Note on alternating directed cycles

Gregory Gutin * Benjamin Sudakov ${ }^{\dagger}$ Anders Yeo ${ }^{\ddagger}$

Abstract

The problem of the existence of an alternating simple dicycle in a 2 -arc-coloured digraph is considered. This is a generalization of the alternating cycle problem in 2-edgecoloured graphs (proved to be polynomial time solvable) and the even dicycle problem (the complexity is not known yet). We prove that the alternating dicycle problem is $\mathcal{N} \mathcal{P}$ complete. Let $f(n)(g(n)$, resp.) be the minimum integer such that if every monochromatic indegree and outdegree in a strongly connected 2-arc-coloured digraph (any 2-arccoloured digraph, resp.) D is at least $f(n)(g(n)$, resp.), then D has an alternating simple dicycle. We show that $f(n)=\Theta(\log n)$ and $g(n)=\Theta(\log n)$.

Keywords: Alternating cycles, even cycles, edge-coloured directed graphs.

1 Introduction, terminology and notation

We shall assume that the reader is familiar with the standard terminology on graphs and digraphs and refer the reader to [4]. We consider digraphs without loops and multiple arcs. The arcs of digraphs are coloured with two colours: colour 1 and colour 2. By a cycle in a digraph (in a graph) we mean a directed simple cycle (a simple cycle). A cycle C is alternating if any consecutive arcs (edges) of C have distinct colours.

The problem of the existence of an alternating cycle in a 2 -arc-coloured digraph (the $A D C$ problem) generalizes the following two problems: the existence of an alternating cycle in a 2-edge-coloured graph (this problem is polynomial time solvable, cf. [2]; the faster of two polynomial algorithms described in [2] follows from a nice characterization [7] of 2-edgecoloured graphs containing an alternating cycle) and the existence of an even length cycle in a digraph (the complexity is not known yet, cf. [9, 10]).

To see that the ADC problem generalizes the even cycle problem, replace every arc (x, y) of a digraph D by two vertex disjoint alternating paths of length three, one starting from colour 1 and the other - from colour 2. Clearly, the obtained 2-edge-coloured digraph has an alternating cycle if and only if D has a cycle of even length.

We prove that the ADC problem is $\mathcal{N} \mathcal{P}$-complete by providing a transformation from the well-known 3-SAT to the ADC problem.

To indicate that an arc (x, y) has colour $i \in\{1,2\}$ we shall write $(x, y)_{i}$. For a vertex v in a 2-arc-coloured digraph $D, d_{i}^{+}(v)\left(d_{i}^{-}(v)\right)$ denotes the number of arcs of colour i leaving

[^0](entering) $v, i=1,2 ; \delta_{\text {mon }}(v)=\min \left\{d_{i}^{+}(v), d_{i}^{-}(v): i=1,2\right\}$. The following parameter is of importance to us:
$$
\delta_{\text {mon }}(D)=\min \left\{\delta_{\text {mon }}(v): v \in V(D)\right\} .
$$

We study a function $f(n)\left(g(n)\right.$, resp.), the minimum integer such that if $\delta_{\text {mon }}(D) \geq f(n)$ $\left(\delta_{\text {mon }}(D) \geq g(n)\right.$, resp.), for a strongly connected digraph (any digraph, resp.) D with n vertices, then D has an alternating cycle. We show that $f(n)=\Theta(\log n)$ and $g(n)=\Theta(\log n)$.

By contrast with that, the corresponding function $f(n)$ for the even cycle problem does not exceed three (see [9]). Using Theorem 3.2 in [8], one can show that the corresponding function $g(n)$ for the even cycle problem equals $\Theta(\log n)$. By Theorem 3.2 in [8], there exists a digraph H_{n} with n vertices and minimum outdegree at least $\frac{1}{2} \log n^{1}$ not containing even cycles. Let H_{n}^{\prime} be the digraph obtained from H_{n} by reorienting all arcs. Take vertex disjoint copies of H_{n} and H_{n}^{\prime} and add all arcs from H_{n}^{\prime} to H_{n}. The obtained digraph and the upper bound in Theorem 3.2 of [8] provide the estimate $\Theta(\log n)$.

$2 \mathcal{N} \mathcal{P}$-completeness

Theorem 2.1 The ADC problem is $\mathcal{N} \mathcal{P}$-complete.
Proof: To show that the ADC problem is $\mathcal{N} \mathcal{P}$-hard, we transform the well-known problem 3-SAT ([6], p. 46) to the ADC problem. Let $U=\left\{u_{1}, \ldots, u_{k}\right\}$ be a set of variables, let $C=\left\{c_{1}, \ldots, c_{m}\right\}$ be a set of clauses such that every c_{i} has three literals, and let $v_{i l}$ be the l th literal in the clause c_{i}.

We construct a 2 -arc-coloured digraph D which has an alternating cycle if and only if C is satisfiable. The vertex set of D consists of two disjoint sets X and Y, where $X=\left\{x_{i}: i=\right.$ $1,2, \ldots, m+2\}$ and $Y=\left\{y_{j 0}, y_{j, t+1}, y_{j 1}^{r}, y_{j 2}^{r}, \ldots, y_{j t}^{r}: r=1,2 ; j=1,2, \ldots, k\right\}(t=6 m)$.

If a literal $v_{i l}$ is a variable, u_{j}, then let $\operatorname{par}(i, l)=1$ and $\operatorname{ind}(i, l)=j$; and if $v_{i l}$ is the negation of a variable u_{j}, then let $\operatorname{par}(i, l)=2$ and $\operatorname{ind}(i, l)=j$. Let $y\left(v_{i l}\right)=y_{j, q}^{\operatorname{par}(i, l)}$, where $j=\operatorname{ind}(i, l)$ and $q=6(i-1)+2 l$.

The arc set of D is $A(D)=\left(\cup_{j=1}^{k} \cup_{r=1}^{2} P_{j}^{r}\right) \cup\left(\cup_{i=1}^{m} \cup_{p=1}^{3} Q_{i p}\right) \cup B$, where the sets in $A(D)$ are defined as follows:

$$
\begin{aligned}
B & =\left\{\left(x_{m+1}, x_{m+2}\right)_{1},\left(x_{m+2}, y_{1,0}\right)_{2},\left(y_{k, t+1}, x_{1}\right)_{2}\right\} \cup\left\{\left(y_{p, t+1}, y_{p+1,0}\right)_{2}: 1 \leq p \leq k-1\right\} ; \\
P_{j}^{r} & =\left\{\left(y_{j 0}, y_{j 1}^{r}\right)_{1},\left(y_{j 1}^{r}, y_{j 2}^{r}\right)_{2},\left(y_{j 2}^{r}, y_{j 3}^{r}\right)_{1},\left(y_{j 3}^{r}, y_{j 4}^{r}\right)_{2}, \ldots,\left(y_{j, t-1}^{r}, y_{j t}^{r}\right)_{2},\left(y_{j t}^{r}, y_{j, t+1}\right)_{1}\right\} ; \\
Q_{i p} & =\left\{\left(x_{i}, y\left(v_{i p}\right)\right)_{1},\left(y\left(v_{i p}\right), x_{i+1}\right)_{2}\right\} .
\end{aligned}
$$

Suppose now that C is satisfiable and consider a truth assignment α for U that satisfies all the clauses in C. Then, for every $i=1,2, \ldots, m$, there exists an l_{i} such that $v_{i, l_{i}}$ is true under α. It is easy to check that D has the following alternating cycle:

$$
\begin{gather*}
\left(x_{1}, y\left(v_{1 l_{1}}\right), x_{2}, y\left(v_{2 l_{2}}\right), x_{3}, \ldots, x_{m}, y\left(v_{m l_{m}}\right), x_{m+1},\right. \\
x_{m+2}, y_{1,0}, y_{1,1}^{r(1)}, y_{1,2}^{r(1)}, \ldots, y_{1, t}^{r(1)}, y_{2,1}^{r(2)}, \ldots, \tag{1}\\
\left.y_{2, t}^{r(2)}, y_{2, t+1}, y_{3,0}, \ldots, y_{k, 0}, y_{k, 1}^{r(k)}, \ldots, y_{k, t}^{r(k)}, y_{k, t+1}, x_{1}\right),
\end{gather*}
$$

where $r(j)=2$ if u_{j} is true under α and $r(j)=1$, otherwise.

[^1]Now suppose that D has an alternating cycle. We prove that C is satisfiable. Because of the above correspondence between a truth assignment for U and an alternating cycle in D of the form (1), to show that C is satisfiable it suffices to prove that every alternating cycle in D is of the form (1).

We first prove that every alternating cycle in D contains the $\operatorname{arc}\left(y_{k, t+1}, x_{1}\right)_{2}$. Assume that this is not true, i.e. the digraph $D^{\prime}=D-\left(y_{k, t+1}, x_{1}\right)$ has an alternating cycle. The vertex x_{1} cannot belong to an alternating cycle in D^{\prime} as its indegree in D^{\prime} is zero. Assuming that x_{2} is in an alternating cycle we easily conclude that x_{1} must be one of the predecessors of x_{2} in such a cycle. Thus x_{2} is not in an alternating cycle. Similar arguments show that no vertex in X is in an alternating cycle. However, the subgraph of D induced by Y has no alternating cycle.

Let F be an alternating cycle in D. We have proved that F has x_{1}. It is easy to check that F thus contains either Q_{11} or Q_{12} or Q_{13}. In any case F contains x_{2}. Thus F has either Q_{21} or Q_{22} or Q_{23}. Repeating this argument we conclude that, for every $i=1,2, \ldots, m, F$ contains either $Q_{i 1}$ or $Q_{i 2}$ or $Q_{i 3}$. Now we see that y_{10} is also in F. Therefore, for every $j=1,2, \ldots, k$, either P_{j}^{1} or P_{j}^{2} is in F. Thus we have proved that F is of the form (1).

We do not know what is the complexity of the ADC problem restricted to tournaments.
Problem 2.2 Does there exist a polynomial algorithm to check whether a 2-arc-coloured tournament has an alternating cycle?

3 Functions $f(n)$ and $g(n)$

As $f(n) \leq g(n)$ we shall only prove a lower bound for $f(n)$ in Theorem 3.4 and an upper bound for $g(n)$ in Theorem 3.6.

Let $S(k)$ be the set of all sequences whose elements are from the set $\{1,2\}$ such that neither 1 nor 2 appears more that k times in a sequence. We assume that the sequence without elements (i.e. the empty sequence) is in $S(k)$. We start with three technical lemmas.

Lemma 3.1 $|S(k)|=\binom{2(k+1)}{k+1}-1$.
Proof: Clearly, $|S(k)|=\sum_{i=0}^{k} \sum_{j=0}^{k}\binom{i+j}{i}$. Using the well-known identity $\sum_{i=0}^{m}\binom{n+i}{n}=$ $\binom{n+m+1}{n+1}$, we obtain

$$
|S(k)|=\sum_{i=0}^{k}\binom{i+k+1}{i+1}=\sum_{i=0}^{k}\binom{i+k+1}{k}=\left(\sum_{t=0}^{k+1}\binom{k+t}{k}\right)-1=\binom{2(k+1)}{k+1}-1 .
$$

Lemma 3.2 For every $k \geq 1$,

$$
\begin{equation*}
\binom{2 k}{k}<\frac{1}{\sqrt{\pi}} \frac{4^{k}}{\sqrt{k}} . \tag{2}
\end{equation*}
$$

Proof: Using the well-known inequality (see, e.g., [5], p. 54)

$$
\sqrt{2 \pi} n^{n+1 / 2} e^{-n} e^{(12 n+1)^{-1}}<n!<\sqrt{2 \pi} n^{n+1 / 2} e^{-n} e^{(12 n)^{-1}}
$$

we obtain

$$
\begin{aligned}
\binom{2 k}{k} & =\frac{(2 k)!}{k!k!} \\
& <\frac{\sqrt{2 \pi}(2 k)^{2 k+1 / 2} e^{-2 k} e^{(24 k)}-1}{\left(\sqrt{2 \pi} k^{k+1 / 2} e^{-k} e^{(12 k+1)^{-1}}\right)^{2}} \\
& =\frac{2^{2 k} k^{2 k} \sqrt{2 k}-e^{-2 k}}{\sqrt{2 \pi} k^{2 k} k e^{-2 k}} \times e^{\frac{1}{24 k}-\frac{2}{12 k+1}} \\
& =\frac{4^{k}}{\sqrt{\pi} \sqrt{k}} \times e^{\frac{1}{24 k)}(12 k k+1)}
\end{aligned} \text { As }(1-36 k) /((24 k)(12 k+1))<0 \text { when } k \geq 1 \text {, we arrive at }(2) .
$$

Let $d(n)=\left\lfloor\frac{1}{4} \log n+\frac{1}{8} \log \log n-a\right\rfloor$, where $a=\frac{5-\log \pi}{8}(\leq 0.5)$.
Lemma $3.3\binom{2(2 d(n)+1)}{2 d(n)+1}<n$, for all $n \geq 24$.
Proof: Let $s=\binom{2(2 d(n)+1)}{2 d(n)+1}$ and assume that $s \geq n$, for the sake of contradiction. Let $\phi(x)=x-\log (2 x+1) / 8$. By the definition of s and the inequality (2), we obtain that

$$
\begin{equation*}
\frac{1}{4} \log s<a-\frac{1}{8}+\phi(d(n)) . \tag{3}
\end{equation*}
$$

Since $d(n) \leq d(s) \leq \frac{1}{4} \log s+\frac{1}{8} \log \log s-a$ and the function $\phi(x)$ is monotonically increasing for $x \geq 0$, we obtain the following from (3).

$$
\begin{equation*}
\frac{1}{4} \log s<a-\frac{1}{8}+\phi\left(\frac{1}{4} \log s+\frac{1}{8} \log \log s-a\right) . \tag{4}
\end{equation*}
$$

By observing that $\frac{\log \log s}{8}-\frac{1}{8}=\frac{\log \log \sqrt{s}}{8}$, we obtain the following from (4).

$$
\begin{equation*}
\frac{1}{8} \log \left(\log \sqrt{s}+\frac{1}{4} \log \log s-2 a+1\right)<\frac{1}{8} \log \log \sqrt{s} \tag{5}
\end{equation*}
$$

Thus, $\frac{1}{4} \log \log s-2 a+1<0$, a contradiction when $d(n) \geq 1$ (i.e. $n \geq 24$). Therefore, $s<n$, when $n \geq 24$.

Theorem 3.4 For every integer $n \geq 24$, there exists a 2-arc-coloured strongly connected digraph G_{n} with n vertices and $\delta_{\text {mon }}\left(G_{n}\right) \geq d(n)$ not containing an alternating cycle.

Proof: Let the vertex set of a digraph D_{n} be $S(2 d(n))$ and let two vertices of D_{n} be connected if and only if one of them is a prefix of the other one. Moreover, if $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{q}\right)$ are vertices of D_{n}, and x is a prefix of y (namely, $x_{i}=y_{i}$ for every $i=1,2, \ldots, p)$, then the arc $a(x, y)$ between x and y has colour y_{p+1} and $a(x, y)$ is oriented from x to y if and only if $\mid\left\{j: j \geq p+1\right.$ and $\left.y_{j}=y_{p+1}\right\} \mid \leq d(n)$.
D_{n} is strongly connected since the arc between a pair of vertices $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ and $y=\left(x_{1}, x_{2}, \ldots, x_{p}, x_{p+1}\right)$ is oriented from x to y, and the arc between the empty sequence \emptyset and a vertex v of D_{n} which is a sequence with $4 d(n)$ elements is oriented from v to \emptyset.

Let $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)$ be a vertex of D_{n}. It is easy to see that $d_{1}^{+}(x) \geq d(n)$. Indeed, if x contains at most $d(n)$ elements equal one, then $\left(x, x^{r}\right)_{1}$ is in D_{n}, where $r=1,2, \ldots, d(n)$ and x is a prefix of x^{r} followed by r ones. If x contains $t>d(n)$ elements equal one, then $(x, y)_{1}$ is in D_{n}, where y is obtained from x by either adding at most $2 d(n)-t$ ones or deleting more than $d(n)$ rightmost ones, together with 2's between them, from x.

Analogously, one can show that $d_{1}^{-}(x) \geq d(n)$. By symmetry, $\delta_{\text {mon }}\left(D_{n}\right) \geq d(n)$.
Now we prove that D_{n} contains no alternating cycle. Assume that D_{n} contains an alternating cycle C. The empty sequence \emptyset is not in C as \emptyset is adjacent with the vertices of the form (i, \ldots) by arcs of colour $i \in\{1,2\}$, but the vertices of the form $(1, \ldots)$ are not adjacent
with the vertices of the form $(2, \ldots)$. Analogously, one can prove that the vertices (1) and (2) are not in C. In general, after proving that C has no vertex with p elements, we can show that C has no vertex with $p+1$ elements.

By Lemma 3.1, D_{n} has $b(n)=\binom{2(2 d(n)+1)}{2 d(n)+1}-1$ vertices. By Lemma 3.3, $b(n)<n$. Now we append $n-b(n)$ vertices along with arcs to D_{n} to obtain a digraph G_{n} with $\delta_{\text {mon }}\left(G_{n}\right) \geq d(n)$: Take a vertex $x \in D_{n}$ with $4 d(n)$ elements. We add $n-b(n)$ copies of x to D_{n} such that every copy has the same out- and in-neighbours of each colour as x. The vertex x and its copies form an independent set of vertices.

The construction of G_{n} implies that $\delta_{\text {mon }}\left(G_{n}\right) \geq d(n), G_{n}$ is strongly connected and G_{n} has no alternating cycle, by the same reason as D_{n}.

In order to prove an upper bound for $g(n)$ we need a result on hypergraph colouring. First we give some definitions. A hypergraph is a pair $H=(V, E)$, where V is a finite set whose elements are called vertices and E is a family of subsets of V called edges. A hypergraph is k-uniform if each of its edges has size k. We say that H is 2 -colourable if there is a 2 -colouring of V such that no edge is monochromatic. The following result was proved by J. Beck [3].

Proposition 3.5 There exists an absolute constant c such that any k-uniform hypergraph with at most ck ${ }^{1 / 3} 2^{k}$ edges is 2-colourable.

Now we are ready to prove an upper bound for $g(n)$.
Theorem 3.6 Let $D=(V, A)$ be a 2-arc-coloured digraph on $|V|=n$ vertices. If $d_{i}^{+}(v) \geq$ $\log n-1 / 3 \log \log n+O(1)$ for every $i=1,2$ and $v \in V$, then D contains an alternating cycle.

Proof: Without loss of generality assume that $d_{i}^{+}(v)=k$ for all $v \in V$ (k will be defined later), otherwise simply remove extra arcs. For each vertex $v \in V$ and each colour $i=1,2$, let

$$
B_{v}^{i}=\{u \in V:(v, u) \text { is an arc of colour } i\} .
$$

The size of each of the sets B_{v}^{i} is equal to k, thus they form a k-uniform hypergraph H with n vertices and $2 n$ edges. Let $k=\log n-1 / 3 \log \log n+b$, where b is a constant. Then it is easy to see that by choosing b large enough we get that $c k^{1 / 3} 2^{k}>2 n$. By Proposition 3.5, our hypergraph H is 2-colourable. By taking a 2-colouring of H we get a partition $V=X \cup Y$ such that B_{v}^{i} intersects both X and Y for every $i=1,2$ and $v \in V$. Let D_{1} be a subdigraph of D which contains only arcs of colour 1 from X to Y and arcs of colour 2 from Y to X. The outdegree of every vertex in D_{1} is positive, since all sets B_{v}^{i} intersect both X and Y. Therefore D_{1} contains a cycle, which is alternating by the construction of D_{1}.

Remark. As pointed out to us by N. Alon a similar approach was used in [1].
It would be interesting to find better bounds for the functions $f(n)$ and $g(n)$ as well as to investigate these functions for tournaments.

References

[1] N. Alon and N. Linial, Cycles of length 0 modulo k in directed graphs, J. Combin. Th. Ser. B 47 (1989) 114-119.
[2] J. Bang-Jensen and G. Gutin, Alternating cycles and paths in edge-coloured multigraphs: a survey. Discrete Math. 165-166 (1997) 39-60.
[3] J. Beck, On 3-chromatic hypergraphs, Discrete Math. 24 (1978) 127-137.
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (MacMillan Press, New York, 1976).
[5] W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, New York, 1968).
[6] M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of $\mathcal{N} \mathcal{P}$-Completeness (Freeman, San Fransisco, 1979).
[7] J.W. Grossman and R. Häggkvist, Alternating cycles in edge-partitioned graphs, J. Combin. Th. Ser. B 34 (1983) 77-81.
[8] C. Thomassen, Even cycles in directed graphs, Europ. J. Combinatorics 6 (1985) 85-89.
[9] C. Thomassen, The even cycle problem for directed graphs, J. Amer. Math. Soc. 5 (1992) 217-229.
[10] C. Thomassen, The even cycle problem for planar digraphs, J. Algorithms 15 (1993) 61-75.

[^0]: *Dept of Maths and Stats, Brunel University, Uxbridge, Middlesex UB8 3PH, U.K. and Dept of Math. and Compt. Sci., Odense University, DK-5230, Odense, Denmark; e-mail: Z.G.Gutin@brunel.ac.uk
 ${ }^{\dagger}$ School of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel; e-mail: sudakov@math.tau.ac.il
 ${ }^{\ddagger}$ Dept of Math. and Compt. Sci., Odense University, DK-5230, Odense, Denmark; e-mail: gyeo@imada.ou.dk

[^1]: ${ }^{1}$ All logarithms in this paper are of basis 2.

