2 and verify MAC2.
If accept, output OK.
Output K and MAC

User verifies that both A and B accepted, in which case user enters OK in
both A and B. Else, user enters REJECT in both A and B.

User enters: Start

�����������������������
�����������������������

�����������������������
�����������������������

Generate K2, compute MAC2,
and transmit MAC2 to A

Receive MAC2, transmit K1
to B

Receive K1 and verify MAC1.
If accept, transmit K2 to A and
output OK

A
simple
output

B
simple
output

Figure 2:Manual authentication using a MAC

1. A data stringD is agreed betweenA andB using
the wireless channel.

2. The user generates a short random bit-stringR,
e.g. of 16–20 bits, and enters it into both devices.

3. Device A generates a random MAC key
K1 and computes the MAC valueM1 =
mK1(IA||D||R), whereIA is an identifier forA
and || denotes concatenation of data items. De-
viceA sendsM1 to B via the wireless link.

4. Device B generates a random MAC key
K2 and computes the MAC valueM2 =
mK2(IB||D||R), whereIB is an identifier forB.
DeviceB sendsM2 to A via the wireless link.

5. When deviceA receivesM2 from B (and not be-
fore),A sendsB the keyK1.

6. When deviceB receivesM1 from A (and not be-
fore),B sendsA the keyK2.

7. On receipt ofK2, A uses it to recomputeM2,
where the data employed in the computation con-
sists of its stored value ofD, the expected iden-
tifier IB, and the random valueR input by the
user. If the recomputedM2 agrees with the value
received fromB thenA indicates success.

8. On receipt ofK1, B uses it to recomputeM1,
where the data employed in the computation con-
sists of its stored value ofD, the expected iden-
tifier IA, and the random valueR input by the
user. If the recomputedM1 agrees with the value
received fromA thenB indicates success.

9. If (and only if) both devices indicate success, the
user indicates success to both devices.

Finally note that steps 2/3 and also 4/5 may be con-
ducted in parallel.

4.2 Analysis of the scheme

The MANA III scheme is a slightly modified version
of a protocol called SHAKE [9]. Informally, the se-
curity of the scheme relies on the fact thatR remains
secret to the attacker (it is never sent over the air) and
both A and B release a commitment (i.e. the MAC
value) to the dataD before releasing the key used to
compute this commitment.

In order for the scheme to work, the last step must
be performed, since it is indeed easy for a forgery to

7

make a full (not successful) exchange withA, calcu-
lateR by exhaustive search, and then make a success-
ful exchange withB. However, such an attack will be
detected by the double check in the last step. Hence,
the interceptor’s only hope of attacking the scheme is
to determineR from the MAC values, but in the ab-
sence of the keys this is infeasible.

Thus the best approach for the attacker is to guess
R. The likelihood of a successful attack is thus2−r,
for anr-bit valueR, i.e. the odds against a successful
attack are 1 in 70,000 for a 16-bit random valueR,
and 1 in a million for a 20-bitR.

Of course, this calculation assumes thatR is cho-
sen at random from all possibler-bit values. In prac-
tice, if R is chosen by a human, then some values will
be more likely than others. This can be exploited by
an attacker whose best strategy is simply to guess the
most likely r-bit value. However, this is unlikely to
drastically reduce the security of the system unless the
attacker understands well the behaviour of the user be-
ing attacked. Also, ifR is instead chosen by one of
the devices, as in the variant scheme described imme-
diately below, then the risks associated with a poor
choice ofR are avoided.

4.3 Variants of the scheme

Two variants of the scheme exist, both of which are
included in the draft standard [6].

The first variant (originally proposed by Jakobsson
[7] and listed as mechanism 3b in [6]) involves a to-
tal of r ‘rounds’, wherer is the number of bits inR.
In each round, one bit ofR is used, and the devices
exchange MACs and keys as in the scheme described
above. While this increases significantly the amount
of data exchanged between the devices, it removes the
need for the user to give success indications to the de-
vices at the end of the protocol.

The second variant (mechanism 4 in [6]) applies to
the case where one device has a display and the other
has a keypad. In this case, step 2 is modified so that
the device with the display generates the random value
R and displays it to the user, who then enters it into
the other device. All other steps of the scheme remain
unchanged.

5 Concluding remarks

The schemes described in this paper meet the ob-
jective of enabling two wireless devices to securely
authenticate one another and agree on a shared data
string. This is achieved without the need for the user
to enter or compare long strings of digits. The user is
typically only required to type in (or compare) around
32 binary digits (e.g. in the form of eight hexadecimal
digits).

Mechanism MANA III further improves on the sit-
uation and only requires the user entry of 16 bits, al-
though these digits must be entered into both devices
or read from one device and typed into the other.

References

[1] W. Diffie and M. E. Hellman. New directions
in cryptography.IEEE Transactions on Informa-
tion Theory, IT-22:644–654, 1976.

[2] C. Gehrmann and K. Nyberg. Enhancements to
Bluetooth baseband security. InProceedings of
Nordsec 2001, Copenhagen, Denmark, Novem-
ber 2001.

[3] C. Gehrmann and K. Nyberg. Security in per-
sonal area networks. In C. J. Mitchell, editor,
Security for Mobility, pages 191–230. IEE, Lon-
don, 2004.

8

[4] International Organization for Standardization,
Geǹeve, Switzerland. ISO/IEC 10118–2, In-
formation technology — Security techniques —
Hash-functions — Part 2: Hash-functions using
ann-bit block cipher, 2nd edition, 2000.

[5] International Organization for Standardization,
Geǹeve, Switzerland.ISO/IEC 10118–3: 2003,
Information technology — Security techniques
— Hash-functions — Part 3: Dedicated hash-
functions, 2nd edition, 2003.

[6] International Organization for Standardization,
Geǹeve, Switzerland. ISO/IEC 1st CD 9798-
6, Information technology — Security techniques
— Entity authentication — Part 6: Mechanisms
using manual data transfer, December 2003.

[7] M. Jakobsson. Method and apparatus for immu-
nizing against offline dictionary attacks. U.S.
Patent Application 60/283,996. Filed on 16th
April 2001.

[8] M. Jakobsson and S. Wetzel. Security weak-
nesses in Bluetooth. In David Naccache, edi-
tor, Topics in Cryptology — CT-RSA 2001, The
Cryptographer’s Track at RSA Conference 2001,
San Francisco, CA, USA, April 8-12, 2001, Pro-
ceedings, volume 2020 ofLecture Notes in Com-
puter Science, pages 176–191. Springer-Verlag,
Berlin, 2001.

[9] J.-O. Larsson. Higher layer key exchange tech-
niques for Bluetooth security. Open Group Con-
ference, Amsterdam, October 2001.

[10] D. P. Maher. Secure communication method
and apparatus. U.S. Patent Number 5,450,493,
September 1995. Filed on 29th December 1993.

[11] A. J. Menezes, P. C. van Oorschot, and S. A.
Vanstone.Handbook of Applied Cryptography.
CRC Press, Boca Raton, 1997.

[12] F. Stajano.Security for Ubiquitous Computing.
John Wiley and Sons Ltd., 2002.

[13] F. Stajano and R. Anderson. The resurrecting
duckling: Security issues for ad-hoc wireless
networks. In B. Christianson, B. Crispo, J. A.
Malcolm, and M. Roe, editors,Security Proto-
cols, 7th International Workshop, Cambridge,
UK, April 19-21, 1999, Proceedings, volume
1976 of Lecture Notes in Computer Science,
pages 172–194. Springer-Verlag, Berlin, 2000.

9

