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Abstract— This paper presents an efficient
technique for the analysis of arbitrary shaped
circuits and antennas when embedded in metal-
lic cavities. The technique uses the integral
equation formulation and is based on the repre-
sentation of the rigorous spatial domain boxed
Green’s functions in terms of modal series ex-
pansions. A new analytical integration scheme
extended to arbitrary triangular domains is de-
rived and asymptotic extraction procedures are
used to enhance the convergence of the integral
equation kernel. The technique thus derived
is very efficient computationally and the simu-
lated results show good agreement with mea-
surements.

I. Introduction

The analysis of shielded circuits and antennas is
a subject that has always attracted much atten-
tion and numerous numerical models have been
developed in the past [1]--[3]. Among the tech-
niques commonly used, the Integral Equation (IE)
approach has become very popular because of
its computational efficiency. The main difficulty,
however, of the integral equation approach when
formulated in the space domain, is the slow con-
vergence behavior of the modal series involved.
Traditionally, the use of the Fast Fourier Trans-
form (FFT) to accelerate the series convergence
has been successfully used [1] but this method re-
stricts the subsequent application of the Method
of Moments (MoM) to uniform meshes. In con-
sequence, the discretization of arbitrary circuits
of complex shapes becomes a difficult task. Re-
cently, two more contributions on series acceler-
ation without the FFT have been reported [2],
[3] but a common feature of all above techniques
is that they are combined with MoM algorithms
based on subsectional roof-top functions, so that
the discretization of the circuit’s geometries is
only accurate when rectangular shapes are in-
volved.

In this paper we provide a new contribution to
the analysis of arbitrary shaped shielded circuits
and antennas. The technique is based on the space
domain integral equation and a new analytical in-
tegration scheme on arbitrary triangular domains
have been derived, thus allowing the discretiza-
tion of the geometries involved using general tri-
angular cells based MoM algorithms [4]. To allevi-
ate the problems of the modal series convergence,
an asymptotic extraction procedure similar to the
one described in [3] is used. The static part of
the resulting kernel is frequency independent and
convergence is aided with the use of the analytical
integration technique derived on the MoM basis
and test functions. On the other hand, the dy-
namic part of the kernel is frequency dependent
but convergence is faster due to the asymptotic
extraction technique used. The technique derived
has shown to be computationally efficient and nu-
merically accurate when compared with measure-
ments.

II. Theory

Following the IE approach in the space domain,
the dyadic electric and magnetic field Green’s
functions are written using the well known modal
expansions [5] as

GEJ
=

∑

m

Vm(z, z′) ēm(x′, y′) ēm(x, y), (1a)

GHJ
=

∑

m

Im(z, z′) ēm(x′, y′) h̄m(x, y), (1b)

GEM
=

∑

m

Vm(z, z′) h̄m(x′, y′) ēm(x, y), (1c)

GHM
=

∑

m

Im(z, z′) h̄m(x′, y′) h̄m(x, y), (1d)

where Vm(z, z′), Im(z, z′) are voltages and cur-
rents computed in the transverse transmission line
equivalent networks of the specific structure under



analysis [6], ēm, h̄m are the vector mode functions
of electric and magnetic types and the index m
runs to all TEm,n and TMm,n modes in the cavity.
The main difficulty in the implementation of

this approach is in the summation of the infinite
series shown in (1). Indeed, the associated se-
ries exhibit a very slow convergence behavior and
there is lack in numerical techniques to efficiently
perform the required summations. A way to cir-
cumvent this problem is to use the basis and test
functions of the MoM algorithm to accelerate the
convergence behavior of the series. The problem
of using this technique, however, is that standard
numerical integration on triangular domains can
not be used, because it would require prohibitive
large number of integration points, specially when
the order of the mode increases. Fortunately, for
the case of a rectangular cavity, analytical integra-
tion is possible and a simple procedure has been
derived. The analytical details are straightfor-
ward but cumbersome and hence they will not be
reported here for the sake of space. An overview
of the integration algorithm will be given in the
conference.
Using this analytical integration technique, the

convergence of the integral equation kernel is
greatly improved and in order to further enhance
the convergence properties of the series involved,
an asymptotic extraction procedure can, in addi-
tion, be implemented [3]. To start first note that
when the Green’s functions in (1) are introduced
in a standard integral equation formulation any
MoM matrix coefficient inside a cavity can be eas-
ily cast in the following general form

R(i, k) =
∑

m

tm(r, s) If (m, i) If (m, k), (2)

where If is an overlapping integral computed
with the analytical integration scheme derived and
tm(r, s) is the voltage or current coefficient shown
in (1), and evaluated at interface sr when the
source is placed at interface ss.
The key step in the formulation is to add and

subtract to (2) the asymptotic term t0m of the
spectral domain quantity. Equation (2) can then
be written as

R(i, k) =
∑

m

[

tm(r, s)− t0m(r, s)
]

If (m, i) If (m, k) +R0(i, k),
(3a)

R0(i, k) =
∑

m

t0m(r, s) If (m, i) If (m, k). (3b)

Note that if the source and observer points are
at different interfaces, the energy excited by the

source can never reach the observer point in the
asymptotic limiting case. In this case the interac-
tion for the asymptotic term is negligible and we
directly write: t0m(r, s) = 0; ∀r 6= s. For all other
cases, the asymptotic term is split into TE and
TM parts and after few simple manipulations we
obtain

R0(i, k) = j dTE

w RTE(i, k) +
1

j dTM
w RTM(i, k)

, (4)

where we have defined

dTE

w = ω µ0M(s), M(s) =
µ
(s)
r µ

(s−1)
r

µ
(s)
r + µ

(s−1)
r

,

(5a)

dTM

w = ω ǫ0E(s), E(s) = ǫ(s)r + ǫ(s−1)
r , (5b)

and the following static series

RTE(i, k) =
∑

m

1

kρm,n
ITE

f (m, i) ITE

f (m, k), (6a)

RTM(i, k) =
∑

m

kρm,n I
TM

f (m, i) ITM

f (m, k), (6b)

where the transverse wavenumber takes the usual
expression in a rectangular waveguide, namely

kρm,n =

√

(

mπ

a

)2
+
(

nπ

b

)2
. (7)

The interesting feature of (6) is that all quan-
tities depend only on geometrical parameters of
the antenna and are therefore frequency indepen-
dent. Consequently the series in (6) are computed
once for a given geometry and are not recomputed
for each frequency point. On the other hand, the
final MoM coefficients are computed with (3a),
this time frequency dependent. It is important to
note however, that since the asymptotic term is
extracted the resulting series will converge much
faster than the original ones. Following the pro-
posed method, we have managed to combine a
general triangular based MoM formulation with a
rigorous modal solution of general cavity backed
circuits and antennas.

III. Results and Conclusions

Based on the theory derived in this paper a soft-
ware tool has been built for the analysis of a struc-
ture which can be composed, in the most general
case, of an arbitrary number of patches and slots
embedded or not in metallic cavities. For those
antenna elements outside metallic cavities, a tra-
ditional Sommerfeld treatment has been used to-
gether with a Mixed Potential Integral Equation



(MPIE) [7], and it is properly combined with the
technique described in this paper for the treat-
ment of shielded elements.
All the capabilities of the software developed

are fully exploited with the analysis of a circular
polarized cavity backed antenna containing two
stacked patches of complex shapes. In Fig. 1 we
show the basic geometry of the antenna and the
triangular meshes used in conjunction with the
developed algorithms.
The first interesting property of the method is

the convergence behavior of the integral equation
kernel for shielded elements. In Fig. 2 we present
the convergence plots for the static and dynamic
parts of the kernel for a single MoM coefficient
with respect the number of modes included in
equation (1). As we can observe, for this particu-
lar geometry the convergence of the static part is
rather slow (5000 modes are needed) but it is com-
puted only once at the beginning and it is there-
fore not repeated in each subsequent frequency
point. On the other hand, the dynamic part of the
kernel reaches good convergence with only 1500
modes.
Finally, in Fig. 3 we present the measured ver-

sus simulated results for the input impedance of
the antenna and in Fig. 4 for the axial ratio, show-
ing in both cases good agreement. Only in the ax-
ial ratio a difference of about 2dB can be observed
between predicted and measured results. For this
analysis the software takes an initial 5 min. 22
sec. to perform the frequency independent cal-
culations plus 53 sec. per each subsequent fre-
quency point on an HP-712/80 platform. Results
show that the derived approach is accurate and
with very reasonable computational times, even
for very complex radiators.
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Fig. 1. Geometry of the circular polarized antenna
analyzed in this paper.
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Fig. 2. Typical convergence behavior of the static and
dynamic parts of the integral equation kernel.
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Fig. 3. Measured versus simulated results for the input
impedance of the antenna in Fig 1.
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Fig. 4. Measured versus simulated results for the axial
ratio of the antenna in Fig 1.


