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ABSTRACT
Fibroblast-like synoviocytes (FLSs) are pivotal in inflammation
and joint damage of rheumatoid arthritis (RA). They acquire an
active and aggressive phenotype, displaying increased migra-
tion and invasiveness and contributing to perpetuate synovial
inflammation and destruction of cartilage and bone. The main
current therapies of RA are focused against inflammatory factors
and immune cells; however, a significant percentage of patients
do not successfully respond. Combined treatments with drugs
that control inflammation and that reverse the pathogenic
phenotype of FLS could improve the prognosis of these patients.
An unexplored area includes the retinoic acid, the main biologic
retinoid, which is a candidate drug for many diseases but has
reached clinical use only for a few. Here, we explored the effect
of all-trans retinoic acid (ATRA) on the aggressive phenotype of
FLS from patients with RA. RA FLSs were treated with ATRA,
tumor necrosis factor (TNF), or TNF1ATRA, and cell migration
and invasion were analyzed. In addition, a microarray analysis of
expression, followed by gene-set analysis and quantitative

polymerase chain reaction validation, was performed. We
showed that ATRA induced a notable decrease in FLS migration
and invasion that was accompanied by complex changes in
gene expression. At supraphysiological doses, many of these
effects were overridden or reverted by the concomitant presence
of TNF. In conclusion, these results have demonstrated the
therapeutic potential of retinoic acid on RA FLS provided TNF
could be counterbalanced, either with high ATRA doses or with
TNF inhibitors.

SIGNIFICANCE STATEMENT
All-trans retinoic acid (ATRA) reduced the rheumatoid arthritis
(RA) fibroblast-like synoviocyte migration and invasiveness and
down-regulated gene expression of cell motility and migration
genes. At supraphysiological doses, some of these effects were
reverted by tumor necrosis factor. Therefore, ATRA could be an
RA drug candidate that would require high doses or combined
treatment with anti-inflammatory drugs.

Introduction
Rheumatoid arthritis (RA) is an autoimmune disease char-

acterized by inflammation of the peripheral joints involving
synovitis and cartilage and bone degradation (Klareskog et al.,
2009; McInnes and Schett, 2011). The resident synovial cells,
macrophages and fibroblast-like synoviocytes (FLSs), contrib-
ute to the disease pathogenesis in multiple ways. Specifically,
FLSs acquire an activated status, leading to secretion of

proinflammatory mediators, cytokines, and chemokines to-
gether with metalloproteases, cathepsins, and other factors
contributing to cartilage and bone erosion. In addition, RA
FLS acquires some features of transformed cells that are
described as unregulated proliferation, resistance to apopto-
sis, and insensitivity to contact inhibition. These character-
istics contribute to cartilage and bone damage by the invasion
of the hyperplasic and aggressive synovia. This is a stable
phenotype maintained by epigenetic marks and somatic muta-
tions that seems critical for disease persistence and that
differentiates RAFLS from healthy FLS (Bartok and Firestein,
2010; Neumann et al., 2010; Ospelt, 2017). Preclinical models
have shown the effectiveness of targeting RA FLS, though
none of the tested drugs have yet reached clinical use . In
contrast, available drugs target the immune and inflammatory
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components of RA, but as monotherapy often they are insuffi-
cient to achieve remission or adequate control of the disease
activity (Smolen et al., 2017). This circumstance hasmotivated
the common use of drug combinations, with the most frequent
including methotrexate together with a targeted biologic
drug as one of the monoclonal anti–tumor necrosis factor
(TNF) antibodies (Smolen et al., 2017). A sizable fraction of
patients does not reach adequate response even with these
drug combinations. Therefore, there is a growing interest in
developing treatments aimed to revert the activated pheno-
type of RA FLS (Niedermeier et al., 2010). Recently, we found
that a transporter of retinoids, cellular retinoic acid binding
protein 2, is a candidate drug target of this type because
cellular retinoic acid binding protein 2 suppression reverts RA
FLS resistance to apoptosis (Mosquera et al., 2018). In the
same study, we observed unconventional responses of RA FLS
to the main biologic retinoid, all-trans retinoic acid. These
results prompted us to investigate further the effects of all-
trans retinoic acid (ATRA) on the activated phenotype of RA
FLS (Mosquera et al., 2018).
Vitamin A and retinoids are generic designations for an

array of essential organic molecules that include retinal,
retinol, and retinoic acid. They are needed for the visual
system, cell homeostasis and differentiation, integrity of
epithelia, erythropoiesis, reproduction, lymph node morpho-
genesis, response to infection, and other immune functions
(Al Tanoury et al., 2013; Coyle et al., 2013). Some retinoids
have been used since long ago to treat psoriasis, in which
they act on keratinocyte differentiation and proliferation and
on the balance between different cluster of differentiation 4
subsets (Brown andNoelle, 2015). In addition, retinoids have
been considered for the treatment of several types of cancer
and autoimmune diseases. In cancer cells, retinoids induce
differentiation, cell cycle arrest, apoptosis, and inhibition of
cell migration and invasiveness (Flamini et al., 2014; Young
et al., 2015; Cui et al., 2016; Li et al., 2017). In autoimmune
diseases, retinoids have shown improvement of animal
models of multiple sclerosis (Massacesi et al., 1991), systemic
lupus erythematosus (Perez de Lema et al., 2004), type 1
diabetes (Wang et al., 2016), and RA (Kuwabara et al., 1996;
Kwok et al., 2012). However, progress to further development
of retinoids as new drugs for these diseases has been slow. In
the case of RA animal models, some studies have shown
disease aggravation in place of improvement (Trentham and
Brinckerhoff, 1982, Beehler et al., 2003). The current study
was started to explore the effects of ATRA on the key features
of the RA FLS phenotype, namely cell migration and in-
vasion. Given that TNF is one of the most relevant cytokines
in RA pathogenesis, as supported by the efficacy of anti-TNF
treatments, the experiments also involved analysis of the
potential influence of TNF on the results.
The principal result of this work has been the discovery of

selective modulation by ATRA of several aspects of the RA
FLS phenotype. This regulation produces beneficial effects,
such as decreased migration and invasion. However, ATRA
effects on RA FLS were in many instances overridden or
reverted by the concomitant presence of TNF. The TNF over-
turning of ATRA effects was observed at supraphysiological
doses of ATRA, but a decreased migration could be restated by
further increasing the ATRA dose. This need for counterbalanc-
ing TNF modulation should inform the design of treatment
trials of ATRAand further studies of its role inRApathogenesis.

Materials and Methods
Patients and Cell Culture. FLSs were derived from synovial

tissue obtained from 11 patients with RA (eight women and three
men) showing acute synovitis and undergoing synovectomy by clinical
indication and with independency of this study. The patients fulfilled
the American College of Rheumatology criteria for the classification of
RA (Arnett et al., 1988) and provided their informed written consent.
The study was performed according to the recommendations of the
Declaration of Helsinki and was approved by the Comité Ético de
Investigación Clínica de Galicia (Approval No. 2014/393).

The synovial tissue was enzymatically digested, and the adherent
cells were grown to 80%–90% confluence in Dulbecco’s modified
Eagle’s medium with 10% FBS, 1% glutamine, and 1% penicillin/
streptomycin, as previously described (Orosa et al., 2012). Once
confluent, cultures were trypsinized and diluted at a 1:3 split ratio
for a new passage. The experiments were restricted to FLSs from
passages 3 to 8 because FLSs become a homogeneous population at
passage 3 and keep their phenotype to passages 8 to 9 (Lories et al.,
2003; Rosengren et al., 2007).

Migration Assay. The capacity of RAFLS tomigrate was analyzed
with a cell wound closure assay.Weused the Ibidi Culture Inserts (Ibidi,
Martinsried, Germany) to improve the reproducibility of the results.
These inserts, composed of two chambers separated by a 500 mm–thick
wall, were placed into each of the 24wells of the plate. FLSswere seeded
into the chambers of the inserts (5 � 103 cells/chamber) and cultured
until confluence was reached. At this time, the inserts were removed to
create the cell-free gap (time5 0 hour). Also at thismoment, the culture
medium was replaced by a serum-deprived (1% FBS) medium contain-
ing ATRA (5 mM), TNF (10 ng/ml), ATRA1TNF (5 mM and 10 ng/ml,
respectively), or DMSO (0.05%) and cells were incubated for 96 hours.
Photographs were taken under a microscope Axio Vert.A1 (Zeiss,
Oberkochen, Alemania) at 0 and 96 hours, and the fraction of the initial
gap that was filled with cells at 96 hours was quantified with the Image
J software (National Institutes of Health).

Transwell Invasion Assay. The ability of RA FLS to invade
extracellular matrix was tested using the 24-Well Milicell Hanging
Cell Culture Inserts (Merck Millipore, Darmstadt, Germany) covered
with Matrigel (BD Biosciences, Franklin Lakes, NJ). The inserts
create a Boyden chamber separated by a membrane of polyethylene
terephthalate with 8.0-mm pore size. This membrane was coated with
200 mg/ml of Matrigel, which mimics the extracellular matrix. The
FLSs (5 � 104 cells in 200 ml) were suspended in a serum-deprived
medium (1% FBS) containing ATRA (5 mM), TNF (10 ng/ml),
ATRA1TNF (5 mM and 10 ng/ml, respectively), or DMSO (0.05%)
and plated in the upper chamber. Simultaneously, culture medium
containing 10% FBS (500 ml) was placed in the lower chamber as
a chemoattractant. Afterward, the systemwas incubated for 48 hours.
At this time, the cells were fixed with paraformaldehyde, stained with
Giemsa, and photographed under the microscope. The number of cells
in the lower side of the membrane in 10 random fields at 200�
magnification was counted with the help of the ImageJ software.

Microarray Analysis. Gene expression analysis was performed
with the SurePrint G3 8 � 60K v3 ID: 072363 (Agilent Technologies,
CA) one-color microarray following the manufacturer protocols. This
analysis involved the four culture conditions compared in previous
experiments: ATRA (5 mM), TNF (10 ng/ml), ATRA1TNF (5 mM and
10 ng/ml, respectively), or DMSO (0.05%). Here, the FLSs from six
patients were cultured for 12 hours with the different treatments in
the serum-deprived medium. Total RNA was obtained using the
Speedtools total RNA extraction Kit (Biotools, Madrid, Spain). Its
integrity was assessed with the Agilent 2100 Bioanalyzer in
combination with Agilent RNA 6000 Nano Chips. Subsequently,
RNA was pooled (two pools of three patients each), and 1 mg of total
RNA was subjected to cDNA synthesis and cyanine 3–CTP labeling
using Agilent’s Low Input Quick-In-One Kit. The product was
hybridized on the microarray using SureHyb hybridization cham-
bers (Agilent). Once themicroarray was processed, fluorescence data
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were extracted with the Agilent Feature Extraction software and
normalized with the GeneSpring GX 13.0 software (Agilent). How-
ever, no comparisons of expression data were done at the individual
gene level. In its place, a gene set functional analysis was performed.
It was based in the rank product order of gene expression, which was
provided as the preranked input for the Gene Set Enrichment
Analysis (GSEA) algorithm. We used the Hallmark gene sets of the
Molecular Signatures Database, which summarize and represent
specific well-defined biologic states or processes and display co-
herent expression. The names of the gene sets do not fully represent
their content, which is available at http://software.broadinstitute.
org/gsea/msigdb/genesets.jsp?collection5H. A gene set was consid-
ered significantly enriched if its normalized enrichment score (NES)
$3 [all of them showed family-wise error rate (, 1024)]. GSEA and
Molecular Signatures Database have been developed and are main-
tained at the Broad Institute of the Massachusetts Institute of
Technology (http://www.broad.mit.edu/gsea/).

Real-Time Quantitative Polymerase Chain Reaction. Real-
time quantitative polymerase chain reaction (PCR) was performed in
a Rotor-Gene (Corbett Research, Australia), using 1-Step QRTPCR-
Brilliant III SYBR Green (Agilent Technologies), according to the
manufacturer’s protocol. Relative levels of gene expression were
normalized to the TATA-box-binding protein (TBP) gene using the
comparativeCtmethod, inwhichCt is the cycle atwhich the amplification
is initially detected. The relative amount of mRNA was calculated
according to the 22DDCt method, wherein: DCt 5 Ct target 2 Ct TBP and
DDCt 5 (Ct target 2 Ct TBP)Basal 2 (Ct target 2 Ct TBP)Treatment.

In this way, DDCt 5 0, and 2° 5 1 for RA FLS incubated with DMSO
0.05%. For the experimental treatments, the value 22DCt indicates gene
expression relative to TBP and the value 22DDCt indicates the fold change
in gene expression relative to the control. The primers were obtained for
the database PrimerBank (Table 1) andmanufactured by Sigma-Aldrich.

Data Availability. Data from microarray study have been de-
posited in National Center for Biotechnology Information’s Gene
Expression Omnibus and are accessible through the GEO Series
accession number [GEO: GSE120785]. To review go to: https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc5GSE120785. Enter token ilit-
wayybfqjfyz into the box.

The rest of the data generated during this study is available upon
request from the authors.

Statistical Analysis. Differences between experimental groups
were assessed with the Mann-Whitney U test or the Wilcoxon
matched-pairs test. A value of P , 0.05 was considered significant.
Analyses were performed with GraphPad Prism version 5.00 for
Windows (GraphPad Software, San Diego, CA).

Results
ATRA Reduces Migration and Invasiveness of RA

FLS. We have analyzed whether the treatment with ATRA
could reduce the migration ability of RA FLS using a cell
wound-healing assay. We used the dose of 5 mM ATRA based

on previous literature (Chen and Stallings, 2007; Das et al.,
2010, 2013; Foley et al., 2011; García-Regalado et al., 2013)
and our previous work (Mosquera et al., 2018). When the FLS
cells were cultured with ATRA, the healed areawas reduced to
about half the control at 96 hours (P, 0.01, Fig. 1, A and B). In
contrast, the cell wound-healing assay in the presence of TNF
showed increased RA FLS migration, and this increase was
not overcome by the addition of ATRA in the ATRA1TNF
assays (Fig. 1, A and B).
In a second step, we tested whether the reduction of

migration with ATRA correlated with similar changes in
FLS invasion. For these experiments, invasion through an
extracellular matrix mimic, Matrigel, was used. The average
result of FLS from nine patients with RA showed a signifi-
cantly reduced number of invading cells (30% fewer FLSs)
with 5 mMATRA compared with the control (Fig. 2, P, 0.05).
This decrease in invasiveness was similar to that observed in
the presence of TNF and not significantly different to that
found in the presence of ATRA1TNF (Fig. 2, A and B).
Identification of ATRA and ATRA1TNF Regulated

Gene Sets by Microarray Analysis. In an attempt to
discover clues explaining the previous results at themolecular
level, a microarray study was performed. It included one-color
microarrays containing about 60,000 probes that were hybrid-
ized with cDNA from FLS cultured in four conditions: control
medium, ATRA, TNF, and ATRA1TNF. Two pools, including
FLS from three different patients with RA each, were pre-
pared with the RNAs and hybridized with the array. The
results were used to screen for gene sets that were specifically
modified by ATRA (either in the comparison of ATRAwith the
control or in the comparison of ATRA1TNF vs. TNF) or by the
interaction between ATRA and TNF (showing differential
effects with ATRA1TNF compared with that observed either
with ATRA or with TNF).
Some gene sets showed evidence of interaction between

ATRA and TNF effects leading to differential modulation of
expression (Fig. 3). Two of them pertaining to interferon
gamma response and interferon alpha response were enriched
in genes up-regulated by TNF, ATRA, or ATRA1TNF relative
to their paired condition except in the ATRA1TNF versus
TNF comparison, wherein ATRA1TNF was associated with
lower expression than TNF (Fig. 3). Another gene set showing
evidence of interaction between ATRA and TNF concerned the
epithelial-mesenchymal transition. The genes in this set
were down-regulated by ATRA compared with the control,
but up-regulated by ATRA1TNF in relation with ATRA.
This latter result was observed in spite of the absence of
a significant effect of TNF on its own (Fig. 3). Some of the

TABLE 1
Primer sets used for quantitative PCR study

Gene Primers Forward Primers Reverse

CX3CL1 ACCACGGTGTGACGAAATG TGTTGATAGTGGATGAGCAAAGC
CXCL3 TGGTCACTGAACTGCGCT ATGCGGGGTTGAGACAAG
EPSTI1 AGCAGGAGCTGGCCAACCTGGA TTGTGGGCCACAAACAGCACT
VCAM1 GGGAAGATGGTCGTGATCCTT TCTGGGGTGGTCTCGATTTTA
PTX3 TTATTCCCAATGCGTTCCAAGA GCACTAAAAGACTCAAGCCTCAT
NOD2 CACCGTCTGGAATAAGGGTACT TTCATACTGGCTGACGAAACC
MMP1 CTCTGGAGTAATGTCACACCTCT TGTTGGTCCACCTTTCATCTTC
IL1B AGCTACGAATCTCCGACCAC CGTTATCCCATGTGTCGAAGAA
ST3GAL5 AGGAATGTCGTCCCAAGTTTG GGAGTAAGTCCACGCTATACCT
CXCL9 CCAGTAGTGAGAAAGGGTCGC AGGGCTTGGGGCAAATTGTT
TBP TGCACAGGAGCCAAGAGTGAA CACATCACAGCTCCCCACCA
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most down-regulated extracellular matrix genes by ATRA
were collagen (COL) 5A3, lumican, elastin, tenascin C,
COL6A3, COL8A2, COL1A2, COL1A1, and other collagen
genes. Six other gene sets showed an enhancement of
expression with the combined treatment (Fig. 3). The
clearest pattern in this category corresponded to oxidative
phosphorylation, which was up-regulated in all ATRA1TNF
comparisons without experiencing a significant increase in
the wells cultured separately with TNF or with ATRA. A
similar pattern was found for the mitotic spindle, DNA
repair, adipogenesis, mechanistic target of rapamycin com-
plex 1 signaling, and cholesterol homeostasis gene sets
(Fig. 3).
There were four other gene sets showing up-regulated

expression associated with ATRA. For three of them, the
increase was uniform in all comparisons, indicating that they
were stimulated by both ATRA and TNF and further in-
creased by the combination of ATRA1TNF. These three sets
are denominated as such: E2F targets, G2M checkpoint, and
MYC targets v1. The other set that showed a similar, though
less consistent, pattern was TNF-a signaling via Nuclear
factor kappa light chain enhancer of activated B cells (NFkB)
(Fig. 3).
The remaining gene sets showing significant enrichment

were exclusively related to induction by TNF and, therefore, of
less interest in the current study. However, it is worth noting
to signal their substantial number, 12, and that 11 of them
were enriched in up-regulated genes. This bias toward in-
creased gene transcription and the identity of the enhanced
gene sets reflected the known effect of TNF in the immune
response (Fig. 3).

For the confirmatory experiments, we selected the genes
from the first decile of the most significantly enriched path-
ways (inflammatory response, interferon gamma response,
TNF-a signaling via NFKB, and epithelial-mesenchymal
transition) that were of interest in cell migration, invasion,
motility, or inflammation (Table 2). Some of the 11 genes
fulfilling this selection appeared in several pathways, and
they were validated by real-time PCR.
Analysis of ATRA and TNF in the Regulation of

Specific Genes. Real-time PCR of the 11 selected genes was
done with FLS from five to seven patients with RA. The
commonest effect of ATRA was to down-regulate gene expres-
sion. The decrease was significant for epithelial stromal
interaction 1 (EPSTI1), matrix metalloprotease 1 (MMP1),
C-X3-C motif chemokine ligand 1 (CX3CL1), pentraxin 3
(PTX3), and vascular cell adhesion protein 1 (VCAM1) in the
comparison betweenATRAand control (Fig. 4). Therewas also
a significant decrease in FLS treated with ATRA1TNF
relative to the FLS incubated with TNF (Fig. 4). This re-
duction was observed for some of the same genes that were
downmodulated by ATRA alone, specifically for EPTSI1,
MMP1, and VCAM1 (Fig. 4). However, it was also observed
that C-X-C motif chemokine ligand 9 (CXCL9), C-X-C motif
chemokine ligand 3 (CXCL3), and ST3 beta-galactoside alpha-
2, 3-sialyltransferase 5 (ST3GAL5) did not demonstrate differ-
ences in the ATRA versus control comparison and that
nidogen 2 (NID2) showed up-regulation with ATRA alone.
However, ATRA only reverted the TNF-induced expression to
the control level for MMP1 (Fig. 4). The inability of ATRA to
revert TNF effects was equally apparent in the two genes that
were down-regulated by TNF, NID2, and ST3GAL5. These

Fig. 1. ATRA reduces RA FLS migration. (A)
Migration rate of RA FLS measured by wound-
healing assays. RA FLS were stimulated for 96
hours with 5 mM ATRA, 10 ng/ml TNF, or
TNF1ATRA. Migration rate reached by RA
FLS control was considered as 100%. (B) Repre-
sentative microphotographs are shown. Values
are the mean 6 Standard Error of the Mean
(SEM) of FLS from nine RA patients. *P , 0.05;
**P , 0.01 vs. control; ##P , 0.01 between the
signaled conditions, by Wilcoxon matched-
pairs test.

Fig. 2. ATRA reduces RA FLS invasion. (A) Percentage
of RA FLS stimulated with or without 5 mM ATRA that
invaded the inserts coated with Matrigel. Number of
cells in untreated controls that invaded was used as
100%. (B) Representative microphotographs are shown.
Values are the mean 6 Standard Error of the Mean
(SEM) of FLS from nine patients with RA. *P , 0.05, by
Wilcoxon matched-pairs test.
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two genes were further down-regulated by the ATRA1TNF
treatment in comparison with the treatment with TNF alone.
This potentiated down-regulation was particularly striking
for NID2 because the NID2 expression was induced by ATRA
in the absence of TNF (Fig. 4).
The two remaining genes, nucleotide-binding oligomeriza-

tion domain 2 (NOD2) and interleukin 1B (IL1B) were not
down-regulated by ATRA in any experimental setting but for
different reasons. NOD2 expression showed a complete in-
sensitivity to ATRA (Fig. 4). In contrast, expression of IL1B
was induced by ATRA, both alone and in the TNF1ATRA
combination (Fig. 4).
Dose-Effect Curve of ATRA on the TNF-Induced

Migration of RA FLS. To analyze how the interplay
betweenATRA andTNF affects RAFLSmigration at different
relative concentrations, we varied the doses of ATRA while
keeping the dose of TNF constant (Fig. 5). These experiments

showed that ATRA in isolation was able to decrease RA FLS
migration even at the lower dose assayed, which was one-
tenth of that previously used, with further decrease at higher
doses. In contrast, the increase in migration observed in the
presence of TNF was not significantly modified with the
addition of ATRA in the 0.5–10 mM range. However, higher
doses of ATRA were able to significantly overcome the TNF
potentiation (0.04 and 0.03 with 20 and 40 mM, respectively).
Specifically, the TNF-induced migration of RA FLS was
reduced by 35.6% with 40 mM ATRA (Fig. 5).

Discussion
Our experiments have identified new areas in which ATRA

could control the FLS-activated phenotype. They include
a decrease in FLS migration and invasion, which, when
uncontrolled, are pivotal contributors to cartilage and bone
damage of the inflamed joints. In addition, ATRA showed
down-regulatory effect on the expression of specific genes
related to cell motility. However, it did not oppose all aspects
of the FLS-activated pattern of expression. This complexity of
actions was compounded by the strong effect of TNF, which
showed a dominant effect on many of the aspects of the RA
FLS phenotype. These results integrate appropriately with
the growing evidence indicating the contextual dependency of
retinoid actions. Interestingly, we also observed that TNF has
opposed effects on the migration and invasion of RA FLS. The
cause of this discrepancy is unknown. However, it is necessary
to note that concordant increased cell migration and invasion
is characteristic of metastatic cancer cells not of tissue growth,
inflammation, or wound repair, in which cell motility is
increased without invasiveness (Wu and Zhou, 2010; Hul-
kower and Herber, 2011). In RA animal models, synovial
invasion and attachment to cartilage and bone and even
transmigration to other joints are present, but TNF is not
able on its own to promote them. The experiments in
Human Tumor Necrosis Factor (hTNF) transgenic mice
show that these processes are dependent on the presence of
IL-1 or cartilage damage (Korb-Pap et al., 2012; Hillen
et al., 2017; Ospelt, 2017).
No previous study has analyzed the role of ATRA, or any

other retinoid, in theRAFLS except for our previouswork that
was restricted to FLS proliferation and survival. FLSs’ pro-
liferation was insensitive to ATRA, whereas their resistance
to apoptosis was exacerbated (Mosquera et al., 2018). The
inhibitory effects of ATRA on FLS migration and invasion
observed in the current study were in concordance with that
found in cancerous and nonmalignant cells.

Fig. 3. Heatmap showing the gene sets that were significantly enriched in
overexpressed (red) or down-regulated (blue) genes. The scale shows NESs.
Columns represent the comparisons of condition 1/condition 2. Rows show
the gene set names. Significantly enriched gene sets were identified with
NES$ 3 and false discovery rate, 1024 in GSEA preranked analysis. JAK,
Janus kinase; MTOR, mechanistic target of rapamycin; MTORC1, MTOR
complex 1; STAT5, signal transducer and activator of transcription 5.

TABLE 2
Gene selected to validate microarray analysis

Gene Set

Epithelial-mesenchymal transition MMP1 PTX3 VCAM1 NID2
Inflammatory response CX3CL1 CXCL9 NOD2 IL1B
Interferon gamma response EPSTI1 VCAM1 CXCL9 ST3GAL5
TNF-a signaling via NFKB PTX3 CXCL3 IL1B
IL6 JAK STAT3 signaling CXCL3 CXCL9 IL1B
Allograft rejection CXCL9 IL1B
Interferon alpha response EPSTI1
KRAS signaling up IL1B

JAK STAT, Janus kinase signal transducer and activator of transcription.
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The reduced migration and invasion of cancer cell lines
induced by retinoids correlate in animal models with de-
creased tumor growth and metastases (Tabata et al., 2009;
Zhao et al., 2009; Benelli et al., 2010; Applegate and Lane,
2015; Waters et al., 2015; Williams et al., 2018). These effects
together with other beneficial actions have motivated the
use of retinoids for the treatment of several malignancies,
including acute promyelocytic leukemia (Cicconi et al.,
2018; Lengfelder et al., 2018), head and neck squamous
cell carcinoma (Bhatia et al., 2017), and neuroblastoma
(Cheung, 2015).
Gene-set analysis of the microarray data identified a single

ATRA down-regulated gene set: the epithelial-mesenchymal
transition, which is critical in the RA FLS phenotype (Steen-
voorden et al., 2006; Ekwall et al., 2011; Li et al., 2013; Choi
et al., 2017). In effect, the FLSs from healthy subjects show
some typical markers and functional features of epithelial
cells in spite of their mesenchymal origin. These epithelial
features are lost more or less completely in the early phases of
RA in a process that resembles the epithelial-mesenchymal
transition and that includes enhanced migration and active
invasiveness. In addition, the epithelial-mesenchymal transi-
tion pathway has been identified as the most up-regulated
pathway associated with RA FLS invasiveness in a previous

transcriptomic study (You et al., 2014). Therefore, down-
regulation of the epithelial-mesenchymal transition by ATRA
could explain the inhibition of migration and invasion we have
observed.
Additional genes that could be involved in migration in-

hibition were suggested by quantitative PCR results. They
showed a marked down-regulation with ATRA of CX3CL1
and EPSTI1 together with decreases of MMP1, PTX3, and
VCAM1, which are included in the epithelial-mesenchymal
transition gene set. All these genes are involved in cell
migration and invasion (Li et al., 2014; Tan et al., 2016;
Tung et al., 2016; Bernardini et al., 2017; Wang et al., 2017;
Kong et al., 2018). In effect, VCAM1 participates in the
transendothelial migration of leukocytes (Kong et al., 2018),
whereas EPST11 (Li et al., 2014; Tan et al., 2016) and PTX3
(Tung et al., 2016; Chan et al., 2017) contribute to cancer
invasion and metastasis. Even more relevant is down-
regulation of CX3CL1 and MMP1, because they participate
in RA FLS migration. On one side, CX3CL1 is a chemokine
ligand that induces FLS proliferation, migration, and pannus
formation in an autocrine way (Bernardini et al., 2017),
whereas MMP1 contributes to migration and invasion as an
extracellular matrix protease (Huang et al., 2017; Wang et al.,
2017).
Another relevant aspect of our results is the modulation of

ATRA actions by the presence of TNF. Its most notable
manifestation was the reversal of its inhibition of RA FLS
migration. The nature of this modulation is not known, but it
was possible to reverse it with larger concentrations of ATRA.
In addition, 5 mM ATRA in combination with TNF modulated
the gene expression differently than ATRA alone. Many
interaction types were observed in our analysis, from poten-
tiation of the TNF effect to its reversal. Then, in further
studies it would be interesting to more thoroughly analyze the
effect of TNF1ATRA in these pathways.
The interaction of ATRA and TNF has been previously

observed in chondrocytes (Huang et al., 2017) and the T helper
subset differentiation (Basu et al., 2015; Brown and Noelle,
2015). However, no previous evidence of interaction was
available in RA or healthy FLSs or in any other fibroblasts.
In addition, epidemiologic studies have found a paradoxical
disparity attributed to the contextual dependency of the
retinoid effect. So, high plasma levels of retinoids are associ-
atedwith decreased frequency of some chronic diseases (Rubin
et al., 2017; Toti et al., 2018). In RA, low levels of retinoids in

Fig. 4. ATRA modulates gene expression in-
volved in inflammatory response and migration
of RA FLS. Fold change of CX3CL1, MMP1,
PTX3, VCAM1, NID2, CXCL9, CXCL3, NOD2,
IL1B, and ST3GAL5 mRNA in RA FLS stimu-
lated with 5 mM ATRA, 10 ng/ml TNF, or
TNF1ATRA. mRNA in control was considered
as one and indicate by dotted lines. Values are
the mean 6 Standard Error of the Mean (SEM)
of FLS from five to seven patients with RA.
*P , 0.05; **indicates P , 0.01 vs. control;
#P , 0.05 between the signaled conditions, by
Wilcoxon matched-pairs test.

Fig. 5. The interplay between ATRA and TNF on RA FLS migration is
dose-dependent. Migration rate of RA FLS measured by wound-healing
assays. RA FLSs were stimulated for 96 hours with the indicated ATRA
concentrations in presence or absence of 10 ng/ml TNF. Themigration rate
reached by control RA FLS was considered as 100%. Values are the mean
6 ESM of FLS from five patients with RA. *P , 0.05 vs. control without
TNF; #P , 0.05 vs. control with TNF.
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plasma are associated with increased prevalence (Comstock
et al., 1997), whereas treatment with retinoids of arthritis
models has resulted in a variety of results, from an increase in
disease severity (Trentham and Brinckerhoff, 1982; Beehler
et al., 2003) to its attenuation (Kuwabara et al., 1996; Kwok
et al., 2012).
The beneficial effect of ATRA was observed at the supra-

physiological dose of 5 mM, which has been frequently used in
in vitro studies (Chen and Stallings, 2007; Das et al., 2010,
2013; Foley et al., 2011; García-Regalado et al., 2013; Mos-
quera et al, 2018) and broadly corresponds to the ATRA
concentrations attainable with the doses used to markedly
supress collagen-induced arthritis in DBA mice (Kwok et al.,
2012). In effect, the 0.5 mg/kg of ATRA given to these mice
leads to peak ATRA concentrations between 0.6 and 3 mM in
serum and tissues, as estimated from the available data in
mice (Jing et al., 2017). These concentrations are about
1000 times larger than the endogenous concentration found
in the plasma of human subjects (Jing et al., 2017), but there
is no reason to expect they will be associated with intolerable
adverse effects because they are about one-hundredth the
concentrations found in plasma with the recommended
dose for the treatment of acute promyelocytic leukemia
(Castaigne et al., 1993; Sanz et al., 2009; Osman et al.,
2018). Therefore, the 5 mM concentration was clearly larger
than the endogenous ATRA, sufficient for eliciting signifi-
cant effects in preclinical arthritis models, and likely to be
well tolerated.
The dominance of TNF over ATRA on RAFLS reinforces the

need for complementary approaches when considering drugs
aimed to control the RA FLS phenotype. This idea is widely
accepted (Niedermeier et al., 2010). The experience of drugs
targeting synoviocytes in RA does not go beyond preclinical
studies (Dong-Liang et al., 2016). However, several therapies
intended to reduce synovial hyperplasia, including radioac-
tive, surgical, and arthroscopic synovectomy, are still applied
with success in refractory patients with RA (Chalmers et al.,
2011; Lee et al., 2014; Knut, 2015).
The possibility that ATRA could be used for the treatment of

RA has been pursued only in preclinical studies, as already
mentioned (Kuwabara et al., 1996; Kwok et al., 2012).
However, the clinical experience of combining treatments in
RA is extensive. Current recommendations include the com-
bination of a nontargeted drug, such as methotrexate, with
a targeted drug, such as an anti-TNF monoclonal antibody, to
treat the patients that show inadequate response (Smolen
et al., 2017). The significant fraction of patients that still do
not respond has motivated the search for other combinations.
Therefore, a combination of drugs targeting inflammation and
the synoviocytes will follow in this tradition.
Overall, the data shown here have demonstrated for the

first time that ATRA can modulate the aggressive phenotype
of FLS from patients with RA. On practical grounds, it seems
reasonable to consider that combined treatments will include
drugs to control inflammation and autoimmunity in addition
to the RA FLS–directed drug. Therefore, future preclinical
trials should consider the many effects of retinoids, including
the effects on FLS, the interactions with TNF, and other
contextual influences. It is possible that in this way, the effect
of retinoids on arthritis models could be clarified and the path
toward clinical trials could be open in the context of drug
repositioning.
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