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Abstract: The current agricultural water panorama in many Mediterranean countries is composed by
desalination facilities, wells (frequently overexploited), the water public utility network, and several
consumer agents with different water needs. This distributed water network requires centralized
management methods for its proper use, which are difficult to implement as the different agents are
usually geographically separated. In this sense, the use of enabling technologies such as the Internet
of Things can be essential to the proper operation of these agroindustrial systems. In this paper, an
Internet of Things cloud architecture based on the FIWARE standard is proposed for interconnecting
the several agents that make up the agroindustrial system. In addition, this architecture includes
an efficient management method based on a model predictive control technique, which is aimed at
minimizing operating costs. A case study inspired by three real facilities located in Almería (southeast
of Spain) is used as the simulation test bed. The obtained results show how around 75% of the total
operating costs can be saved with the application of the proposed approach, which could be very
significant to decrease the costs of desalinated water and, therefore, to maintain the sustainability of
the agricultural system.

Keywords: FIWARE; cloud storage; model predictive control; smart water management; smart agriculture

1. Introduction

Almería (southeast of Spain) is one of the driest regions in Europe, but paradoxically, it has one
of the continent’s largest agricultural production systems. Such a system is composed of more than
30,000 ha of effective greenhouse production [1], and it has become the main driving force of the
economy of this dry region. One basic ingredient of this system is fresh water, so that the development
of agriculture in Almería has been associated for many years with the decline of fresh water reservoirs,
despite being the agricultural area where the most efficient management of this resource is carried
out [2]. This encouraged the installation of desalination plants as a tool to maintain the fresh water
availability in the region and,therefore, the sustainability of the agricultural system [3]. Thus, Almería’s
current agricultural water panorama comprises consumer agents, as greenhouses and industries related
to agriculture, and producer agents based on conventional (water public utility network and wells)
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and non-conventional sources (desalination facilities). This agroindustrial environment constitutes a
distributed water network that requires an integral smart management method for its optimal use [4].

Several management strategies have been formulated in the literature for distributed water
networks, especially focused on the urban water cycle of Barcelona (Spain). In the work of Ocampo
Martinez et al. [5], Model Predictive Control (MPC) paradigms were proposed aimed at reducing
pumping costs. An operational MPC approach was proposed by Pascual et al. [6], tasked with reducing
costs, as well as maintaining safety storage volumes in the buffer tanks. Another control based water
management system was proposed by Lopez Farias et al. [7]. In this case, the forecasting accuracy
of the control system was improved by means of a qualitative multi-model predictor. Although all
these works proposed effective management methods, they did not describe the way in which all the
information coming from the different devices of the distributed network is integrated and unified for
the application of the methods in real cases. In addition, they are focused on optimizing the transport
water network, without taking into account the optimal management of the water sources.

To manage the water sources optimally, it is essential to adapt the production to the demand.
This fact is especially significant when considering desalination facilities in the water network
(as happens in Almería) as the costs associated with the production of desalinated water are still
relatively high [8], and they depend directly on production. The work presented by Roca et al. [9]
demonstrated how a desalination facility can be efficiently coupled to a greenhouse by using MPC
techniques. Moreover, the work in [10] showed how metrics related to the desalination process
can be improved in these kinds of combinations by using advanced control strategies. However,
these works were focused only on the management method, considering desalination as the only
water source, and without taking into account costs in the management problem. As stated
in [11], to minimize the operational costs of desalination facilities and to improve their efficiency,
a bi-directional communication between them and the consumers must be established, which can
be achieved by means of adequate Information and Communication Technologies (ICT) tools. This
is especially relevant in Almería, where there are relatively small and geographically dispersed
greenhouse cultivation areas that depend on the water coming from one or several desalination plants.
These plants need to know the water demand of each greenhouse for their efficient use in terms of
operating costs. One natural choice to solve the problem is the Internet of Things (IoT) framework,
as it allows connecting all the devices in a unified platform regardless of their geographical location.
In addition, IoT can be associated with data analytics and cloud computing, thus making powerful
platforms that allow gathering the required information from different IoT devices, analyzing it
in the cloud, and transmitting the corresponding control signals to the actuators of the distributed
network. These features have made IoT a key component in the development of sustainable distributed
environments [12,13].

In recent years, IoT has experienced a breakthrough, changing the way in which providers and
consumers interact with each other. Agriculture is not alien to this transition, and it is experiencing a
change of the business model in the technological field [14,15] according to which customers (farmers)
are ceasing to acquire assets (monitoring computers, sensors, or control systems) while demanding
services [16,17]. In this framework, the supplier companies are responsible for ensuring the proper
functioning of their equipment and providing the data necessary for farmers to make their decisions,
billing for such services. The devices, through the change of firmware, can dynamically change the
activities they carry out, supplying information to the cloud (not only locally as is usually done) [18]
and, through the adequate processing of this information, help to reduce service times and operation
shutdowns. This paradigm shift requires the establishment of transversal protocols, interoperability,
and collaboration between companies and services.

Nevertheless, the arrival of IoT to the agricultural field not only has influenced the relationships
between costumers and companies, but also the way in which the agricultural activities are developed.
Thus, the term Precision Agriculture (PA) has emerged [19,20], which involves the use of a series of
sensors and actuators that allow gathering context information of the environment that surrounds
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them. This paradigm enables the development of tools to assist in decision-making, monitoring
activities in the crop, and applications to improve the quality; all of them aimed at obtaining a more
efficient and sustainable agricultural system [21–24]. In this way, different agronomic data management
platforms using IoT technologies are being developed, often driven by European Union initiatives.
These platforms are a natural evolution of the so-called farm management systems to make them
compatible with cloud computing [19,21,25]. FIWARE is an initiative of the European Union for the
creation of a platform that helps the development of applications and solutions focused on the IoT [26].
FIWARE aims to create an open and sustainable ecosystem, based on public software standards.

Moreover, regarding water management in crops, which is the scope of this work, several
approaches have been proposed in literature making a proper use of IoT technology for developing
smart irrigation systems, some of them based on the use of FIWARE as well. In [27], an IoT system for
smart energy consumption and irrigation was presented. The system decides the amount of water
required by the crops according to the current moisture in soil and humidity (measured by mean
of IoT sensors) and the time of the day. A similar approach was proposed in [28], but in this case,
meteorological data were also considered to predict the water requirements based on a machine
learning system. The most complete approach was the one proposed in [29], in which an IoT platform
based on FIWARE was proposed for smart water management in agriculture taking into account water
reserve, water distribution, and water consumption. However, all these works were mainly focused
on the management of irrigation and on the distribution system considering only the public utility
water network as the water source.

In this way, the main gaps observed in the literature according to the above review are the
following ones:

• The management methods presented for distributed water networks so far only addressed
the optimization of the transport water network, without taking into account water sources.
Besides, they did not establish the way in which the different agents of the distributed network
were interconnected.

• The works addressing the connection of non-conventional water sources as desalination facilities
and consumer agents were focused on the optimal management of the desalination facilities,
without considering other water sources in the problem. In addition, they were aimed at
improving metrics related to the desalination process, but not to minimizing economic costs,
which is very relevant for the correct implementation of this type of framework. Furthermore,
they did not describe the way in which the agents are interconnected.

• The works related to enabling technologies such as IoT in the agricultural field were focused
on improving the crops’ performance, addressing aspects like the optimization of the irrigation
system, or the development of platforms to improve the decision making. However, to the authors’
knowledge, there are no works that discuss the use of these kinds of technologies for the effective
management of agroindustrial districts in terms of water, which can be essential to optimize the
performance of the new panorama that arises with the introduction of new water sources in the
agricultural ecosystem.

To address the aforementioned issues, this work presents an IoT platform for the optimal
management of the distributed water network of agroindustrial environments. The contributions
of the work are three fold. First, a scalable IoT platform for the interconnection of the different
agents composing the distributed water network is proposed. The IoT platform is based on FIWARE,
and the architecture is fragmented into layers or services. Second, the IoT platform incorporates an
MPC strategy tasked with optimizing the operational costs of the water network, taking into account
the costs of the feed pump of the desalination facility and the costs of the water coming from the
public utility network, while ensuring the water needs. Third, to demonstrate the effectiveness of the
proposed approach, a case study based on three real plants located in Almería is used to carry out
exhaustive simulation tests with non-optimal management methods.
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The reminder of the document is organized as follows: Section 2 is dedicated to depicting the
concept and problems of agroindustrial districts. Section 3 is aimed at presenting the basis of the
proposed IoT platform, a general overview of it, and the description of the practical case study adopted.
Section 4 presents and discusses the simulation results. Section 5 summarizes the conclusions obtained
from the results and possible future work.

2. Agroindustrial District: Definition and Problems

Before presenting the IoT architecture, it is essential to define the agroindustrial district concept
and the problems associated with this kind of system. The contemporary industrial district theory is
owed to Giacomo Beccattini [30], who defined it as a territorial-partner entity characterized by the
active presence of a community of people and a population of companies in a given geographical
and historical space. Following this proposal, the term agroindustrial district was introduced as a
district constituted by farms, processing companies, and supply companies located in a given territory.
This environment is usually dominated by small and medium enterprises, specialized in one of
the phases of the production chain. Among them, there are important relationships of the vertical
type (between companies of different phases of the production process) and of the horizontal type
(between companies of the same phase) or transversal (with supply and service companies).

In this synergy framework, there are systems with different objectives that depend on the needs
of heterogeneous resources, both energy (electricity and heat/cold) and others (such as water and
CO2). In addition, if renewable energy is included in this environment, it is necessary to manage
conveniently the efficient use of all resources in each of the systems, as well as coordinate the flow
between them. The research project Control and Optimal Management of Heterogeneous Resources
in Agroindustrial production districts integrating renewable Energies (CHROMAE) (www2.ual.es/
chromae), funded by the Spanish Ministry of Economy, Industry and Competitiveness and ERDF
funds, is aimed at developing comprehensive, coordinated, and optimal management strategies
for the heterogeneous resources required by the elements that make up an agroindustrial district.
The different agents, resources, and interlinks considered in the CHROMAE project can by found at
(www2.ual.es/chromae).

Although the present work is based on this project, it particularizes only the production phase of
the agroindustrial sector, the most extended case in Almería. In this phase, the challenge was directly
related to the optimal and efficient management of water, essential for crops. This resource must be
managed, establishing as a main premise that the result of such optimal management produces an as
small as possible environmental impact. Moreover, economic criteria must also be taken into account
in the management problem. Another fact to consider and that should be added to the problem
is that the different elements of the district are usually geographically separated. This requires the
use of enabling technologies (such as IoT) to close the circle, interconnect different systems, and to
manage all of them centrally.

3. The IoT Platform: Basis, Overview and Case Study Description

This section presents the main components of the IoT architecture developed for the optimal
management of an agroindustrial district, as well as a general description of it and its application in a
case study in Almería. In this way, the FIWARE platform and the MPC technique are firstly depicted.
Then, an overview of the proposed platform is shown and described, and finally, the case study in
Almería is developed.

3.1. FIWARE

FIWARE [26] is an IoT platform driven by the European Union. FIWARE presents a modular
architecture based on open source components trying to form an open and sustainable ecosystem
with the capacity to be adapted to different environments. This platform provides cloud capabilities
based on OpenStack [31] including a series of libraries and tools known as Generic Enablers (GEs) [32],

www2.ual.es/chromae
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which facilitate the creation of applications and services in IoT. These GEs offer Representational State
Transfer (REST) and an Application Programming Interface (API) with public and free specifications,
which allow the integration of third party software services, leading to an acceleration in the
development of intelligent solutions, including data analysis and processing, persistence, and language
interpreters, among others. The GEs are based on APIs that implement the Open Mobile Alliance
(OMA) and Next-Generation Services Interface (NGSI) standards [33].

FIWARE is trying to promote a new standard for IoT. The main core of FIWARE, and mandatory
for its use, is the enabler called the Orion Context Broker (OCB), which is responsible for managing
context information. In this sense, context refers to the entire environment surrounding the IoT system,
which is capable of producing relevant information for the development of the system. This context
information is generated by different data sources such as a network of sensors, existing third party
applications, actuators, and other devices. The following points describe some of the most important
GEs of FIWARE [32]:

1. OCB: It is the intermediary between producers (publishers) and consumers (subscribers).
The NGSI interface is a RESTful APIs service, which allows queries on the status of context
information. This allows creating as many entities as sensors or set of sensors available in the
system, allowing collecting information in real time.

2. Cygnus: It is the GE in charge of persisting context information, and it is based on Apache Flume.
Cygnus allows making a copy of the data simultaneously in different databases that include:
MySQL, MongoDB, PostgreSQL, or Big Data platforms such as Hadoop or Spark. In this way,
subscriptions are made to OCB entities, which notify the system of a change to store the data.

3. Intelligence Data Advanced Solution (IDAS):This GE acts as a language interpreter between the
different communication protocols used in IoT to the NGSI standard. The communication
protocols available are LightweightM2M (LWM2M) over Constrained Application Protocol
(CoaP), JavaScript Object Notation (JSON), or UltraLight over Hypertext Transfer Protocol
(HTTP)/Message Queue Telemetry Transport protocol (MQTT), or Object Linking and Embedding
for Process Control-Unified Architecture (OPC-UA).

4. Wilma: It is in charge of guaranteeing the security of the system since it provides functions to act
as a proxy within Open authorization Authentication schemes (OAuth2).

5. Perseus: This GE defines a set of rules in OCB, which makes a notification to the system or end
user by means of Short Message Service (SMS), emails, or HTTP requests.

3.2. MPC Technique

MPC is one of the most general ways of formulating a control problem. This methodology is
not an explicit control technique, but rather, it involves a family of control methods based on the
use of a model of the system to obtain the control signals by minimizing a given cost function [34].
The methodology can be explained according to Figure 1 and the points below:

1. The outputs of the process are predicted at each sampling time t along a given prediction horizon
N, by using a model of the system. The predicted outputs, denoted by x̂(t + j|t) for j = 1, . . . , N,
depend on past outputs, inputs, and disturbances and on the value of future control actions
u(t + j− 1|t) for j = 1, . . . , N. Note that the notation (t + j|t) is related to the predicted value of a
variable at the instant time t + j, calculated with the information available at instant t.

2. The set of future control actions is calculated by minimizing a determined cost function.
3. The control signal u(t|t) is sent to the process while the rest of the control actions are rejected

because at the next sampling time, x̂(t + 1) will be known, allowing repeating the first step with
the updated information. This methodology is known as the receding horizon concept.



Sensors 2020, 20, 596 6 of 21

Figure 1. MPC strategy.

It should be noted that this methodology is especially suitable for being applied in the IoT
platform as it allows developing an easy control law with very limited knowledge and information of
the different agents composing the distributed water network. The MPC strategy only requires the
model of the system at hand, which is intrinsic controller information, and the required information to
execute it for the calculation of the optimal control signals [34].

3.3. IoT-Architecture

The proposed architecture for the IoT platform can be described as a pyramidal diagram as shown
in Figure 2. As can be seen, this architecture is divided into three layers that are independent of each
other, allowing adding or removing services without affecting the operation of the previous layer. It is
based on a back end architecture, front end, and context generators.

This architecture is defined as a cloud architecture that encompasses storage functionalities, a
platform as a service, and connectivity. This kind of architecture allows the user to detach specific
software or custom developments to integrate it with the system. The objective is to be able to perform
services and microservices between different components of the cloud architecture. It is divided into
two large back end and front end sections, which are in turn interconnected through virtual networks
or the Internet. There are other parts of cloud architectures that are used, such as middleware, among
other resources. The architecture can be explained according to the following points:

• Layer 0, context producers in Figure 2: IoT systems need devices that provide the data needed
for ecosystem management. The IoT consists of a physical device or a network of physical
devices capable of exchanging data, informing the environment to which they belong. Each
device consists of an integrated microcontroller and software that can act as a sensor or actuator.
The sensors are in charge of sending information about the state of certain elements available
in their environment, and the actuators are in charge of carrying out actions that are directly
interconnected with the data provided by the sensors. Each device is uniquely identified through
the built-in computer system, but can also be identified as belonging to an existing Internet
infrastructure or device network. As already mentioned, FIWARE is a system based on managing
context information. The term context, applied to an intelligent Internet solution of things, is
associated with the set of related elements capable of reporting the state in which the system is.
Each IoT element will be represented as a unique entity within the context. IoT devices can range
from simple to complex devices such as temperature, humidity, or radiation sensors or relays as
actuators to launch orders.

• Layer 1, back end in Figure 2: It is the data access layer also known as the logical part of an
application. It is located facing the server and is responsible for managing all services related
to the data. In the back end, all the system tasks are performed, such as numerical calculations,
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security layer management, data access, REST services, and databases, among others. The main
objective and benefit of having a back end decoupled from an application or simple architecture is
the possibility of making different developments without affecting the functionality by improving
the security of the system, the possibility of rescaling the service depending on the needs of
the client, generating REST services allowing the back end information to interact with any
client or service. In this work, the back end is formed by seven services, each independent
of the others, but at the same time, forming a functional architecture. These services range
from interpreters of communication protocols between sensors and the system itself, elements
responsible for information management, databases, REST services, and processes responsible for
process control.

• Layer 2, front end in Figure 2: This is the layer linked to the client, and therefore, it is in charge of
the visualization of all the data. It is composed by a set of technologies that form the structure and
design of the application. The most used programming languages for the development of this
layer are JavaScript and PHP, as well as languages based on design and layout, such as HTML
and CSS.

Figure 2. IoT platform as a pyramidal diagram.

3.4. Case Study in Almería

In order to evidence the results that can be achieved with the application of the proposed platform,
a case study based on three real facilities located in Almería was used. The schematic diagram of
the case study is shown in Figure 3, and it was used to represent an agroindustrial district composed
by several consumers agents (i.e., three greenhouses and an office building) and two water sources
(i.e., a solar desalination plant and the water public utility network). Note that this small scale
agroindustrial district was chosen to be representative of an industrial scale one and allow visualizing
the results in a simple way. The plants included in the district are described in the following subsections.

It should be remarked that in the following subsections, the real location of the plants is established,
but in real cases of application, the desalination plant should be located on the coast and the building
near the greenhouses.
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Figure 3. Layout of the case study.

3.4.1. Solar Desalination Plant

The solar desalination plant used as a reference in the case study was based on the Solar Membrane
Distillation (SMD) facility at the Plataforma Solar de Almería (PSA, www.psa.es), in southeast Spain.
A real image of the plant is included in Figure 3. This facility was fully described in [35], and it is
comprised of a solar field, which is responsible for providing the thermal power required by the
Membrane Distillation (MD) procedure, several MD modules, and a heat exchanger connecting both
systems. The plant is totally controlled, monitoring the main variables of the distillation procedure
as pressure, temperature, and flow rate. It should be commented that for the present work, it was
assumed that all the control and measurement systems were based on the IoT paradigm, and they
were able to receive and send information directly from or to the cloud (see Figure 3).

As stated in [10], an industrial scale MD plant (as the one used in this work) must be composed of
an array of MD modules since the production of current commercial MD modules is still relatively low,
around 30 L/h in optimal operating conditions. Thus, each singular MD module was connected to
the array composing the overall desalination unit, as was presented in [36], so that each MD module
could be turned on/off depending on the state of the valves, which allowed us to adjust the distillate
production to the water demand, thus obtaining economical savings in the operation of the feed water
pump. In particular, the MD module used in this work was the Aquastill one, which was totally
described in [10]. As reported in that work, the module had a limited operating range in terms of
temperature and feed flow rate. The temperature at the inlet of the evaporator channel of the MD
module could vary between 60 and 80 ◦C, whereas the flow rate between 400 and 600 L/h.

The feed solution enters though the condenser channel of the MD module, where it is preheated
with the latent heat that crosses the membrane. Then, it is driven to the heat exchanger where the feed
solution is heated with the fluid coming from the solar field. At last, the heated solution is flowed to the
evaporator channel of the MD module, where the volatile molecules of the solution are evaporated and
pass through the membrane, whereas the non-volatile ones are rejected in the form of brine. It should

www.psa.es
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be remarked that in this work, it was assumed that the feed solution was water coming from the
Mediterranean sea at 35 g/L (mean salinity).

For the application of the MPC technique, a model of the desalination unit is required in order to
predict its total distillate production (DT). As was presented in [10], the Aquastill module could be
easily modeled by means of a polynomial equation based on empirical data. In this work, the same
model was used, but it was modified by introducing binary variables (δi with i = 1, . . . , NMD where
NMD is the number of MD modules in the array fixed at 30) related to the position of the valves of each
MD module i, assuming a value of zero when the MD module is turned off and one otherwise. In this
way, the total distillate production of the overall desalination unit can be calculated as:

DT(t) =
NMD

∑
i=1

[
(3.24 + 0.072 · Tcs,out(t)− 0.4896 · Tf eed(t)) · (1− δi(t)) + (−0.024 · F(t)

+ 0.0096 · Tcs,out(t) · F(t)) · δi(t)
]
,

(1)

where all the terms of the equation are in L/h and all the variables are presented in Appendix A.
It should be noted that, when an MD module is turned on, it is operated at its maximum operating
range in terms of feed flow rate (i.e., F(t) = 600 L/h), which is its optimal operating point [10]. In this
way, all the variables in the previous equation are constant and known, except δi with i = 1, . . . , NMD,
which are computed by means of the MPC technique.

Moreover, as the MPC technique is aimed at reducing costs, the operating cost associated with
the operation of the feed water pump must be estimated. For this aim, the electric power consumption
of the feed water pump was calculated making use of the characteristic pump curve supplied by the
manufacturer. The same pump as the one in [37] was used, whose characteristic curve is given by:

Pf (t) = 22.72 · c1 ·
NMD

∑
i=1

[
F(t) · δi(t)

]
+ 39.54, (2)

where c1 is a conversion factor to transform L/h into m3/s so that all the terms of the equation are in
kW. Note that the summation term was used to take into account all the MD modules as the total feed
water flow rate was equal to the sum of feed flow rate of all the modules.

It should be remarked that this model must be executed in the cloud, integrated in the MPC
strategy of the IoT architecture. For this reason, it is important to note that the information exchanged
between the plant and the cloud was minimum because of the way in which the models were posed.
The plant had to send information only about the temperature at the outlet of the heat exchanger for
the cold side (Tcs,out) and the feed temperature (T f eed), and it had to receive information only about δi
variables, with i = 1, . . . , NMD. Moreover, as the MD modules in the array were identical, the value
of these variables could be given only using an integer variable (NMD) that contains the number of
modules turned on at each sampling time, that is:

NMD =
NMD

∑
i=1

δi. (3)

Notice also that the desalination facility was connected to a storage tank. The use of this device in this
kind of systems is natural, as water is a resource that can be stored. In this way, the storage device acted as
an integrator system, helping to smooth the water demands, and for this reason, its level (L) must also be
sent to the IoT platform. This tank could be directly used or connected to the water distribution network.

3.4.2. Greenhouses

The greenhouse environments included in the case study were based on the pilot greenhouse
located at Experimental Station of the Cajamar Foundation (also located in southeast Spain, 40 km
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from the PSA), and real images of this facility can be seen in Figure 3. This pilot plant is formed
by a multi-span “Parral-type” greenhouse with E-W orientation. The total surface area of the
facility is 821 m2, among which 616 m2 are effective cultivation area. The cover of the greenhouse is
polyethylene, and it includes an automatic ventilation system with side windows on the south and
north walls. In addition, the greenhouse is equipped with a diesel aerothermal system, a biomass
fueled heating system, a humidification/dehumidification system, and LED lights. The crop grows
in rows with N-S-orientation, inside coconut coir bags, with three droppers and six plants each.
The irrigation is performed by means of a demand tray system, which applies the irrigation to the
crop periodically throughout each day. In [38], a more detailed description and explanation of the
greenhouse environment can be found.

As in the desalination plant, the greenhouse was totally controlled and monitored, measuring
variables such as solar irradiance, relative humidity, air temperature, CO2, wind direction and speed,
and soil and cover temperature. For the purpose of this work, the greenhouses had to send information
about their water requirements, which could be estimated by using well known models already
presented in literature and based on the aforementioned measured variables, as was done in [10].
Thus, the IoT platform received information about the water needs of Greenhouses 1, 2, and 3 (DGH1,
DGH2, DGH3, respectively), and based on this information and according to the water production of
the desalination plant (DT) and the level of the intermediate tank (L), it had to decide the amount of
water from the desalination plant and the public utility network used to cover the requirements of each
greenhouse. Therefore, the IoT platform had to send the variables PN2GH1 and DP2GH1, PN2GH2
and DP2GH2, and PN2GH3 and DP2GH3, which were the water coming from the public utility
network and the water coming from the desalination plant for Greenhouses 1, 2, and 3, respectively.

Note that for the simulations, it was assumed that the greenhouses had a tomato crop in a state of
growth, with a Leaf Area Index (LAI) of 5.5 and in full production.

3.4.3. Office Building

The office building incorporated in the case study was based on the Centro de Investigación
de la Energía Solar (CIESOL) building (www.ciesol.es) located at the University of Almería campus,
also in south east Spain, 20 km away from PSA. This building had a total surface area of 1071.91 m2

distributed into two floors. In addition, as in the other facilities composing the case study, CIESOL had
a net of sensors to monitor the main variables affecting the building such as temperature, electricity,
and water consumption. More details about the building can be found elsewhere [39].

For the management of the water network of the case study, the building had to send its water
requirements (DOB) to the IoT platform, and as happened with the greenhouses, the IoT platform had
to send to the building the amount of water coming from the desalination plant (DP2OB) and the
public utility network (PN2OB).

3.5. Application of the IoT Platform to the Case Study

The architecture proposed in this paper for the management of the agroindustrial district
presented above in terms of water is shown in Figure 4. As mentioned in Section 3.3, it was divided into
three layers: context producers, back end, and front end. It is important to remark that the proposed
architecture was based on that already developed for the IoF2020UC4.2 Vegetables project [40,41],
with the particularity of applying control techniques, among other data extraction functionalities
adapted to this system.

www.ciesol.es
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Figure 4. Architecture of the IoT platform.

3.5.1. Layer 0 Context Producers

All the devices and elements in charge of generating context information were available in this
layer. Different kind of actuators and sensors were available in each plant forming the agroindustrial
district. These sensors were connected to different commercial IoT stations or data acquisition systems.
There were six types of context information production scenarios distributed in different parts of the
proposed scenario: a solar desalination plant, three Parral-type greenhouses, an office building, and
a water storage device. These facilities sent the measurements collected by the sensors to the cloud
through the MQTT or HTTP requests, depending on the data extraction format. MQTT is one of the
most extended communication protocols used in the IoT paradigm due to its lightness and simplicity,
which are mainly produced by the power limitations in the devices and the bandwidth. It is based on
the Transmission Control Protocol/Internet Protocol (TCP/IP) protocol, which reuses already open
connections, unlike the HTTP 1.0 protocol, which makes new connections. Its operation is based on
push messaging as editor/subscriber and themes. In addition, it has a central broker that manages the
registration of the client’s connections, allowing subscriptions to different topics. On the one hand,
MQTT will be used for sending smart sensors to OCB; on the other hand, HTTP will be used for
sending data from the acquisition systems to OCB.

3.5.2. Layer 1 Backend

This section describes the layer in charge of managing all the operations of the IoT system. Each
of the services that make up this data layer was independent of the others, thus allowing updates and
developments without affecting the performance and stability of the system. It was formed by a set of
services that interacted with each other to form the ecosystem based on FIWARE:

• Extract context information: This service is responsible for extracting, transforming, and sending
the data to the IoT system. There are two services calledIDAS (represented by the block agent
in Figure 4) and Extract, Transform, and Load (ETL), responsible for translating the information
that comes from the sensors to the NGSI standard (see Figure 4). The objective of having two
interpretation systems is to provide a solution that is as complete as possible. The context
information can come from three data sources: commercial systems with their own REST services
(represented in the form of a cloud API in Figure 4 based on General Packet Radio Service (GPRS)
communication), data acquisition systems connected to a PC, and smart sensors prepared to send
these data to the cloud. Commercial stations are available from the following manufacturers:
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Hortisys of the Hispatec model, iMetos of the Pessl model, iMetos ECO D3, and the Hops model.
The first service called ETL (see Figure 4) is responsible for extracting data from REST services of
commercial stations or data acquisition systems connected to a PC, making the transformation
to the NGSI standard, and then, sending it directly to OCB. The second service called IDAS
(represented by the block agent in Figure 4) is an enabler developed by FIWARE, which comes
into use in the case of having intelligent sensors sending data directly to OCB, performing the
function of interpreting the MQTT communication protocol that these sensors use for the FIWARE
NGSI standard.

• OCB: It is the core of the architecture (see Figure 4), and it is tasked with handling the
context information. It acts as an intermediary between producers (publishers) and consumers
(subscribers). It is based on the NGSI specification defined by OMA. The data model is based on
entities, attributes, and metadata. There are six entities for each of the context producers: solar
desalination plant, water storage tank, Greenhouse 1, Greenhouse 2, Greenhouse 3, and finally,
office building. Table 1 shows exclusively each of the entities with their respective attributes
and metadata necessary to perform the MPC technique. In addition, each of these entities has a
set of sensors and actuators, sending the information to OCB. In Table 1, the internal attributes
can be seen of the variables generated by these entities with the needs of the system, while the
controller external attributes column includes those variables generated when applying the MPC
techniques (each of these variables are explained in the Section 3.4). The objective of including
the controller external attributes within the entity is to be able to link the system actuator with
this attribute, allowing the action to be performed directly. This fact creates a new entity MPC
controller. To differentiate between different types of stations in the same entity, FIWARE-Service
and FIWARE-ServicePathare used, permitting hierarchical scopes in the same entity. The first
element defines the name of the plant, whereas the second one, the name of the station or set
of sensors. Each one of the sensors is detailed independently with its name and value in the
attributes. Within these attributes, metadata are available, giving the possibility of creating fields
such as the date when reading data and the common name, among others.

• REST API services: There are two types of services, one in charge of carrying out the persistence
of the data and the other that manages the requests on behalf of the client. These two services
are encapsulated within the REST API module (see Figure 4). As mentioned above, OCB allows
entities to subscribe, and this is because the first REST service carries out a series of subscriptions
to each of the available entities. When one of these entities undergoes a change in any of its
attributes, this will be notified to all the services subscribed to the entity. An HTTP request will be
sent to the persistence service, which will check if the data and date already exist in the system
before saving the measurement. The second service offers a REST API, which is exposed to the
end user through an application. The end user will make the necessary requests to the system,
and it will return the requested response in JSON format.

• Cron process: This service is a Unix cron process (see Figure 4) designed to run periodically every
15 min. Its objective is to retrieve the data from the previous REST service in charge of obtaining
the database information and send it to the controller to perform the MPC control technique.
Once the controller finishes the execution, this same service sends the parameters of Table 1’s
controller external attributes column to its corresponding entity, updating the OCB information
and thus the actuator with the new execution parameters. When there is a subscription to each
entity, it notifies again a change to the REST service in charge of persisting the information and
performs the action of saving in the database.

• MPC controller: This is the service in charge of carrying out the optimal management of the water
resources (see Section 3.4). This service (see Figure 4) is controlled by a cron process and allows
consulting the needs of each system through the REST service and inserting the new instructions
in the control column of the external attributes of each entity (see Table 1). All the details about
the implementation of the MPC controller are presented in Appendix B.
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• Database: This architecture is supported by a non-relational database. It is based on MongoDB
(see Figure 4), which allows managing a large volume of data, easy scalability, and a dynamic
data model. The latter is essential in this architecture, as it allows adding or removing sensors
from each entity without the risk of affecting the operation of the system.

Table 1. Entities of OCB FIWARE required for MPC control.

Entities Internal Attributes Controller External Attributes Metadata

Solar desalination plant Tcs,out, T f eed NMD Common name, Unix date

Water storage tank L - Common name, Unix date

Greenhouse 1 DGH1 PN2GH1, DP2GH1 Common name, Unix date

Greenhouse 2 DGH2 PN2GH2, DP2GH2 Common name, Unix date

Greenhouse 3 DGH3 PN2GH3, DP2GH3 Common name, Unix date

Office Building DOB PN2OB,DP2OB Common name, Unix date

3.5.3. Layer 2 Front End

This is the data visualization layer. The user makes the necessary requests to the system from this
service. The objective of separating the front end as an independent service is to give versatility to the
system of creating a web, desktop, or hybrid application. Any changes made to the application do not
affect the operation of the IoT system.

4. Results and Discussion

4.1. Simulation Results

To evidence the results that could be attained with the application of the designed IoT platform in
an agroindustrial district, a simulation was carried out in MATLAB 2018b with the YALMIP toolbox.
To perform the simulation, real Meteorological data from PSA and from Experimental Station of
Cajamar Foundation on the day 20 July 2017 were used. The models of the desalination plant and the
greenhouses presented in [37,38] respectively were simulated with the actual meteorological data to
obtain Tcs,out and DGH1 and DGH2 and DGH3. Moreover, in order to add difficulty to the management
problem, different sizes were used for simulating the greenhouses, so that the size of Greenhouses
1 and 2 was fixed at 1 ha, whereas that of Greenhouse 3 at 0.5 ha. Besides, the irradiance data for
Greenhouse 3 were shifted forward 15 min in the simulations. Conversely, real water consumption
data of the aforementioned day from CIESOL building were used for DOB. These data were also scaled
considering a building with a surface area of 400 m2. Notice that to test the proposed strategy, two
days were simulated duplicating the data, but augmenting the irradiance profiles used for simulating
Greenhouses 2 and 3 in the second day in order to augment their water demand.

The configuration parameters of the MPC controller were set as: (i) sampling time (Ts) fixed at
15 min, which was chosen taking into account the dynamics of the office building, desalination, and
greenhouses, and (ii) prediction horizon (N) fixed at six. Note that the prediction horizon must be
selected large enough in order to catch the process transients. However, it should be taken into account
that as the prediction horizon (N) increases, so does the amount of decision variables included in the
optimization problem and, therefore, the computational time. For this reason, the prediction horizon
was chosen considering a tradeoff between these two issues and after exhaustive simulations.

The results obtained from the simulations are presented in Figure 5. It is worth noting that the
costs related to the water coming from the public utility network are higher than those related to the
operation of the feed pump of the desalination plant, even when all the MD modules are in operation.
Therefore, the optimal management consists of feeding the consumer agents by the desalination plant
whenever possible. In this way, at the end of the day, the storage tank level must be zero or very close
to this value. Consequently, the initial state of the storage tank level was set to 50 L (see Figure 5(1)).
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Figure 5. Simulation results. All the variables are according to Appendix A.

In this way, around Sample 34, the office building started demanding water (see Figure 5(6)), and
in Sample 35, also Greenhouses 1 and 2 (see Figure 5(3),(4)). Nevertheless, as the temperature Tcs,out

was below T∗ at that moment (see Figure 5(2)), the desalination plant could not still produce fresh
water, and the water requirements were met by the remaining water in the tank and water coming
from the water utility public network. At Sample 37, the temperature Tcs,out was above T∗, and the
desalination plant was turned on by the MPC controller (see Figure 5(2)). For the rest of the operation
on this day, the greenhouse water necessities and the ones of the office building were satisfied by the
desalination plant. The benefit of using an MPC controller was especially shown at the end of the day.
In that moment, and before Tcs,out reaching T∗, the MPC controller increased the amount of modules
turned on (see Sample 70 in Figure 5(2)) trying to augment the water stored in the tank, thus avoiding
the use of water coming from the public utility network when all the MD modules were turned off.

In the second operating day, the beginning of the operation was similar to that from the previous
day, but on this occasion, there was no water left in the storage tank, so that only water coming from
the public utility network was used to fulfil the water needs. Moreover, as shown in Figure 5(3),(4),
the water necessities of Greenhouses 2 and 3 were higher than in the first operating day. This fact
caused the MPC controller to turn on all the MD modules included in the array (see Figure 5(2)).
However, the water production of the desalination facility was not enough to fulfil the water needs,
and for this reason, the water production was complemented with water coming from the public utility
network, as shown in Figure 5(3)–(6). Finally, at the end of the day, the same fact happened as in the
first day: the water level of the tank was increased to meet the water needs without using the public
utility network when the desalination plant was turned off.
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4.2. Comparative Operating Cost Analysis

To illustrate the benefits achieved in terms of operating costs with the application of the proposed
IoT platform in real agroindustrial districts, the results shown in the previous subsection were
compared to those obtained using a manual operation. The manual operation consisted of turning on
all the MD modules as long as Tcs,out was higher than T∗, which was not optimal from the point of
view of the operation of the desalination plant, as it was producing more water than necessary and,
therefore, consuming more electricity (increasing costs). The results are presented in Table 2.

Table 2. Comparative operating cost results. TPNCis the total operating cost associated to the water
coming from the public utility network; TDPCis the total operating cost of the desalination facility;
TC is the Total Cost; and SC is the Specific Cost, that is the cost per unit of water demanded in the
agroindustrial district.

Management Method TPNC (e) TDPC (e) TC (e) SC (e/m3)

IoT platform 2.60 3.01 5.61 0.44

Manual 18.70 0.20 18.90 1.51

As can be seen, the economic savings were considerable. The costs associated with the operation
of the desalination facility were reduced by 87%, whereas the total costs by 75% with the use of the
proposed method. This was directly reflected in the specific cost of the water demanded, as it can be
seen in Table 2 how with the application of the proposed method, the cost per unit of water demanded
was 0.44 e/m3, whereas by using a non-optimal manual procedure, the cost was 1.51 e/m3.

5. Conclusions

This work addressed the development of an IoT based water management architecture to be
applied in agroindustrial districts including desalination plants, connection to the public utility
network, and several consumer agents. The core of the platform was based on the use of FIWARE and
an MPC controller that reflected the operational strategy in real time. Simulation tests using a case
study based on three real facilities located in Almería were performed. The obtained results allowed
us to draw the following conclusions:

1. The use of enabling technologies such as IoT on agroindustrial districts could be an effective tool
to carry out the optimal management of the heterogeneous resources required by the elements
that make up these environments.

2. In particular, the application of the proposed method to the case study demonstrated how an
optimal management of the water resources could be done, adapting the water production of the
desalination plant to the water demand of the consumer agents and minimizing the use of water
coming from the public utility network, thus making a proper use of desalination facilities.

3. The comparative cost analysis performed with a manual operation showed how around 75%
of the operational cost could be saved. In this way, the cost per unit of water demanded in the
agroindustrial district was reduced with the application of the proposed strategy from 1.51 e/m3

(cost of the manual operation) to 0.44 e/m3. This could be very relevant to maintain the economic
sustainability of the agricultural system of Almería.

In relation to future work, the speed of computing and latency when replicating the control
system on edge computing versus the current cloud computing could be compared. In this way, it
would be possible to detect which system performs better control and what the response times would
be. Furthermore, it would be interesting to carry out an economic viability analysis taking into account
the different IoT systems, transport infrastructures, and desalination costs.
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CoAP Constrained Application Protocol
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ETL Extract, Transform, and Load
GEs Generic Enablers
GPRS General Packet Radio Service
HTTP Hypertext Transfer Protocol
ICT Information and Communication Technology
IDAS Intelligence Data Advanced Solution
IoT Internet of Things
JSON JavaScript Object Notation
LAI Leaf Area Index
LWM2M LightweightM2M
MD Membrane Distillation
MPC Model Predictive Control
MQTT Message Queue Telemetry Transport
NGSI Next Generation Services Interface
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OCB Orion Context Broker
OPC-UA Object Linking and Embedding for Process Control-Unified Architecture
OMA Open Mobile Alliance
PA Precision Agriculture
PSA Plataforma Solar de Almería
SMS Short Message Service
TCP/IP Transmission Control Protocol/Internet Protocol



Sensors 2020, 20, 596 17 of 21

Appendix A

Nomenclature

Variable Description Value and Units
c1 Conversion factor to transform L/h into m3/s 2.7·10−7 m3·h/(L·s)
c2 Conversion factor to transform min into h 0.016 h/min
c3 Conversion factor to transform L/h into m3/min 1.63·10−5 m3· h/(L·min)
CPN Total cost associated to the operation of the feed water pump e

of the desalination facility
CPN Total cost of the water coming from the public utility network e

DT Total distillate production of the desalination plant L/h
DGH1 Water demand of Greenhouse 1 L/h
DGH2 Water demand of Greenhouse 2 L/h
DGH3 Water demand of Greenhouse 3 L/h
DOB Water demand of the office building L/h
DP2GH1 Water coming from the desalination plant to Greenhouse 1 L/h
DP2GH2 Water coming from the desalination plant to Greenhouse 2 L/h
DP2GH3 Water coming from the desalination plant to Greenhouse 3 L/h
DP2OB Water coming from the desalination plant to the office building L/h
Ep Electricity price 0.14 e/kWh
F Feed flow rate L/h
L Water level of the storage tank L
Lmin Minimum water level of the storage tank L
Lmax Maximum water level of the storage tank L
NMD Number of MD modules in the desalination unit 30
m Constant 1 used in the MPC problem −1000
M Constant 2 used in the MPC problem 1000
NMD Integer variable containing the number of MD modules -

turned on at each sampling time
Pf Power consumption of the feed water pump of kW

the desalination plant
PN2GH1 Water coming from the public utility network to Greenhouse 1 L/h
PN2GH2 Water coming from the public utility network to Greenhouse 2 L/h
PN2GH3 Water coming from the public utility network to Greenhouse 3 L/h
PN2OB Water coming from the public utility network to the office building L/h
Tcs,out Temperature at the outlet of the heat exchanger, cold side oC
Tf eed Feed water temperature oC
Ts Sampling time 15 min
T∗ Minimum temperature required to operate the desalination plant 60 oC
Wp Price of water coming from the public utility network 0.50 e/kWh
βi Auxiliary binary variable used in the MPC problem related to the 0–1

valve position of each MD module i
δi Valve position of each MD module i 0–1
γ Auxiliary binary variable used in the MPC problem related to the 0–1

operational constraints

Appendix B.

MPC Control Formulation

The MPC control problem to be solved at each sampling time can be posed as a Mixed Integer
Linear Programming (MILP) optimization problem as follows:

min J = ∑
j=1

N[
ĈPN(t + j|t) + ĈDP(t + j|t)

]
, (A1)
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subjected to ∀j = 1, . . . , N:

D̂T(t + j|t) =
N

∑ MDi=1
[
(3.24 + 0.072 · T̂cs,out(t + j|t)− 0.4896 · T̂feed(t + j|t)) · (1− βi(t + j− 1|t))

+ (−0.024 · F(t + j− 1|t) + 0.0096 · T̂cs,out(t + j|t) · F(t + j− 1|t)) · βi(t + j− 1|t)
]
,

(A2)

βi(t + j− 1|t) ∈ {0, 1}, ∀i = 1, . . . , NMD, (A3)

−m · γ(t + j− 1|t) ≤ (T̂cs,out(t + j|t)− T∗)−m, (A4)

−M · γ(t + j− 1|t) ≤ −(T̂cs,out(t + j|t)− T∗), (A5)

γ(t + j− 1|t) ∈ {0, 1}, (A6)

− βi(t + j− 1|t) + δi(t + j− 1|t) ≤ 0, ∀i = 1, . . . , NMD, (A7)

− γ(t + j− 1|t) + δi(t + j− 1|t) ≤ 0, ∀i = 1, . . . , NMD, (A8)

βi(t + j− 1|t) + γ(t + j− 1|t)− δi(t + j− 1|t) ≤ 1, ∀i = 1, . . . , NMD, (A9)

δi(t + j− 1|t) ∈ {0, 1}, ∀i = 1, . . . , NMD, (A10)

L̂(t + j|t) = L̂(t + j− 1|t) + c2 · Ts ·
[
D̂T(t + j|t)− ˆDP2GH1(t + j|t)− ˆDP2GH2(t + j|t)

− ˆDP2GH3(t + j|t)− ˆDP2OB(t + j|t)
]
,

(A11)

Lmin ≤ L̂(t + j|t) ≤ Lmax, (A12)

D̂GH1(t + j|t) = ˆDP2GH1(t + j|t) + ˆPN2GH1(t + j|t), (A13)

D̂GH2(t + j|t) = ˆDP2GH2(t + j|t) + ˆPN2GH2(t + j|t), (A14)

D̂GH3(t + j|t) = ˆDP2GH3(t + j|t) + ˆPN2GH3(t + j|t), (A15)

D̂OB(t + j|t) = ˆDP2GOB(t + j|t) + ˆPN2GOB(t + j|t), (A16)

ĈDP(t + j|t) = (22.72 · c1 ·
NMD

∑
i=1

[
F(t + j− 1|t) · δi(t + j− 1|t)

]
+ 39.54) · Ts · c2 · Ep, (A17)

ĈPN(t + j|t) = ( ˆPN2GH1(t + j|t) + ˆPN2GH2(t + j|t) + ˆPN2GH3(t + j|t)
+ ˆPN2GOB(t + j|t)) · c3 · Ts ·Wp.

(A18)

In this formulation, the objective function (Equation (A1)) aims to reduce the operational costs
of the agroindustrial district in terms of water, considering the cost of the water coming from the
public utility network (CPN) and that of the feed water pump of the desalination plant (CDP). Note
that other types of costs in the desalination plant, as the ones of the solar field feeding it, have
not been taken into account as they were already optimized in the previous published work [37].
The optimization problem is subjected to a set of process and operational constraints, which are
presented in Equations (A2)–(A18).

Firstly, the set of constraints in Equations (A2)–(A10) is related to the desalination plant. In this set,
the constraints in Equations (A2) and (A3) are used to compute the distillate production (D̂T(t + j|t))
along the prediction horizon. Note that the model presented in Equation (1) is employed, but an
auxiliary binary variable βi(t + j− 1|t) with i = 1, . . . , NMD for taking into account the MD modules
states (turned on/off) is used instead of the actual variable δi(t + j− 1|t) with i = 1, . . . , NMD. This is
because the modules can be only turned on if the temperature required to operate them (T∗=60 oC) is
reached. Thus, this statement is included in the optimization problem using the set of constraints in
Equations (A4)–(A6), so that another auxiliary binary variable γ(t+ j− 1|t) takes the value of one if the
aforementioned statement is true and zero otherwise. Finally, the value of the actual variable related
to the valve position of each MD module (δi(t + j− 1|t) with i = 1, . . . , NMD) is computed at each
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instant time as δi(t + j− 1|t) = βi(t + j− 1|t) · γi(t + j− 1|t) ∀i = 1, . . . , NMD. This multiplication is
formulated in the problem by means of a set of linear constraints (see Equations (A7)–(A10)).

Secondly, the constraints in Equations (A11) and (A12) are related to the tank level. The first one
is used to compute the level (L̂(t + j|t)) along the prediction horizon, which is calculated based on
the level of the previous instant time (L̂(t + j− 1|t)), the water that is received from the desalination
plant (D̂T(t + j|t)), and the water that is sent to to the office building and Greenhouses 1, 2, and 3
( ˆDP2OB(t+ j|t), ˆDP2GH1(t+ j|t), ˆDP2GH2(t+ j|t), and ˆDP2GH3(t+ j|t), respectively). The second
one defines the maximum and minimum level of the tank.

Thirdly, the constraints in Equations (A13)–(A16) define the relationship between producers and
consumer agents, so that the water demanded by each consumer agent must be covered by the sum of
the water that it receives from the desalination plant and from the water public utility network.

Fourthly, the constraints in Equations (A17) and (A18) are used to calculate the cost related to the
operation of the feed water pump of the desalination plant (CDP) and that of the water coming from
the public utility network (CPN) along the prediction horizon.

Once the overall MPC problem is formulated, it should be pointed out that the decision variables
of the optimization problem are δi and βi ∀i = 1, . . . , NMD, γ, DP2GH1, PN2GH1, DP2GH2, PN2GH2,
DP2GH3, PN2GH3, DP2OB, and PN2OB. Conversely, L, Tcs,out, Tf eed, DGH1, DGH2, DGH3, and DOB
are state variables whose values change according to the operational conditions of the desalination
plant and the greenhouses and office building, respectively. In the simulations, real data were used for
predicting these variables.
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