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Generation and characterization 
of human induced pluripotent 
stem cells (iPSCs) from hand 
osteoarthritis patient-derived 
fibroblasts
R. Castro-Viñuelas1,4,6*, C. Sanjurjo-Rodríguez1,3,4,5,6, M. Piñeiro-Ramil1,4,6,  
T. Hermida-Gómez2,3,4,6, S. Rodríguez-Fernández1,4,6, N. Oreiro2,3,4,6, J. de Toro1,3,4,6, 
I. Fuentes1,3,4,6, F. J. Blanco   2,3,4,6 & S. Díaz-Prado1,3,4,6*

Knowledge and research results about hand osteoarthritis (hOA) are limited due to the lack of samples 
and animal models of the disease. Here, we report the generation of two induced pluripotent stem cell 
(iPSC)-lines from patients with radiographic hOA. Furthermore, we wondered whether these iPSC-lines 
carried single nucleotide polymorphisms (SNPs) within genes that have been associated with hOA. 
Finally, we performed chondrogenic differentiation of the iPSCs in order to prove their usefulness as 
cellular models of the disease. We performed a non-integrative reprogramming of dermal fibroblasts 
obtained from two patients with radiographic rhizarthrosis and non-erosive hOA by introducing the 
transcriptional factors Oct4, Sox2, Klf4 and c-Myc using Sendai virus. After reprogramming, embryonic 
stem cell-like colonies emerged in culture, which fulfilled all the criteria to be considered iPSCs. Both 
iPSC-lines carried variants associated with hOA in the four studied genes and showed differences in 
their chondrogenic capacity when compared with a healthy control iPSC-line. To our knowledge this is 
the first time that the generation of iPSC-lines from patients with rhizarthrosis and non-erosive hOA 
is reported. The obtained iPSC-lines might enable us to model the disease in vitro, and to deeper study 
both the molecular and cellular mechanisms underlying hOA.

Osteoarthritis (OA) is a prevalent musculoskeletal disease that affects the joints, and it has a substantial effect on 
quality life1–4. Hand OA affects predominantly the carpometacarpal joint (CMCJ), followed by the interphalan-
geal joints (IPJs), both proximal and distal4. OA of the CMCJ, also known as rhizarthrosis or thumb OA, is the 
most common location in women over 55 years, and the severity is usually linked to handedness. Mechanical 
pain at the base of the thumb and the thenar eminence are the principal clinical manifestations of this pathology5. 
Erosive hand OA is another form that may involve the CMCJ of the thumb as well as IPJs, in which central ero-
sions are found in the subcondral bone4.

Although both the individual and the societal burden of hand OA are well known, knowledge and research 
results about its underlying cellular and molecular mechanisms are limited3, mainly due to the dearth of tissue 
samples and lack of animal models of this pathology4,6. Cellular in vitro models are meaningful tools to shed light 
on the molecular mechanisms and pathways that are involved in hand OA. Primary chondrocytes, immortalized 
cell lines and mesenchymal stromal cells are commonly used as in vitro models of OA6. However, they present 
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several limitations such as loss of their phenotype and differentiation potential after several passages or difficult 
harvesting, among others7,8.

In 2007, Takahashi and Yamanaka demonstrated that adult cells could be reprogrammed to generate induced 
pluripotent stem cells (iPSCs) by ectopic expression of 4 transcriptional factors: Octamer-binding transcription 
factor 3/4 (Oct3/4), Sex determining region Y-box 2 (Sox2), Krüpple-like factor 4 (Klf4) and c-Myc9. The poten-
tial of iPSCs is irrefutable because they can be used as an abundant, accessible, and autologous cell source with 
differentiation potential to develop human in vitro models while bypassing ethical concerns. In fact, several stud-
ies have been recently developed using patient-specific iPSCs10–12 for modeling cartilage and other aging-related 
diseases13 such as rheumatoid arthritis and knee OA14,15.

In the case of hand OA there is currently high controversy about how likely it is to be modelled in vitro, since 
it is a complex disease affected by several factors16,17. However, a strong genetic component is thought to be pres-
ent in the development of hand OA, especially in women1,18. Additionally, Genome-Wide Association Studies 
(GWAS) have proposed that multiple single nucleotide polymorphisms (SNPs) in certain genes can play distinct 
roles in the OA pathogenesis2,19. Specifically, sequence variants in genes associated with growth factor signaling or 
genes that relate to inflammatory pathways have been shown to confer risk of OA in the hand16,20–25 and therefore, 
we think that it is very relevant to develop a model of hand OA for studying the use of these SNPs.

In this study we aimed to generate iPSC lines from patients with OA of the hand and to demonstrate the 
usefulness of these cells as in vitro cellular models for studying the pathogenesis of this disease. Furthermore, we 
have investigated whether the generated iPSC-lines carried sequence variants within several genes that have been 
suggested as implicated in the development and progression of hand OA. Finally, we evaluated the capacity of 
the generated iPSCs for differentiation into chondrocyte-like cells. We developed a novel differentiation protocol 
involving directed differentiation in micromasses.

Results
Isolation and characterization of human fibroblasts.  We isolated cells from skin biopsies of two 
patients (52 and 76-years-old women respectively), henceforth named as OA patient 1 and OA patient 2, by using 
the explant culture technique. OA patient 1 presented radiographic non-erosive hand OA, and rhizarthrosis in the 
right hand. No signs of OA in knee or hip were detected radiographically, but so in lumbar column. OA patient 
2 presented radiographic non-erosive hand OA, and rhizarthrosis in both hands. No signs of OA in knee or hip 
were detected radiographically. No radiographic information was available regarding lumbar column.

Sufficient number of cells for analysis and reprogramming was obtained after two weeks in culture. 
Immunohistochemical analysis revealed that approximately 90% of cells in culture showed positive staining for 
the fibroblast marker proteins type I collagen, acidic fibroblast growth factor receptor 4 (FGFR4) and vimen-
tin (Fig. 1a). Phase contrast images showed uniform cell populations with typical fibroblast-like morphology 
(Fig. 1b).

Human fibroblast reprogramming gave rise to ESC-like colonies.  To generate human iPSCs 
from OA patients minimizing the risk of genomic abnormalities, we introduced the OSKM factors using the 
non-integrating technology that includes modified Sendai RNA viruses. Interestingly, 24 hours after the 
reprogramming process, dermal fibroblasts experimented marked morphological changes, from the initial 
spindle-shape to a more polygonal or epithelial-like cells morphology (Fig. 1b). Twenty-two days after repro-
gramming colonies showing a typical human ESC-like morphology appeared in culture (Fig. 1b). Based on colo-
nies morphology and Alkaline phosphatase (AP) activity staining, the calculated reprogramming efficiency was 
0.2% for the OA patient 1 and 0.95% for the OA patient 2. Fragments of ESC-like colonies after picking were able 
to form new colonies (clones) onto feeder cells.

iPSC characterization.  iPSC colonies presented alkaline phosphatase activity.  The newly raised colonies 
after the reprogramming process appeared in blue when treated with AP kit, showing that they presented AP 
activity. The iPSC clones also stained strongly positive for AP activity, and this positivity was maintained after 
passaging (Fig. 2a).

iPSC clones express key pluripotency marker genes.  According to morphological features and positive AP stain-
ing, we selected two clones (#4 and #7) of the OA patient 1, and four clones (#9, #11, #12 and #17) of the OA 
patient 2 to be molecularly characterized.

qRT-PCR analyses showed that all chosen clones expressed the endogenous reprograming factors (OCT4 
ENDO, SOX2 ENDO, KLF4 ENDO and CMYC ENDO) as well as genes characteristic of human ESCs, includ-
ing NANOG and CRIPTO. Relative expression levels (REL) for these key pluripotency genes were markedly 
increased in the iPSCs compared to the parental dermal fibroblasts (Fig. 2b,c), except for endogenous KLF4 and 
CMYC, which were slightly higher in the parental fibroblasts.

Among clones selected from the healthy donor, clone #H was the one with higher expression of both CRIPTO 
and NANOG. However, expression of Sendai virus cMYC (CMYC SV) was also detected. Clone #E expressed 
high relative expression levels of OCT4 ENDO and CRIPTO, but not NANOG. Clones #2 and #7 expressed simi-
lar levels of all genes, excepting CRIPTO and SOX2 ENDO, which were higher in clone #2. Regarding OA patient 
1, both clones #4 and #7 expressed high relative expression levels of OCT4 ENDO and CRIPTO compared to 
those in the parental dermal fibroblasts. NANOG, SOX2 ENDO and CMYC ENDO levels were slightly higher in 
clone #4 than in clone #7. Finally, all clones selected from OA patient 2 expressed similar REL of the endogenous 
reprogramming factors and the pluripotency markers, being these levels higher than the ones observed in the 
native dermal fibroblasts. Clones #9 and #12 presented higher relative expression levels of CMYC ENDO when 
comparing with clones #11 or #17.
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Due to the lower expression of CMYC ENDO, all together with high REL of the pluripotency markers 
CRIPTO, NANOG and OCT4 ENDO, the candidate clones selected to be further characterized were clone #7 
from the OA patient 1 and clone #17 from de OA patient 2.

iPSC clones stained positive for pluripotency markers.  The two studied clones were intracellularly stained 
(nucleus) for NANOG, OCT-4 and SOX2 self-renewal markers. These clones were also positive for SSEA-4 and 
TRA-1-81 pluripotency surface markers (Fig. 3).

Generated iPSCs are able to differentiate in vitro towards the three embryonic germ layers.  In order to check the in 
vitro pluripotency of the iPSCs, tri-lineage differentiation was performed using the embryoid body (EB) protocol. 
The hanging-drop technique enabled us to generate EBs within 48 hours in culture (Fig. 4a). We observed hetero-
geneous cell populations sprouted and grown out of the EBs after one week in culture. The differentiation poten-
tial of the generated iPSCs was confirmed through detection of immunofluorescence positivity of α-fetoprotein 
(AFP) in the endodermal differentiation, α-smooth muscle actin (SMA) in the mesodermal differentiation, and 
neuron-specific class III β-tubulin (TUJ1) in the ectodermal differentiation (Fig. 4b). As seen in Fig. 4b, clone 
#7 from the OA patient 1 stained strongly for the AFP marker. Positivity for this marker was slightly lower in 
clone #17 from the OA patient 2 but still positive, thus revealing successful endodermal differentiation. Besides, 

Figure 1.  Characterization of fibroblasts and reprogramming process. (a) Images of hematoxylin-eosin 
(HE) staining, type I collagen (COL-1), acidic fibroblast growth factor receptor 4 (FGFR4) and vimentin 
immunostainings performed on fibroblast cultures, obtained from the OA patients 1 and 2. Scale 100 μm. 
(b) Phase contrast images taken after fibroblasts isolation (scale 200 μm) and reprogramming, showing the 
morphological changes occurred after transduction (scale 200 μm and 50 μm, respectively), as well as iPSC 
colonies morphology one (scale 200 μm) and three weeks after reprogramming (scale 200 μm and 50 μm, 
respectively). The black arrow points the high nucleus/cytoplasm ratio found in the iPSC-colonies.
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the clones showed successful differentiation into the mesoderm germ layer, as shown by SMA positive staining. 
Interestingly, spontaneously beating cardiomyocytes were observed in the mesodermal differentiation after 2–3 
weeks of induction in all the studied clones. Finally, clone #7 from the OA patient 1 and OA patient 2 clone #17 
stained positive for the ectodermal marker TUJ1. These analyses, all together with the previous characterization 
analyses, revealed the functional pluripotency of the two iPSCs clones, therefore establishing the two iPSC-lines 
named as MOA1-FiPS4F#7 and MOA2-FiPS4F#17, respectively.

Karyotype and DNA fingerprinting analyses.  The derivation of the lines MOA1-FiPS4F#7 and MOA2-FiPS4F#17 
from the patients’ fibroblasts was confirmed by DNA fingerprinting analysis (Fig. 5a). Both parental dermal fibro-
blasts and iPSCs had normal diploid 46, XX karyotype, without acquired detectable abnormalities in the two lines 
analysed (Fig. 5b).

Single nucleotide polymorphisms presence within the GDF5, SMAD3, ALDH1A2 and IL1-R1 
genes.  Results obtained after the analysis of the selected SNPs in the generated iPSC-lines are shown in 
Table 1. These results correspond to those observed in the parental dermal fibroblasts from which each of the 
lines was generated, thus showing that the presence of the different alleles in each of the genes remained after 
reprogramming.

Directed chondrogenic differentiation of the iPSCs.  Histological analysis of the micromasses per-
formed after the chondrogenic differentiation protocol (Fig. 6a) showed differences in the levels of collagen 
(COL) and proteoglycans (PGs) within the matrix produced by the differentiated cells, as seen by Masson’s 
Trichromic (MT) and Safranin O (SO) sataining (Fig. 6b). The differentiated cells derived from the iPSC-line 
with no rheumatic diseases (N1-FiPS4F#7, ESi080-A, registered in the Human Pluripotent Stem Cell Registry 
on December 12, 2019) showed more presence of blue and orange staining, corresponding to COL and PGs 
content, respectively. In comparison, lower levels of both chondrogenic markers were lower in the micromasses 
obtained from the iPSC-lines MOA1-FiPS4F#7 and MOA2-FiPS4F#17. High quality chondrogenesis, with 
chondrocyte-like-rounded cells embedded in an extracellular matrix composed by COL and PGs7, were reached 
to a higher extent in the ‘healthy’ iPSC-line, than in the iPSC-lines derived from the patients with hand OA. These 
preliminary results highlight the usefulness of the obtained iPSCs lines to further investigate the phenotypes 
associated to hand OA at cellular level.

Figure 2.  Alkaline phosphatase activity and relative expression levels of the endogenous reprogramming 
factors and pluripotency markers in the reprogrammed cells. (a) Alkaline phosphatase staining of iPSCs 
colonies at passage 0 and iPSCs lines MOA1-FiPS4F#7 and MOA2-FiPS4F#17 with more than 20 passages in 
culture. Scale bar 100 μm. (b) Table showing the relative expression levels (REL) of endogenous reprogramming 
factors (OCT4 ENDO, SOX2 ENDO, KLF4 ENDO, CMYC ENDO), pluripotency markers (CRIPTO, NANOG) 
and Sendai virus reprogramming factor CMYC (CMYC SeV) in the analysed clones and parental fibroblasts 
of OA patient 1 and OA patient 2. (c) Bar graphs with qRT-PCR data showing the REL of endogenous 
reprogramming factors and pluripotency markers.
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Figure 3.  Immunofluorescence analisys of pluripotency-associated markers. (a) Immunofluorescence staining 
showing presence of pluripotency markers NANOG, OCT-4, SOX2, SSEA-4 and TRA-1-81 in the iPSC-line 
MOA1-FiPS4F#7. Scale 100 μm. (b) Immunofluorescence staining showing presence of pluripotency markers 
NANOG (scale 100 μm), OCT-4 (scale 50 μm), SOX2 (scale 50 μm), SSEA-4 (scale 100 μm) and TRA-1-81 
(scale 100 μm) in the iPSC-line MOA2-FiPS4F#17.

Figure 4.  Analysis of the functional pluripotency in the reprogrammed cells. (a) Scheme representing 
the hanging drop technique used to form embryoid bodies (EBs). EBs were generated to study trilineage 
differentiation of the iPSC-lines. (b) Immunofluorescence staining showing presence of α-fetoprotein (AFP, 
ectoderm), α-smooth muscle actin (SMA, mesoderm) and β-III-Tubulin (TUJ1, ectoderm) in the iPSC-lines 
MOA1-FiPS4F#7 and MOA2-FiPS4F#17. DNA was counterstained with DAPI (scale 50 μm).
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Discussion
We report here for the first time the generation of two iPSC-lines from dermal fibroblasts of patients with 
rhizarthrosis and non-erosive hand OA (MOA1-FiPS4F#7 and MOA2-FiPS4F#17). Furthermore, both in the 
iPSC-lines and parental fibroblasts, we studied the presence of sequence variants within genes that have been 
suggested to be implicated in the pathogeneses of hand OA17,20–25, thus establishing the first iPSC cellular models 
of non-erosive hand OA and rhizarthrosis.

Dermal fibroblasts are an easily accessible cell source with high proliferative capacity, and therefore, a big 
amount of autologous cells can be obtained from a minimally invasive isolated starting population26. That is why 
we chose to reprogram dermal fibroblasts to generate the iPSC-lines. Contrary to other studies in which harvested 
cells are reprogrammed immediately after isolation27,28, we performed cell characterization and demonstrated 
the successfully isolation of dermal fibroblasts from skin biopsies of the two donors by using the explant culture 
technique.

We conducted the reprogramming process by transducing patients’ dermal fibroblasts with Sendai virus vec-
tors carrying the OSKM reprogramming factors. Conversely to the use of retroviral or lentiviral vectors, which 
can produce insertional mutagenic lesions and chromosomal aberration due to their integration into the host 
genome29,30, Sendai virus is transcribed in the cytoplasm, enabling the clearance of the virus as the cells are pas-
saged31,32. In fact, we did detect neither virus presence nor expression of the Sendai virus factors by qRT-PCR in 
the lines studied, thus showing the generation of two “zero-footprint” iPSC-lines.

Figure 5.  Identity and karyotype analysis of the generated iPSC-lines. (a) DNA fingerprinting analysis showing 
that iPSC-lines MOA1-FiPS4F#7 and MOA2-FiPS4F#17 come from patients’ fibroblasts. The short tandem 
repeat (STR) locations studied were: D5S818, D13S317, D7S820, D16S539, VWA, TH01, AMELOGENIN, 
TPOX, CSF and D21S11. (b) Whole genome view obtained after the KaryoStat™ analysis of both patient 
fibroblasts’ and iPSC-lines. The whole genome view displays all somatic and sex chromosomes in one frame 
with high-level copy number. The smooth signal plot (right y-axis) is the smoothing of the log2 ratios, which 
depict the signal intensities of probes on the microarray. A value of 2 represents a normal copy number state 
(CN = 2). A value of 3 represents chromosomal gain (CN = 3). A value of 1 represents a chromosomal loss 
(CN = 1). The pink, green and yellow colors indicate the raw signal for each individual chromosome probe, 
while the blue signal represents the normalized probe signal which is used to identify copy number and 
aberrations (if any).

Genotype

Gene SNP At-risk allele MOA1-FiPS4F#7 MOA2-FiPS4F#17

GDF5 rs143383 T CT CT

SMAD3 rs12901499 G GG GG

ALDH1A2 rs3204689 C CC CT

IL1-R1 rs2287047 T CT CT

Table 1.  Summary of the allelic varints detected after single nucleotide polymorphism analysis of the iPSC-lines 
generated. GDF5 (growth differentiation factor 5); SMAD3 (SMAD family member 3); ALDH1A2 (aldehyde 
dehydrogenase 1 family A2); IL1-R1 (interleukine 1 receptor 1); SNP (single nucleotide polymorphism); 
MOA1-FiPS4F#7 (iPSC-line from patient with rhizarthrosis and non-erosive hand OA in the right hand); 
MOA2-FiPS4F#17 (iPSC-line from patient with rhizarthrosis and non-erosive hand OA in both hands).
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It is well known that a major limitation of inducing pluripotency is its low efficiency33. In consistency with 
other studies using Sendai virus vectors in which the efficiency is normally 0.1–1%34–36 we obtained a reprogram-
ming efficiency between 0.2–0.95%. Nevertheless, we would like to highlight that the reprogramming efficiency is 
not a maker of iPSC-line quality since only one high-quality iPSC clone per patient is needed37.

When new iPSCs lines are developed, it is extremely important to perform an exhaustive characterization of 
the new lines, in order to unequivocally define the iPSCs populations, testing functional pluripotency and defin-
ing abnormalities that could affect cell behaviour and safety38. We have therefore carried out a panel of assays 
accordingly to the recommendations of the Spanish competent authorities and demonstrated that the established 
iPSC-lines presented normal karyotype, with no mutations acquired alongside the reprogramming process. The 
morphology of the iPSC-lines was identical to ESCs and they also presented AP activity, proposed as a reliable 
pluripotency marker in human ESCs together with the right morphology39. iPSC-lines showed ESC-like gene 
expression profile, and this expression was extended to the protein levels of the key pluripotency factors NANOG, 
OCT-4, SOX2 and the ESC-specific antigens SSEA-4 and TRA-1–81. At functional level, we demonstrated that 
both iPSC-lines could differentiate into the three embryonic layers.

Once the generation of iPSCs from patients with OA of the hand has been achieved, a vast of possibilities are 
opened up for in vitro studying the disease. In our case we aimed to deeply characterize the generated iPSC-lines 
by evaluating the presence of hand OA-associated SNPs in order to gather information about the underlying 
genetic variants of the cells. We found that the iPSC-lines presented different allelic combinations in the studied 
genes, therefore enabling researchers with an unlimited cellular tool for studying the role of the specific variants 
of interest. Furthermore, knowing the genetic variants carried by the cells may simplify the interpretation of 
future results obtained, for example, after performing chondrogenic differentiation experiments.

Regarding rs143383 variant within the GDF5 gene, it has been proposed that the T allele, both in homozygosis 
and heterozygosis, associates with lower levels of GDF5 protein40, which is activated during development for 
inducing mensenchymal condensation and subsequent chondrogenic differentiation21. Furthermore, it has been 
shown that GDF5 inhibits catabolic enzymes activities and stimulates the expression of anabolic enzymes in artic-
ular cartilage21,41, which may explain why this variant is considered a risk factor for OA development. However, 
GWASs have suggested that association between GDF5 and OA risk is just consistent in populations with knee 
and, eventually, hip OA19,40,42. Although the relationship between this variant and hand OA is still unclear, the 
establishment of iPSC-lines carrying the polymorphism of interest may help to increase our understanding about 
the role of this SNP in hand OA pathogenesis.

We also decided to evaluate the presence of the rs12901499 variant within SMAD3 gene, due its essential role 
as cellular messenger in cartilage integrity maintenance and homeostasis22. Several studies have reported that 
SMAD3 gene rs12901499 polymorphism accelerates chondrocyte maturation43, catabolic enzymes production22, 
and increases the risk of osteoarthritis44. However, it is still controversial which is the role of this variant in hand 
OA pathogenesis. The iPSC-lines generated in our study are, to our knowledge, the first iPSC cellular models 
of hand OA, and they are furthermore carrying a homozygous at-risk allele G. Therefore, we have generated an 

Figure 6.  Directed chondrogenic differentiation of the iPSCs. (a) General scheme of the differentiation 
protocol. (b) Histological evaluation by means of Masson’s trichromic (MT) and safranin O (SO) staining of the 
chondrogenic differentiation of the iPSC-line derived from a healthy donor (N1-FiPS4F#7) and the iPSC-lines 
generated from patients with hand OA (MO1-FiPS4F#7 and MOA2-FiPS4F#17). x20 magnification.
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invaluable cellular tool for helping researchers to precisely elucidate the genetic role of SMAD3 gene rs12901499 
polymorphism in the hand OA development.

Both iPSC-lines carried the at-risk C allele within the retinaldehyde dehydrogenase 2 (ALDH1A2) gene, an 
enzyme implicated in the synthesis of retinoic acid. This finding is biologically relevant since this hormonal sign-
aling molecule is involved in the embryonic development and in adult tissues maintenance20,45. Moreover, ALDH 
activity has been proposed as a marker of chondrocytes from human adult articular cartilage, with enriched 
production of type II COL16. In our study iPSC-lines from patients with rhizarthrosis were generated for the first 
time. In this sense, Zhu and colleagues observed that patients with severe OA at the base of the thumb had lower 
levels of the ALDH1A2 enzyme in the cartilage of the affected joint, and that these low levels coincided with the 
presence of the allele C24.

Proinflammatory cytokines are considered important mediators in the osteoarthritic process25,46. The patho-
genic implication of the interleukin-1 gene family cluster has been reported in hip, knee, or hand OA. Recently, it 
has been described that coding region and the region harboring the long promoter of the IL1-R1 gene are associ-
ated with severe hand OA47. Näkki and colleagues analyzed the presence of several SNPs at the level of this gene 
and observed that the variant rs2287047 was associated with severe bilateral hand OA in the study population47. 
Therefore, we decided to study the presence of this polymorphism in the generated iPSC-lines. In accordance 
to these results, we observed that the iPSC-lines were heterozygous for the risk allele T. These results make the 
generated lines a useful tool for in vitro evaluating the role of these combinations in the early development and 
further progression of hand OA.

These iPSC-lines carrying different allelic combinations represent valuable tools for developing molecular 
studies to elucidate the role of these genes and their related proteins in the pathogenesis of rhizarthrosis and 
non-erosive hand OA. But since it is the first time that iPSC-lines form patients with hand OA have been gener-
ated, it may be still soon to firmly state that it is possible to model the disease via the iPSCs technology. According 
to Liu and colleagues48 the establishment of models of OA standing on the use of iPSC will certainly improve 
the current knowledge about the pathogenenic processes underlying this disease, therefore shedding light about 
potential treatments. In this regard, we have performed a preliminary study analysing the in vitro chondrogenic 
differentiation capacity of the iPSC-lines derived from patients with hand OA. As a healthy phenotypic control, 
we included for analysis an additional iPSC-line that had been previously generated in our group from a donor 
with no rheumatic diseases49. The hypothesis of poor chondrogenic differentiation capacity of the iPSCs gen-
erated from hand OA patients was checked against the healthy donor. Excellent chondrogenic differentiation 
capacity is necessary for modelling early and late OA pathogenesis, as well as cartilage development37. Based on 
previous studies, we have developed a differentiation protocol37,50 that mimics the development of pluripotent 
cells through the primitive streak mesendoderm-mesoderm intermediates–chondrocytes pathway. Additionally, 
the first step of EBs formation supposedly resembles the early post-implantation embryo and the cells in the EB 
should therefore be able to differentiate into all cell types7. Although more research is needed in order to opti-
mise the current protocols for differentiating iPSCs into chondrocytes7, here we demonstrate that the iPSC-lines 
derived from patients with OA of the hand show less capacity to produce extracellular matrix rich in COL and 
PGs, after the differentiation process, in comparison to the iPSC-line derived from the healthy donor. These pre-
liminary results are in accordance with previous studies in which the extracellular matrix of chondrocytes derived 
from patients’ iPSC resembled the one observed during advanced OA11.

The pluripotency of the iPSCs makes it possible to differentiate them towards the cell types involved in joint 
degeneration during OA. In addition to chondrocytes, these iPSCs may be differentiated into muscle cells, syn-
oviocytes or bone cells, thus making it possible to study changes occurring during the disease in all the involved 
tissues, and thus coinciding with the new consideration of the joint as an organ51. We strongly believe that all 
studies developed to date and the ones that will be conducted hereafter, would proportionate the demonstration 
that in vitro iPSC models can be used to understand the mechanisms implicated in hand OA, to find new ther-
apeutic targets, and to test potential drugs useful for clinical in the near future. Therefore, we hope this research 
could be the first step towards this goal.

Methods
Obtaining and culture of human fibroblasts.  This study was approved by the Ethics Committee of 
Research of A Coruña-Ferrol, Spain (register code 2014/405) and was done in accordance with Spanish laws and 
regulations regarding the generation of human iPSCs, following a protocol approved by the Spanish competent 
authorities (Comisión de Seguimiento y Control de la Donación de Células y Tejidos Humanos del Instituto de Salud 
Carlos III). Cell lines will be deposited at the Banco Nacional de Líneas Celulares (BNLC, ISCIII) following the 
Spanish legislation. Informed consent was obtained from all donors.

To isolate dermal fibroblasts, 3 mm skin biopsies of two patients (52 and 76-years-old women respectively) 
with hand OA were obtained by means of a biopsy punch. Skin tissue was cut up into smaller pieces (<1 mm), 
placed into 6 well dishes (Costar Corning Incorporated) and let them dry at 37 °C until attachment. Once the 
explants were attached to the plate, culture medium (Dulbecco’s Modified Eagle’s Medium; DMEM; Lonza) sup-
plemented with 10% fetal bovine serum (FBS; Gibco-ThermoFisher Scientific) and 1% penicillin/streptomycin 
(P/S; Gibco) (10%DMEM) was added carefully, and the plates were incubated at 37 °C in a humidified atmos-
phere with 5% CO2. When cells sprouted from the explants, after one week in culture, the plates were washed with 
sterile saline solution (Fresenius Kabi) in order to eliminate non-adherent cells and surplus explants, and new 
10%DMEM culture medium was added. The culture medium was then replaced every 3 days. When sprouted 
cells reached 80% confluency, subculturing was performed for cell expansion.

Fibroblast cultures characterization.  Patients’ fibroblasts at the 3rd passage were histologically charac-
terized before reprogramming, and positivity for fibroblast markers was quantified by using the peroxidase/DAB 
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ChemMateTM DAKO EnVisionTM detection kit (Dako) following manufacturer’s recommendations. Type I colla-
gen (ab90395, Abcam), FGFR4 (ab44971, Abcam) and vimentin (ab8069, Abcam) primary antibodies were used. 
Lastly, samples were counterstained with haematoxylin-eosin and visualised in an Olympus BX51M microscope 
coupled to an Olympus DP70 digital camera (Olympus Iberia S.A.). Pictures were taken employing the CellSens 
Dimension software (Olympus Iberia S.A.).

Non-integrative reprogramming of human fibroblasts into iPSCs.  The reprogramming process was 
conducted introducing the reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM)9 using non-integrative 
Sendai RNA viruses (CytoTune-iPS Sendai reprogramming Kit, Gibco-ThermoFisher Scientific), following the 
instructions of the manufacturer, as it is schematized in Fig. 7. Briefly, two days before transduction, 5 × 104 
dermal fibroblasts at the 4th passage were plated in 12-well plates (Costar Corning Incorporated) to reach 80% 
confluency on the day of transduction and cultured in 10%DMEM. Then, 48 hours later, medium was changed for 
new 10%DMEM medium containing the CytoTune vectors at a 1:1:1:1 ratio. Plates were placed in a 37 °C, 5% CO2 
incubator overnight. Following the overnight incubation, the spent medium was replaced for fresh 10%DMEM 
medium every other day for a week. Seven days after transduction the cells were harvested and passaged onto 
feeder cells (75 Gy-γ-irradiated human foreskin fibroblasts; HFF-1, ATCC). On the next day, spent medium 
was replaced for human embryonic stem cell (hES) culture medium containing 80% DMEM Knockout with-
out L-glutamine, 20% knockout serum replacement, 1% non-essential aminoacids, 1% Glutamax 100X, 1% P/S, 
0.1 mM β-mercaptoethanol and 100 μg/ml basic fibroblast growth factor (bFGF) (all from Gibco). Medium was 
changed daily. Clonal iPSCs lines were established by manually picking human ESC-like colonies.

Culture and expansion of human iPSCs.  iPSCs were cultured both on feeder layers and on feeder-free 
layers. In the first case, human iPSCs were seeded onto feeder cells as described above and manually picked once 
a week. Subsequently, iPSC clones were adapted and cultured in feeder-free conditions on human rh-laminin-521 
with Stemflex medium (all from Gibco), following the recommendations of the manufacturer.

Characterization of the human iPSCs.  In this study, several clones were validated by means of colonies 
morphology, AP activity analysis and gene expression profile, but only one clone from each patient was charac-
terized in detail, as it is described below.

Alkaline phosphatase analysis.  AP activity was studied in the whole 10-cm Petri dishes (Costar Corning 
Incorporated) with newly appeared colonies from the two patients using the alkaline phosphatase blue mem-
brane substrate solution kit (AB0300, Sigma-Aldrich Química S.A.) according to the manufacturer’s guidelines. 
Furthermore, iPSC clones with more than 20 passages were seeded onto a 6 well feeder plate (Costar Corning 
Incorporated). When colonies appeared, AP activity was also determined. All samples were observed in a Nikon 
stereomicroscope SMZ745 coupled to a Nikon Digital Slight DS-Fi2 camera (Nikon).

RNA extraction and qRT-PCR analyses.  5 × 105 dermal fibroblasts at the 4th passage and iPSCs at the 8th-10th 
passage were harvested and stored as dry pellet at −20 °C until RNA extraction was performed. Also, RNA was 
extracted from patients’ fibroblasts immediately after reprogramming as a positive control for Sendai virus detec-
tion. Total RNA was extracted using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions 
for animal cell samples. RNA concentrations were measured with NanoDropTM spectrophotometer (Thermo 
Fisher Scientific), and the 260/280 and 260/230 nm absorbance ratios were calculated to assess RNA purity. cDNA 
synthesis was performed from 1 μg of total RNA using the SuperScriptTM ViloTM master mix (Thermo Fisher 
Scientific), following the instructions of the manufacturer. One μl of the reaction was used to quantify the expres-
sion of endogenous pluripotency associated genes (OCT4 ENDO, SOX2 ENDO, KLF4 ENDO, NANOG and 
CRIPTO) and to assess the silencing of the exogenous reprogramming factor genes and Sendai virus genome. 
All evaluated genes were analysed in duplicate by qRT-PCR on the LightCycler 480 Instrument (Roche) using 
LightCycler 480 SYBR Green I Master (Roche). The reactions were conducted using the following parame-
ters: 95 °C for 10 s and 45 cycles at 95 °C for 10 s, 60 °C for 5 s, 72 °C for 10 s. Primers used for the amplification 

Figure 7.  Time course of the followed reprogramming protocol to generate human iPSC-lines.
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were previously described36. Gene expression levels relative to the glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH) housekeeping gene were calculated by the 2−ΔΔCt method52

.

In vitro EB formation and tri-lineage differentiation.  Tri-lineage differentiation was performed through the 
embryoid body (EB) formation protocol. For EB formation, hanging drop method was used. Briefly, iPSC colo-
nies cultured in feeder-free conditions were trypsinized and dispersed into single cell suspension using TrypLETM 
express enzyme 1X (ThermoFisher Scientific). iPSCs were resuspended in hES medium without the pluripotent 
cytokine bFGF. 20 μl drops with 104 cells were formed on the inner surface of the lid of the culture dish. Then, the 
lid was carefully inverted and placed on top of the dish, and incubated for 48 hours at 37 °C and 5% CO2. After 2 
days, the formed EBs were transferred independently to 0.1% gelatin-coated 8 well chamber-slides (Merk), and 
cultured in differentiation medium (80% DMEM Knockout without L-glutamine, 20% FBS, 1% non-essential 
aminoacids, 1% Glutamax 100X, 1% P/S and 0.1 mM β-mercaptoethanol) to stimulate endodermal differentia-
tion. For mesodermal differentiation, EBs were maintained in differentiation medium supplemented with 100 μM 
ascorbic acid (Sigma-Aldrich Química S.A.). To stimulate ectodermal differentiation, EBs were independently 
transferred to matrigel-coated 8 well chamber-slides (Merk) and cultured in a specific differentiation medium 
containing DMEM F-12, 1% P/S, 1% Glutamax 100X, 0,5% N2 supplement (Gibco) and 1% B27 supplement 
(Gibco). In all cases medium was changed every other day during 3 weeks.

Immunofluorescence analyses.  Immunofluorescence analyses of undifferentiated human iPSCs and cells 
sprouted from EBs during trilineage differentiation were performed. For this purpose, cells were fixed 10 min 
ant room temperature (RT) with 4% paraformaldehyde (Sigma-Aldrich Química S.A.) and washed twice with 
phosphate buffered saline (PBS; Dako). When necessary, cells were permeabilized with 0,1% Triton-X-100 
(Sigma-Aldrich Química S.A.) in PBS at RT for 10 min and blocked with Triton block solution containing 0,75% 
glycine (Sigma-Aldrich Química S.A.), 2% bovine serum albumin (Sigma-Aldrich Química S.A.) and 0,1% 
Triton-X-100 in 0,01 M PBS pH 7,4 for 15 min. Primary antibodies diluted in Triton block solution were added 
and incubated over night at 4 °C. Thereafter, cells were washed with PBS and secondary antibodies in Triton block 
were added. One-hour incubation in the dark was performed. Slides were washed with PBS, counterstained with 
DAPI (Sigma-Aldrich Química S.A.) and coverslipped using fluorescent mounting medium (Dako). All the sam-
ples were visualized in an A1R confocal scanning microscope (Nikon).

Primary antibodies used were as follows: NANOG (ab109250, Abcam. 1:100), OCT-4 (sc-5279, Santa Cruz 
Biotechnology. 1:50), SOX2 (sc-365823, Santa Cruz Biotechnology. 1:500), SSEA-4 (sc-21704, Santa Cruz 
Biotechnology. 1:500), TRA1-81 (ab16289, Abcam. 1:100), α-fetoprotein (AFP) (ab 133617, Abcam. 1:500), 
α-smooth muscle actin (SMA) (ab 7817, Abcam. 1:100) and neuron-specific class III β-tubulin (TUJ1) (T8660, 
Sigma-Aldrich Química S.A. 1:500). Secondary antibodies used were goat anti-rabbit-PE (sc-3739, SantaCruz. 
1:200) and rabbit anti-mouse-FITC (F0313, Dako. 1:200).

Kariotype analysis.  Karyotype analysis of patients’ fibroblasts at the 5th passage and finally selected iPSCs 
clones with more than thirty passages in feeder-free culture was conducted by ThermoFisher Scientific using the 
KaryoStatTM service (ThermoFisher Scientific). The KaryoStat™ assay allows for digital visualization of chromo-
some aberrations with a resolution similar to g-banding karyotyping.

Autentication and mycoplasma testing.  To confirm lines identity STR analysis was performed. Genomic DNA 
was extracted from iPSCs and patients’ fibroblasts at the 4th passage using the DNeasy Blood and Tissue Kit 
(Qiagen), and sent to the genomic service at the “Alberto Sols” Institute of Biomedical Research (Madrid, Spain) 
for analysis. Absence of mycoplasma contamination in the iPSCs was checked by PCR.

Single nucleotide polymorphism analysis.  For SNP analysis, DNA was extracted from both donors’ 
fibroblasts at the 4th passage and iPSCs clones using the DNeasy Blood and Tissue Kit (Qiagen) according to 
the manufacturer’s instructions, on the QIAcube automated system (Qiagen). Presence of SNPs within the genes 
GDF5 (variant rs143383), SMAD3 (variant rs12901499), ALDH1A2 (variant rs3204689) and IL1-R1 (variant 
rs2287047) were studied by Sanger sequencing using the primers listed in Table 2.

Directed chondrogenic differentiation.  Subsequent differentiation of the iPSCs into relevant cell types 
to study the diseases is needed in order to use them as cellular in vitro models of hand OA. Therefore, we devel-
oped a chondrogenic differentiation protocol based on previous protocols35,50 with several modifications. For this 

Gene SNP Primer Forward (5′-3′) Primer Reverse (5′-3′) Size

GDF5 rs143383 caggcctgtgagtgtgtgtg cagcagtagcagcagaagga 376 bp

SMAD3 rs12901499 ttaaagcaggggagtggcac aagcacaggcccccaaatta 368 bp

ALDH1A2 rs3204689 ctcttccaaggagatgtcagc acacacacaccccaaaactg 332 bp

IL1-R1 rs2287047 accagcctccagagaagaaa gtgcatagctgactttggatgt 411 bp

Table 2.  Table showing the primer sets used to assess the presence of single nucleotide polymorphisms within 
the genes GDF5 (variant rs143383), SMAD3 (rs12901499), IL1-R1 (variant rs2287047) AND A2BP1 (variant 
rs716508). GDF5 (growth differentiation factor 5); SMAD3 (SMAD family member 3); ALDH1A2 (aldehyde 
dehydrogenase 1 family A2); IL1-R1 (interleukine 1 receptor 1); SNP (single nucleotide polymorphism); bp 
(base pair).
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differentiation experiment, the iPSC-lines MOA1-FiPS4F#7 and MOA2-FiPS4F#17 were employed, as well as 
another iPSC-line as a control (N1-FiPS4F#7), which was previously generated by our group from a donor with 
no rheumatic diseases49. The chondrogenic differentiation protocol consisted in the formation of EBs, sequential 
addition of specific growth factors and culture of the cells in three-dimensional pellets or micromasses. Thus, 
iPSCs at the 70–100th passage were disrupted and detached from the feeder layer using a ‘stripper’ micropipette 
(Origio MidAtlanticDevices) and a flexed capilar (Gynétics). Pieces of colonies were transferred to a non-treated 
60 mm culture dish (Corning) and cultured in suspension for 48 hours in Stemflex medium (ThermoFisher) in 
order to form spontaneous EBs. After 48 hours, EBs were seeded onto gelatin-coated dishes and culture medium 
was replaced for differentiation medium containing DMEM F-12, 1% P/S, 1% Insulin transferrin selenium (ITS; 
Gibco), 1% FBS, 10 ng/ml Wingless-type family member 3a (Wnt3a; R&D Systems), and 10 ng/ml human activin 
A (StemCell Technologies) (differentiation medium 1). After two days, differentiation medium 1 was changed 
for a new differentiation medium containing DMEM F-12, 1% P/S, 1% ITS, 1% FBS, 10 ng/ml bone morpho-
genic protein-2 (BMP-2, R&D Systems), and 10 ng/ml GDF-5 (R&D Systems) (differentiation medium 2). Then, 
48 h later, differentiation medium 2 was replaced by new differentiation medium composed by DMEM F-12, 
1% P/S, 1% ITS, 1% FBS, 10 ng/ml bone morphogenic protein-2 (BMP-2, Gibco), 10 ng/ml GDF-5, 50 μg/ml 
Ascorbic Acid (Sigma), and 10 ng/ml transforming growth factor-beta 3 (TGF-b3, Prospec-Tany Technogene 
Ltd) (differentiation medium 3). For further differentiation and matrix deposition, cells were cultured on hMSC 
Chondrocyte Differentiation Medium (Lonza) supplemented with 10 ng/ul TGF-b3 for several days until cells 
stopped proliferating and then, cells were trypsinized and transferred to propylene tubes for micromass forma-
tion. Micromass pellets were cultured in hMSC Chondrocyte Differentiation Medium supplemented with 10 ng/
ul TGF-b3 for 30 days, with media changes every 3–4 days. After 30 days, cell aggregates were fixed in paraformal-
dehyde, paraffin-embedded and stained with MT and SO for visualization of typical cartilage extracellular matrix 
proteins.
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