
A Trading-Based Knowledge Representation
Metamodel for Management Information System

Development

José-Andrés Asensio1, Luis Iribarne1, Nicolás Padilla1, and
Cristina Vicente-Chicote2

1 Applied Computing Group, Department of Languages and Computing
University of Almeria, Spain

{jacortes,luis.iribarne,npadilla}@ual.es
2 Department of Information and Communication Technologies

Technical University of Cartagena, Spain
cristina.vicente@upct.es

Abstract. Design patterns are useful in Software Engineering to abs-
tract common implementations regardless of the scope of application.
This paper presents a metamodel for Trading-based Knowledge Repre-
sentation (TKR), which embeds useful design patters for modeling Mana-
gement Information Systems (MIS). The paper presents a case study in
which this TKR metamodel is used to specify an Environmental Mana-
gement Information System (EMIS). It also presents a GMF graphical
model editor aimed to ease TKR model specification and validation.

Keywords: Trading-Based Knowledge Representation (TKR), Model
Transformation, MDE, GMF.

1 Introduction

Management Information Systems (MIS) facilitate information retrieval and
decision-making, allowing cooperative work. The design of these systems re-
quires the use of standard methods and techniques that provide both a common
vocabulary for the representation of the system knowledge and a real-time in-
teraction with it. In order to achieve them, recently, some MIS for web (WMIS)
have been developed under open and distributed paradigms [14]. Semantic web,
data-mining and information querying components appear in most WMIS [12].

Environmental Management Information Systems (EMIS) are a clear exam-
ple of WMIS [2]. These systems are commonly shared by a wide variety of users
(e.g., technicians, politicians, administrators, etc.), who cooperate with each
other and interact with the system for decision-making and problem resolu-
tion. One of the main features of the EMIS is that they usually manage large
knowledge bases, normally distributed in different places. This requires the use
of common vocabularies (ontologies) for knowledge representation sharing and
understanding among the different actors in the system.

José-Andrés Asensio, Luis Iribarne, Nicolás Padilla, Cristina Vicente-Chicote

Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011

701

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Institucional de la Universidad de Almería (Spain)

https://core.ac.uk/display/288890581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


In this context, in addition to the above elements, we propose the use of
traders to improve the interoperability of the web components included in these
open and distributed systems [5], [10], [6]. Traders represent another solution for
such systems [13], which extend the Object-Request Broker (ORB) mechanism
for the Object Management Architecture (OMA). A trader is an object which
acts as intermediary between objects providing certain capacities (services) and
objects that require a dynamic use of these capacities. Although their traditional
use is for object interoperability, traders (together with the use of ontologies)
also allow us to improve querying and information retrieval in these systems.
The SOLERES system [1], [11] is a web-based EMIS with spatio-temporal mana-
gement capabilities, based on neural-networks, ontologies, agents, and software
trading components [7]. More precisely, this system has a knowledge representa-
tion subsystem called SOLERES-KRS, which uses the “concept” of ontological
trader.

This paper presents a metamodel for describing Trading-based Knowledge
Representation (TKR) systems. This metamodel aims to ease the design of
these systems regardless of the application scope. Its use is illustrated using
the SOLERES-KRS system as a case study. The rest of the paper is organized
as follows: Section 2 describes the proposed metamodel; Section 3 describes the
GMF tool developed to ease the design of TKR systems and presents the case
study; finally, Section 4 presents some conclusions and future work.

2 Trading-Based Knowledge Representation Metamodel

The components of the TKR system architecture, proposed in this paper, can be
distributed on different nodes. These nodes can be composed of some modules
(related to each other) according to the wished configuration. As a base configu-
ration, each node must contain, at least, a Service Module (SM), a Management
Module (MM) and a Querying Module (QM). Additionally, it can also contain
zero or more Trading Modules (TM) and Processing Modules (PM). The system
must have, at least, a TM module and a PM module in some of its nodes. The
functionality of these modules is described next.

SM provides a complete set of services shared by the other modules, including
services for module and component registration, status checking, etc. MM acts
as a link between the user interface and the other modules, enabling the configu-
ration of the former and being responsible for managing the user demands. QMs
are exclusively concerned with the information queries demanded by the users.
TMs enable the search and location of information in the system, establishing a
filter based on the query parameters. Finally, PMs are responsible for managing
the knowledge bases (insertion, modification and removal of information). More
than one instance of QM, TM and PM may be needed in order to accomplish
the requirements of the system under design.

Figure 1 represents the proposed TKR system metamodel, which includes
the concepts and restrictions previously described. It is worth noting that this
metamodel enables the description of models of TKR systems. It should also be

A Trading-Based Knowledge Representation Metamodel for Management Information System
Development

702 Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011



Fig. 1. TKR system metamodel.

noted the inclusion of the abstract Module metaclass, from which the different
types of modules, previously described, inherit. Although this metaclass only
includes the identifier (id) attribute, its aim is to gather in the future all the
common attributes shared by the different modules. The rest of the metaclasses
already include the necessary properties (i.e., their attributes and relations with
other metaclasses). For instance, the following attributes need to be set for each
Node: an identifier (id), an IP address (ip), a communication port (port) and
a secondary port to set up the repository (dbport). Similarly, for each Trading-
Module, five Boolean attributes need to be set, each one indicating whether the
trader implements or not the following interfaces: lookup (lookupInterface), reg-
ister (registerInterface), admin (adminInterface), link (linkInterface) and proxy
(proxyInterface). It is worth noting that both the lookup and the register inter-
faces are required because each trading module is inherently related to a meta-
data repository used for improving information retrieval [13]. The metamodel
also enables the creation of TM federations (by means of the isFederatedWith
relation) and the binding of each PM and QM (by means of the usesRegis-
terInterface and the usesLookupInterface relations, respectively) with the TM
responsible of storing and querying the information in the metadata repository,
respectively. However, the metamodel does not allow us to define certain cons-
traints, such as the one that states that “a TKR system must have, at least,
a TM and a PM in some of its nodes”, or the one that states that “if there
exists a federation between two TMs, then it is required that the link interfaces
of both modules are enabled”. In order to cope with this kind of syntactic res-
trictions that cannot be described in the metamodel, we have defined a set of
OCL rules, further detailed in the following section. The proposed metamodel
has been defined using the Eclipse Modeling Framework (EMF) [3], which pro-

José-Andrés Asensio, Luis Iribarne, Nicolás Padilla, Cristina Vicente-Chicote

Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011

703



vides the most widely used implementation of a subset of the OMG Standard
Meta-Object Facility (MOF) [8], known as Essential MOF (EMOF).

3 A GMF Tool to Deploy TKR Models

In order to ease the creation of TKR system models, conforming to the meta-
model described in Section 2, we have implemented a graphical model editor3

using the Eclipse Graphical Modelling Framework (GMF) [4]. In order to im-
plement GMF editors, the following process needs to be followed: (1) define a
graphical representation for each metamodel concept, (2) define a toolbar that
enables the creation of instances of each metamodel concept, and (3) define a
mapping among each metamodel concept, its graphical representation, and its
creation tool. GMF also allowed us to extend the syntactic rules defined in the
metamodel with additional constrains, defined using the standard Object Con-
straint Language (OCL) [9]. Table 1 gathers three of these constraints: the first
rule indicates that each TKR system must contain, at least, a TM and a PM in
some of its nodes; the second rule makes sure that TMs are not federated with
themselves; and the third rule makes sure that when two TMs are federated,
their link interfaces are enabled.

Table 1. Some OCL constraints of the GMF tool.

rule #1: context InformationSystem inv:
self.hasNode -> exists(n | n.hasTradingModule -> size() > 0) and
self.hasNode -> exists(n | n.hasProcessingModule -> size() > 0)

rule #2: context TradingModule inv:
self.isFederatedWith -> forAll(tm | (tm <> self))

rule #3: context TradingModule inv:
self.isFederatedWith -> notEmpty() implies (self.linkInterface = true) and
self.isFederatedWith -> forAll(tm | (tm.linkInterface = true))

Figure 2 shows an example model created using the GMF graphical model
editor developed as part of this work. The metamodel concepts appear in the
toolbar shown on the right side of the editor window. The toolbar is divided
into three types of instance creation tools, namely: a) those for creating nodes,
b) those for adding modules inside each node, and c) those for creating relation-
ships between some modules. Federation relationships are depicted using dashed
arrows, while the relationships between PMs or QMs and their corresponding
TMs are depicted using solid arrows. Some model element attributes are shown
in the diagram as labels (e.g., IP address, ports, ambient, interfaces, etc.), while

3 This tool is available at http://www.ual.es/acg/soleres/tkr

A Trading-Based Knowledge Representation Metamodel for Management Information System
Development

704 Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011



others are not for the sake of readability. Regardless of whether the attributes
are graphically depicted or not, they can all be inspected and modified using the
Eclipse properties tab.

The process to design a TKR system model using this GMF editor involves
the following steps: (1) create as many Nodes as required —for each Node, its
compulsory Modules (i.e., SM, MM, and QM) are automatically added; (2) for
each Node, specify its ip, port, dbport and id attributes; (3) for each Node, if
appropriate, add the corresponding PMs and TMs, taking into account that, at
least, there should be one of each type in the entire system; (4) for each TM,
select the interfaces it implements by setting the corresponding attributes —
the lookupInterface and the registerInterface are automatically set to true, as
described in Section 2; (5) connect the federated TMs (if any); and (6) link each
PM and QM with a TM.

The model depicted in Figure 2 corresponds to the TKR subsystem of the
SOLERES WMIS environment, called Knowledge Representation Subsystem (S-
KRS4). This subsystem is comprised of three nodes, all of them containing, in
turn, the compulsory modules SM, MM and QM. In addition, the nodes with
id “Node 1” and “Node 2” contain a PM and a TM, respectively, fulfilling the
minimum system configuration requirements. In addition, the system contains a
federation (dashed arrow) between the TMs included in “Node 1” and “Node 2”,
representing that the first module may delegate its information queries to the
second one. Finally, the required links (solid arrows) between all PMs and QMs
and the corresponding TMs (belonging the same or to other Nodes) have been
also defined in the model.

Fig. 2. GMF tool for designing TKR system models.

4 SOLERES project is available at http://www.ual.es/acg/soleres

José-Andrés Asensio, Luis Iribarne, Nicolás Padilla, Cristina Vicente-Chicote

Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011

705



4 Conclusions and future work

In this work we have presented a MDE approach to TKR system design in the
context of WMIS. We have presented a metamodel and a GMF model editor
developed from it that aims to ease the design of this kind of systems in a
fast and simple way through a graphical interface. A model of the SOLERES-
KRS subsystem has been presented that illustrates the proposed design process
using the developed GMF model editor. As future work, we plan to create an
implementation repository for storing the binary components developed for these
systems. Besides, we also plan to develop a configuration definition language that
allows us to map (1) the design-time components, defined using the GMF model
editor presented in this paper, and (2) the reusable binary components stored
in the repository. The final goal of this research is to automatically obtain the
implementation of the whole system from these configuration models.

Acknowledgment. This work has been supported by the EU (FEDER) and
the Spanish Ministry MICINN under grant of the TIN2010-15588 and TRA2009-
0309 projects, and the JUNTA de ANDALUCÍA (proyecto de excelencia) under
grant TIC-6114 project, http://www.ual.es/acg/soleres.

References

1. J.A. Asensio, L. Iribarne, N. Padilla, and R. Ayala. Implementing Trading Agents
for Adaptable and Evolutive COTS Components Architectures. Int. Conf. on e-
Business, Porto, Portugal, pages 259–262, 2008.

2. O. El-Gayar and B. Fritz. Environmental Management Information Systems
(EMIS) for Sustainable Development: a Conceptual Overview. Communications
of the Assoc. for Inf. Systems, 17(1):34, 2006.

3. EMF. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf
4. GMF. Graphical Modeling Framework. http://www.eclipse.org/modeling/gmf
5. M. Huang. A New Method to Formal Description of Spatial Ontology. Information

Technology and Environmental System Sciences, 3:417–421, 2008.
6. L. Iribarne, J.M. Troya and A. Vallecillo. A Trading Service for COTS Components.

The Computer Journal, 47(3):342-357, 2004.
7. L. Iribarne et al. The SOLERES R&D Project: A Spatio-Temporal Environmental

Management Information System based on Neural-Networks, Agents and Software
Components. Applied Computing Group, University of Almeria, Spain, 2008.

8. OMG. Meta-Object Facility. Tech. Report, http://www.omg.org/mof/.
9. OMG. Object Constraint Language Specification, version 2.0. http://www.omg.

org/technology/documents/formal/ocl.htm.
10. OMG. Trading Object Service Specification. http://www.omg.org., 2001.
11. N. Padilla, L. Iribarne, J.A. Asensio, F. Muñoz, and R. Ayala. Modelling an En-

vironmental Knowledge-Representation System. WSKS’2008, pages 70–78, 2008.
12. D. Taniar and J. Rahayu. Web Information Systems. IGI Global, 2004.
13. I. Trader. ISO/IEC DIS 13235-1: IT–Open Distributed Processing–ODP Trading

Function–Part 1: Specification, 1996.
14. M. Xiao-feng, X. Bao-wen, L. Qing, Y. Ge, S. Jun-yi, L. Zheng-ding, and H. Yan-

xiang. A Survey of Web Information Technology and Application. Wuhan Univer-
sity Journal of Natural Sciences, 11(1):1–5, 2006.

A Trading-Based Knowledge Representation Metamodel for Management Information System
Development

706 Jornadas de Ingenieŕıa del Software y Bases de Datos (JISBD)
A Coruña, 5–7 Septiembre 2011


