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Abstract ： Land surface temperature (LST) is an important parameter at the 23 

land-atmosphere interface. The Collection 6 (C6) MODIS LST products are publicly 24 

available. Three refinements were performed over bare soil surfaces in the C6 MODIS 25 

LST products when compared with the Collection 5 (C5) MODIS LST products. To 26 

facilitate the use of the LST products in a wide range of applications, it is necessary to 27 

comprehensively evaluate the accuracies of the C6 MODIS LST products. In this 28 

study, we validated the C6 MODIS LST products using the temperature-based method 29 
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over various land cover types, including grassland, cropland, cropland/natural 30 

vegetation mosaic, Gobi, sandy dune, and desert steppe. In situ measurements were 31 

collected from sites under different atmospheric and surface conditions, including six 32 

SURFRAD sites in the United States, two KIT sites in Portugal and Namibia, and four 33 

HiWATER sites in China. In general, the accuracies of the C6 MODIS LST products 34 

at night are better than those during daytime. The daytime RMSE varies from 35 

approximately 1.5 K to 5.6 K, whereas the night-time RMSE is less than 2 K at all 36 

sites except for the HiWATER SSW site. Furthermore, the accuracies of the C6 37 

MODIS LST products were compared with those of the C5 MODIS LST products 38 

over bare soil surfaces. The C6 MODIS LST products are in excellent agreement with 39 

the in situ LST measurements at the KIT Gobabeb site, with biases of 0.36 K during 40 

the day and 0.24 K at night, and RMSEs of 1.5 K during daytime and 0.74 K during 41 

night-time. However, there are no improvements in the accuracies of the C6 MODIS 42 

LST products when compared with the C5 MODIS LST products due to further 43 

overestimation of emissivities at the four HiWATER sites. 44 

 45 

Key words: Land surface temperature, MODIS, temperature-based validation method, 46 

split-window algorithm, in situ measurements. 47 

 48 

1. Introduction 49 

 Land surface temperature (LST) is an important climate variable, which is related 50 

to surface energy and water balance. It is also a key parameter for various studies 51 

including hydrology, climatology, environment, and ecology (Anderson et al., 2008; 52 

Duan et al., 2014; Sandholt et al., 2002; Weng, 2009). For instance, satellite-derived 53 

LST has been used in land cover and land-cover change analysis (Lambin and Ehrlich, 54 

1997), in estimation and parameterization of surface fluxes (Lu et al., 2013), and in 55 

drought monitoring and surface soil moisture estimation (Wan et al., 2004; Leng et al., 56 

2014). LST has been identified as an important Earth Surface Data Record (ESDR) by 57 

NASA. Furthermore, LST has been accepted and defined as an Environmental 58 

Climate Variable (ECV) by the Global Climate Observing System (GCOS).  59 
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 The Moderate Resolution Imaging Spectroradiometer (MODIS) sensor is one of 60 

the key instruments on the Terra and Aqua platforms of the NASA Earth Observing 61 

System. MODIS can provide observational overlap and continuity in conjunction with 62 

the Advanced Very High Resolution Radiometer (AVHRR) onboard the NOAA’s 63 

operational polar-orbiting satellites and the Visible Infrared Imaging Radiometer Suite 64 

(VIIRS) onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. 65 

Two LST retrieval algorithms were developed to generate the MODIS LST products. 66 

One algorithm is the generalized split-window (GSW) algorithm (Becker and Li, 1990; 67 

Wan and Dozier, 1996), which generates LST products at 1 km resolution. The other 68 

algorithm is the physics-based day/night algorithm (Wan and Li, 1997), which 69 

generates LST products at approximately 5 km (Collection 4, C4) and 6 km 70 

(Collection 5, C5) resolution. 71 

 The C4 and C5 MODIS LST products were validated using the 72 

temperature-based (T-based) and radiance-based (R-based) methods over various sites, 73 

including bare soil, grassland, silt playa, cropland, and in-land water (Wan et al., 2002, 74 

2004; Wan and Li, 2008; Wan, 2008, 2014; Coll et al., 2005, 2009). The results 75 

indicate that the accuracies of the MODIS LST products are better than 1 K over most 76 

sites except for bare soil sites. Three refinements were performed in the Collection 6 77 

(C6) MODIS GSW LST algorithm over bare soil surfaces to improve the accuracies 78 

of the MODIS LST products (Wan, 2014). The C6 MODIS LST products are publicly 79 

available for the user community. Assessing the accuracies of the C6 MODIS LST 80 

products will help to facilitate the use of the LST products in a wide range of 81 

applications. 82 

 The main objective of this study is to comprehensively validate the C6 MODIS 83 

LST products using in situ measurements over various land cover types, including 84 

grassland, cropland, cropland/natural vegetation mosaic, Gobi, sandy dune, and desert 85 

steppe. This paper is organized as follows: Sections 2 and 3 introduces the MODIS 86 

LST products and in situ measurements, respectively, Section 4 describes the 87 

methodologies used in this study, Section 5 and 6 presents the results and discussion 88 

of the validation of the C6 MODIS LST products, and the last section provides the 89 
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conclusions of the study. 90 

 91 

2. MODIS LST products 92 

 The MODIS level-2 LST products (MOD11_L2 and MYD11_L2) were retrieved 93 

with the GSW LST algorithm from brightness temperatures in MODIS bands 31 and 94 

32 (Becker and Li, 1990; Wan and Dozier, 1996). The GSW LST algorithm is written 95 

as: 96 

 31 32 31 32
0 1 2 3 4 5 62 2

1 1
2 2s

T T T TT b b b b b b bε ∆ε ε ∆ε
ε ε ε ε

+ −− −   = + + + + + +   
   

 (1) 97 

where Ts is the LST, ε and Δε are the mean and difference of the emissivities in bands 98 

31 and 32. The regression coefficients bk (k=0-6) depend on viewing zenith angle 99 

(VZA), surface air temperature (Ta), and atmospheric column water vapor (CWV). 100 

These coefficients were derived from regression analysis of radiative transfer 101 

simulation data for LST values varying from Ta-16 K to Ta+16 K.  102 

 To improve the accuracies of the MODIS LST products, three refinements were 103 

performed in the C6 MODIS GSW LST algorithm over bare soil surfaces (Wan, 2014). 104 

First, two separate sets of coefficients were used to retrieve daytime and night-time 105 

LST over bare soil surfaces in the hot and warm bare soil zone within latitude range 106 

from −38° to 49.5°. In the original GSW LST algorithm, one set of coefficients was 107 

used to retrieve daytime and night-time LST for each group of similar land cover 108 

types. Second, the emissivity differences in MODIS bands 31 and 32 over bare soil 109 

surfaces were adjusted. Third, a quadratic term of the difference between brightness 110 

temperatures in bands 31 and 32 was added into the original GSW LST algorithm. 111 

The refined GSW LST algorithm is expressed as: 112 
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 (2) 113 

The MODIS LST products were downloaded from the Reverb website 114 

(http://reverb.echo.nasa.gov/). The MODIS Reprojection Tool (MRTSwath) was used 115 

http://reverb.echo.nasa.gov/
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to convert the MOD11_L2 and MYD11_L2 products from the sinusoidal projection in 116 

HDF format into a geographic projection in GeoTiff format. The science data set 117 

layers LST, LSE, and quality control (QC) were extracted from the MOD11_L2 and 118 

MYD11_L2 products. Only high-quality LST data (i.e., QC=0) were used in this 119 

study. 120 

 121 

3. In situ measurements 122 

3.1. SURFRAD sites 123 

 The Surface Radiation Budget Network (SURFRAD) was established in 1993 124 

with a primary objective of supporting climate research with accurate, continuous, 125 

long-term measurements of the surface radiation budget over the United States 126 

(Augustine et al., 2000). Six SURFRAD sites operated in climatologically diverse 127 

regions and represented various land cover types were selected in this study. Fig. 1 128 

shows the ground photographs of the six sites. Table 1 summarizes the detailed 129 

information on the six sites. These sites provide quality-controlled measurements of 130 

surface upwelling and downwelling longwave radiations along with other 131 

meteorological parameters every 3 minutes before 2009 or every 1 minute after 2009. 132 

The upwelling and downwelling longwave radiations were measured by two 133 

pyrgeometers (Eppley Precision Infrared Radiometer, spectral range 3-50 μm) 134 

deployed at a 10-meter high tower. The spatial representativeness of the pyrgeometer 135 

measurements is approximately 70 × 70 m2 (Guillevic et al., 2014). The ground-based 136 

measurements from the SURFRAD sites are good reference data sets for long-term 137 

LST validation (Li et al., 2014). These measurements have been widely used to 138 

evaluate satellite-derived LST products, e.g., ASTER (Wang and Liang, 2009), GOES 139 

(Yu et al., 2012; Xu et al., 2014), and VIIRS (Guillevic et al., 2014; Liu et al., 2015). 140 

 141 



6 
 

 142 

Fig. 1. Ground photographs of the six SURFRAD sites. 143 

 144 

Table 1. Detailed information on the six SURFRAD sites. 145 

Site * Latitude Longitude Elevation Land cover type Time period (d/m/y) 
BND 40.052° N 88.373° W 230 m Cropland 01/01/2004-31/12/2005 
TBL 40.125° N 105.237° W 1689 m Grassland 01/01/2004-31/12/2005 
FPK 48.308° N 105.102° W 634 m Grassland 01/01/2004-31/12/2005 
GCM 34.255° N 89.873° W 98 m CNVM # 01/01/2004-31/12/2005 
PSU 40.720° N 77.931° W 376 m CNVM # 01/01/2004-31/12/2005 
SXF 43.734° N 96.623° W 473 m Cropland 01/01/2004-31/12/2005 
* BND: Bondville, Illinois, TBL: Table Mountain, Boulder, Colorado, FPK: Fort Peck, 146 
Montana, GCM: Goodwin Creek, Mississippi, PSU: Penn. State Univ., Pennsylvania, 147 
and SXF: Sioux Falls, South Dakota. 148 
# CNVM: Cropland/natural vegetation mosaic. 149 

 150 

3.2. KIT sites 151 

 To enable the continuous validation of the LST products derived from 152 

MSG/SEVIRI data over several years, Karlsruhe Institute of Technology (KIT, 153 

Germany) operates four permanent LST validation stations, i.e., Evora (Portugal), 154 

Dahra (Senegal), Gobabeb (Namibia), and RMZ Farm/Farm Heimat (Namibia). The 155 

four stations were set up over large, thermally homogeneous, and flat areas in 156 

different climate zones. In this study, the in situ LST measurements over the Evora 157 

site in Portugal and the Gobabeb site in Namibia were used to evaluate the C6 158 

MODIS LST products. Fig. 2 shows the ground photographs of the two sites. Table 2 159 

http://www.esrl.noaa.gov/gmd/grad/surfrad/bondvill.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/tablemt.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/ftpeck.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/ftpeck.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/goodwin.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/pennstat.html
http://www.esrl.noaa.gov/gmd/grad/surfrad/siouxfalls.html
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summarizes the detailed information on the two sites.  160 

The Evora LST validation station is located about 12 km south-west of the town 161 

of Evora in the Alentejo region, Portugal. The dominant vegetation types at the station 162 

are isolated groups of evergreen oak trees and grassland (Kabsch et al., 2008, Trigo et 163 

al., 2008). The climate at the station is warm temperate with hot, dry summers, annual 164 

temperature averages between 15 °C and 16 °C and an average annual precipitation of 165 

669 mm. The in situ measurements are collected every minute by three KT-15.85 IIP 166 

infrared radiometers, observing the sunlit background, a tree crown, and the sky at 53° 167 

zenith angle, which is used to estimate atmospheric downwelling radiance. The 168 

KT-15.85 IIP measures thermal infrared radiance in the 9.6-11.5 μm domain and 169 

obtains brightness temperatures with an absolute accuracy of ±0.3 K. Surface 170 

emissivity was estimated using fixed end-member fractions (tree=32%, 171 

grass/ground=68%), i.e., the temporal dependence of the cover fractions was ignored 172 

(Ermida et al., 2014). The KT-15.85 IIP emissivity was set to a static value of 0.974, 173 

which is a typical value for vegetation and close to the corresponding LSA SAF 174 

emissivity for SEVIRI channel 9 over Evora. 175 

The Gobabeb LST validation station is located on the large gravel plains (several 176 

thousand km2) of the Namib Desert in Namibia, which are covered by a highly 177 

homogeneous mixture of gravel, sand and sparse desiccated grass. Due to the 178 

hyper-arid desert climate, the site is spatially and temporally highly stable and, 179 

therefore, ideal for long-term validation of satellite products (Göttsche et al., 2013, 180 

2016). The long-term average annual temperature at the Gobabeb site is 21.1 °C 181 

whereas the average annual precipitation is less than 100 mm and highly variable. 182 

Three KT-15.85 IIP infrared radiometers were deployed at the Gobabeb site. Two 183 

radiometers with a field of view (FOV) of 8.5° are mounted next to each other at 25 m 184 

height and observe an area of about 14 m2 each. The other radiometer views the sky at 185 

53° zenith angle. All station measurements are collected once per minute. The surface 186 

emissivity of the gravel plain is considered constant and is estimated as 0.94 187 

(Göttsche and Hulley, 2012). 188 

 189 
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 190 

Fig. 2. Ground photographs of the two KIT sites. 191 

 192 

Table 2. Detailed information on the two KIT sites. 193 

Site Latitude Longitude Elevation Land cover type Time period (d/m/y) 
Evora 38.5403° N 8.00328° W 227 m Savannas 01/01/2010-31/12/2010 
Gobabeb 23.5510° S 15.0514° E 421 m Gravel 01/01/2010-31/12/2010 

 194 

3.3. HiWATER sites 195 

 The Heihe Watershed Allied Telemetry Experimental Research (HiWATER) is a 196 

comprehensive eco-hydrological experiment taking place in the Heihe River Basin, 197 

the second largest inland river basin in the arid regions of northwest China (37.7°–198 

42.7° N, 97.1°–102.0° E). It designed from an interdisciplinary perspective to address 199 

problems that include heterogeneity, scaling, uncertainty, and closing of the water 200 

cycle at the watershed scale (Li et al., 2013). We used the ground-based 201 

measurements at four sites over three land surface types, i.e., Gobi (GB), sand dune 202 

(SSW), and desert steppe (HZZ and JCHM). The four sites are located in large flat 203 

areas around the oasis. Fig. 3 shows the ground photographs of the four sites. Table 3 204 

summarizes the detailed information on the four sites. 205 

 The GB site consists of small gravel, bare soil, and small Alhagi sparsifolia. The 206 

SSW site is more uniformly, but sparsely covered by Alhagi sparsifolia. The sand 207 

dune at the SSW site is approximately 10 to 20 m high and the sand is primarily 208 

composed of quartz. The HZZ and JCHM sites consist of bare soil and small Alhagi 209 

sparsifolia.  210 

 The GB and SSW sites are each equipped with one Kipp & Zonen CNR1 net 211 
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radiometer, which observes the surface at nadir from a 6 m height. The HZZ and 212 

JCHM sites are each equipped with two Apogee SI-111 infrared radiometers. One 213 

radiometer observes the surface at nadir from a 4 m height with a footprint of 8 m2 at 214 

the JCHM site or a 2.65 m height with a footprint of 3.6 m2 at the HZZ site. The other 215 

radiometer views the sky at an effective angle of approximately 55° from zenith to 216 

measure the atmospheric downwelling radiance. The SI-111 infrared radiometers and 217 

CNR1 net radiometers are collected once per minute. Surface emissivity at the HZZ 218 

and JCHM sites were measured using the ABB BOMEM MR304 spectroradiometers. 219 

A constant emissivity value of 0.97 was obtained for the HZZ and JCHM sites. More 220 

detailed information on the four sites can be found in Li et al. (2014).  221 

 222 

 223 
Fig. 3. Ground photographs of the four HiWATER sites. 224 

 225 

Table 3. Detailed information on the four HiWATER sites. 226 

Site Latitude Longitude Elevation Land cover type Time period (d/m/y) 
GB 38.9150° N 100.3042° E 1567 m Gobi 01/07/2012-30/06/2016 
SSW 38.7892° N 100.4933° E 1555 m Sand dune 01/07/2012-30/06/2016 
HZZ 38.7652° N 100.3186° E 1735 m Desert steppe 01/07/2012-30/06/2016 
JCHM 38.7781° N 100.6967° E 1625 m Desert steppe 01/07/2012-30/06/2016 
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4. Methodologies 227 

4.1. In situ LST estimation  228 

For the pyrgeometers at the SURFRAD sites and the CNR1 net radiometers at the 229 

HiWATER sites, the in situ LST measurements were estimated from the upwelling 230 

and downwelling longwave radiations using the Stefan-Boltzmann law: 231 

 ( )
1 4

1 b
s

b

F F
T

ε
σε

↑ ↓ − −
=  
  

 (3) 232 

where Ts is the LST, F↑ is the surface upwelling longwave radiation, F↓ is the 233 

atmospheric downwelling longwave radiation, σ is the Stefan-Boltzmann constant 234 

(5.67×10-8 W m-2 K-4), εb is the surface broadband emissivity, which was estimated 235 

from a spectral-to-broadband linear regression equation (Wang et al., 2005): 236 

 29 31 320.2122 0.3859 0.4029bε ε ε ε= + +  (4) 237 

where ε29, ε31, and ε32 are the surface narrow-band emissivities of MODIS bands 29 238 

(8.3 μm), 31 (10.8 μm), and 32 (12.1 μm), respectively. 239 

 For the KT-15.85 IIP infrared radiometers at the KIT sites and the SI-111 infrared 240 

radiometers at the HiWATER sites, the in situ LST measurements were estimated the 241 

radiance emitted by the surface and the downwelling radiance by the atmosphere: 242 

 ( )1 1 atm
s

R L
T B

ε
ε

↓
−
 − −

=  
  

 (5) 243 

where B is the Planck function convolved with the spectral response function of the 244 

infrared radiometer, R is the radiance emitted by the surface, which is obtained from 245 

the measurements of the infrared radiometer, ε is the surface emissivity for the 246 

radiometer spectral channel, and atmL↓  is the downwelling radiance convolved with 247 

the spectral response function of the infrared radiometer. atmL↓  is equivalent to the 248 

radiance measured by a radiometer that views the sky at an effective angle of 249 

approximately 53° from zenith.  250 

 251 

4.2. Temperature-based validation 252 

The temperature-based validation method involves a direct comparison of 253 
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ground-based LST measurements and satellite-derived LST products (Coll et al., 2005; 254 

Wang et al., 2008; Wang & Liang, 2009; Guillevic et al., 2012, 2014; Göttsche et al., 255 

2013; Ermida et al., 2014; Li et al., 2014; Krishnan et al., 2015). It allows determining 256 

the uncertainties in satellite-derived LST products. In this study, the in situ LST 257 

measurements estimated from the radiometers were used to evaluate the accuracies of 258 

the C6 MODIS LST products (MOD11_L2 and MYD11_L2).  259 

 The LST values of the MOD11_L2 and MYD11_L2 products were extracted for 260 

the pixel closest to each site in terms of longitude and latitude information. To 261 

minimize the effect of cloud contamination on validation results, only the LST values 262 

with high-quality data (i.e., QC=0) were used for evaluation. The MODIS LST was 263 

matched with the in situ LST using the satellite observation time.  264 

 265 

4.3. Robust outlier removal 266 

 To obtain robust statistics of LST validation, it is necessary to remove outliers 267 

due to cloud contamination. A popular method for outlier detection is the “3σ-edit 268 

rule”. It assumes that a data sequence is approximately normally distributed and a 269 

point further than three standard deviations from the mean is regarded as an outlier 270 

(Pearson, 2002). The probability that a point is wrongly removed as an outlier is 271 

approximately 0.3%. However, the “3σ-edit rule” usually fails in practice because 272 

outliers lead to biased estimates of the mean and standard deviation. A robust method 273 

for outlier detection is the “3σ-Hampel identifer” (Davies and Gather, 1993). In this 274 

method, the mean is replaced by the median, whereas the standard deviation is 275 

estimated as: 276 

 { }1.4826 i mS median x x= × −  (6) 277 

where xm is the median of the data sequence {xi}, S is the standard deviation of the 278 

data sequence {xi}. The constant 1.4826 is chosen to obtain an unbiased estimate of 279 

standard deviation for Gaussian data (Pearson, 2002). 280 

 In this study, the data sequence {xi} is the differences between the MODIS LST 281 

and the in situ LST. The match-up data points with the LST differences less than 282 
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xm-3S or larger than xm+3S are regarded as outliers. The “3σ-Hampel identifer” only 283 

removes a relatively small fraction of outliers (mainly undetected clouds), typically 284 

less than 10% (Göttsche et al., 2013).  285 

 286 

5. Results and analyses 287 

5.1. Results for the SURFRAD sites 288 

 Fig. 4 shows the scatterplots between the C6 MODIS LST and the in situ LST 289 

during daytime and night-time at the BND, TBL, FPK, GCM, PSU, and SXF sites. 290 

The bias, STD, and RMSE of the differences (LSTMODIS-LSTin_situ) between the C6 291 

MODIS LST and the in situ LST are summarized in Fig. 4.  292 

The C6 MODIS LST during daytime is lower than the in situ LST over all sites, 293 

except for the BND and FPK sites. The smallest absolute bias (approximately 0.2 K) 294 

is obtained for the TBL site, whereas the largest absolute bias (approximately 2.5 K) 295 

is achieved for the GCM site. The largest STD and RMSE (approximately 4.4 K and 296 

4.6 K) are obtained for the BND site, whereas the smallest STD and RMSE 297 

(approximately 1.8 K and 2.4 K) are achieved for the PSU site. The largest STD at the 298 

BND site indicates that this site is more heterogeneous and exhibits a higher spatial 299 

variability of LST. This is consistent with the results reported by Guillevic et al. (2014) 300 

and Wang and Liang (2009).  301 

 The C6 MODIS LST at night is lower than the in situ LST over all sites, except 302 

for the PSU site. The bias varies from approximately -1.5 K for the TBL site to 303 

approximately 0.5 K for the PSU site. The STD for all sites is less than 1.5 K, and the 304 

RMSE is less than 1.9 K. The statistics during night-time are less than those during 305 

daytime, especially in terms of STD and RMSE. The daytime STD is greater than 1.9 306 

K for all sites, whereas the night-time STD is less than 1.6 K. Larger daytime STD 307 

could be caused by the spatial variability of LST, which is usually more significant 308 

during daytime than night-time due to the effects of structural shading, evaporative 309 

cooling, and surface-air temperature differences. Therefore, the in situ LST 310 

measurements during night-time are more representative of the LST at the satellite 311 

pixel scale. This is the reason why Wang et al. (2008) only used ground-based LST 312 
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measurements during the night to validate the MODIS LST products.  313 

 314 

 315 

 316 

 317 

Fig. 4. Scatterplots between the C6 MODIS LST and the in situ LST during daytime 318 

and night-time at the six SURFRAD sites, i.e., (a) BND, (b) TBL, (c) FPK, (d) GCM, 319 

(e) PSU, and (f) SXF. 320 

 321 

 To investigate the influences of seasonal variations on LST validation results, we 322 

divided all LSTs at each site into four groups in terms of four seasons. Fig. 5 shows 323 

the RMSE of the differences (LSTMODIS-LSTin_situ) between the C6 MODIS LST and 324 

the in situ LST during daytime and night-time in four seasons at the six sites. Strong 325 

seasonal variations of the RMSE can be found during daytime. The largest RMSE is 326 

obtained in summer, whereas the smallest RMSE is achieved in winter at all sites. 327 
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Relatively larger RMSE can be found in four seasons at the BND site. The reason is 328 

because this site is more heterogeneous and exhibits a higher spatial variability of 329 

LST. Larger RMSE in spring at the BND site could be attributed to cloud 330 

contamination over snow/ice surfaces (Liu et al., 2015). The seasonal variations are 331 

also reported in MODIS and VIIRS LST validation at the SURFRAD sites (Li et al., 332 

2014; Liu et al., 2015). However, there are no significant seasonal variations of the 333 

RMSE during night-time. The RMSE during night-time is less than approximately 2 334 

K in four seasons at all sites. The better night-time performance is expected because 335 

the thermal heterogeneity is usually higher during daytime and the atmospheric CWV 336 

is lower and the land surface behaves almost homogeneously at night.  337 

 338 

 339 

Fig. 5. Bar plots of the RMSE of the differences (LSTMODIS-LSTin_situ) between the C6 340 

MODIS LST and the in situ LST during (a) daytime and (b) night-time in spring, 341 

summer, autumn, and winter at the six SURFRAD sites. 342 

 343 

Atmospheric water vapor absorption is one of the most relevant error sources in 344 

LST retrieval. To further analyze the effects of atmospheric water vapor on LST 345 

validation results, we divided all atmospheric CWV at each site into four groups in 346 

terms of four seasons. Fig. 6 displays atmospheric CWV derived from the C6 MODIS 347 

atmospheric profile products (MOD07_L2 and MYD07_L2) during daytime and 348 

night-time in four seasons at the six sites. Similar pattern of seasonal variations of 349 

atmospheric CWV can be found during daytime and night-time. The highest CWV is 350 

obtained in summer, whereas the lowest CWV is achieved in winter. However, the 351 

atmospheric CWV during night-time is lower than the corresponding value during 352 
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daytime in four seasons at all sites. Compared Fig. 5a with Fig. 6a, the seasonal 353 

variations of the RMSE of the LST discrepancies during daytime could be attributed 354 

to the seasonal variations of the atmospheric CWV. Larger RMSE of the daytime LST 355 

discrepancies occur in summer under warm and humid atmospheric conditions. 356 

Moreover, smaller RMSE of the night-time LST discrepancies in four seasons could 357 

be due to lower LST and atmospheric CWV at night.  358 

 359 

 360 

Fig. 6. Bar plots of atmospheric CWV derived from the C6 MODIS atmospheric 361 

profile products (MOD07_L2 and MYD07_L2) during (a) daytime and (b) night-time 362 

in spring, summer, autumn, and winter at the six SURFRAD sites. 363 

 364 

5.2. Results for the KIT sites 365 

 Fig. 7 displays the comparison of the C6 MODIS LST and the in situ LST during 366 

daytime and night-time at the Evora and Gobabeb sites. The bias, STD, and RMSE of 367 

the differences (LSTMODIS-LSTin_situ) between the C6 MODIS LST and the in situ LST 368 

are shown in Fig. 7.  369 

For the results at the Evora site, the C6 MODIS LST is lower than the in situ LST 370 

during the day, with a bias of approximately -1.6 K, whereas the situation is reversed 371 

at night, with a bias of approximately 0.7 K. The daytime STD and RMSE 372 

(approximately 3 K) are approximately twice larger than those (approximately 1.5 K) 373 

at night. More dispersion of the LST discrepancies during daytime is due to higher 374 

contrast between shaded and sunlit background LST. During night-time, the LST 375 

contrast between surface elements, i.e., canopy and background, is very small. 376 

Because of their lower dependency on differential heating/cooling (induced by the 377 
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existence of shaded and sunlit areas), night-time data are the most reliable for 378 

validating satellite-derived LST products (Trigo et al., 2008).  379 

For the results at the Gobabeb site, the C6 MODIS LST is slightly higher than the 380 

in situ LST during daytime and night-time, with a bias of approximately 0.3 K. The 381 

daytime STD and RMSE (approximately 1.5 K) are approximately twice larger than 382 

those (approximately 0.7 K) at night. The results indicate that the C6 MODIS LST is 383 

in excellent agreement with the in situ LST at the Gobabeb site, especially at night 384 

with accuracy better than 0.8 K.  385 

 386 

 387 

Fig. 7. Scatterplots between the C6 MODIS LST and the in situ LST during daytime 388 

and night-time at the two KIT sites, (a) Evora and (b) Gobabeb. 389 

 390 

 As mentioned in Section 2, three refinements of the GSW LST algorithm were 391 

performed in the C6 MODIS LST products over bare soil surfaces. The Gobabeb site 392 

is located on large gravel plains (several thousand km2), which are covered by a 393 

highly homogeneous mixture of gravel, sand, and sparse desiccated grass. To 394 

investigate whether the C6 MODIS LST products have better performance over bare 395 

soil surfaces, we compared the C5 and C6 MODIS LST products at the Gobabeb site. 396 

The comparison results are shown in Fig. 8. The accuracies of the C6 MODIS LST 397 

products are much better than those of the C5 MODIS LST products. Two reasons can 398 

explain the better performance of the C6 MODIS LST products. One reason is that 399 

two separate sets of coefficients were used in the C6 GSW algorithm for daytime and 400 

night-time LST retrievals over bare soil surfaces. The two sets of GSW coefficients 401 

accounts for a wider range of atmospheric and LST conditions over bare soil surfaces. 402 
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The other reason could be attributed to the application of the emissivity adjustment 403 

model over bare soil surfaces. The C5 MODIS emissivities in bands 31 and 32 are 404 

nearly a constant (ε31=0.964 and ε32=0.972) throughout the whole year at the Gobabeb 405 

site. Similar results are obtained for the C6 MODIS emissivities in bands 31 and 32 406 

(ε31=0.962 and ε32=0.976). The mean of the emissivities in bands 31 and 32 for C5 407 

and C6 is nearly equal. However, the difference of the emissivities in bands 31 and 32 408 

changes from 0.008 for C5 to 0.014 for C6. Wan (2014) pointed out that the GSW 409 

algorithm is more sensitive to the change in the difference of the emissivities in bands 410 

31 and 32 than that in their mean.  411 

 412 

 413 

Fig. 8. Scatterplots between the C5 (C6) MODIS LST and the in situ LST during (a) 414 

daytime and (b) night-time at the Gobabeb site. Each pair of the corresponding C5 415 

and C6 pixels used for LST validation is the same pixel. The number of pixels is 416 

slightly less than that shown in Fig. 7b due to different version of QC data.  417 

 418 

5.3. Results for the HiWATER sites 419 

 Fig. 9 shows the scatterplots of the C6 MODIS LST versus the in situ LST during 420 

daytime and night-time at the GB, SSW, HZZ, and JCHM sites. The bias, STD, and 421 

RMSE of the differences (LSTMODIS-LSTin_situ) between the C6 MODIS LST and the 422 

in situ LST are summarized in Fig. 9. 423 

 The C6 MODIS LST during the day is lower than the in situ LST at all sites, with 424 

the bias varying from approximately -2.5 K for the GB site to approximately -4.7 K 425 

for the JCHM site. Larger STD and RMSE during daytime are obtained at the four 426 

sites, with STD > 2.2 K and RMSE > 3.3 K. These results indicate that the C6 427 
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MODIS LST products underestimate the daytime LST at the four sites due to an 428 

overestimation of surface emissivities.  429 

 The C6 MODIS LST at night is lower than the in situ LST at all sites except for 430 

the HZZ site. The absolute bias varies from approximately 0.2 K for the HZZ site to 431 

approximately 2.6 K for the SSW site. Except for the SSW site with a STD of 432 

approximately 1.3 K, the STD at the other sites less than 1 K. The results indicate that 433 

there are relatively large spatial variations in LST at the SSW site, which is consistent 434 

with the results reported by Li et al. (2014). Compared with the daytime results, the 435 

night-time results have better accuracies. This is because the atmospheric CWV is 436 

lower and the land surface behaves almost homogeneously at night. Therefore, the in 437 

situ LST during night-time is more representative of satellite-derived LST than that 438 

during daytime.  439 

 440 

 441 

 442 

Fig. 9. Scatterplots between the C6 MODIS LST and the in situ LST during daytime 443 

and night-time at the four HiWATER sites, i.e., (a) GB, (b) SSW, (c) HZZ, and (d) 444 

JCHM. 445 

 446 

 The four HiWATER sites are located over bare soil surfaces. To evaluate the 447 
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performance of the C6 MODIS LST products over bare soil surfaces, we compared 448 

the C5 and C6 MODIS LST products at the four sites. Fig. 10 displays the bias, STD, 449 

and RMSE of the differences (LSTMODIS-LSTin_situ) between the C5 (C6) MODIS LST 450 

and the in situ LST during daytime and night-time at the four sites. There are no 451 

improvements in the accuracies of the C6 MODIS LST products when compared with 452 

the C5 MODIS LST products. The accuracies of the C6 MODIS LST products are 453 

even slightly lower than those of the C5 MODIS LST products in terms of the RMSE. 454 

To analyze the reasons for the worse performance of the C6 MODIS LST products, 455 

we calculated the mean and STD of the C5 (C6) MODIS emissivities in bands 31 and 456 

32 at the four sites. The results are summarized in Table 4. For comparison, the mean 457 

and STD of the ASTER emissivity in band 14 given by Li et al. (2014) are also shown 458 

in Table 4. Compared with the C5 MODIS emissivities, the emissivity adjustment 459 

model leads to the increase in both of the C6 MODIS emissivities in bands 31 and 32 460 

at the four sites. The further overestimation of surface emissivities leads to the more 461 

underestimation of LST. The C5 MODIS emissivity in band 31 (11.03 μm) is closer to 462 

the ASTER emissivity in band 14 (11.3 μm) than the C6 MODIS emissivity is. These 463 

results indicate that the improvements in the C6 MODIS LST algorithm do not take 464 

effect at the four sites.  465 

 466 

Table 4. Mean and STD of the C5 (C6) MODIS emissivities in bands 31 and 32 at the 467 

four HiWATER sites. For comparison, the mean and STD of the ASTER emissivity in 468 

band 14 are also shown. 469 

Site 
 MODIS C5  MODIS C6  ASTER * 
ε31 (11.03 
μm) 

ε32 (12.02 μm) ε31 (11.03 
μm) 

ε32 (12.02 μm) ε14 (11.3 μm) 

GB  0.971±0.001 0.976±0.001  0.978±0.005 0.982±0.004  0.965±0.002 
SSW 0.967±0.002 0.973±0.002 0.973±0.004 0.978±0.003 0.958±0.001 
HZZ 0.975±0.003 0.979±0.003 0.984±0.001 0.988±0.001 0.973±0.003 
JCHM 0.969±0.002 0.974±0.001 0.984±0.001 0.988±0.001 0.973±0.002 

* Source: Li et al. (2014). 470 
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 471 

 472 

 473 

Fig. 10. Bar plots of the bias, STD, and RMSE of the differences (LSTMODIS-LSTin_situ) 474 

between the C5 (C6) MODIS LST and the in situ LST during (a) daytime and (b) 475 

night-time at the four HiWATER sites.  476 

 477 

6. Discussion 478 

6.1. Issues of the MODIS C6 LST products 479 

 Three refinements were implemented in the C6 MODIS LST products over bare 480 

soil surfaces, but some issues are still found in the C6 MODIS LST products. In 481 

addition to the effects of sensor calibration, geolocation errors, and cloud masking, 482 

atmospheric water vapor absorption and surface emissivity uncertainty are two most 483 

relevant error sources in LST retrieval.  484 

 Over the past few decades, great efforts have been made to improve the 485 
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accuracies of satellite-derived LST products from thermal infrared data, e.g., NOAA, 486 

MODIS, VIIRS, and ASTER. A comprehensive review of TIR LST retrieval 487 

algorithms were presented by Li et al. (2013a). Accurate characterization of 488 

atmospheric effects in these LST retrieval algorithms under warm and humid 489 

conditions is still a challenging task. As shown in Fig. 5a, the C6 MODIS LST 490 

products have larger RMSE of the LST discrepancies in summer when both of 491 

atmospheric CWV and LST are high. In previous studies, inaccurate characterizations 492 

of atmospheric effects under warm and humid conditions were also observed in the 493 

VIIRS (Guillevic et al., 2014) and ASTER (Gillespie et al., 2011) LST products. 494 

 The MODIS GSW LST algorithm used the classification-based emissivity 495 

method to correct the effects of surface emissivity. The key point of this method is to 496 

properly classify the land surface and then to assign the emissivity from 497 

classification-based look-up tables (Snyder et al., 1998; Li et al., 2013b). The 498 

classification-based emissivity method could result in surface emissivity uncertainty 499 

in two aspects. One aspect is that the accuracy of emissivity estimation depends on 500 

the accuracy of the land cover type product. Misclassifications in the land cover type 501 

product would lead to emissivity errors. The other aspect is that emissivities used in 502 

the MODIS GSW LST algorithm were derived from fixed values depending on a 503 

limited number of land cover types and do not fully encompass the natural variation in 504 

emissivity, especially over bare soil surfaces. The incorporation of a dynamic 505 

emissivity product generated by the temperature and emissivity separation (TES) 506 

algorithm (Hulley and Hook, 2011) into the GSW LST algorithm would be a way to 507 

further improve the accuracies of the MODIS LST products, especially over bare soil 508 

surfaces. 509 

The emissivity adjustment model was used in the C6 MODIS GSW LST 510 

algorithm to adjust emissivity over bare soil surfaces (Wan, 2014). This model is 511 

useful to reduce the C6 MODIS LST errors. As shown in Fig. 8, the accuracies of the 512 

C6 MODIS LST products (RMSE of approximately 1.5 K during daytime and 513 

approximately 0.7 K during night-time) are much better than those of the C5 MODIS 514 

LST products (RMSE of approximately 3.3 K during daytime and approximately 2.6 515 
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K during night-time) at the Gobabeb site. However, the emissivity adjustment model 516 

could also lead to further overestimation or underestimation of emissivities at some 517 

sites. As shown in Fig. 10 and Table 4, the further overestimation of emissivities leads 518 

to the more underestimation of the C6 MODIS LST products at the four HiWATER 519 

sites, when compared with the C5 MODIS LST products. Furthermore, Wan (2014) 520 

reported that the emissivity adjustment model leads to the further underestimation of 521 

emissivities at the Farafra site. The mean error of LST at the Farafra site increases 522 

from 1.01 K for the C5 MODIS LST products to 1.87 K for the C6 MODIS LST 523 

products.  524 

 525 

6.2. Challenges of temperature-based validation 526 

 As pointed out by Yu et al. (2012), there are many challenges in the 527 

temperature-based validation of satellite-derived LST products. Because of large 528 

spatial variations in LST, in situ LST measurements are difficult to represent LST 529 

measurements at the satellite pixel scale, especially during daytime. As shown in 530 

Section 5, large uncertainties in LST can be found during daytime, with RMSE value 531 

up to 5.6 K at the JCHM site. Because atmospheric water vapor is less and the land 532 

surface behaves more homogeneously at night, in situ LST measurements during 533 

night-time are more representative of LST at the satellite pixel scale. Therefore, Wang 534 

et al. (2008) only used ground-based LST measurements during the night to validate 535 

the MODIS LST products.  536 

 To obtain high quality data from ground-based LST measurements to validate 537 

satellite-derived LST products, previous studies conducted field campaigns only over 538 

large homogeneous sites, such as lake, snow, grassland, silt playa, and cropland fields 539 

(Wan et al., 2002, 2004; Coll et al., 2005, 2009). Fig. 11 shows the scatterplots 540 

between the C6 MODIS LST and the in situ LST at the sites of Wan et al. (2002, 2004) 541 

and Coll et al. (2016). The RMSE of the LST discrepancies is less than 1 K. The 542 

results indicate that the temperate-based validation can provide suitable validation 543 

results for well-defined and dedicated sites. Therefore, quantitative assessment of 544 

satellite-derived LST products requires dedicated and high quality in situ LST 545 
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measurements over sites that are homogeneous at the satellite pixel scale. Moreover, it 546 

is necessary to use multiple TIR radiometers with high accuracy at multiple points 547 

within a satellite pixel to well characterize the validate site.  548 

 549 

 550 

Fig. 11. Scatterplots between the C6 MODIS LST and the in situ LST at the sites of 551 

Wan et al. (2002, 2004) and Coll et al. (2016). 552 

 553 

 TIR field radiometers always collect ground-based measurements at nadir, 554 

whereas satellite sensors with wide field-of-view, e.g., MODIS, AVHRR, and VIIRS, 555 

collect most observations off-nadir. Such observation difference could be a possible 556 

reason resulting in the discrepancies between in situ LST and satellite-derived LST. 557 

On the one hand, larger VZA results in longer atmospheric optical length. Significant 558 

decrease of atmospheric transmittance with increase of atmospheric water vapor 559 

introduces significant errors in the GSW algorithm when LST is high. On the other 560 

hand, larger VZA leads to larger discrepancies of observed targets and their areas 561 

between TIR field radiometers and satellite sensors, especially over spatially 562 

heterogeneous validation sites. To investigate the effects of the observation difference, 563 

we compared the C6 MODIS LST with VZA less than 30° with the situ LST during 564 

daytime and night-time at the four HiWATER sites. The results are shown in Fig. 12. 565 

Compared with the results in Figs. 9 and 12, the bias, STD, and RMSE with VZA less 566 

than 30° are better than those with all VZA, especially during daytime.  567 
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 568 

 569 

Fig. 12. Scatterplots between the C6 MODIS LST with VZA less than 30° and the in 570 

situ LST during daytime and night-time at the four HiWATER sites, i.e., (a) GB, (b) 571 

SSW, (c) HZZ, and (d) JCHM. 572 

 573 

7. Conclusions 574 

 We validated the C6 MODIS LST products using in situ measurements collected 575 

from sites under different atmospheric and surface conditions, including six 576 

SURFRAD sites in the United States, two KIT sites in Portugal and Namibia, and four 577 

HiWATER sites in China.  578 

 The average bias and RMSE during daytime at the six SURFRAD sites are -0.71 579 

K and 3.07 K, respectively, whereas those at night are -0.6 K and 1.52 K, respectively. 580 

Significant seasonal variations of the RMSE can be found during daytime. The largest 581 

RMSE is obtained in summer, whereas the smallest RMSE is achieved in winter at the 582 

six SURFRAD sites. Inaccurate characterizations of atmospheric effects under warm 583 

and humid conditions are observed in summer when both of atmospheric CWV and 584 

LST are high. There are no significant seasonal variations of the RMSE at night. The 585 

night-time RMSE is less than approximately 2 K in four seasons at the six SURFRAD 586 

sites. 587 
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 Compared with the C5 MODIS LST products, the C6 MODIS LST products are 588 

in excellent agreement with the in situ LST measurements at the Gobabeb site, with 589 

biases of 0.36 K during the day and 0.24 K at night, and RMSEs of 1.5 K during 590 

daytime and 0.74 K during night-time. The results show that the emissivity 591 

adjustment model incorporated into the C6 MODIS GSW LST algorithm is useful to 592 

reduce the C6 MODIS LST errors over bare soil surfaces. However, the emissivity 593 

adjustment model leads to further overestimation of emissivities at the four 594 

HiWATER sites. There are no improvements in the accuracies of the C6 MODIS LST 595 

products when compared with the C5 MODIS LST products. The RMSEs of the C6 596 

MODIS LST products are even slightly larger than those of the C5 MODIS LST 597 

products. The results indicated that the classification-based emissivity method cannot 598 

well characterize the spectral variation in emissivity over bare soil surfaces. The 599 

incorporation of a dynamic LSE product generated by the TES algorithm into the 600 

GSW LST algorithm would be a way to further improve the accuracies of the MODIS 601 

LST products. 602 

 The accuracies of the C6 MODIS LST products at night are better than those 603 

during daytime. The daytime RMSE varies from approximately 1.5 K at the Gobabeb 604 

site to approximately 5.6 K at the JCHM site, whereas the night-time RMSE is less 605 

than 2 K at all sites except for the SSW site. The results indicate that night-time data 606 

are the most reliable for the validation of satellite-derived LST products due to lower 607 

atmospheric water vapor and more homogeneous of the land surface. To 608 

comprehensively evaluate the accuracies of satellite-derived LST products, the 609 

radiance-based validation method can be used to validate daytime LST products over 610 

a more diverse set of conditions on a global scale.  611 

 612 
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