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Abstract

Scope and Purpose — While exact algorithms can only be used for solving small
or quite moderate instances of the traveling salesman problem (TSP), local search
remains the main practical tool for finding near optimal solutions for large scale in-
stances. Exponential neighbourhood local search (ENLS) is a relatively new direction
in local search for the TSP. In ENLS, one finds the best among very large, exponential,
number of tours. Computational experiments reported by several researches demon-
strate a very high potential of ENLS. In the present paper, we analyze theoretical
properties of some exponential neighbourhoods.

Abstract — We analyze an approach to the TSP, introduced by Punnen (1996), which

is a generalization of approaches by Sarvanov and Doroshko (1981) and Gutin (1984).

We show that Punnen’s approach allows one to find the best among ©(exp(1/n/2)(n/2)!/n'/*)
tours in the TSP with n cities (n is even) in O(n?) time. We describe an O(n!*#)-time
algorithm (for any 8 € (0,2]) that constructs the best among 29(1°87) tours. This
algorithm provides low complexity solutions to a problem by Burkard, Deineko and
Woeginger (1996) and may be quite useful for large scale instances of the TSP. We also

show that for every positive integer r there exists an O(r°n)-time algorithm that finds

the best among (™) tours. This improves a result of Balas and Simonetti (1996)

who showed that the best among Q(r") tours can be obtained in time O(r?2"n).

1 Introduction, terminology and notation

Let GG be a weighted complete directed or undirected graph on n vertices (the weights
are assigned to the edges). In the traveling salesman problem (TSP) we are seeking for a
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hamiltonian (directed or undirected) cycle (called a tour) of G of minimum weight. The
TSP is symmetric (asymmetric, respectively) if G is undirected (directed, respectively).
The TSP is one of the fundamental problems in combinatorial optimization (see the books
[13] and [19] and the chapter [11]).

While exact algorithms can only be used for solving small or quite moderate instances of
the TSP, local search remains the main practical tool for finding near optimal solutions for
the large scale problems (see [11, 19]). Since the pioneering works by Croes [4] and Lin [14],
a large number of papers has been devoted to the development of local search heuristics,
mostly 2-Opt, 3-Opt, Lin-Kernigan and their modifications, which use neighbourhoods of
small polynomial size (some of the heuristics including 2-Opt and Lin-Kernigan are only
suitable for the symmetric TSP). Now when it seems that the classical approach dealing
with polynomial size neighbourhoods has come close to its limits [11], an alternative,
exponential neighbourhoods local search (ENLS), has begun to emerge (see e.g. [1, 2, 3,
7,8, 15, 16]). A possibility to obtain, in polynomial time, the best among a very large
number of tours seems quite attractive and useful. Indeed, computational experiments in
[1, 3,17, 18] have already demonstrated a very high potential of ENLS. An important link
between polynomial time solvable cases of the TSP and ENLS has also been discovered
[1, 2,3, 8]. We believe that ENLS will open new prospects for other difficult combinatorial
problems including the maximum independent set problem where good results with respect
to 2-Opt have already been noticed [12].

As Burkard, Deineko and Woeginger [2] and Punnen [16] give quite long lists of expo-
nential neighbourhoods and polynomial algorithms for their complete search, we restrict
ourselves to remarks on the algorithms with record complexity or record size of the neigh-
bourhoods. Linear time algorithms exploring exponential neighbourhoods are obtained
by Balas and Simonetti [1], Carlier and Villon [3], and Glover and Punnen [8]. Only al-
gorithms by Balas and Simonetti [1] can find the best among Q(r™) tours in linear time
(i.e. O(r?2"n) time) for any positive integer 7. O(n?)-time algorithms obtaining the best
among O((%)!) tours were independently found by Sarvanov and Doroshko [20], Gutin
[9], and Punnen [16]. We note that the algorithms in [9, 16, 20] explore neighbourhoods
with logarithm of their sizes equal ©(nlogn), and thus provide a solution to the follow-
ing problem by Burkard, Deineko and Woeginger [2]: does there exist a polynomial time

algorithm for finding the best among 29("1°87) tours?

The main idea behind the algorithms in [9, 16, 20] can be described as follows. Partition
the cities of the TSP into two groups z1, 22, ..., 2, and y1, Y2, ..., Yy (k+m = nand m < k)
and form the subtour (cycle) €' = y1y;...yxy1. An insertion of the cities xq1,22,..., 2.,
between the cities in (', such that for every j at most one z; can be inserted between y; and
Yi+1, gives a tour of a special form. All tours of this form are called the neighbourhood N =
N(y1...yx; ®1...2,,). Using algorithms for the assignment problem, we can obtain a tour
of minimum weight among the tours in N in time O(n?). In [20] only the neighbourhood
N with m = n/2 (n is even) was considered; in [9] the two cases m = n/2 (n is even)



and m = (n —1)/2 (n is odd) were treated; and the above general approach was very
recently introduced by Punnen [16]. (However, Punnen [16] has not attempted to obtain
a value of m that provides the maximum to the size of the neighbourhood.) In [10] some
probabilistic analysis of the cases m = n/2 (n is even) and m = (n — 1)/2 (n is odd) was
carried out. Note that the above approach is suitable for both symmetric and asymmetric
TSP’s as a part of metaheuristics.

In Section 2 of this paper, we demonstrate that Punnen’s approach leads us to con-
siderably larger neighbourhoods for certain values of m. In fact, we obtain the optimum,
in this sense, value of m. In Section 3 we give some applications of the above approach.
Punnen [16] describes an O(n*)-algorithm for finding the best among O(n(n/2)!) tours
(n is even). We show that the best among @(nsexp(\/m)(n/Q)!/n%) tours can be found
in time O(n®**) for every non-negative integer s. As the complexity O(n?) is too high
for large scale instances of the TSP, we suggest a partition of the cities into groups that
results, in particular, in near-linear time algorithms which explore neighbourhoods of size
still equal 20(nlogn) (they are lower complexity solutions for the problem by Burkard,
Deineko and Woeginger) and an O(r°n)-time algorithm which searches neighbourhoods
of size Q(r"), given any positive integer r (algorithms by Balas and Simonetti [1] require
O(r?2"n) time for that purpose).

As we already mentioned, the above approach can be used for both symmetric and
asymmetric TSP’s, yet, because of obvious similarity, we will discuss only the symmetric
case in this paper.

In the rest of this paper, GG stands for a complete graph on n vertices (= cities); d(z,y)
is the weight of an edge xy of G; Sy is the set of all permutations on {1,..., k}; for a real
7, [7]o ([]1, resp.) is the maximum integer (semi-integer, resp.) that does not exceed r (a
semi-integer is a number of the form p/2, where p is an odd integer); sometimes, we use
[r] instead of [r]o; for an integer m, o(m) = m mod 2.

It is well known [6] that

V 27rn(n/e)”e(12”+1)_1 <nl <V 27rn(n/e)”e(12”)_1,

We will use the following consequence of this inequality

V2rn(n/e)* < n! < VArn(n/e)". (1)

2 Neighbourhoods N(yj...yx; x1...axp,)

Suppose that the vertices of G are partitioned into two groups z1, @2, ..., 2, and y1, y2, ..., Yx
(k+ m = n and m < k). For simplicity of the exposition, add to the first group k — m



fictitious vertices 2,41, ..., 2 and consider the neighbourhood

N(y1eyri v1eem) = {912 (1) Y207 (2) Y3 Yh—1T 7 (h—1) YT (Y1 ¢ T € Sk} (2)

of, say, tour 1219222 YmTmYm+1Ym+2---Ye1. For 7(j) > m, we ignore the presence of
x;(j) by assuming that d(y;, z,(;)) +d(@ (), Yj+1) = d(y;, yj+1). To find an optimal tour in
(2), we construct a weighted complete bipartite graph B with partite sets X = {21, ,..., 2%}
and Z = {z,...,2z;}. The weight of an edge z;z; is calculated as follows: if ¢ < m, then
w(zg, 2;) = d(y;, z;) + d(x;, yj41), where ypy1 = y1; otherwise (ie. @ > m), w(z;, 2;) =
d(y;,y;+1). It follows from the above definitions that a tour

NTr () Y22 7(2)Y3--Yb—1T 1+ (k—1)YET (k)1

in (2) corresponds to the perfect matching z,(;y2;, i = 1,2,...,k (where 7 € Si), in B and
the weight of the tour is equal to the weight of the matching. Thus, to find an optimal tour
in (2) it is suffices to construct a minimum weight perfect matching in B (the assignment
problem whose complexity is O(k%) = O(n?)).

We remind that a tour of (2) can be viewed as the result of an insertion of the cities
X1, .eey Ty into the subtour C' = y1ys...yxy1 such that for every j at most one z; is inserted
between y; and y;j41 (Y41 = v1). Let ins(n,m) be the number of tours in (2) and let
n > 5. As there are £ = n — m ways to insert 7 in C', k — 1 ways to insert x4 in ' when
x1 has been inserted, etc., we obtain that ins(n,m) = (n—m)(n—m—1)..(n —2m + 1).
It is natural to find a value of m (m < n/2) that provides the maximum for ins(n,m) for
a fized n. Let maxins(n) = max{ins(n,m): 1 <m <n/2}.

Assume first that n is even. Consider f(p) = ins(n,n/2 — p), where p is a non-
negative integer smaller than n/2. For p > 1, the difference Af(p) = f(p)— f(p—1) =
b(=2p(2p — 1) + (n/2 + p)) = bya(p)/2, where q(p) = —8p*> +6p+n, b = (n/2 +p —
L)(n/24+p—2)...2p+ 1). Clearly, sign(Af(p)) = sign(q(p)). Therefore, f(p) increases
when ¢(p) > 0, and f(p) decreases when ¢(p) < 0. For p > 1, ¢(p) decreases and has a
positive root r = ,/%(n + %) + %. Thus, f(p) is maximum for either p = [r] or p = [r] + 1.
Now, following C. Schulze, we show that f([r]) > f([r]+1). Let h(p) = 8p* +10p+2; h(p)
increases when p > 0. Clearly, h(r—1) = n. As [r] > r—1, we obtain that A([r]) > h(r—1).
Thus, A([r]) > n and (2[r]+ 2)(2[r] 4+ 1) > n/2 4 [r] + 1. Therefore, f([r]) > f([r]+ 1).

Analogously, when n is odd, we obtain that f(p) is maximum for p = [r];. Now we
can state the following:

Theorem 2.1 For a fized n > 5, the maximum size of the neighbourhood (2) equals

(n/2+ po)!

mazxins(n) = 2p0)!

where py = [ t(n+9)+ %L(n).



Below we obtain an asymptotic formula for mazins(n). Note that, for n < 2m 4+ 1,

ins(n,m) = [Z4L]L

Theorem 2.2 mazins(n) =0 (6\/_#_?3)

1 1
Tl2]

Proof: Let f(n) = ([n+1]!)‘1 (/2400)! Since n/2 + [1/2]p(n) = [(n+ 1)/2],

T (2])0)!

(n/2 4 po)(n/2 4 po = 1) (/24 [3/2]5(n))

o e n/2
=0\ ram )

(2p0)! = © (V/po(2po/e)*™) .

/8 =1 < po</n/8+1.

(1 + %)n —0(1)

f(n) =

It suffices to show that

By (1),
It is easy to verify that

It is well known that

By (4) and (5), we obtain that

(n/i/‘zpo)po — o(1).

This implies that

(n/2+ po)(n/2+po—1)...(n/2+ [B/Q]U(n)) -0 ((n/Q)po—[l/Q]o(n)) )

By (3) and (6),

e (22)"
fny = (RN o Asi)
V/Po(2po/e)?ro pé/Qn[l/Q]c(n)

It follows from (4) and (5) that

()" = o



By (7), (4) and (8),
n \P0 ¢ n/2 e n/2
—o (L) e ).
J(n) ((8193) n%+[%]o<n>) (n%+[%]o<n>)

Consider also the following numerical example illustrating the significant difference
between maxins(n) and ins(n,n/2) (n is even). Let n = 2000. Then, by Theorem 2.1
po = 16 and

a

ns(2 1016! 1001 \'°
maxins(2000) 016 ( 00 ) S 3616

= >
1000! 1000!32! 16 x 17

3 Applications

Punnen [16] describes an O(n*)-algorithm for finding an optimal tour among ©(n(n/2)!)
ones. We can accomplish a more general task of constructing an O(n®*#)-algorithm (s > 0)
for finding the best among ©(n’ins(n, m)) tours: search O(n*) neighbourhoods (2) which
are pairwise independent, i.e. have empty intersections. A simple way of creating indepen-
dent neighbourhoods (2) is to fix the order of y;_; and yi and vary the order of the rest of
the vertices y;. Clearly, N(yr(1)--Ur(k—2)Yk=1Uk; T1---Zin ) OVN (Yr (1) Y7 (h=2) Yk— 1 Uk} 1T 1)
(), where m and 7 are distinct permutations on {1, ...,k — 2}. Note that this approach can
easily be parallelized.

Now we turn our attention to low complexity algorithms. First, let us consider the
following modification of the TSP. We wish to find a minimum weight hamiltonian path
between vy and v, in (. Punnen’s approach can be easily modified to produce an ENLS

algorithm for this problem. Partition the cities vy, vo, ..., v, into two groups z1, ..., &, and
Y1, .-, Y such that g4 = v1, yp = v, k+m = nand m < k—1. Form the path P = y192...91
and insert zq, ..., 2, between the vertices in P such that for every j = 1,2,....,k — 1 at

most one z; is inserted between y; and y;41. We can consider the set of hamiltonian
(v1,v,)-paths that can be obtained in this way as a neighbourhood N'(yi...yx;21...2,)
analogous to (2). Add fictitious vertices @41, ..., 2k—1. Then

N (Yoo yrs @1eem) = {12122 2 (2) Y3+ Yh—1T 7 (ho1)Yk © T € Sk1} 9)

Similarly to (2), for 7(j) > m, we ignore the presence of x,(; in (9) by assuming that
d(yj, v-(;)) + d(x 5y, Yj+1) = d(y;, Yj+1)- The obvious analog B’ of the complete bipartite
graph B allows us to find the best among paths in (9) in time O(n?). Let ins'(n,m) be
the number of paths in (9). There is no need to investigate ins'(n, m) since ins'(n,m) =
ins(n — 1,m).

Now we can introduce a simple, yet, powerful approach for constructing low complexity
ENLS algorithms. Let b = b(n) be a function whose values are positive even integers.



Partition the cities vq,..., v, into blocks By, By, ..., Byy1, where |B;| = b for i = 1,...,¢,
|Byt1| = n mod b, ¢ = [n/b]. Let u;,w; be distinct cities in B;, ¢ = 1,...,¢q. Using
neighbourhoods of type (9), in time O(b%), we can find a path P; which is the best among

h = mazins(b—1) > (b/2)! > (%) i

hamiltonian (u;, w;)-paths in the subgraph of G induced by B;, i = 1,...,q. Let P,44 be
a hamiltonian path in the subgraph of G induced by B,11 (Py41 is possibly empty). The
tour T' = Py Py...P 41y is the best among (at least)

n—b

1(n,b) = K/ > (i) -z

2e
tours.

First, choose a constant a, 0 < a < 1, and let b = [n%] or [n®] + 1 (depending
on which of the two is even). Then, logt(n,b) = O(nlogn). We can find T in time
O(%b%) = O(n't2e).

Now let 7 be a positive integer. Clearly, (n —b)/2 > 2n/5 for n > 5b. Thus, for n > 5b
and b = by + 1 or bg + 2, where bg = [267‘5/2],

n—b

t(n,b) > (i)T >

2e

The tour T’ can be obtained in O(b%*n) = O(r’n) time.

We have proved the following:

Theorem 3.1 1) For every 3, 0 < 3 < 2, there is an O(n'tP)-algorithm for finding the
best among 20(nlogn) yours, 2) For every positive integer r there exists an O(r°n)-time

algorithm for constructing the best among Q(r") tours.

Problem 3.2 Does there exist a linear time algorithm for finding the best among 20(n10gn)
tours?

Remark 3.3 Very recently V. Deineko and G. Woeginger [5] showed the following upper
bound to the size of exponential neighbourhood N, for the TSP depending on the search
time t(n): |N,| < (2t(n)/n)". The bound implies a negative answer to Problem 3.2 as well
as the fact that the first part of Theorem 3.1 is optimal in a sense: time required to search
a neighbourhood of size 20(nlogn) g Q(nlt®) for some positive constant a.
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