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Effects of strong magnetic fields on pairing fluctuations in high-temperature superconductors
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We present the theory for the effects of superconducting pairing fluctuations on the nuclear spin-lattice
relaxation rate I, and the NMR Knight shift for layered superconductors in high magnetic fields. These
results can be used to clarify the origin of the pseudogap in fijgtuprates, which has been attributed to spin
fluctuations as well as pairing fluctuations. We present theoretical resultsviave andd-wave pairing
fluctuations and show that recent experiments in optimally doped,GB&®, s are described by-wave
pairing fluctuationdV. F. MitroviC et al, Phys. Rev. Lett82, 2784(1999; H. N. Bachmaret al. (unpub-
lished]. In addition, we show that the orthorhombic distortion in ¥8e50;_ s accounts for an experimentally
observed discrepancy betweeifl Lbbtained by nuclear quadrupole resonance and nuclear magnetic resonance
at low field. We propose an NMR experiment to distinguish a fluctuasiwgave order parameter from a
fluctuating strongly anisotropic order parameter, which may be applied to the systemQ¢dCuQO, s and
possibly other layered superconductd$0163-182609)02818-7

[. INTRODUCTION ing rates and lifetimes. Qualitatively different behavior for
the fluctuation contributions to the rate is predicted for dif-
Fluctuations are enhanced in hi@h-cuprate supercon- ferent symmetries of the order-parameter fluctuatfons.
ductors because of their layered structure and their smalnalysis of the fluctuation corrections toT}/ provides in-
coherence lengthln contrast to conventional superconduct- formation on the elastic- and inelastic-scattering parameters.
ors, where the transition is very well described by a meanThe signof the fluctuation corrections to T is sensitive to
field theory, an extended region of one to several Kelvinpair breaking and the symmetry of the pairing fluctuations;
around the transition is expected to be dominated by criticalhus nonmagnetic impurities have almost no pair breaking
fluctuations in the cuprates. In this paper we discuss the ekffect on fluctuations witls-wave symmetry, but have strong
fects of Gaussian dynamical fluctuations abdyg which  effects ford-wave pairing. In the case afwave pairing a
are observable over a temperature railgeT.~T., on the large positive fluctuation contribution toTly originates from
nuclear spin-lattice relaxation rate and the NMR Knight shiftthe anomalous Maki-ThompsdiMT) process:®> We show
in high-T. superconductors. For a comprehensive review orthat this process is suppressed in zero field almost com-
the role of NMR and nuclear quadrupole resonatd@R)  pletely for d-wave pairing if the mean free path is shorter
spectroscopy in the study of fluctuation effects in high- than 20 coherence lengths, but cannot be neglected near the
superconductors, see Rigamonti, Borsa, and Cattetta. transition in finite magnetic fields or in the ultraclean limit.
Pairing fluctuation effects on the spin-lattice relaxationFluctuation corrections to the quasiparticle density of states
rate have been investigated in the dirty limit for static, long-(DOS) dominate the anomalous Maki-Thompson processes
wavelength fluctuations nedr, by Kuboki and Fukuyama. in the case ofl-wave pairing symmetry for realistic scatter-
Heym extended these calculations #wave pairing fluc- ing parameters in highi; cuprates. For a recent review on
tuations by including the fluctuation corrections to the qua-the role of pairing fluctuation corrections to the quasiparticle
siparticle density of statésAnalytic expressions for the density of states in higfiz superconductors, see Varlamov
static, long-wavelength fluctuation corrections to the spin<et all°
lattice relaxation rate and Knight shift were obtained by Ran- Recent®*Cu NQR-NMR experiments on optimally doped
deria and Varlamov for ultraclean and dirtg-wave YBCO by Carrettaet al® were interpreted in terms of a
superconductor§We extend their calculations to include fi- pseudogap originating from superconducting fluctuations.
nite magnetic fields and unconventional pairing for generablDther theories for the pseudogap include spin-charge separa-
values of the impurity scattering rate. Our calculations andion, preformed pairs, phase fluctuations, and van Hove sce-
numerical results include dynamical fluctuations and shortnarios. For a recent review of this broad topic and references,
wavelength fluctuations summed over all Landau levels. see Randeri& Chubukov, Pines, and Stojkovfgproposed a
Dynamical quantities such as the fluctuation contributionmagnetic mechanism for the pseudogap in which “hot” qua-
to the spin-lattice relaxation rateTl/ carry valuable infor-  siparticles become gapped by a precursor spin-density wave.
mation on the type of fluctuations and characteristic scatterRecent studies by Auleet al*® of $3Cu and®Y NMR in
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FIG. 1. Left: Diagrammatic representation of the Bethe-Salpeter equation for the fluctuation propaghter vertexg represents the
pairing interaction, the thick solid lines are quasiparticle Green’s functions, and the block @erepresents vertex corrections due to
impurity scattering. Thin double lines symbolize vertex factg(g) due to the anisotropy of the pairing interaction. Right: Diagrammatic
representation of the Bethe-Salpeter equation for the impurity vertex corrections. A thick crossed line stands for the impurity scattering
vertex in the Born approximation. The analytic forms for these equations are given it6Eqsd (3).

YBCO as a function of doping were interpreted as evidencgerformed by Mitrovicet al! and Bachmaret al? on opti-
for the vanishing of the pseudogap for hot quasiparticles duenally doped YBCO in magnetic fields up to 30 T. We show
to antiferromagnetic spin fluctuations exactly at optimal dop-that the pseudogap in optimally doped YBCO can be ac-
ing, whereas a pseudogap for “cold” quasiparticles persistedounted for quantitatively by the theory of 2D pairing fluc-
at optimal and overdoped samples. Whether the pseudogaptisations withd-wave symmetry:? Finally, we show that in-
due to pairing fluctuations, spin-density wave fluctuations, orcorporating orthorhombic anisotropy and the allowed mixing
more complicated mechanisms may not be easy to decidef s-wave andd-wave pairing fluctuation channels leads to a
especially in optimally doped materials. The study of fluc-low-field crossover from predominantsrwave fluctuations
tuation effects in the presence of strong magnetic fields may predominantlyd-wave fluctuations which provides a natu-
be key to solving this problem. ral explanation for the observed evolution from the NQR rate
Magnetic fields tend to enhance pairing fluctuations neato the low-field (below 2 T) ®3Cu NSLR rate on optimally
the transition temperature as a result of Landau quantizatiodoped YBCO.
of the orbital motion of paird* However, because the tran-
sition temperature is suppressed by a magnetic field, pairing ||. PAIR PROPAGATOR FOR UNCONVENTIONAL
fluctuations are typically reduced at constant temperature PAIRING
with increasing field. Application of a magnetic field at con-
stant temperature has very different effects on the pairing Fluctuating Cooper pairs are described by a propagator
fluctuation contributions to T, depending on the pairing Which derives from the sum over ladder diagrams in the
symmetry. Fors-wave pairing the rate is reduced with in- Particle-particle interaction channel as shown in Fig Our
Creasing f|e|d, whereas mhwave pairing the Suppression of derivation InC|UC_Jes Impurlty Slcattenng for a |a.yered 2D su-
the DOS fluctuations, which have a negative sign, leads to aperconductor with an isotropic Fermi surface and a weak-
enhancement of Tj with field coupling anisotropic pairing interactiog. The generaliza-
In the next section we describe the theoretical frameworiion to anisotropic 2D and 3D Fermi surfaces is
for our analysis of fluctuation effects on NMR in high mag- Straightforward. _ .
netic fields in hight, superconductors. We derive the fluc-  The propagator is a function of the total momentgrof
tuation propagator for a quasi-two-dimensiof@D) layered & pair of interacting quas_lpartl_cl_es, thel_r total excitation en-
superconductor and include quasiparticle scattering by norff9y @ anql, for anisotropic pairing, their r_elat|ve Incoming
magnetic impurities in addition to pair breaking by inelasticand outgoing momentt, o¢. In the following we use cy-
scattering. We incorporate orbital quantization by the maglindrical coordinates ¢, ¢,q,) and write q as ¢
netic field on the pairing fluctuations as well as the effects of={d cos¢,gsin¢,q;. Pairing fluctuations are long lived
d-wave symmetry. In Sec. lll we discuss the pairing fluctua-only for smallw andq, so that the two particles which in-
tion corrections to the nuclear spin-lattice relaxatibiSLR)  teract have nearly opposite momenta on the Fermi surface,
rate. To leading order ifi./E; the dominant fluctuation cor- i-€.,Kin=2Kg in andk,,=2Kg o4¢. We assume a cylindrical
rections are determined by Maki-Thompson processes anfdgermi surface of radiukg, in which case the momenta on
corrections to the quasiparticle density of states. We derivéhe Fermi surface are given Ity ={Kg COSy/ke Sin i,k
expressions for these processes appropriate to 2D fluctua- The pairing interaction is a function of the momenta of
tions in a strong magnetic field and present our results for théhe initial and final state of quasiparticles on the Fermi sur-
pairing fluctuation corrections to the NSLR rate. The fieldface. We denote the angles betweenxtais (chosen as the
dependence of the fluctuations is shown to be sensitive to tHetragona axis) andkg andkg by ¢ and ', respectively.
symmetry of the pairing fluctuations. In Sec. IV we derive The pairing interactionV/(¢, ') can be expanded in eigen-
the leading-order corrections to the Pauli spin susceptibilityfunctions belonging to the irreducible representations of the
and its contribution to the Knight shift. The Knight shift is symmetry group of the crystal. We denote the eigenfunction
determined by the the long-wavelength spin susceptibilitywith the largest attractivépositive eigenvalue byzn(y) and
and in contrast to the NSLR rate the fluctuation correctionsieglect for now the other subdominant interactions in the
to the spin susceptibility are not very sensitive to order-expansion ol. Thus we write the pairing interaction in the
parameter symmetry or impurity scattering. However, dy-following form:
namical fluctuations and orbital quantization lead to signifi-
cant effects on both the rate and the spin susceptibility which "N ,
are essential for a quantitative understanding of the Vg =n(4)-g- (4. @
pseudogap behavior in highs cuprates. In Secs. lll and IV Note that we can neglect the small difference betwken
we compare our theoretical results with recent measuremen@nd ke—q in the pairing interaction, since~ 1/¢§,<kg,
of the pseudogap in the NSLR rate and the Knight shiftwhereé,=%v/27kgT, is the coherence length.
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The fluctuation propagatdr(w,q) describes dynamically
fluctuating Cooper pairs with a wavelengthr2) and a fre-
guencyw. NearT, the typical lifetime of a pairing fluctua-
tion in the clean limit is

har

ToLT gkgT 2

T-T.\ ¢!
a5q’+ T—C) :
C

wherea=7/(3)/8~1.05. We seti=kg=1 except when ex-
plicitly noted.

In the case of strong pair breaking with dephasing tipe
the prefactorfiw/8kgT is replaced byr,. Spatially small
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where 1f, is the inelastic-scattering rate andrlis the
elastic-scattering rate. We introduce dimensionless scattering
parametersa=#h/2w7kgT, and a,=%/l2mwT,kgT.. The
inelastic-scattering rate contributes to the quasiparticle scat-
tering, but not to the impurity verte€ for the fluctuation
propagator. Consequently, the lifetime of the pair fluctuation
propagator is governed by, . Note that both scattering pa-
rametersa and a, are defined in terms of theenormalized
transition temperaturé =T (a,a,), which is given by an
Abrikosov-Gorkov formul®® (see Appendix B so that

fluctuations decay faster than more extended fluctuationgyeir values range from zeror the clean limii to infinity

Long-lived fluctuations have typical sizes larger than

EoNT/(T—T.). When the temperature approachesthe
importance of long-wavelengthg(0), quasistatic fluctua-

(e.g., for the critical pair breaking raten high-T. cuprates
the mean free pathis typically of the order of 3—10 coher-
ence lengthd! a reasonable estimate lis5&,, which cor-

tions (w—0) increases until fluctuation modes start to OVel-responds toa~0.2. For the pair breaking parametéor

lap in space and time. When this happens fluctuation modegephasing ratea,, one usually assumes a much smaller
interact, which defines the critical fluctuation regime. In con-\,51e For example, comparison between theory and experi-
trast to conventional superconductors, where this regime ig,ent for the ¢-axis fluctuation magnetoresistance yields
negligibly small, it extends over 1-2 K in layered high- 74Te~10 in YBCO and BSCCO, corresponding @,

cuprates like YBCG. Our analysis neglects interactions be- ~0.0218 An estimate of,, from inelastic scattering of qua-

tgvivrtre]in fluctuation modes and thus excludes the critical "€3iparticles by phonons yields¢%(kBT/th)2, which atT,

. . . . in optimally doped cuprates is 10 2. However, this weak-
We include the effects of impurities via the standard pro- P y cop P

i ) ! o ; o coupling estimate of inelastic pair breaking may be inappro-
cedure of averaging over impurity positions in the limit of a Ping P g may bp

118 " - “priate if the inelastic lifetime is due to strong coupling to
long mean free path >k ~.™ Impurities lead to three dif- |4, frequency boson modes. Strong coupling or large inelas-

ferent effects: they introduce a finite quasiparticle lifetimejq pair breaking can have a strong effect on the pairing fluc-
via the electron self-energy, they generate vertex correctiong,aiion corrections to the nuclear spin-lattice relaxation
V in the particle-hole channels, which have to be included tq 41619 | weak-couplings-wave theory a sign change in the
ensure fundamental conservation laws, and they generatesdctyation corrections to the rate occurs i@g;mO.ZG.ZO A
Cooperon-like mode in the particle-particle channel, the im-jmiar sign change occurs in strong-coupling theory for a
puriFy vertexC, which couples directly to the.fgll pair qup- coupling constant\~2. Note, however, that a coupling
tuation propagatot.. In the case ofl-wave pairing impuri-  grength ofA~2 is much larger than that in conventional
ties lead to pair breaking of the pairing fluctuation mOdeSstrong-coupIing superconductors like lead. We consider pa-
We will use a shorthand notatid@= () ,q, ¢) for the set of rametersx,=0.26 and\ =2 as unreasonably large for high-
arguments related to the pairing channel. The impurity verter cprates. In highf, materials pair breaking by inelastic
(the cross in Fig. LLis given in terms of the impurity scat- gcattering is probably not strong enough to produce such
tering rate in Born approximatiofsy = 1/2m N : qualitative changes in the behavior of the fluctuation correc-
tions to the spin-lattice relaxation rate. Thus the remaining
discussion focuses on fluctuations in weak-coupling layered

C(en,Q)=a+aAq(&,,Q)C(€y,Q), (3 ~ superconductors. : : . ,
For a single pairing channel in an isotropic quasi-2D
metal the fluctuation propagator factorizes into

where Ag(e,,Q) is a momentum-averaged irreducible pair 2(1)L(Q) ('), where L(Q) obeys the Bethe-Salpeter

susceptibility, defined by the formulavith m=0)

2
An(en Q) =An(0,01,0,0)=N: | “aun(n) 1"

Xf dng(Envfk)G(wl_fnvgqfk)- 4

Here, &= e(k) — w is the quasiparticle dispersion relative to

the chemical potential. Becausg<kg, we approximate

equation:

L(Q>=g+T§ 9A(€,,Q)L(Q)

+T§ 9A1(€r,Q)Cl€nr,Q)A (€,,Q)L(Q).

(6)
Inserting the Cooperon propagat@(e,,Q) from Eq. (3)

éq-k~&—Ve-q. The Matsubara Green’'s functions are into Eg.(6) we can solve fol(Q) in terms of the momen-

given by

tum integrated pair susceptibilities,(e,,Q) to obtain
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1 . () + 3 A€, Q) ~ 7(¥) Aol €1.Q))
L(Q)= =1 , ) Aen, #,Q) = — .
9 " —TZ;By(&.Q) 1-aAq(€,,Q)
where (1)
B,(e,,Q)=A,(e,,Q)+A(e,,Q)2C(e,,Q) In the case;y(w).zl we recover the standgrd ver.tex correc-
tions and pair propagator for an isotropis-wave
_ Ayle Q)+ A[AT— AgA,](€n,Q) o superconductot?
B 1-aAo(€n,Q) ®
Finally, we must include impurity vertex corrections in 7s(€n. Q)= 1-aAq(€,,Q)’ (12
the particle-particle channel to the external vertices of the
pair propagator. These corrections are incorporated by the 1
replacement;L ' —K with Ls(Q)= ~ Aole Q) (13
9 T AN Q)
K(En,fnr,l//,',//,,Q)Z’:;?(En,l,b,Q)'L(Q)'?’?(fnr,l//,,Q),(g) aRol€ns
where For dynamical quantities such as the spin-lattice relax-
ation rate it is necessary to analytically continue the pair
~ _ propagator from Matsubara energies to the real energy axis.
7(€n,$.Q) = n(§) + As(en, Q) Clen Q). (10 This is done by Eliashberg’s technigtfdeading to the gen-
Combined with Eq(3) this gives eral result
. e T J%‘ds k‘as—w/2+ r‘e+w/2| B ) hil B
(w,9,¢)=1 Ng nT—C— o 2m tanh o7 tanh >T mB,(e,9,¢)—2 tan T m Bo(€)
_foc de he—w/Z he+w/2 ReB -1 14
+i 27 tanh >T —tanh >T eB,(€,q,0) (14
|
where We generalize the pairing fluctuation theory presented
above to finite magnetic fields. We assume that the field
s points along the& axis of the crystal, and introduce the fol-
B, - As(€,0,¢) +a[ A1~ AAc](€,q) 15 lowing dimensionless field:
e )= [=GAg(e.0) |
4le|B| # 2
o Te (Te _4le UF) (19
BZC(E,T)—?Bz ?e,q—O,T—TC . (16 fc \2wkgT,

Explicit expressions for the function&y, Ay, andA; areé  The main effect of the magnetic field is to quantize the or-
given fors-wave andd-wave pairing in Appendix A. bital motion of the pairs. Through second order in the mo-
In the long-wavelength limit it is possible to integrate Ed. antum operatorg=—iV —(2e/c)A, quantization of the
(14) analytically and express the pair fluctuation propagatot) pital motion is achieved by the replacemé&hté

for s-wave ord-wave pairing as

_ 1\ [b]
_N-_ - 2
LN e Y 7l lg 0
-N-1 - o
Ld(qvw)_NF €d+ gqu_ind’ (18) f dzq R |b| 2 (21)
(211')z 477'50z =o'’

where the coherence lengthisy, static pair susceptibilities
€sq, and lifetimesrg 4 are given in terms of digamma func-
tions of the pair breaking parametdsee Appendix B*° wherek=0,1,... labels the different Landau levels.
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Ill. FLUCTUATION CORRECTIONS TO THE NUCLEAR
SPIN-LATTICE RELAXATION RATE

()
The hyperfine interaction between quasiparticles and & 6 & @V@ @ﬂ%
nuclear spins affixed) lattice pointsR, is given by v %
a) DEERO G
()

N B ) an a ~
Hit(R)) = ynveh f d*xI(R,)a(x—R,)S(x), (22 FIG. 2. Leading-order corrections ifi./Eg to the spin-lattice

relaxation rate:(@ Maki-Thompson,(b) and (c) density-of-states
wherel is the nuclear-spin operatofS(x) is the electron corrections_.\/ denotes vertex corrections_ in tht_e particle-ho!e chan-
spin-density operator, angl, , are the gyromagnetic ratios nel; V:_l in our _modeI.K_ _denotes the(impurity renormalized
for the electron and nuclear spin, respectively. The couplingluctuation mode in the pairing channel, E).
of the nuclei to the electronic system occurs via the Hermit- . .
ian interaction tensoa, which contains the contact interac- obtain the leading-order telrm (_)f_ordeTC(/EF)O,_ and all cor-
tion and dipole-dipole interaction between nuclear-spin andections of order Tc/Eg)" arising frpm_palr fluctqat|on
electronic-spin densit§* The nuclear spin-lattice relaxation modes: We neglect pure weak-localization corrections and
rate is well described by second-order perturbation theory i .orrectlon.s due to .the temperature dependenges (.Jf the hyper—
the hyperfine interaction between electrons and nuclei. Th ne cou.pllng matrix ele_zr_nen_ts and qf the pairing Interaction
transition rate 1"fl"l‘"' from nuclear statdn) to |n’} of a g. Details of the classification of diagrams in terms of the

. . . . X small parameteT ./Eg are given in Appendix C. We evalu-
nucleus at lattice poinR, is determined by the matrix ele- :q the diagrams in Appendix D.

ments VAS’;’, for the nuclear transition, accompanied by an  The leading-order contribution toT;T) ! is of order
electronic transition from stageto p’, and by the imaginary (T./Eg)° and defines the Fermi-liquid theory result for the

part of the electronic dynamical susceptibility: normal-state NSLR rate,
i © , N ,
Xica pp,pr v ol @) == %,:m; Jo drelro) ( TlT)N1:47Tf dka dpeNi Np ["Ay o 1% (26)
x([c[a(t)cpﬁ(t),c;,y(o)ck,ﬁ(o)]>, where N, is the angle-resolved quasiparticle density of
23 states on the Fermi surface, akd defines a point on the

Fermi surface. The quasiparticle density of states is given by

¢/, (cy,) creates(annihilates a conduction electron in the NF=JdkeNy_. The right-hand side of Eq26) is the Kor-
Bloch state labeled bl with spin . We use the shorthand finga constant’
notation k= (k,i) for a Bloch state with momenturk in The fluctuation corrections to T{T of order T./E¢ are
bandi. The transition rate is given by determined in a diagrammatic expansion of the dynamical
susceptibility by the Maki-ThompsofMT) diagram, labeled
(@ in Fig. 2, and the two density-of-statéBPOS) correc-
, tions, labeled(b) and (c) in Fig. 2. The Aslamazov-Larkin
——w = 2keT > 2 (AN o) diagram (not shown is another order smaller in the ratio
T KpaB k'p’ o T./Eg. The sum of these corrections can be written in the
following form:

R
Im Xka,p ﬁ,p’y,k’ﬁ(w)

pan'n .
X( Ap,k,(ry(g) lim o

w—0
) T T [~ vFadg
(29 (TORE Er f 0 27NgT,
The matrix elementSAp] are smooth functions of the mo- )
. 7d¢
menta. Hencé& andp can be evaluated on the Fermi surface. X f —[Sw(a,¢)+So(a,4)], (27)
In terms of Bloch wave functiong,(x) the hyperfine matrix 0o 2w
elements are given by
where the integrand is obtained by analytic continuatfoh
lowing Eliashberé?) of the Maki-Thompson and density-of-

Lan'n. YnYe, o, = , 3o ox states corrections to the dynamical susceptibility obtained
A =% (n[l(R,)[n >f d*X g (X)a(x=R,)dp(X).  from Egs.(D2) and(D2) of Appendix D:
(25
and_sa_tisfy”AES'f(VABL”)*. In what follows we suppress S(T,T)"1=lim 2 |mXMT(“’)+XDOS(“’)_ 28)
the indices referring to the nuclear transition. 0—0 w

We perform a systematic expansion ¢T(T) ! in the
small parametefl./Er (whereEg is the Fermi energyto  Thus we obtain foiSy and Sy
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) etowl2 e—wl2
9 tanh—=— — J¢ tanh—=—— |Re(B\B2(¢,0,4))

s _1f°0dw hwRL dee
D(Q1¢)_§ OZCOt o7 Re (0,9,9) e

+1j°°dw hwl L jwde
> OECO'[ > IML(w,q,¢) Ny

f“’dw ha) mL J'Wde
+ o 27 d, Cotho= | IMmL(w,q,¢) o 2m

) etwl2 €e—wl2
dtanh—— +d< tanh >T Im(BnBa(€,9,9))

2T

e—wl2 e+ wl2
aftanhT—aEtanhT Im(ByB»(€,0,9)), (29

s B 2fﬁ’cdw hw Rel J‘%de e—wl2 e+w/2-| B )
M(qi¢)_ OECOt ﬁ e (qui¢) OZ aetanll 2T aetanll 2T | m( 1(6!q|¢))

e—wl2 €+ /2]
9 tanh———+ . tanh———Re(By(e,q, $)?)

2J“dw hwl L J“de
- OECOtﬁm (w,q,¢) OE

+2J°°da) thw imL JWde ) e—wl2 . h6+w/2_ B ) 30
o 277 | P c0tha |Im (0,9,) o7 anh————tan T_l 1(e,0,0)|%, (30)
|
whereBy=27Ng, By(€,q,¢) is defined in Eq(15) and proximation is to retain only the lowest Landau level. How-
A ever, one is often in the regime between these limits. This is
B, ( Aulea d) (31 the case for the recent high-field NMR experiments in

€,q,9)= = .
a.¢ 1-"aA(€,q) YBCO.212 To analyze this regime we sum the fluctuations

) ) ) over the Landau levels numerically. We introduce a cutoff
The Fermi energf is relatetzj to measurable properties Of fig|q _ 1o regulate the sum over Landau levels, which would
the 2D Fermi liquid byEr=%"vEmNea,, wherea. is the  gtherwise lead to logarithmically divergent fluctuation cor-
C-axis dimension of the unit cell. Equatid@9) originates  rections. This divergence is an artifact of ttetandardl ap-
from corrections to the rate due to pairing fluctuation correcypyroximation €41~ &—Ve-q made in evaluating Eq(4).
tions to the quasiparticle density of states, Figs) 2nd(c).  wjithout this approximation convergence is achieved on a
The first two terms in Eq(29) also determine the fluctuation large momentum scale ke, or correspondingly fon large
corrections to the Pauli spin susceptibility, which we discusgompared to 1. We simulate the convergence for large
in Sec. IV. Equation(30) represents the Maki-Thompson py a cutoff fieldb,= 20 in our numerical calculations. Thus
corrections. The first two terms in E(0) are referred to as  tne sum over the Landau levels in E@O) extends up to
the “regular” Maki-Thompson contribution, and the last , /5 Changes ifb, lead only to overall shifts of the results,
term is the “anomalous” Maki-Thompson contribution. The indicating small field- and temperature-independent “high-

regular MT contribution gives a negative correction as doegnergy” corrections. These high-energy terms renormalize
the DOS term. The anomalous MT term is positive, but itSihe |eading-order relaxation rate as discussed below.
magnitude is very sensitive to pair breaking processes. This

is the pasis fqr differentiating-wave andd-wave pairing A. Results: Magnetic field dependence
fluctuations using NMR. ) ) .

Results for the fluctuation corrections in the quasistatic Calculations of the fluctuation corrections to the NSLR
limit are obtained by expanding the integrand for small rate are shown in Fig. &or s-wave pairing and Fig. 4(for
(the singularities of the coth factors are removablEhe d-wave pairing. We normalized the results by dividing out
long-wavelength limit follows by expanding the denominatorthe small prefactorT./E;) and the normal-state NSLR rate
of the pair propagator to second ordergrand approximat- (T:T)N'; thus we plot the dimensionless quantity
ing the remaining terms in the integrals by their limits for [8(T,T) " Y(T,T)y 1(E¢/T,). Pairing fluctuation correc-
g—0. Results fors(1/T,T) in these limits are discussed by tions in two dimensions contain contributions that are con-
Randeria and VarlamoVWe did not make these approxima- stant in temperature and magnetic field. The exact values of
tions; rather we performed thgintegral analytically and the these constants are weakly dependent on the cutoff in the
integrals overe and » numerically. As we discuss later in Landau-level summation as mentioned above. These con-
this section, our approach is important for extending thestants, which appear as offsets of the curves in all following
theory such that a quantitative comparison with high-fieldfigures, are irrelevant and simply renormalize the normal-
NMR experiments can be made. state rate Ty T)y L

In a magnetic field withHI||€, the orbital motion of the Our calculations for the fluctuation corrections t@ ¥
pairing fluctuations is quantized. Landau level quantizatiorfor s-wave andd-wave pairing symmetry include pairbreak-
is achieved by the replacements shown in &f). Fluctua- ing processes from elastic electron-impurity scattering and
tion corrections in a magnetic field are often treated in thenelastic scattering by emission and absorption of phonons.
small field limit, where an expansion in the magnetic field upFor s-wave symmetry we fixed the elastic scattering rate at
to second order is performed. At high fields a common apw«=0.2, and plotted the corrections for the pair breaking pa-
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FIG. 3. Corrections to the spin-lattice relaxation rate Tai FIG. 5. Magnetic-field dependence of the Maki-Thompson con-

=095K/92.5 K~ 1.03 froms-wave pairing fluctuations as a function tributions and the DOS contribution to the fluctuation corrections to

of the reduced magnetic fielll The elastic-scattering parameter is the NSLR rate forT/T,=95K/92.5 K~1.03, assumings-wave
a=0.2, and the pair breaking parametey varies as indicated. pairing. l_:or (_:omparisop,_v_ve also show the fluctuation corrections to
the Pauli spin susceptibility. The curves correspondjpe=0.002
rametere, ranging from 0.002 to 0.2. However, fdrwave — anda,=0.02-0.2(in steps of 0.02from top to bottom for each
symmetry nonmagnetic impurities are already pair breakingSet:
so we fixeda ,=0.001(this value affects the results only in - ) )
the ultraclean cag@nd calculated the fluctuation corrections ~ Ford-wave pairing the fluctuation correction to the NSLR
for impurity scattering rates ranging from=0.002 to 0.2. fate changes sign fax~0.03; the rate decreases with in-
Our results are shown in Figs. 3 and 4. Note that the lowesgreasing field in the ultraclean limit and increases with in-
curve in thed-wave caséFig. 4) and the highest curve in the creasing field in the limit of weak disordex>0.03. In Fig.
s-wave casgFig. 3 correspond to similar impurity and in- 4 We note the rapid drop in the rate with increasing field in
elastic scattering rates, and tiatvave andd-wave pairing the ultraclean limit ¢=0.002) compared with the increase
fluctuations show the opposite field evolution in the limit in the rate with increasing field shown far=0.2. Itis worth
ag<a=0.2. Furthermore, the-wave fluctuation correc- MNoting that this behavior is not obtained in the long-
tions to the NSLR rate decrease with increasing field eveivavelength approximation employed by other auttifise
for inelastic rates as large ag,=0.1. For very large inelas- @IS0 note that in the clean limit fat-wave pairing the long-
tic rates, @,=0.2, the maximum in3(T,T)"* atb=0 is ~ Wavelength approximation is not justified foff { Tc)/T,
suppressed. Such a large inelastic pairbreaking parameter a?a(a+ ag).

pears unlikely for the cuprates. More realistic estimates for In Figs. 5 and 6 we show the different contributions to the

~0.02 anda=0.21718 “DOS” refers to the Qensityiof—s.,tatgs corrgctions in EqQ.
(29). The “regular Maki” contribution is the first two terms

20.0 T T T
d wave 25.0 :
0=0.002
. @,=0.001
tLI.
w anomalous Maki
15.0
- 10.0
Z
|_‘-
L
~
TA
|_‘-
I\—/ 0.0 regular Maki
w
susceptibilit
-5.0 P .
-10.0 L L
-0.8 -0.4 0.0 04 0.8
b -15.0 -
-0.8 -0.4 0.0 0.4 0.8

FIG. 4. Corrections to the spin-lattice relaxation rate Ta .
=95K/92.5 K=1.03 from d-wave pairing fluctuations as a func- FIG. 6. The same as in Fig. 5, but fa-wave pairing;
tion of the reduced magnetic field The pair breaking parameter is =0.002 anda=0.02-0.2(in steps of 0.02from top to bottom for
a4,=0.001 and the elastic-scattering parametevaries as indi- each set. Note that the anomalous Maki-Thompson term dominates
cated. for very clean systemsy=<0.04, but is negligible forr=0.1.
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FIG. 7. Fluctuation corrections to NSLR rate fof/T, ¢
=95K/92.5 K=1.03 fora ranging from the clean to the dirty limit. FIG. 8. Upper critical fieldb,, for a ranging from the clean to
the dirty limit.
in Eg. (30) and the “anomalous Maki” correction corre-
sponds to the last term in E¢30). The full fluctuation cor- £(To)? B * a
rection to 8(T,T) %, shown in Figs. 3 and 4, is the sum of &o(To)? a5l ast 3z (32)
the DOS, regular Maki, and anomalous Maki corrections. »
The DOS term also determines the fluctuation correction ténd ford-wave pairing
the tunneling density of states at zero bias for a normal gd(TC)Z_ ot
metal—insulator—superconductor tunnel junction. The fluc- §o(Tc)2_a_ ﬁ(“dﬁ‘)‘)v (33
tuation corrections to the spin susceptibility are also shown )
for comparison in Figs. 5 and 6. wherea=7¢(3)/8~1.05. Thus the reduction of the coher-

For s-wave pairing the regular Maki-Thompson correc- €N¢€ length by nonmagnetic impurities is stronger by a factor
tion is (up to a constantnearly equal to the DOS contribu- of 3 for d'W?‘Ve pairing compared ts-wave pairing at the
tion. By contrast, the regular Maki-Thompson term is negli-S8M€T . This shortening of the coherence length is accom-
gible for d-wave pairing. All fluctuation corrections except Panied by a suppression of the transition frdigy=Tc[1
the anomalous Maki-Thompson term are weakly dependerit 7 /4(a¢+ag] to T in d-wave symmetry, compared to
on the scattering parameters in the range of interest. Théco= Tc(1+ 7*/4a) for s-wave pairing.™ _
anomalous Maki-Thompson correction is extremely sensitive 1he slope ofbg, at T is inversely proportional to the
to pair breaking, as can be seen in Figs. 5 and 6. Because p&fuare of the coherence length,

breaking by disorder is sensitive to the symmetry of the pair- dbeasa) gg desq)
ing fluctuations, the relative correction to the NSLR rate, a7 = 2@ gt (34
shown in Figs. 3 and 4, shows qualitatively different behav- T=T, s(d) T=T,

lor for S-wave andd-wave. pairing symmetries. Thus the reduction in the coherence length leads to a signifi-
In Fig. 7 we show the influence of strong disorder on the

> cant increase in the slope bf,(T) shown in Fig. 8. These
magnetic-field dep_endence of the NSLR rate forsamave results were obtained by nufrﬁerically solving the equation
superconductor. Disorder leads to a reduction of the coher- T q
ence length, and thus to an enhancement of fluctuations. | -1 [T Qe € ) )
the clean limit the typical magnitude of the fluctuation cor- an_C_NF fo 77 2 BN IMBa(€,0n 3 T) = Bac( i )],
rections in 2D contains the prefactdr./Ex which is re- (35)
placed in the dirty limit @=1/277T.>1) by 1FEg 95
~aT./E;, which means that the fluctuations in dirty Whereds=v|beo(T)|/265.5 _
s-wave superconductors are typically stronger than fluctua- For weak impurity scattering we obtain

tions in clears-wave superconductors with the safie By dbe, 2 ma, @
comparison,d-wave superconductivity is completely sup- dT | T " at.\tT 2 +ﬁ 01¢+§ (36)
pressed by elastic scattering for #/2T .,=0.28, whereT Te ¢

is the transition temperature without impurities. 1

Note that the NSLR rate fos-wave pairing decreases ~— 7 (1.90+0.81xy+1.8%), (37)
with increasing field in both the clean and dirty limit for ¢
realistic pair breaking parameterg,<0.2. The enhance- for s-wave pairing, and
ment of fluctuation corrections to the rate reflects the reduc- 2
tion in the coherence length by elastic and inelastic scatter- 2l = S 1 — o (ayta)
ing. For weak impurity scattering the reduction of the dT T, afle 4 32a
coherence length &k for s-wave pairing becomes (39

m(a+ ay) 't
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FIG. 9. Temperature dependence of fluctuation corrections to  FIG. 11. Temperature dependence of fluctuation corrections to
NSLR rate forb=0.01, «=0.2, ands-wave pairing. NSLR rate forb=0.4, «=0.2, ands-wave pairing.

1 ing parameters . In the low-field limit, shown in Fig. 9, a
= 1'_6(1'90Jr 0.81y+0.81ar), (39 crossover from positive to negative divergence takes place

for @,~0.16. The divergence is much weaker for strong pair

for d-wave pairing. The negative terms in the brackets oM@y oaking compared to weak pair breaking in the relatively
fbromk_the reduction of the transition temperature by pairgjean case ofe<0.2 discussed in this paper. Note that in the
reaking.

clean limit the correction to T/ diverges likeyT./(T—T,)
in zero field’ compared to a logarithmic divergence in the
dirty case’ In the dirty limit the crossover from a positive
The theory of leading-order pairing fluctuations predictslogarithmic divergence to a negative logarithmic divergence
characteristic features in the temperature dependence of titekes place atr,~0.262° The low-field results fod-wave
fluctuation corrections to the NSLR rateT}/ Typical re- Symmetry are shown in Fig. 10. Because inelastic and elastic
sults for s-wave andd-wave pairing are shown in Figs. Scattering act similarly ird-wave superconductors we fixed
9-16. For both symmetries there is a pronounced enhance;=0.001 and present results for several values of the
ment of the absolute value of the fluctuation correctionselastic-scattering rate. As can be seen in Fig. 10 there is a
when the mean-field transition temperatufg(b) is ap- crossover from a positive to a negative divergence dor
proached. However, depending on the scattering parametets0.04, corresponding to a mean free path of about 25 co-
a anda,, the corrections may be positive or negative neaherence lengths. For realistic values of scattering parameters
T.(b). in high-T, superconductorsg + a,~0.2, a negative diver-
We first show in Figs. 9—12 the influence of impurities on gence should be observed.
1/T, for small and intermediate values of the magnetic field The effects of a strong fieldy=0.4, are shown in Figs.
b=0.01 andb=0.4. Fors-wave symmetry we show results 11 and 12. Fos-wave fluctuations the pair breaking effect of
for fixed elastic scattering=0.2, for a range of pair break- the magnetic field dominates the effect of intrinsic pair

B. Results: Temperature dependence

10.0

1 1 1 1 1 1
1.00 1.10 1.20 1.30 1.40 1.50 0.75 1.00 1.26 1.50

c c

FIG. 10. Temperature dependence of fluctuation corrections to FIG. 12. Temperature dependence of fluctuation corrections to
NSLR rate forb=0.01, @,=0.001, andd-wave pairing. NSLR rate forb=0.4, « ,=0.001, andd-wave pairing.
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FIG. 13. Temperature dependencesefave fluctuation correc- FIG. 15. Temperature dependence of the Maki-Thompson con-
tions to NSLR rate for different fields, given as the sum of anoma-tributions and the DOS contribution to the fluctuation corrections in
lous Maki, regular Maki, and DOS terms. the NSLR rate, assumingwave pairing. The curves are shown for

different fields, ranging from 0.01, 0.04—Qi4 steps of 0.04 from

breaking, leading to large negative fluctuation corrections tdight to left. For comparison, we also show the fluctuation correc-
the NSLR rate as shown in Fig. 11. Fétwave pairing the  tions to the Pauli spin susceptibility.

effect of a magnetic field is much less pronounced. In thg\ISLR rate at fieldb~0.2 for T nearT,(b). Whereas fob
-~ . C 0

clean limit, even at high magnetic fields, the fluctuation con—<0 2 fluctuationsenhancethe NSLR rate with decreasing

tributions to the NSLR rate show a positive divergence for X
d-wave pairing, in sharp contrast sawave pairing. We dis- temperature, fob=0.2 fluctuationssuppresshe NSLR rate

cuss this result in more detail below. However, for cuprate\cl)vr;tg ?nelfs:'?acsolrmg ;?;mt)r?éatuurgl.it';g\t/i t&?;“;g:i?évgetﬁfvg:e&f
superconductors witd-wave pairing, and a reasonable esti- P 9 P

mate for the scattering rate~0.2, we obtain a negative tmhz ﬂ;li‘fﬁreall;e;f (r:odr:gtearﬁtng;ﬁld;r;:}rheerégsgvghsnn%':%_the
correction for all field strengths. 9 P : y

; try, shown in Fig. 14, this effect is absent.
As can be seen by comparison of the NSLR rate for ; L : .
=0.01 andb=0.4, there is a strong effect of the magnetic To clarify the origin of this behavior we have plotted the

field on the temperature dependencs-wave superconduct- Maki-Thompson terms and the DOS term separately in Figs.
P P P 15 and 16. As can be seen, all contributions to the fluctua-

gz.c;r:;ug(r;gevz/?tt;teaﬂg%?\?vi(\e/relcgzirci):\g;haer:lfcln_rip?rtee doifnSl_t’fons are reduced !n r_nagnitude at constant temperature with

Figs. 13 and 14 for different magnetic field strengths andncreasmg magr_1et|_c field. !n contrast, _aII _terms are enhanced
' " - . ; d In magnitude with increasing magnetic field for constant

parameterse=0.2, @,=0.02, which are typical estimates —T.(b), as can be inferred from the larger slope of

for h'gh'TC superconductors. . . 8(T,T) ! nearT,(b) at lower fields.
In Fig. 13 we show, fors-wave pairing, that there is a
dramatic change in the behavior of the corrections to the 50.0 . . : .
d wave
0.0 T T T T a=0.2
300 1 ,=0.02
tLI.
w 100 L anomalous Maki |
EL -10.0 F',E - -
|_
- = -100 \ 8
z < regular Maki
::-— 'r_\ susceptibility DOS
-~ 200} = -300 1
= d wave o
[y a=0.2
«w 0(¢=0.02 -50.0 1 I . L
0.75 1.00 1.25 T 1.50 1.75 2.00
_30.0 1 1 1 1 ¢
0.75 1.00 1.25 1.50 1.75 2.00 o .
TT FIG. 16. The same as in Fig. 15, fdrwave pairing. Note that

o]

the regular Maki-Thompson term is negligible compared to the

FIG. 14. Temperature dependencedefvave fluctuation correc- other terms at all temperatures. The anomalous Maki-Thompson
tions to NSLR rate for different fields, given as the sum of anoma-term is negligible ab=0 for «=0.2 anda ,=0.02, but contributes
lous Maki, regular Maki, and DOS terms. considerably at higher field§=0.2.
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Neither the DOS nor the regular Maki-Thompson correc- 0.00 T - - T -

tion alone are large enough to dominate the anomalous W
Maki-Thompson contribution. But together these two correc-
tions overcompensate the anomalous MT correction for
fields aboveb=0.2 for s-wave pairing, which leads to the

gualitative changes shown in Fig. 13. drwave pairing the ‘T’g -0.10 4
regular MT contribution is negligible for all magnetic-field E
strengths, as shown in Fig. 16. This is true also for the regu- <

-0.05 |

lar MT contribution in the ultraclean limit, not shown here, =~ -015
and explains why there is no change in sign of fluctuation =
corrections with increasing magnetic field fdrwave pair- “ 020

ing. We also show fod-wave pairing in Fig. 16 that the
anomalous Maki-Thompson term cannot be neglected near
T.; it diverges at the mean-field transition temperature -0.25
T.(b), except for zero magnetic fieldl.

Finally, we suggest that the change in sign of the fluctua-
tion corrections to the NSLR rate fa-wave pairing with FIG. 17. d-wave calculations for the superconducting pairing
increasing field should be observable in the electron dopefiuctuation contributions(T,T) ~*/(T,T)y* of *Cu(2) spin-lattice
compounds like Ng,CeCuO, s, if they have s-wave r_elaxation rate in optimally_doped YBCO as a fur_lct_ion of magnetic
pairing symmetry. Observation of this effect would be afleld at temperatures ranging from 93 to 102 K in increments of 1

. ; o K, and for 120 K. Circlesand squaré8 are NMR and NQRO T)
strong confirmation ok-wave pairing in these compounds. : : X
experiments. The thick curve and the experimental data correspond

to 95 K.

0 5 10 20 25 30

15
H[T]

C. Comparison with experiment
erconducting fluctuations and antiferromagnetic spin fluc-

In order to compare our results with experimental result uations has not been developed for pseudogap behavior in
obtained in hight . cuprate superconductors, we discuss firsthigh magnetic fields

some specific aspects of NMR in these compounds. In addi- Our results are based on the theory of weak-coupling 2D

tion to .superconduqtmg fluctuations gntlferromagnet|p Splrbairing fluctuations. Two-dimensional fluctuation theory for
fluctuat|o€r51$ are believed to play an important role in theygcq s justified in the presence of magnetic fields because
cuprate§. A spin pseudogap may occur at the antiferromag-of the |arge vortex liquid region below the transition. Phase
netic wave vectorsj=Qar, which manifests itself in the conerence between planes may be neglected in the vortex
temperature dependence of the NSLR rate of th€2Cu |iquid state because of rapid thermal motion of the pancake
nuclear spins. The NSLR rate is proportional to the slope ayortices. Thus it is reasonable to neglect the Josephson cou-
zero energy of the dynamical susceptibility at the positionsling in the crossover region from the normal to vortex lig-
of the nuclei, i.e., lim_ox"(R,.w)/w, and is especially uid state as well. This fact, and Landau level quantization in
sensitive to changes in the spectral weight of low-energytrong magnetic fields, implies that fluctuations are predomi-
electronic excitations. On the other hand, the Knight-shiftnantly two-dimensional. It is possible that for fields smaller
tensor, which probes the static spin susceptibilitgat0, is  than 2 T acrossover to three-dimensional behavior might
barely affected by the opening of the antiferromagnetic spirpccur close tor .
pseudogap aQur. By contrast the opening of a pairing We compare our c:':llculations with exp_eriments recently
pseudogap aj=0 affects the quasiparticle density of statesfeported by  Mitrovic etal® on optimally doped
at the Fermi leveNg and thus both the nuclear spin-lattice YB&CUsOs .05 in @ magnetic fieldHIIC. Our calculations,
relaxation rate ¢ NZ) and the Knight shift Ng). whlch_ assume two—_dlmensmna}l;wave pairing fluctuations
Recent experiments by Mitroviet all and Bachman desc_rlbe the ex-perlmental- NMR daa:[? remarkflbly well. The
et al? reported the characteristic field scale on which the'élative fluctuation correctiod(T,T) /(T T)y™ to 1T, T
pseudogap behavior is suppressed,~10T in optimally for d-wave pairing andx=0.2 and several temperatures is
doped YBCO. Assuming that antiferromagnetic correlationgshown in Fig. 17. We define the normal-state rateT)  * to
lead to a suppression of spectral weight on the sdale include pairing fluctuation corrections that are constant in
~100 meV, corresponding t&f ug~1700 T, this compara- temperature and magnetic field. Thus to compare with ex-
tively low magnetic-field scale has to be assigned to anothdperiments we subtract these constant shifts from the calcu-
origin. Similarly, recent neutron-scattering experiments inlated fluctuation corrections as discussed in Sec. Ill A, and
fully oxygenated YBCO show that the spin-fluctuation spec-define5(T,T) " *=(T,T) '~ (T,;T)y*. We chose the value
trum near the antiferromagnetic wave vector remains almostf the rate at 120 K and 30 T for this subtraction. The ex-
unaffected by a field of 11.5 . However, if spin fluctua- perimental results from Mitroviet al.* for the fluctuation
tions are responsible for the pairing interaction between quasorrection are also shown for the temperatlire 95K. In
siparticles, it is possible that strong coupling between quasiorder to compare theory and experiment we subtracted from
particles and spin fluctuations may lead to a pseudogaphe experimental data the asymptotic normal-state rate,
which has characteristics of both spin fluctuations and pairwhich is well described byT(;T)y 1~TX/(T+TX), to extract
ing fluctuations. At present a strong-coupling theory of su-the fluctuation correctiod(T,T) L.
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The zero-field transition temperature ®f(0)=92.5K -4.0 ' - '
determines the absolute temperature scale for the theoretica
calculations. We solve numerically E@5) for the reduction
of the mean-field transition temperature as a result of Landau 6.0
guantization. Theoretically the mean-field transition tem- =°
perature is determined by diverging pairing fluctuations. To o
fix the magnetic-field scale we use the value for the mean- -
field transition temperature at 8.4 T obtained from our fit to =
the fluctuation corrections to the Pauli spin susceptibflity, =

-8.0

discussed in Sec. IV. There is one fitting paramelgrEg, —.:
which scales the magnitude of the fluctuation contributions. F_ -10.0
As shown in Fig. 17, the agreement between thevave '%
fluctuation theory and the experimental data from Ref. 1 is
excellent. 120 , , ,
We also show in Fig. 17 data from Y.-Q. Sofiglack "0.00 0.20 o.go 0.60 0.80

squares?® The data point aH=0 is the NQR rate. The

NQR rate ishigherthan the low-field NMR rate in the same . 18. Fluctuation corrections to nuclear spin-relaxation rate
sample at 3.5 T. A similar drop between the NQR rate andaking into account orthorhombic distortion. We assumed an in-
the low-field NMR rate was obtained by Carretthal. on duced asymmetry in the order parameter described 7iy)
optimally doped YBCG. Based on the larger NQR rate com- = g,7,(#) + Bsns, With 2 varying from 0 to 0.2 in steps of 0.025
pared with the NMR rate at 5.9 T, Carretaal. concluded  from bottom to top, angg5=1—32.

that fluctuation corrections to the NSLR rate are predomi-

nantly s-wave® However, the field evolution of the NSLR BecauseA; ~cos 25 the mixed terms irB, and BZ which
rate from 2 to 27 T is in quantitative agreement with theenter in the Eqs(29) and(30) are canceled to a large extent
theory of 2D pairing fluctuations witd-wave symmetry, and by averaging over. So nearT, it is a good approximation
disagrees qualitatively and quantitatively with the theory oftg a4d thes- andd-wave components of the fluctuation cor-
s-wave fluctuations. The apparent discrepancy between thgtions with weights3? and ,85, respectively.

NQR rate and the low-field NMR rate requires explanation. | Fig. 18 we show ?he result fa¥(T,T) ~* with 82 rang-
We propose an explanation for the low-field evolution (0,4 from 0 to 0.2. Thus the low-field anomaly in the experi-

<H=2T) that repqnciles Ca_rrettat_al.’s su_ggestion i_n mental data of Fig. 17 can be accounted for by a small
terms ofs-wave pairing fluctuations with the field evolution ¢, -\« component induced by an orthorhombic distortion, as

\"’/‘\?S Orl]’(r) ext;))leallgati?hnain tek:(rjnosm(_ii\;\/:tveapzir]ilng tflui_tgations. can be seen comparing with Fig. 18. We estimgfe-0.15
SNow below su inastwave Tuctuatons, - 420 g5) for optimally doped YBCO. Note thadi=0.8

duced by the orthorhombic anisotropy of YBCO, can alC_corresponds ttH=29T and that we account for both the

count for the low-field evolution. At fieldsH=2T the . L .
) . . position of the minimum in the NMR rat@t ~2 T) and the
s-wave fluctuations are suppressed and the domidramave difference between NQR and low-field NMR rates with one

fluctuations control the field evolution. -
fitting parameter g).
o _ In BSCCO this effect should be absent if the dominant
D. Effect of orthorhombic distortion pairing channel haB;, symmetry @,2_,2), because in this
If the crystal symmetry is not perfectly tetragonal, thencase the lattice distortion does not induce sawave, but

the s-wave andd-wave pairing channels correspond to the'ather ag-wave component witth;, symmetry, which has
same irreducible representation. Thus the pairing basis fundluctuation corrections that respond to disorder and field

tion () is of the form similarly to the d-wave component. However, aswave
component would be induced if the order parameter of
()= Bsns(¥) + Bana(¥) (400 BSCCO is predominantl,,-symmetry €,y).

with B2+ B3=1. The results obtained for the fluctuation for- IV. ELUCTUATION CORRECTIONS TO THE PAULI SPIN
mulas for pures- andd-wave pairing, Eqs(27)—(30), are the SUSCEPTIBILITY
same with the replacements

The Pauli spin susceptibility is obtained from the long-

 A(e,0,9) Ao(€,0,¢) wavelength limit of the particle-hole susceptibility at,
Bale . ) =BarZa (e TP T—aA )" =0:
(41 2 z
2 QA A R
Xs= 1 (045 ) (0,5 h)x akp(@e=0),

,Aol€,0,8)+ G AZ—AxAg](€,q) TG gy P T R okl

BZ(E!q!(b):Bd 1_"5[A0(6q) (43)
, Aol€,a,¢) Ay(€,9,b) whereh is a unit vector in direction of the applied field and

ST A - T2BBar = Me=vVeh/2. The Pauli spin susceptibility can be obtained
1=aAq(€.0) 1=aAq(e,0) from the spin part of the measured NMR Knight shift by
(42 subtraction of the orbital and diamagnetic contributions. As-
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suming an isotropic hyperfine matrix elemefh,, and ne-
glecting anisotropic band structure and exchange interaction,
the spin shiftksp, is directly proportional to the Pauli spin
susceptibility ys. The zeroth-order terms im./Eg for the
particle-hole response functiqat w,=0) define the Fermi-
liquid result for the Pauli spin susceptibilifyy .

The spin susceptibility can be obtained directly from the
Matsubara Green’s functions without analytic continuation
because it is an equilibrium quantity. Nevertheless, it is in-
structive to write down the expression féy in terms of

retarded and advanced Green'’s functions defined on the real FIG. 19. First corrections ifi/E to the Pauli spin susceptibil-
energy axis ity. V denotes vertex corrections in the particle-hole chanwel;

. . . . . =1 in our model.K, K1, andK2 denote thgimpurity renormal-

The pairing fluctuation corrections to leading order Inized) fluctuation modes in the pairing channel. For the Pauli spin
T¢/Eg for the static =0) long-wavelengthde—0) spin  gysceptibilityk 1 andK2 either are a singlet Cooperon or a triplet
susceptibility are obtained by the procedure discussed in Apimpurity Cooperon in a complementary way.

pendix C, and are summarized by the DOS, Maki- . . .
D. The sum of the leading order corrections in H928) of
Thompson, and Aslamazov-Larkin diagrams, shown in FlgApp D leads to the following expression for the relative

197 Note that in contrast to the larggs response the con- i, ,ctyation contribution to the Pauli spin susceptibility:
tribution “d” in Fig. 19 has the same order if,/E; as the 5X T, (= v2qdq 27 de
DOS and MT contributions. However, it contains only one F
singlet pair fluctuation mode, the other mode in the particle- XN EF o 27mTe Jo 2m
particle channel is a triplet impurity Cooperon mode. Alge-where S(q,¢) sums the contributions from all diagrams
braic expressions for these diagrams are given in Appendizshown in Fig. 19 and is given by

5-5(a,9), (44)

©d wl2 wl2
S(q,(ﬁ):ﬂ'f %coth2 Rel(w,q, ¢)f a2t anh— Jz anh— ReBy(€,q,¢)
0
> dw wl2 wl2
+’]Tf Zcoth2 ImL(w,q, ¢)f 9%t anh—+a anh— ImB(€,q, ). (45)
0

Comparing with Eq.(29) one realizes that the fluctuation  The shift in the divergence reflects the field dependence
correction to the Pauli spin susceptibility is given exactly byof T.(b). In Fig. 21 we show for comparison the magnetic
the first two lines of the density-of-states contribution to thefield dependence of the fluctuation corrections $awave
NSLR rate in Eq.(29). This result is nontrivial not only and d-wave symmetry. As can be seen in this figure, the
because the fluctuation corrections to the NSLR rate and spifictuation corrections toys are insensitive to the order-
susceptibility are determined by different diagrams, but par-
ticularly because the NSLR rate is a local response defined 0.0
by an integral over all wavelengths, while the spin suscepti-

bility is a global response obtained from the limit->0. The

relative corrections to the spin susceptibility as a function of 50 - ]
the magnetic field are shown in Figs. 5 andd&noted by

“susceptibility”). e
W 100t o=0 04 -
. s >3 b=0.08
A. Results: Magnetic field and temperature dependence < I —b=0.12
. - L & [ —Db=0.16 s wave
Unlike the NSLR rate, the Pauli spin susceptibility is not /gfg'gg 0=0.2
very sensitive to either impurity scattering or order- 1501 " b=0.28 o.=0.02 1
parameter symmetry, as can be seen in Figs. 5 and 6 for the -/g:g-gg ¢
magnetic-field dependence of the susceptibility. Note that the i b=0.40
small constant offsets have to be subtracted off and are in-  -20.0 : : . . .
) . . . 0.8 1.0 1.2 1.4 1.6 1.8 20
cluded with the leading-order terms as discussed in Sec. T
Il A. The temperature dependence of the fluctuation correc- ¢
tions to y for s-wave pairing is shown in Fig. 20 for differ- FIG. 20. Temperature dependence of fluctuation corrections to

ent magnetic fields. Pauli spin susceptibility for different fields.
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FIG. 21. Field dependence of fluctuation corrections to Pauli . . .
spin susceptibility forT/T,=95 K/92.5K~1.03, and fors- and _ FIG. 22. Cal_culatlons f_or_ _2[Dl—wave pairing _fluctuatlon correc-
d-wave pairing. tions to the spin susceptibility foB=0-14T (in steps of 2 7.
Shown is the inverse of the derivativeiKspin/dT)’l. Circles

o o show measurements of the Knight shift H0(2,3) in optimally
parameter symmetry, at least for spin-singlet pairing fluctuagoped YBCO at 8.4 .0pen circles denote points used for the fit
tions. Thus the mixing o$- andd-wave pairing fluctuations g KepinT)-

due to orthorhombic anisotropy, which has a profound effect

on the fluctuation corrections to the NSLR rate at low field,source of the observed curvature at higher fields. Dynamical
has almost no effect on the fluctuation corrections to the spifyctuations produce curvature also for zero field, where or-
susceptibility. bital quantization is absent.

A quantitative comparison of our calculations with the
experimental data of Bachmagt al? is shown in Fig. 22.
The fit was performed in the regioh>90 K directly on the

Knight shift measurements in high magnetic fields pro-susceptibility datalopen circles Then the inverse of the
vide valuable information on the fluctuation contributions to derivative of the experimental data and the theoretical curves
the Pauli spin susceptibility. The effect of static long- were calculated; they are extremely sensitive to variations at
wavelength fluctuations on the Pauli susceptibility in zerohigh temperatures where the Pauli susceptibility deviates
field have been calculated in three dimensi8rend two  very little from a constant. As can be seen in the Fig. 22, the
dimensions for e=(T—T.)/T,<1. The fluctuation contri- agreement is excellent even up to temperatures of 102 K.
bution to the spin susceptibility was found to scale asThe same fit accounts for the data in the nonfitted reiah
Sx!xn~In(e) in 2D, and S/ xn~ constt e in 3D. For the  circles down to 85 K. The theoretical mean-field tempera-
2D case one obtains d@y/dT) " '~T—T,, and ture was determined to be about 81 K at 8.4 T. As we dis-
(dé&x/dT) 1~ T—T, for the 3D case. Neither of these lim- cussed in Fig. 21, mixing of as-wave contribution due to
iting cases is consistent with the recent data of Bachmanrthorhombic anisotropy in YBCO has little influence on the
et al? on optimally doped YBCO shown in Fig. 22. These fluctuation corrections to the Pauli spin susceptibility.

NMR measurements of the Pauli spin susceptibility do not

show singular behavior near the transiti(_)n. This is typical for V. CONCLUSIONS

a fluctuation-dominated crossover transitfdfor this reason

it is preferable to treat the mean-field transition temperature We have calculated the pairing fluctuation corrections to
T.(H) as a fitting parameter. The mean-field transition tem+he nuclear spin-lattice relaxation rate and to the Pauli spin
perature was determined by analyzing the high-precisiosusceptibility in 2Ds-wave andd-wave highT, supercon-
measurements of’O(2,3) Knight shift in optimally doped ductors in strong magnetic fields. Our calculations include
YBCO at high magnetic field5. dynamical and short-wavelength fluctuations. We account

The curvature shown in Fig. 22 is not reproduced by 2Dqualitatively and quantitatively for recent experiments per-
static fluctuations in the low-field limit. Three-dimensional formed on optimally doped YBCO solely in termsafwave
fluctuations to not account for the behavior because thepairing fluctuations, assuming reasonable scattering param-
produce curvature in the opposite direction compared to theters. We find no necessity to invoke the existence of a spin-
curves in Fig. 22. We can describe the behavior in Fig. 22lensity fluctuation pseudogap. We have shown that incorpo-
qualitatively and quantitatively by taking into account dy- rating orthorhombic anisotropy and the allowed mixing of
namical fluctuations and orbital quantization. The magnetis-wave andd-wave pairing fluctuation channels leads to a
field is in a range where neither the low-field approximationlow-field crossover from predominantlrwave fluctuations
nor the lowest-Landau-level approximation is applicable. Weto predominantlyd-wave fluctuations which provides a natu-
perform the sum over the Landau levels and over the dyral explanation for the observed evolution from the NQR rate
namical modes numerically. Orbital quantization is the mainto the low-field (below 2 T) 3Cu NSLR rate on optimally

B. Comparison with experiment
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doped YBCO. We suggest that a change in sign of the fluc-A,(e,q, $)=Aq(€,9)

tuation corrections to the NSLR rate neBg(H) with in-
1+( — 21— (vrq)? = (22)?

creasing field should be observable in the electron doped 2
compounds like Ng ,CeCuQ,_;, if they have s-wave et 02 (28)° cos 4¢p

pairing symmetry. Observation of this effect would be a

X

strong confirmation of-wave pairing in these compounds. (A3)
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REDUCTION
APPENDIX A: IRREDUCIBLE PAIR SUSCEPTIBILITIES

FOR D-WAVE SYMMETRY In the long-wavelength, low-frequency limit the pair fluc-

, , i ) tuation propagator fos- andd-wave symmetry becom¥s
In this section we summarize expressions for the

&integrated Fermi-surface averages of the product Green’s

functions at real energies for the casedsfvave pairing in Ls(q,w):Nng, (B1)
2D, i.e., n(y)=v2 cos 2. The integrals are related to Eq. €169 —lwTs
(4) by analytic continuation. Fod-wave pairing they are
2mNg L =Nl (B2)
Age,q)= —o (A1) a(9,@)=Ng P
PN orr (2o ot g lomg
—2iE—(veq)*—(2€)° - : : :
Ai(€,0,)=Ag(€,q) —— V2 cos 26, This result is obtained by_ expanding Ii’d].4).for sTaIIq and
—2i e+ \/(qu)z—(ZTs)z o and carrying out the integral. We defineny=a+ a,,
(A2) then
|
1 a¢Tc 1 aoTC aTC , 1 CY¢TC
§_\I'(E+ 2T ) \P(E”L o1 |t V2t T s
g_o - 2(12 ’ ( )
” 1 leoTC
g T “’(5* ZT) 0
> T 16 ’
1 T
‘P’(TL a;TC)
(S B (B5)
1 T
\If’(§+ %)
[P (B6)
SR ) I L (B7)
s T, 2 2 2 2T )
L ) P AL (B8)
€= T 2" 2 2" 2T
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Note thats- and d-wave results differ by more than the re- gives a factorsmall"®, whereng is the number of in-
placement ofx, by a4+ a. The relative influence of and dependent internal energies.
a4 on the reduction of the coherence length is different for (b) Restricting the pair momentum to its low-energy
d-wave ands-wave symmetry. region gives a factosmalP for every quasiparticle pair
The reduction off, by impurity scattering is given by the in the fluctuation channel, which is not otherwise re-
Abrikosov-Gorkov formulas stricted to the low-energy region. The physical dimen-
sion D enters explicitly.
Ini—\lf IRV }+ﬁ —0 (s wave (B9) (c) Restricting aII_remaining fermi_or_l momenta to the?r
Teo 2 2 2 low-energy region is the only nontrivial part of the esti-

mate. The number of restrictionsy gives a factor
small™), Note that the sum of two low-energy mo-

=0 (d wave. (B10) menta is not necessarily in the low-energy region again.
One needs additional geometrical restrictions to the
angles between the momenta.

APPENDIX C: CLASSIFICATION OF DIAGRAMS The leading-order corrections in 2D to the NSRL rate are

The essential feature for our classification scheme of diadetermined by the diagrams in Fig. 2 for short-wavelength
grams is a separation of energy scales. lBeenergy scale €xternal perturbationsq.~pg , while the leading-order cor-
set by the temperaturek4T), the quasiparticle excitation rections in 2D to the spin susceptibility are determined by
energy(e), the pair excitation energiw), the scattering rates the diagrams in Fig. 19 for long-wavelength external pertur-
(Al 7,hi7y), etc., should be well separated from the charachationsfige<pg. _
teristic high-energy scalesf the metal, e.g., the Fermi en- In three dimensions these corrections are another order
ergy (Eg). These energies define a formal expansion paramhlgher msmall showing the insignificance o'f fluctgatlons in
eter given by the ratio of a typical low-energy scale and aponven_nonal 3D sqperc_onductors. In one dimension th_ey are
typical high-energy scale, for instandesT./Er. Alterna- of Iez_idlng order, signaling the breakdown of the quasiparti-
tively one can write the formal expansion parameter in term§l€ picture.
of the ratio of a typical atomic length scale-(*, %ive/Eg,
etc) and a ftypical long-wavelength scale &(  AppENDIX D: CORRECTIONS TO THE PARTICLE-HOLE
=ﬁvF/2kaTC, _I =UVET, l,=vgTy, €t0. We perform a sys- _ SUSCEPTIBILITY
tematic expansion in terms of these parameters, and derive
all leading fluctuation corrections in the framework of the ~We use a shorthand notation, for the combitiledsonig
Green's-functions technigue. All diagrams presented here afdatsubara energy and momentum of the the pairing fluctua-
understood as containing renormalized elements. Thus lowion mode: Q=(w,.q). Similarly, P=(e,,p), P’
energy fermion Green’s functions ageasiparticleGreen's  =(€,,p'), Q—P=(w—¢€,,9—p), Zp=TZ,2,, etc. We
functions, vertices are renormalized by high-energy quantiuse the usual Feynman rules for evaluating diagras-
ties. More detailed descriptions of this renormalization pro-though we consider spin-singlet; or d-wave pairing, both
cedure are given in Refs. 31-33. We assign for simplicityspin-singlet and spin-triplet fluctuation channels contribute
the order of magnitudemall to the set of expansion param- because of triplet impurity Cooperons. We neglect the Zee-
eters(e.g.,small=T./Eg). To estimate the order of magni- man coupling of the quasiparticle propagators to the mag-
tude of the diagrams we replace the Green'’s functions for thaetic field. This allows us to decompose the vertices and
quasiparticles by piecewise constant functions, which ardéluctuation propagator in the particle-particle channel into
equal to 1¢mallif both the momenta are located in a narrow spin-singlet and spin-triplet components:
shell of thicknesssmall around the Fermi surface and the
energies are smalle<small The corresponding part of T.5,6(P,P",Q)=T%P,P",Q)0%z0% s+ T (P,P',Q)
phase space is calleldw-energy region Outside of this y y
phase space area, in thigh-energy regionwe assign to the X(070) ap(007) 35, (D1)
phase space area a measure of 1, and the high-energy
Green’s functions are set equal to 1. Analogously, the low- Kagys(P,P',Q)=K%(P,P’,Q)c¥ 0% s+K'(P,P’,Q)
energy range of a pair fluctuation mode consists of small pair
excitation energieg w<small and small pair momenty| X(070)ap(007) 5. (©2)
<small Performing the trivial integrations over the steplike
Green’s functions in the asymptotic limitmall—0 gives The Bethe-Salpeter equation for the fluctuation propagator,
the order of the diagram. This is done in the following steps:

Kagys(P.P",Q)=T,p,5(P,P",Q)

(1) Estimate the integrand from the number of quasiparticle

lines in the diagram,ng, which gives a factor T " "
. €,m P//
(2) Labeling of the diagram respecting energy and momen-
tum conservation. XG(Q—-P")-K,,sP",P",Q), (D3)

(3) Estimate the phase space factors:
(a) Restricting all energies to their low-energy region separates into singlet and triplet channels:
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KS(P,P’,Q)=T*'(P,P",Q)+T- X I'*'(P,P",Q)G(P") Xpos(0)=22 > (h-0,,)(h-0,,)G(P)?
p” aBy PQ
XG(Q—P")-K*(P",P",Q). (D4) XG(Q—=P)Kqppa(P,P,Q)
— 3
Corrections to the NSLR rate are described by the dia- _4;? G(P)*G(Q—P)
grams in Fig. 2. The first diagram was investigated by Maki
and Thompsofi,and the last two diagrams represent contri- X[KS(P,P,Q)+3K'P,P,Q)], (D8)

butions to the NSLR rate from fluctuation contributions to
the quasiparticle density of states. Particle-hole vertex cor-, . (0)= > > (h- 0:.)(h-0,5)G(P)2G(P')?

rections, labeled “V” in Fig. 2, can be neglected to leading
order inT./Eg aboveT. because they are all proportional to

[dé.G(e,,£)%~0. The expressions corresponding to the

diagrams in Fig. 2, with external Matsubara enecgy, are
then[we useW=(w,q")]

Xut(@m)= E E (UJaAfP,WfP)(UyBAP,P7W)
*Bvo PQg’

XG(P—W)G(P)G(Q—P)
XG(Q—P+W)K p,5(P,P—W,Q)

-2 |App_wl’G(P—W)G(P)

PQq’
XG(Q—-P)G(Q—P+W)[KS(P,P—W,Q)
—Kt(P,P—W,Q)], (D5)

Xoos(Om =2 2 (04Ap wp)(TuApp w)
@By PQq’

X[G(P—W)+G(P+W)]G(P)?
XG(Q_ P)Kaﬁﬁa(PIPlQ)

=42 |Ap_wplIG(P—W)
PQq’

+G(P+W)]G(P)2G(Q—P)[K3P,P—W,Q)
+3KY{(P,P-W,Q)]. (D6)

The termy),t corresponds to the Maki-Thompson diagram,
(@ in Fig. 2, and the second ternypos, to the two DOS
diagrams, (b) and (c) in Fig. 2. We use the relations
A_p _p/=(App)* andAp, p=(Ap p:)* to simplify the re-
sults.

The fluctuation corrections to the Pauli spin susceptibility

are obtained from the diagrams in Fig. 19:

xur(0)= > X (h-os,)(h-0,5)G(P)?
aByé PQ

XG(Q—=P)*K,p,s(P,P,Q)

-2, G(P)?G(Q-P)?
PQ

X[K*(P,P,Q)—K'(P,P,Q)], (D7)

aByén{ pp'Q
XG(Q-P)G(Q—P")K,z,s(P,P",Q)
X Kﬁyng(P’,P,Q)

=4 >, G(P)?G(P’)?
PP'Q

XG(Q—P)G(Q—P")[KP,P",QK'(P",P,Q)
+KY(P,P",Q)KS(P’,P,Q)]. (D9)

The first termyy1(0), corresponds to diagrafa) in Fig. 19
(Maki-Thompson, the second termypog(0), to diagrams
(b) and (c) (DOS and the last term,x5 (0), to the
Aslamazov-Larkin diagramd) in Fig. 19. Particle-hole ver-
tex corrections, labeled “V” in Fig. 19, can be neglected for
similar reasons as in the case of the NSLR rate.

To evaluate momentum integrals we split fheum into a
& integral and a Fermi-surface averagee use the notation
(-+")p=Sdpen(pg)--- where n(pg) is the angle-resolved
(normalized density of states at the Fermi surfac&hus

% ~NF-J xdgp-<--->p. (D10)

The lower limit of the integrals is extended fromu to
—oo, This approximation induces corrections of orde/Er
which vary on a temperatufand fielg scale large compared
to T, and can be incorporated in the asymptotic normal state
behavior as discussed in Sec. Il A. We use the abbreviations

(_31(P)=N,:f d§,G(P), (D11
Gz(P,Q)=NFf d§,G(P)G(Q—P), (D12
G3(PaQ):NFf d£,G(P)’G(Q-P), (D13
Gsr(P,Q)=NFj d&,G(P)G(Q-P)?, (D14
G4(P,Q)=NFJ d£,G(P)°G(Q-P), (D15
G4’(P1Q):NFJ d&,G(P)’G(Q—P)%.  (D16)

These expressions can be evaluated by complex integration.
After ¢ integration(as on the left-hand sides of the above
equations the momenta are confined to the Fermi surface.
The formal identity
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1 m _ ~
(IS (en](P)™ =— (52( )) G2 (en)I(P), xa(0)=8- 2, (7(P.Q)Gs(P.Q)p* Clen.Q)-L(Q).
n (D17) (D22)
where, (e, is the self-energy for the Green’s function, im- These results can be written more compactly using the iden-
plies tities

Gz+m[2(€n):z(wl_ €)1(P,Q)

5
=\ 55 (e Gal2(€n), 2 (@ —€)1(P,Q).

(D18) 52( <n(p) 7(P,Q)G2(P.Q))p, (D23
Because the functional dependence @& on the self- 5
energies contains only the combinatiBfe,) — 2 (w,— €,), (P 0)2 G.(P
we obtain the relation&, = —2G, and Gz = — Gs. 7(P.Q) 53 (€)%~ 2(P.Q) o

In the weak-coupling theory for pair fluctuations we have 5
KS(P,P",Q)=K(P,P",Q)=7(P,Q)L(Q)7%(P',Q), and
we can replaceK!(P,P’,Q) and K'P’,P,Q) in the 2 1P 55y 52( N Ga(P.Q)) Clen,Q)
Aslamazov-Larkin diagram b€ (e,,Q)[ 8(ey — €,) — 8w,
— €, — €,)]/2. The quantitie§;, L andC are defined in Sec. _ ~
Il. We neglect diagrams containing only impurity interac- - 52(6n)2<77(p) 7(P.Q)G2(P.Q))p. (D24)
tions (and no pairing interactionwhich describe pure weak- (D25)
localization effects. Furthermore, we assume that the hyper- _ . ~

ThuDefining  Ga(en) =(Ga(P))s,  Bi(en.Q)=((P.Q)G,

fine matrix elements are isotropic on the Fermi surface. Thu -
we obtain for the NSLR rate P-,Q)>p, ande(Gn lQ) :< 77(p) 77(P1Q)GZ(P1Q)>D we ob-
tain for the NSLR rate

2

xur(om)=—2-1A12- 2 (7(P,Q)GA(P,Q)),
€nQ Xur(@m) =—2-|A[2. EQ Bi(€n,Q)B1(€n— wm,Q)-L(Q),

X(H(P=W,Q)Go(P—W,Q))p-q - L(Q), (D26)

o XDOS(wm):4'|A|2' 2 Gl(en_wm)L

xoosom) =4 [A% 3 (7(P.Q)%G5(P.Q)p nQ 2 (€n)

" X B,(€,,Q)-L(Q), D2
X(G1(P—W))p_q - L(Q), (D20) e Q) HQ) (02D
and for the Pauli susceptibility and for the Pauli susceptibility
2
XMT+DOS(O):8'EZQ (7(P,Q)?G4(P,Q))p-L(Q), XmT+D0s+AL(0)=4- E [ 35 (en)? Ba(€,,Q)-L(Q).

" (D21) (D29)
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impurity scattering, the imaginary part éfleads to suppression
of the anomalous MT term.

2|n d-wave symmetry different Landau levels are coupled through

higher-order terms in the pair momentum operatof his effect
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