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Abstract

In this paper we further investigate tour construction algorithms
for the Asymmetric Traveling Salesman Problem (ATSP). In [1] we in-
troduced a new algorithm, called Contract-or-Patch (COP). We have
tested the algorithm together with other well-known and new heuris-
tics on a variety of families of ATSP instances. In our study, COP
has demonstrated good performance, clearly outperforming all other
algorithms on robustness. It has either produced the shortest tours or
came close to the leader on each of the seven families tested, while each
of the remaining algorithms failed on at least two families of instances.

In this paper we introduce three new variants of the COP algo-
rithm, and perform an extensive computational study of the original
as well as new versions of the algorithm on a variety of ATSP instances.
We also study the influence of the threshold parameter on the quality
of tours produced by COP. We conclude the study by recommend-
ing one of the new versions of COP as a replacement for the original
algorithm. The modified algorithm generally produces higher-quality
tours than the original version, and has a nice property of being a much
simpler algorithm. We also recommend a good universal choice of the
parameter value.

Keywords: Traveling Salesman, Heuristics, Construction Heuris-
tics

1 Introduction

In our earlier work [1] we examined some well-known tour construction al-
gorithms for the Asymmetric Traveling Salesman Problem (ATSP)!. Tour
construction heuristics build a tour without attempting to improve it once
it is constructed. They can be used to provide starting tours for local search

!By the ATSP we understand the whole variety of TSP instances including symmetric
instances as a special case.
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algorithms, find approximate solutions of the ATSP when little time is avail-
able, etc.

In [1] we have also proposed three new algorithms, one of which, Contract-
or-Patch (denoted by COP), has been shown to be a robust heuristic for a
variety of classes of ATSP instances. COP combines modifications of two
other new algorithms, Recursive Path Contraction (RPC), originating from
[2], and Greedy Karp-Steele Patching (GKS) [1]. The latter is based on
the Karp-Steele Patching heuristic (KSP) [3,4], but considers a larger set
of patching operations. The combined algorithm, which in this paper is de-
noted by COP/GKS, was shown to be more robust than any of well-known
tour construction heuristics evaluated in [1]. This algorithm is shown (in
computational experiments) to outperform the well-known tour construc-
tion heuristics for most families of instances considered in [1], and it did not
fall far behind other heuristics for some special families of instances.

An unfortunate feature of COP/GKS is its considerable programming
complexity, which results from the complexity of an efficient implementa-
tion of GKS as a computer code. A desire to alleviate this complexity
has motivated us to analyze comparative performance of COP/GKS and
a combination of COP with more simple KSP algorithm. We denote this
combination by COP/KSP. Somewhat surprisingly, it turned out that both
algorithms perform very similarly in terms of the quality of tours they pro-
duce and their running times. The simplicity of COP/KSP makes it a good
candidate for replacing COP/GKS in most, if not all, potential applications.

We introduce an improved version of the COP algorithm, which applies
a cycle patching procedure (such as KSP or GKS) at a different stage of
processing. We perform a computational evaluation of this new algorithm,
combined with KSP and GKS, and show that it produces higher quality
tours compared to the original COP procedure.

We also perform an extensive computational study of the impact of the
value of a COP parameter, the threshold, on the tour quality and running
time of both versions of COP combined with both KSP and GKS, and
recommend a robust choice for the value of the threshold.

The evaluation is performed on a diverse set of ATSP instances, com-
prising seven different families of instances.

2 Terminology and notation

The vertex set of a weighted complete digraph IH(n (on n vertices) is denoted
R4 nd
by V(K,). The weight of an arc zy of K, is denoted by we (z,y). We



say that IH(n is complete if for every pair z,y of distinct vertices of IH( n
both zy and yz are arcs of I?’n The length of a cycle C' (path P) is the
number of arcs in C' (P). The Asymmetric Traveling Salesman Problem is
defined as follows: given a weighted complete digraph I?’n on n vertices, find
a Hamiltonian cycle (tour) H of K, of minimum weight. A cycle factor
of IH( n 18 a collection of vertex-disjoint cycles in IH{n covering all vertices of

I?n. A cycle factor of I?n of minimum weight can be found in time O(n?)

using assignment problem (AP) algorithms for the corresponding weighted

complete bipartite graph [3-5]. Clearly, the weight of the lightest cycle
x4

factor of K, provides a lower bound to the solution of the ATSP (the AP

lower bound).
We will use the operation of contraction of a (directed) path P = vyvs...v5

of IH( n- The result of this operation is the weighted complete digraph I?n /P
Axd x4
with vertex set V(K,/P) = V(Kn)U{p} —{v1,v2,...,vs}, where p is a new
nd
vertex. The weight of an arc zy of K, /P is

we (2,y) ifzFpandy#p

we | (z,y) =< wo (vs,y) fr=pandy#p
Kn/P
we (x,v1) fz#pandy=p

Sometimes, we contract an arc ¢ considering a as a path of length one.

We also use the operation of patching of two cycles C; and C5, which
is defined as follows: two fixed arcs z1y; from C; and zsys from Co are
deleted and two arcs joining the cycles together (z1y2 and zoy;) are added.
The weight of patching of Cy and Cs using z1y; and xoys is defined as
w(z1,y2) + w(xa,y1) — w(r1,y1) — w(we,y2). This weight is the difference
between the sum of the weights of the inserted arcs and the sum of the
weights of the deleted arcs.

3 Algorithms Under Consideration

This section briefly outlines the original and the greedy versions of the Karp-
Steele Patching algorithm, and the family of Contract-or-Patch heuristics.
3.1 Karp-Steele Patching

The Karp-Steele Patching heuristic [3,4] (KSP) uses the following procedure
to build a tour:



1. Construct a cycle factor F' of minimum weight.

2. Select the two longest cycles C'y and Cs in F', and perform a patching
operation of C'; and Cs that has minimum weight.

3. Repeat Step 2 until F' is reduced to a single cycle. Use this cycle as
an approximate solution for the ATSP.

3.2 Greedy Karp-Steele Patching

The Greedy Karp-Steele Patching algorithm is based on the KSP heuristic,
but considers a larger set of patching operations. It works as follows:

1. Construct a cycle factor F' of minimum weight.

2. Choose the lightest patching operation possible in F', and perform it,
thus reducing the number of cycles in F' by one.

3. Repeat Step 2 until F' is reduced to a single cycle. Use this cycle as
an approximate solution for the ATSP.

The difference from the Karp-Steele Patching algorithm is that GKS
considers all possible pairs of arcs as candidates for patching, while KSP
only looks at arcs that belong to two longest cycles.

In [1] we have shown that, although the patching steps (Steps 2-3) have
O(n?) worst-case complexity, in practice the running time of the algorithm
can be significantly reduced by pre-computing and incrementally updating
information on the cheapest available patching that involves each individual
arc in F. The reader is referred to [1] for details.

Note that both KSP and GKS can be used as cycle patching procedures
if Step 1 is excluded from both procedures, and the algorithms are supplied
with a starting cycle factor F'. We utilise this property in the Contract-or-
Patch algorithm presented in the next section.

3.3 Contract-or-Patch

While evaluating tour construction heuristics, we observed that KSP and,
to a lesser extent, GKS fail to construct good tours in situations when the
solution of the assignment problem produces a large number of short cycles
(especially those of length two). To address this problem we proposed an
algorithm, called Contract-or-Patch (COP), which is aimed at reducing the
number of such cycles. The algorithm is presented below.



1. Fix a threshold ¢.
2. Find a minimum weight cycle factor F'.

3. If there is a cycle in F' of length less than t (a short cycle), delete
a heaviest arc in every short cycle, contract the obtained paths (the
vertices belonging to long cycles are unaffected by the contraction),
and go to Step 2.

4. Apply a cycle patching algorithm (for example, GKS) to transform F'
into a cycle C.

5. Expand the arcs of C' contracted on Step 3 to obtain an approximate
solution for the original problem.

In essence, the above algorithm calls a cycle patching algorithm on a
smaller problem that is obtained from the original problem by recursively
contracting short paths. In [1] we evaluated a combination of COP with the
GKS heuristic (this combination is denoted here by COP/GKS), and have
shown that it produces good results on a wide variety of ATSP instances.
In this paper we also present computational results for the combination of
COP with KSP (COP/KSP).

If Step 4 is omitted from the above procedure, then the algorithm pro-
duces a cycle factor that is obtained by eliminating any short cycles from
the cycle factor produced on Step 1. A cycle patching algorithm (such as
KSP or GKS) can then be applied to the resulting cycle factor to transform
it to a tour. The procedure becomes as follows.

1. Fix a threshold ¢.
2. Find a minimum weight cycle factor F'

3. If there is a cycle in F of length less than ¢t (a short cycle), delete
a heaviest arc in every short cycle, contract the obtained paths (the
vertices of the long cycles are left intact), and go to Step 2.

4. Expand the arcs of F' contracted on Step 3 to obtain a cycle factor for
the original problem.

5. Apply a cycle patching algorithm (for example, GKS) to transform
F into a cycle C'. Use C as an approximate solution for the original
problem.



We denote the combinations of the above procedure with KSP (GKS,
respectively) by KSP/COP (GKS/COP, respectively). Our computational
results show that this modification results in an improvement in tour quality
over the original version of COP.

4 Computational results

In [1] we have evaluated six tour construction algorithms for the asymmetric
ATSP on a diverse set of ATSP instances. These algorithms included Karp-
Steele Patching, Greedy Karp-Steele Patching, Recursive Path Contraction
[2], COP/GKS, and well-known Random Insertion and Greedy heuristics
[6]. In our study, COP/GKS has outperformed all other algorithms on four
out of seven families of instances, producing significantly better tours than
any other algorithm; it was also quite competitive on the remaining three
families. Every other tested algorithm has failed on at least two out of
seven families, producing tours of unacceptable quality, that ranged from
160% to 2200% above the optimum or lower bound. For comparison, even
on the most difficult classes of instances among those tested, COP/GKS
has consistently stayed within 50% above the lower bound, while for easier
families it often produced tours within 1% of the lower bound. The reader
is referred to [1] for further details on the study.

In this work we concentrate on further improving the Contract-or-Patch
algorithm by studying a modified version of COP, and combinations of both
the original and the modified versions with two cycle patching algorithms,
KSP and GKS. We also study the impact of the COP parameter value, the
threshold, on the quality of tours produced.

We have implemented four variants of the COP algorithm: COP/KSP,
COP/GKS, KSP/COP and GKS/COP (see Section 3.3). Every algorithm
has been tested with the value of threshold varied from 3 to 15 (note that
when the threshold value is less than 3, the algorithms effectively degenerate
into the corresponding cycle patching algorithms). All four algorithms have
been tested on the following seven families of ATSP instances:

1. all asymmetric TSP instances from TSPLIB [7] (26 instances);

2. all Euclidean TSP instances from TSPLIB with the number of vertices
not exceeding 3000 (57 instances);

3. asymmetric TSP instances with weights matrix W = [w(i,7)], with
w(%,j) independently and uniformly chosen random numbers from
{0,1,2,...,10°};



4. asymmetric TSP instances with weights matrix W = [w(¢,7)], with
w(%,j) independently and uniformly chosen random numbers from
{0,1,2,...,7 X j};

5. symmetric TSP instances with weights matrix W = [w(i, )], with
w(%,j) independently and uniformly chosen random numbers from
{0,1,2,...,10°} (i < j);

6. symmetric TSP instances with weights matrix W = [w(i, )], with
w(%,j) independently and uniformly chosen random numbers from

{0,1,2, .0 x j} (2 <j);

7. sloped plane instances [8], which are defined as follows: for a given pair
of vertices p; and p;, defined by their planar coordinates p; = (x;, ;)
and p; = (zj,y;), the weight of the corresponding arc is

wi,g) = \/ (i = £)% + (yi — yj)?—max(0, y;—y;) +2 x max(0, y; —y;)

We have tested the algorithms on sloped plane instances with indepen-
dently and uniformly chosen random coordinates from {0, 1,2, ..., 10%}.

For the families 3-7, we have performed a preliminary study of all algo-
rithms on instances of sizes 500, 1000 and 2000, and have found the results
to be quite similar for each of these sizes. Therefore we have decided to
perform our detailed evaluation on instances of a fixed size. We have chosen
1000 as instance size, since it represents instances of moderate size and at
the same time allows us to run a large number of trials in reasonable time.
We varied the threshold value between 3 and 15, and for the families 3-7 the
results presented below represent an average of 50 trials for every algorithm
with each of the threshold values.

All tests were executed on a Pentium III 500 MHz computer with 256
MB of RAM. For the TSPLIB instances, the families 1 and 2, the results
are compared to the optima. For the asymmetric instance families 3, 4 and
7 we used the AP lower bound, the weight of the lightest cycle factor. The
AP lower bound is known to be of high quality for the pure asymmetric
TSP [9]. For the symmetric families 5 and 6, we exploited the Held-Karp
(HK) lower bound [10,11], which is known to be very effective for this type
of TSP instances [12].

For the TSPLIB families 1 and 2, the tests were performed on all asym-
metric instances in TSPLIB, and all Euclidean instance of not more than
3000 cities. Each algorithm was executed once with every parameter value



on each of the tested instances. The average excess over optimum was then
calculated in each of the families, and the results were plotted on the top
two graphs of Figure 1. The overall time taken by every algorithm to solve
all problems in each of the families 1 and 2 is presented on top two graphs
of Figure 1.

For each of the families 3-7, fifty problem instances of size 1000 were
randomly generated. All four algorithms were executed on each of these
instances with every parameter value. The excess over the corresponding
lower bound and the running time were then averaged over fifty trials in
each family, and plotted in Figures 1 and 2 respectively.

The rest of this section is organised as follows. First, we compare the
results produced by the heuristics based on the GKS algorithm to algo-
rithms based on KSP. Then we compare the original version of COP with
the modified version (see Section 3.3). Finally, we examine the impact of
the threshold value on the quality of tours and execution times of all four
algorithms, and make some recommendations for choosing the value of the
threshold.

As it can be seen in Figure 1, the quality of tours produced by the GKS-
based variants of COP is very close to the tour quality of their KSP-based
counterparts. Figure 2 shows that GKS-based algorithms are usually some-
what slower that those based on KSP. Although in some cases algorithms
based on GKS do offer a minor improvement in tour quality, the overall
complexity of GKS may not always justify its use. We suggest that in cases
when small degradation of in the quality of the tours produced by a con-
struction heuristic can be tolerated, algorithms based on KSP can be used
instead of their GKS-based counterparts.

Comparison of the original COP with its modified version reveals that
the modified version generally performs slightly better, at the expense of in-
creased execution time. The increase in the execution time of the KSP-based
version of the modified COP is smaller than that of the algorithms based on
GKS. Based on this, and bearing in mind simplicity of the KSP-based algo-
rithms, we recommend KSP/COP as a replacement for the original version
of COP (COP/GKS).

It can be seen in the Figures 1 and 2 that in most cases the quality
of tours deteriorates, sometimes quickly, when the threshold is increased.
The only cases when increasing the threshold clearly results in shorter tours
are the random asymmetric families 3 and 4. For these families the tours
produced even with small values of the threshold are already very close to
the lower bound (within 2.2% and 1.3% of the LB). This suggests that a
small value of the threshold will result in the best all-round performance.
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Figure 1: Tour quality
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We therefore recommend that the threshold value of three is used as a good
universal choice.

To summarise, the KSP/COP heuristic with the threshold parameter
fixed to 3 appears to be a reliable tour construction heuristic for a wide
variety of families of TSP instances.

5 Conclusions

In this paper we proposed a new version of the Contract-or-Patch algorithm
and have shown that it offers an improvement over the original COP heuris-
tic in the quality of the tours it produces. We have performed an extensive
computational evaluation of combinations of the original and new versions of
COP with both Karp-Steele and Greedy Karp-Steele patching procedures.
The results of our evaluation show that the heuristics based on KSP per-
form very similarly to their GKS counterparts, while being much simpler
algorithms. We proposed the new version of the COP algorithm combined
with Karp-Steele Patching (KSP/COP) as a replacement for the GKS-based
original COP algorithm introduced in [1] (COP/GKS). We have also stud-
ied the influence of the COP parameter, threshold, on the quality of the
tours produced by the algorithms and their execution times. Based on the
results of our computational experiments, we proposed that the KSP/COP
algorithm with the threshold value of three can serve as a good universal
tour construction heuristic for the asymmetric Traveling Salesman Problem.
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