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Abstract

We consider the Asymmetric Traveling Salesman Problem (ATSP)
and use the definition of neighborhood by Deineko and Woeginger (see
Math. Program. 87 (2000) 519-542). Let u(n) be the maximum cardi-
nality of polynomial time searchable neighborhood for the ATSP on n
vertices. Deineko and Woeginger conjectured that p(n) < g(n—1)! for
any constant 3 > 0 provided P#£NP. We prove that u(n) < g(n — k)!
for any fixed integer k > 1 and constant 8 > 0 provided NPZP/poly,
which (like P#£NP) is believed to be true. We also give upper bounds
for the size of an ATSP neighborhood depending on its search time.
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1 Introduction, Terminology and Notation

We consider the Asymmetric Traveling Salesman Problem (ATSP): given a
>
weighted complete directed graph, (K, ¢), where n is the number of vertices

>
and ¢ is the weight function from the arc set of [, to the set of reals, find
a hamiltonian cycle of minimum total weight. Below we call a hamiltonian

And
cycle a tour and c(a) the cost of a for an arc a of K, . For a tour T, its cost
And
¢(T) is the sum of the costs of its arcs. Observe that I, contains (n — 1)!
hamiltonian cycles, i.e., the ATSP on n vertices has (n — 1)! tours.

Local search heuristics are among the main tools to compute near op-
timal tours in large instances of the ATSP in relatively short time, see e.g.
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Cirasella, Johnson, McGeoch and Zhang [7]. In many cases the neighbor-
hoods used in the local search algorithms are of polynomial cardinality.
One may ask whether it is possible to have larger, exponential size, neigh-
borhoods for the ATSP such that the best tour in such a neighborhood can
be computed in polynomial time. Fortunately, the answer to this question is
positive. (This question is far from being trivial for some generalizations of
the TSP, e.g. Deineko and Woeginger [8] conjecture that for the quadratic
assignment problem there is no expomnential neighborhood ”searchable” in
polynomial time.)

Sarvanov and Doroshko [21, 22] and Gutin [10] were the first to introduce
exponential neighborhoods for the ATSP. In particular, they independently
showed the existence of (n/2)!-size neighborhood for the ATSP with n ver-
tices. In this neighborhood, the best tour can be computed in O(n3) time,
i.e., asymptotically in at most the same time as a complete iteration of 3-
OPT, which finds the best tour among only ©(n?) tours. For more recent
work on exponential neighborhoods for Symmetric and Asymmetric TSP,
see e.g. [2,5,6,9,11, 17, 18] an informative survey paper [8], and a chapter
[14]. Local search algorithms based on exponential neighborhoods were im-
plemented in some of those papers with encouraging results, see especially
Balas and Simonetti [2].

We adapt the definition of a neighborhood for the ATSP due to Deineko
and Woeginger [8]. Let P be a set of permutations on {1,2,...,n}. Then
the neighborhood (with respect to P) of a tour T = zq23...2,21, 1 = 1, is
defined as follows:

NP(T) = {wﬂ.(l)wﬂ.(z)...wﬂ.(n)wﬂ.(l) . € P}.

The above definition of a neighborhood is somewhat restrictive (in par-
ticular, this definition implies that the neighborhood of every tour is of the
same cardinality, | P|), but reflects the very important ”shifting” property of
neighborhoods which distinguishes them from arbitrary sets of tours. An-
other important property usually imposed on a neighborhood N(T') of a
tour T is that the best among tours of N(T') can be computed in time p(n)
polynomial in n. This is necessary to guarantee an efficient local search.
Neighborhoods satisfying this property are called polynomially searchable
or, more precisely, p(n)-searchable.

Not much is known so far on the maximum cardinality p(n) of polyno-
mial time searchable neighborhood for the ATSP on n vertices. The above
mentioned result implies that pu(n) > (n/2)!. This was slightly improved in



[11] to pu(n) = Q(%) Deineko and Woeginger [8] conjectured that

there exists a constant o > § such that zu(n) > (an)!. They also conjectured
that u(n) < f(n—1)! for any positive constant § provided P#£NP. In Section
2 we prove that p(n) < #(n — k)! for any constant 3 > 0 and fixed integer
k provided NPZP/poly.

P/poly is a well-known complexity class in structural complexity theory,
see e.g. [3], and it is widely believed that NPZP/poly for otherwise, as
proved in the well-known paper by Karp and Lipton [15], it would imply
that the so-called polynomial hierarchy collapses on the second level, which
is thought to be very unlikely. The idea that defines P/poly is that, for
each input size n, one is able to compute a polynomial-sized "key for size
n inputs”. This is called the ”advice for size n inputs”. It is allowed that
the computation of this "key” may take time exponential in n (or worse).
P/poly means solvable in polynomial time (in input size n) / given the poly-
sized general advice for inputs of size n. For formal definitions of P/poly and
related nonuniform complexity classes, consult [3].

Notice that the above mentioned result from Section 2 reflects the fact
that neighborhoods are quite special sets of tours. Indeed, it was shown in
[12, 19, 20] that there are sets of tours of cardinality at least (n — 2)!, for
which the best tour can be found in time O(n?). This result was further
improved in [13].

A very useful upper bound is given in [8] of the size of ATSP neighbor-
hood depending on the time #(n) required for its search (in other words, t(n)
is the minimum time required to find the best tour in the neighborhood).
However, that bound is not valid for t(n) < n/2 (see a remark after Corol-
lary 3.3). We correct and improve the bound of [8] in Section 3. The upper
bounds imply that, if we are ready to invest only linear time, O(n), in the
search of the neighborhood, then the neighborhood size is bounded from
above by 200", (Notice that (n/2)! = 20(1ogn) and (n — 1)! = 20(nlogn) )

2 Upper Bounds for Polynomial Time Searchable
Neighborhoods

Let S be a finite set and let F be a family of subsets of S (F may have
several copies of the same subset of S). Suppose that F is a cover of S, i.e.,
U{F : F € F} = S. The well-known covering problem is to find a cover of
S containing the minimum number of sets in F. While the following greedy
covering algorithm (GCA) does not always produce a cover with minimum



number of sets, GCA finds asymptotically optimal results for some wide
classes of families, see e.g. [16]. GCA starts by choosing a set F in F of
maximum cardinality, deleting F' from F and initiating a "cover” C = {F'}.
Then GCA deletes the elements of F' from every remaining set in F and
chooses a set H of maximum cardinality in JF, appends it to C and updates
F as above. The algorithm stops when C becomes a cover of S. The following
lemma have been obtained independently by several authors, see Proposition
10.1.1in [1].

Lemma 2.1 Let |S| = s, let F contain f sets, and let every element of S
be in at least & sets of F. Then the cover found by GCA s of cardinality at

most 14+ f(1+1n(ds/f))/0.

Using this lemma we can prove the following:

Theorem 2.2 Let T be the set of all tours of the ATSP on n vertices. For
every fized integer k > 1 and constant 5 > 0, unless NPC P/poly, there is
no set II of permutations on {1,2,...,n} of cardinality at least f(n — k)!
such that every neighborhood Nyi(T), T € T, is polynomial time searchable.

Proof: Assume that, for some £ > 1 and 8 > 0, there exists a set II
of permutations on {1,2,...,n} of cardinality at least 3(n — k)! such that
every neighborhood Ny(T), T € T, is polynomial time searchable. Let A =
{Nn(T): T € T}. Consider the covering problem with S =7 and F = N.
Observe that |S| = (n — 1)! and family F contains (n — 1)! neighborhoods.
To see that every tour is in at least 6 = 3(n — k)! neighborhoods of N,
consider a tour Y = y1ys...y,y1 and observe that for every n € II,

Y € Ni(Yr—1(1)Ur—1(2) - - - Yn—1 () Y1 (1)) -

By Lemma 2.1 there is a cover C of S with at most O(n* In n) neighborhoods
from A. Since every neighborhood in C is polynomial time searchable and
C contains only polynomial number of neighborhoods, we can construct the
best tour in polynomial time provided C is found. Note that C depends only
on n, and not on the instance of the ATSP, so the ATSP must be in P/poly.
Since the ATSP is NP-hard, we conclude that NPC P/poly. O



3 General Upper Bounds

It is realistic to assume that the search algorithm spends at least one unit

of time on every arc of E}n that it considers. We use this assumption in the
rest of this paper.

It is worth noting that the results of this section are valid for a much
more general definition of neighbourhood.

For a digraph or tour H, V(H) (A(H)) denotes the vertex (arc) set of H.
In the proof of the following theorem we use the operation of arc contraction.

For an arc ¢ = (z,y) in (ﬁn, ¢), the contraction of a results in a complete
digraph with vertex set V' = V(gn) UA{ve} — {#,y} and cost function ¢,
where v, ¢ V(_IH{n)7 such that the cost ¢(u,w), for u,w € V' is defined
by c(u,z) if w = v,, c(y,w) if u = v,, and c(u,w), otherwise. The above
definition has an obvious extension to a set of arcs; for more details, see [4].
For a digraph or tour H, A(H) denotes the arc set of H.

Theorem 3.1 Let N, be an ATSP neighborhood that can be searched in
time t(n). Then |N,| < maxi<u<n(t(n)/n)" .

Proof: Let D = (IH{n,c) be an instance of the ATSP and let H be the
tour that our search algorithm returns, when run on D. Let E denote the
set of arcs in D, which the search algorithm actually examine; observe that
|E| < t(n) by the assumption above. Let F' be the set of arcs in H that are
not examined in the search, and let G denote the set of arcs in D — A(H)
that are not examined in the search.

We first prove that every arc in F must belong to each tour of N,,.
Assume that there is a tour H' € N,, that avoids an arc a@ € F. If we assign
to a a very large cost, H' becomes cheaper than H, a contradiction.

Similarly, we prove that no arc in G can belong to a tour in N,,. Assume
that an @ € G and «a is in a tour H' € N,,. By making a very cheap, we can
ensure that ¢(H') < ¢(H), a contradiction.

Now let D’ be the digraph obtained by contracting the arcs in F and
deleting the arcs in G, and let n’ be the number of vertices in D’. Note that
every tour in NN,, corresponds to a tour in D’ and, thus, the number of tours
in D’ is an upper bound on |N,|. In a tour of D', there are at most d* (¢)
possibilities for the successor of a vertex ¢, where d*(7) is the out-degree of
iin D’. Hence we obtain that



PSR (%nz/dw)) < (t)”,

where we applied the arithmetic-geometric mean inequality. O

Corollary 3.2 Let N, be an ATSP neighborhood that can be searched in
time t(n). Then |N,| < max{et™/¢ (t(n)/n)"}, where e is the basis of
natural logarithms.

Proof: Let U(n) = maxicp<,(t(n)/n')". By differentiating f(n') =
(t(n)/n’)"" with respect to n’ we can readily obtain that f(n') increases for
1 <n' <t(n)/e, and decreases for t(n)/e < n’ < n. Thus, if n < t(n)/e, then
f(n') increases for every value of n’ < n and U(n) = f(n) = (t(n)/n)". On
the other hand, if n > ¢(n)/e then the maximum of f(n') is for n’ = t(n)/e
and, hence, U(n) = et(W/e, O

It follows from the proof of Corollary 3.2 that

Corollary 3.3 For t(n) > en, we have |[N,| < (t(n)/n)".

Note that the restriction #(n) > en is important since otherwise the
bound of Corollary 3.3 can be invalid. Indeed, if #(n) is a constant, then
for n large enough the upper bound implies that |N,| = 0, which is not
correct since there are neighborhoods of constant size that can be searched in
constant time: consider a tour T, delete three arcs in 7' and add three other
arcs to form a new tour 7”. Clearly, the best of the two tours can be found
in constant time by considering only the six arcs mentioned above. Notice
that this observation was not taken into account in [8], where the bound
(2t(n)/n)"™ was claimed. That bound is therefore invalid for t(n) < n/2.

Corollary 3.2 immediately implies that linear-time algorithms can be
used only for neighborhoods of size at most 20", This answers a question
from [11]. Using Corollary 3.2, it is also easy to show the next corollary,
which is of interest due to a "matching” result in [11]: For every 3 > 1 there
is an O(n”)-searchable neighborhood of size 20(*1ogn),

Corollary 3.4 The time required to search an ATSP neighborhood of size
20(nlogn) s Q(n®) for some constant o > 1.
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