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Abstract

Uncertainty is one of the cardinal obstacles when working with artificial intelligence — i.e.,
the managed information may be incomplete, incorrect or imprecise. It is particularly one of
rule-based systems’ (RBS) most essential and convoluted issues.
Albeit statistics has been historically the leading formalism to represent ambiguity, there exist
alternative numerical methods to quantify it (e.g., fuzzy sets or belief functions [1]).
The associated uncertainty of a hypothesis can be considered a consequence of the propaga-
tion of imprecision through the different inferential logics of a system. Considering this, is it
possible to model ambiguity?
A solution to this problem is proposed by [2]. The main goal of this work is to assemble and
evaluate thoroughly a QRBS [3] that works analogously to its conventional predecessor. This
new system treats uncertainty as an innate aftereffect of the inherent probabilistic nature of
QM. It is a work of AI that uses QC techniques to solve the problem of uncertainty in RBSs.

Resumo
A incerteza é un dos obstáculos cardinais cando se traballa con intelixencia artificial - é

dicir, a información xestionada pode ser incompleta, incorrecta ou imprecisa. É particular-
mente un dos temas máis esenciais e relacionados cos sistemas baseados en regras.
Aínda que a estatística foi historicamente o principal formalismo para representar a ambigüi-
dade, existen métodos numéricos alternativos para cuantificalo (por exemplo, conxuntos di-
fusos ou funcións de crenza [1]).
A incerteza asociada a unha hipótese pódese considerar consecuencia da propagación da im-
precisión a través das distintas lóxicas inferenciais dun sistema. Tendo en conta isto, é posible
modelar a ambigüidade?
[2] propón unha solución a este problema. O obxectivo principal deste traballo é reunir e
avaliar a fondo un sistema cuántico baseado en regras [3] que funciona de xeito análogo ao
seu predecesor convencional. Este novo sistema trata a incerteza como un efecto positivo do
carácter probabilístico inherente da mecánica cuántica. Trátase dun traballo de AI que usa
técnicas de computación cuántica para resolver o problema de incerteza nos sistemas basea-
dos en regras.
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Chapter 1

Introduction

Introduction sections of this study is a presentation aiming at bringing in itself to the readers
and presenting the subsequent sections of the work. Firstly, it provides information about
the general topic of the work which paves the way for the disclosure of the objectives as
well as the methodology followed to achieve them. Finally, the last paragraphs analyze the
encountered problems that lead to this study’s necessity in the light of the current literature.

1.1 Objectives

The first two objectives of the project will be the basis for the following phases and will be to
develop a classic rule-based system and its quantum counterpart. The rest of iterations will be
built on this first approach by adding new features or using it as an analogy to come up with
new solutions. In this way, the third and fourth phases will solve the first two problems in
a categorical and quantum manner respectively. Once we have these two resolutions we can
assign an uncertainty to each input variable and solve the problem with a quantum method
with this uncertainty. In short, the specific objectives of the project can be summarized in:

• Develop a classic rule-based system and its quantum counterpart.

• Solve the classic problem categorically.

• Solve the proposed problem in a quantum way.

• Assign uncertainty to input variables.

• Solve the problem in a quantum way with this uncertainty.

1



1.2. Motivation

1.2 Motivation

There are three essential questions that justify quantum approaches in computer sciences.
This section dives into this issues and their relation with the study.

1.2.1 Current microprocessor size & Moore’s Law consequences

The primary driving force of economic growth is the growth of productivity and the rate
of financial realities is controlled by the rate of technological progress. A 2011 study [6] in
the journal Science showed that every new year allowed humans to carry out roughly 60%
more computation than possibly could have been executed by all existing general-purpose
computers in the year before. This computational power increase is mainly due to two big
factors: Moore’s Law and Pollock’s Rule.

Moore’s law [4] is the observation that the number of transistors in a dense integrated
circuit doubles about every two years. Gordon Moore described this effect (figure 1.1) on a
paper in 1965 as an observation and projection of a historical trend and not a physical or
natural law. It could be said that its effect still holds in our days although the rate held steady
from 1975 until around 2012, when the rate increased up to a double every 18 months. Also,
this transistor shrinkage provides more space to add specialized processing units to deal with
features such as graphics, video, and cryptography.

On the other hand, Pollack’s Rule states[7] that performance increases due to microarchi-
tecture techniques approximate the square root of the complexity (number of transistors or
the area) of a processor, formally: √

Qc

Qp
= P

where Qc, Qp are current and previous number of transistors

and P is performance boost

Following Moore’s statement that each new technology generation doubles number of
transistors, and applying Pollack’s rule implies that microarchitecture advances improve the
performance by

√
2 ≈ 41%. Therefore, the overall performance increase per generation is

roughly two-fold, while the power consumption stays the same. This performance increase
lies in exploiting dynamic execution and on-chip caching and prefetching at the expense of
using more transistors and increasing the processor complexity.
To manage CPU power dissipation, processor makers favor multi-core chip designs. Many
multi-threaded development paradigms will not see a linear increase in speed vs number of
processors. This is particularly due to lock contention and communication time between
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CHAPTER 1. INTRODUCTION

Figure 1.1: Microprocessor transistor counts & Moore’s Law [4]

cores while accessing shared or dependent resources. The effect becomes more noticeable
as the number of processors increases. To add on these problems, transistors smaller than
7nm will experience a quantum phenomenon known as quantum tunnelling. To understand
the phenomenon, particles attempting to travel between potential barriers can be compared
to a tiger trying to jump a zoo barrier; quantum mechanics and classical mechanics differ
in their treatment of this scenario. Classical mechanics predicts that this tiger that does not
have enough energy to classically surmount the barrier will not be able to reach the other
side. However, in quantum mechanics the tiger can — with a given probability — tunnel to
the other side, thus crossing the barrier. This phenomena can affect MOSFE transistors that
are fabricated by doping a semiconductor, typically silicon ; i.e., intentionally introducing
impurities for the purpose of modulating its electrical properties. A semiconductor doped to
high levels acts more like a conductor than a semiconductor allowing electron flow as seen
in 1.2. Due to this phenomenom, electrons may be able to tunnel pass through the oxide-
insulator layer of a transistor.

Other alternatives - TFET

Other approaches have been taken to solve the issue. The state of the art in all the alternative
approaches is clearly the TFE transistor [8]. It is an experimental type of less than 7nm

transistor with a very similar structure to a MOSFET (with a different fundamental switching

3



1.2. Motivation

Figure 1.2: Quantum tunneling on transistors through SiO2 insulating layer

mechanism) making this device a promising candidate for low power electronics. Due to the
costs involved in development, less than 7nm transistors are predicted to take longer to reach
market than the two years estimated by Moore’s law.

1.2.2 Reversibility - Energy efficiency and utility

For the entire history of computing, our calculating machines have operated in a way that
causes the intentional loss of some information (it’s destructively overwritten) in the pro-
cess of performing computations. Rolf Landauer’s principle [9] argues that the logically ir-
reversible character of conventional computational operations has direct implications for the
thermodynamic behavior of a device that is carrying out those operations. Landauer’s prin-
ciple theorizes about the lower limit of energy consumption of computation. Informally, the
principle enunciates that if a observer loses information about a physical system, also loses
the ability to extract work from that system.
His reasoning can be better understood considering a game of billiards[10]. The collision
physics would be the same whether you ran them backward or forward, and you could work
out the future configuration of the balls from their past configuration or vice versa (with the
same difficulty). Suppose now that the balls, cushions, and slate were not frictionless. Then,
sure, two different initial configurations might end up in the same configuration. The fric-
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CHAPTER 1. INTRODUCTION

tional loss of information would then generate heat.
Every single active logic gate in conventional designs destructively overwrites its previous
output on every clock cycle. Physically it grounds one part of a circuit that holds a charge,
in effect converting the charge and the information it represents into heat [11]. These high
temperatures limit modern chips in several ways:

• By the classical statistical thermal Maxwell–Boltzmann tail of carriers [12].

• The risk of overheating, which in itself creates the need to cool the system down dou-
bling the power consumption as well.

Thus, reversible computing does not only reduce computer chips’ power consumption, it also
boosts its speed. More so, computers are estimated to consume as much as 10 percent of elec-
tricity in the United States [13], and chips are rapidly reaching the upper limits of their heat
tolerance.
Generally, entropy increases when information is lost or erased. The OR gate starts with two
input bits and ends with only one, it must necessarily lose information given that there is no
way to carry all the information through. If, instead, we require all of our gates to have the
same number of input and output bits, it’s possible then to undo the computation. Although
this criteria is necessary it does not make it sufficient to make a reversible computation. Bi-
jectivity must also be met; i.e., the output set has to have a one-to-one correspondence with
the input set.
The deferred measurement principle is a mathematical theorem without loss of generality
which states that delaying measurements until the end of a quantum computation doesn’t
affect the probability distribution of its outcome. As a result of this principle, every change
except measurement must be reversible. This means that it must be possible for us to recre-
ate the initial state using only the output state, without additional information. In the next
chapter, we will delve into the minutiae of how this is accomplished.

1.3 Structure

This work is divided into 5 chapters and 2 annexes. This structure is related to the different
phases of the project. Its content is detailed below:

Chapter 1: The purpose and objectives of the project as well as the reasons that motivated
it.

Chapter 2: Provides a brief context on quantum mechanics and quantum computing.

5



1.3. Structure

Chapter 3: Treats the theoretical concepts, along with their mathematical basis, which are
important for modeling the uncertainty. Includes the tools used to build the simulator,
its structure and operation.

Chapter 4: Shows the obtained results and how close they come to bringing a efficient so-
lution.

Chapter 5: The work done is valued and compared with the state of the art.

Annex A: Contains the associated costs.

Annex B: Gantt chart of the task planning.

6



Chapter 2

Theoretical framework

In classical computing the bit is the basic unit of information with a singular value, 0 or 1,
also interpreted as true or false, or any two values mutually exclusive. Quantum comput-

ing uses a new basic information unit known as qubit. Qubits are fundamental to quantum
computing and are somewhat analogous to bits in a classical computer. Qubits can be in a
state 1,0 or a lineal combination of any of the two, i.e., the system has a probability to collapse
to each state. However, when qubits are measured the result is always either a 0 or a 1; the
probabilities of the two outcomes depends on the quantum state they were in. Quantum com-
puting power lies in this superposition principle, allowing a parallelistic effect in operations.
There are currently two main approaches to physically implementing a quantum computer:
analog and digital. Digital quantum computers use quantum logic gates to do computation.
To ensue a better understanding of the underlying basis of the work done, this chapter con-
sists of concepts together with their definitions, reference to relevant scholarly literature and
existing theory that is used for this particular study and that relate to the broader areas of
knowledge being considered.

The main conceptions treated in the following sections encompass the building blocks
upon which quantum computing is built. Specifically this study focuses on:

• Classical computing and its unconventional variants leading to reversible computing.

• The quantum mechanics principles that support quantum computing roots.

• A simple introduction to quantum computing concepts crucial for this work.

BITS QUBITS

Operated with logical gates (OR,XOR,AND…) Operated with unitary gates
Can be cloned Cannot be cloned (no-clone theorem) [14]

Can be stored/have a long life Cannot be stored nor have a long life (yet)

7



2.1. The Principles of quantum mechanics

Aforementioned conceptions are important because they are the lens through which the
research problems are evaluated. Theoretical and conceptual frameworks also provide evi-
dence of academic standards and procedure. They also offer an explanation of why the study
is pertinent and how this study expects to fill the gap in the literature.

2.1 The Principles of quantum mechanics

2.1.1 Bra-ket notation

Bra-ket notation, first introduced in 1939 by Paul Dirac [15], is a standard notation for de-
scribing quantum states and will be used throughout this text.
In quantum mechanics the state of a physical system is identified as a complex Hilbertian
space, H. Each vecto r is called the ket, and is typically represented as |ψ〉. In this instance,
the vector space dovetails to C2 because we have two basis states — i.e., true and false. Then:

|ψ〉 =

[
c0

c1

]
where ci ∈C2

For each ket |ψ〉 there exists a dual bra which is the Hermitian adjoint 1 of the ket with the
same label, typically represented as a row vector, and written:

〈φ| = |ψ〉T =
[
c0 c1

]
where ci ∈C2

In quantum mechanics the scalar product or action is written as the expression:

〈φ|ψ〉 ∈ C =
[
c0 c1

]
×

[
c0

c1

]

Typically interpreted as the probability amplitude for the state ψ to collapse into the state φ.

2.1.2 Heisenberg’s uncertainty principle

The uncertainty principle first introduced in 1927 [16] states that the more precisely the po-
sition of some particle is determined 2, the less precisely its momentum can be known, and

1Considering the linear operator A∗ : H1 → H2 between Hilbert spaces. The adjoint operator is the linear
operator A : H2 → H1

2It must be emphasized that measurement does not mean only a process in which a physicist-observer takes
part, but rather any interaction between classical and quantum objects regardless of any observer.

8



CHAPTER 2. THEORETICAL FRAMEWORK

Figure 2.1: Two slit experiment

vice versa. The principle is inherent in the properties of all wave-like systems arises in quan-
tum mechanics simply due to the matter-wave nature of all quantum objects. Heinsenberg
demonstrated that it was not possible to contrive a method to locate the position of a sub-
atomic particle unless we admitted some absolute uncertainty with regard to its exact velocity,
since it is impossible to simultaneously and accurately measure both position and velocity

Double-slit experiment

Since the uncertainty principle is such a basic result in quantum mechanics, typical experi-
ments in quantum mechanics routinely observe aspects of it. An especially unusual version
of the effect is best demonstrated by the double-slit experiment[17]. Assuming light con-
sisted strictly of particles, and assuming they were fired in a straight line through two slits
and allowed to strike a screen on the other side, there should be a pattern corresponding to
the size and shape of the apertures. Which means that there is certainty from which slit the
particle came through. However, as can be seen in figure 2.1, when this experiment is actu-
ally performed a pattern with a series of alternating light and dark bands is observed. As it
is a microscopic particle and its wave nature is significant, this leads to uncertainty in deter-
mining the position and momentum and a diffraction pattern is observed on the screen. This
behaviour was later extended to electrons, atoms and molecules.

2.1.3 Quantum superposition

Quantum superposition states that, much like waves in classical physics, any two (or more)
quantum states can be added together and the result will be another valid quantum state;
and conversely, that every quantum state can be represented as a sum of two or more other

9



2.2. Introducing quantum computing

distinct states. If given particle ψ has n possible basis states, then mathematically we have:

|x0〉 =
[
1 0 . . . 0

]T
|x1〉 =

[
0 1 . . . 0

]T
|xn−1〉 =

[
0 0 . . . 1

]T
Where xi represents each of the basis states of the system

As described precendently, ψmay be in a state |ψ〉 that is a linear combination of several basis
states at the same time. Formally:

|ψ〉 = α0 |x0〉+ α1 |x1〉+ · · ·+ αn |xn〉

Where the amplitudes αi ∈ C verify the law of total probability:∑
|αi|2 = 1

and |αi|2 represent the probability of the system to collapse to state xi

To better understand this phenomenon, suppose a beam of light shinnying through an imper-
fect sheet of glass that only transmits 95% of the photons. This makes perfect sense if light is
a wave; the wave simply splits and a smaller wave is reflected back. Schrodinger’s probability
waves permits the existence of two or more waves. One wave would correspond to a photon
passing through the glass and another wave would correspond to the photon bouncing back.
But it is also possible for both waves to have superposed waves, which leads to the possibility
of the photon being both transmitted and reflected, and therefore being on both sides of the
glass simultaneously.

2.2 Introducing quantum computing

2.2.1 TheQubit

A quantum logical qubit state, as used in quantum information processing, is a quantum
superposition of the basis states |0〉 and |1〉. Here |0〉 is the Dirac notation for the quantum
state that will always give the result 0 when converted to classical logic by a measurement.
Likewise |1〉 is the state that will always convert to 1. Mathematically:

|0〉 =

[
1

0

]
|1〉 =

[
0

1

]

10



CHAPTER 2. THEORETICAL FRAMEWORK

However, whereas the state of a bit can only be either 0 or 1, the general state of a qubit
according to quantummechanics can be a coherent superposition of both. As stated in section
2.1.3, this superposition state could be described as:

|ψ〉 = α |0〉+ β |1〉

where |α|2 and |β|2 define the probability

for the system to collapse to state 0 and 1 respectively.

2.2.2 Measurement

Moreover, inasmuch as measuring a classical bit does not disturb its state, a measurement of
a qubit destroys its coherence and irrevocably disturbs the superposition state. Then, how
can the state of a qubit be measured? i.e., how can we assess the probability for the system to
collapse to one state or the other? The procedure used to perform measurements on a qubit is
simple to a certain extent. An analogy with a coin helps better understand the nature of the
qubit. This coin has two possible static states, head or tails that could be represented: |H〉 , |T 〉.
Now image this coin is falling through the air. In a certain moment it could be interpreted
that it is in a superposition state of both basis states: |H + T 〉 = α |H〉 + β |T 〉. We can
not measure exactly the probability of the coin to fall on each side, and when it falls, the
superposition state collapses to only one of the basis states: head or tails, i.e, the coherence is
irrevocably disturbed. Now, if the event can be replayed from the first standpoint an empirical
measurement of the number of times it lays on tails can be obtained. Then, using the classical
definition of probability: P(Tails) = 1 - P(Heads) = tails

total . The average of the results obtained
from a large number of trials should be close to the expected value, and will tend to become
closer as more trials are performed [18]. This situation is very much alike to the qubit in
that the initial configuration can be easily reconstructed and replayed a substantial number
of times. Quantum algorithms are often probabilistic, in that they provide the correct solution
only with a certain known probability, this is due to the fact that multiple measurements made
on qubits in identical states will not always give the same result.

2.2.3 Bloch’s sphere

The Bloch sphere is a unit 2-sphere seen in 2.2.

• A qubit is represented as a vector from the origin of the coordinate system to its surface.

• Each qubit is defined by the angles that said vector forms with the axes (latitude and
longitude).

This vector can aim to the north and south poles of the Bloch sphere that are typically chosen
to correspond to the standard basis vectors |0〉 and |1〉, respectively. It can also aim to any
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2.2. Introducing quantum computing

Figure 2.2: Bloch sphere [5]

other infinity of points distributed throughout the surface of the sphere, each one of them
representing a particle in superposition. The probability of this superposition to collapse to
any of the base states (north or south poles) corresponds to the latitude or longitude of the
vector, i.e., how close its tip is to the endpoints of the geometric body.

2.2.4 Systems of qubits

The information contained in a qubit is relatively very small, so to be able to represent greater
amounts of information, n-qubits systems are used. The laws of quantum mechanics describe
the state of a system that consists of a set of n qubits as the tensor product of the n single
qubits.

Tensor product

Suppose than n = 2 represents the spin of a system of two electrons. The spin of an electron
can be in two states. When combined, four states for the system are generated:

{|0〉 ⊗ |0〉 , |0〉 ⊗ |1〉 , |1〉 ⊗ |0〉 , |1〉 ⊗ |1〉} = {|00〉 , |01〉 , |10〉 , |11〉}

This is an orthonormal basis with states that are unitary vectors. Hence, a n-qubit can be
found in any state of the form:

ψ = α0 |0 . . . 0〉+ α1 |0 . . . 1〉+ α2 |1 . . . 0〉 . . . αn |1 . . . 1〉

α0, α1, α2 . . . αn ∈ C

|α0|2 + |α1|2 + |α2|2 . . . |αn|2 = 1

12
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2.2.5 Operations with qubits

The dynamic evolution of an n-qubit is determined by unitary operators U in a Hilbert space.
U is denoted by:

Uψ1 = ψ2

Furthermore, the following property applies:

U †U = I

The application of U transforms states into states, preserving the norm. In general, the evo-
lution ofm computation steps is given by:

Um |ψ(0)〉 → |ψ(m)〉

These evolution operators that operate on an n-qubit are a unitary matrix of dimension 2n

that represents reversible quantum logic gates. For example, we can study the behaviour of
the negation gate matrix as follows:

By definition,
N |0〉 |1〉
|0〉 0 1
|1〉 1 0

then,

N |0〉 =

[
0 1

1 0

]
×

[
1

0

]
=

[
0

1

]
= |1〉

N |1〉 =

[
0 1

1 0

]
×

[
0

1

]
=

[
1

0

]
= |0〉

Reversible computing architecture

A reversible architecture after performing a given computation gives both the computation
and the original inputs. With a almost-only energetic cost of re initializing the system in
order to prepare it for another computation. Moreover, the cost of re initializing does not
depend on the complexity of the computation but only on the number of bits in the answer.
Quantum computers work by applying quantum gates to quantum states. The evolution of
quantum states is restricted by the unitarity property of quantum mechanics; that is, every
operation on a (normalized) quantum state must keep the sum of probabilities of all possible

13



2.2. Introducing quantum computing

outcomes at exactly 1.
Any quantumgatemust thus be implemented as a unitary operator, and is therefore reversible.
If the converse were to happen to be true, then some information would have to be destroyed.
Reversibility is a basic property that has to be considered to understand quantum computa-
tion. It can easily be verified that the preceding not gate is reversible.

Hadamard gate

The behaviour of the Hadamard gate, H , transforms a one-qubit into a superposition of the
elements of the basis. The description and transformations implemented by the Hadamard
gate are as follows.

By definition,

H |0〉 |1〉
|0〉 α β

|1〉 γ δ

7→

H |0〉 = α |0〉+ β |1〉

H |1〉 = γ |0〉+ δ |1〉

such that

|α|2 = |β|2 = 1

2
→ |α| = |β| = 1√

2

|γ|2 = |δ|2 = 1

2
→ |γ| = |δ| = 1√

2

To comply with the reversibility property, H gate must at least follow one of the ensuing:

α 6= γ ∨ β 6= δ

This is due to the fact that both output values from applyingH to |0〉 and |1〉must be different.
Given that probabilities are calculated using the absolute value of the complex amplitudes α,
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Figure 2.3: CNOT gate

β, γ and δ, then H can be built reversibly robust:

γ = − 1√
2
verifies all previous conditions and allows for reversibility

H |0〉 =

[
1√
2

1√
2

1√
2

− 1√
2

]
×

[
1

0

]
=

1√
2
(|0〉+ |1〉)

H |1〉 =

[
1√
2

1√
2

1√
2

− 1√
2

]
×

[
0

1

]
=

1√
2
(|0〉 − |1〉)

Controlled not

Similar to the Not gate, but not identical, CNOT is a gate that operates on two inputs to
generate two outputs. Changing the second if and only if the first is |1〉, illustrated in 2.3.
b can also be interpreted as the output of a binary exclusive disjunction (XOR gate ⊕) with
inputs x and y:

a = x ⊕y

Controlled CNOT

Similar to the CNOT gate, CCNOT (also known as Toffoli gate) is a gate that operates on
three inputs to generate three outputs. Changing the third if and only if the two firsts are |1〉,
illustrated in 2.4. b can also be interpreted as the output of two binary exclusive disjunction
(XOR gate ⊕) with inputs x, y and z:

a = x ⊕y ⊕z

2.2.6 Quantum computer physical implementation

To be able to physically operate on a qubit, its coherent state must be preserved a sufficient
amount of time for the operations to take place. One of the greatest challenges is controlling
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Figure 2.4: CCNOT gate

or removing quantum decoherence. This usually means isolating the system from its environ-
ment as interactions with the external world cause the system to decoher. In order to work
with qubits for extended periods of time, they must be kept very cold as well as free of elec-
tromagnetic interference or vibrations. Any heat in the system can introduce error, which
is why quantum computers are designed to create and operate at temperatures near absolute
zero. However, other sources of decoherence also exist, such as the quantum gates3, the lattice
vibrations4 and background thermonuclear spin of the physical system used to implement the
qubits.

Decoherence is irreversible, as it is effectively non-unitary, and is usually something that
should be highly controlled, if not avoided. Today’s physical quantum computers are very
noisy and quantum error correction is a burgeoning field of research. Existing hardware is so
noisy and dependent on the uncertainty principle for their operations that include extremely
low-noise technology such as that required in gravitational wave interferometers.

2.2.7 Summary

The most general normalized one-qubit that can be built is the linear superposition of two
elements of the basis:

|x〉 = α0 |0〉+ α1 |1〉 ;α0, α1 ∈ C; |α0|2 + |α1|2 = 1

As mentioned, a qubit can be in two possible states but can also be in intermediate states, that
is to say, in states that are linear combination of |0〉 and |1〉. Thus, for example, the spin of an

3Each quantum gate applied to a qubit has a probability to fail due to technological blemishes. Usually this
precision is measured using the controlled-not gate accuracy.

4Oscillations of atoms in a solid about the equilibrium position
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Physical
implementation Gates

Mathematical
Expression

Classic computing Voltages,
fluidics[19]…

Logic
gates

Boolean
function

Quantum computing Electron spin,
trapped ions…

Quantum
logic
gates

Unitary
matrices

Table 2.1: Quantum vs classical computation

electron can be in state:

ψ =
1

2
|0〉+

√
3

2
|1〉

We conclude, therefore, that the probability of this superposition to collapse to any of the base
states (north or south poles of the spherical coordinates on the Bloch sphere) corresponds to
the latitude or longitude of the vector, i.e., how close its tip is to the endpoints of the geometric
body. A quick comparison with classic computing can be seen in table 2.1.
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Chapter 3

Modeling uncertainty

The main goal of this section is to assemble a QRBS [3] and put into use the proposed
quantum method[2] to model the uncertainty that may appear in it. In the resolution

of a problem the facts may be affected by imprecision and, nevertheless, the rules of the
knowledge base must be used to obtain valid inferences. For example: the fact A, which
looks like A but it is not exactly A. We also have the fact B, which looks like B but it is not
exactly B. The question implies to be able of making inferences with A, B and A ∧B −→ C.

3.1 The Model

3.1.1 Classical Rule-Based Systems

In conventional RBSs, any categorical rule can be represented by the logical operators and(∧),
or(∨) and not(¬). Figure 3.1 exhibits the truth tables and associated probabilities of these
conventional logical operators. The R1 program was a production rule-based system to assist
in the ordering of computer systems by automatically selecting the computer system com-
ponents based on the customer’s requirements[20]. Consider the following rules of a similar
but simpler system about diagnosing car problems[21]:

• R1: gas_in_tank(A) ∨ gas_in_carb(B) =⇒ gas_in_engine(C)

• R2: gas_in_engine(C) ∧ turns_over(D) =⇒ problem(spark_plugs)(E)

• R3: not(turns_over)(¬D) ∧ lights_on(F ) =⇒ problem(starter)(G)

The three previously defined rules can be represented classically by means of the inferential
circuit of figure 3.1.
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Figure 3.1: Simple inference circuit on diagnosing car problems

X Y NOT X X AND Y X OR Y
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

Probability = 2
4 = 50% Probability = 1

4 = 25% Probability = 3
4 = 75%

Table 3.1: Conventional logical operators and associated probabilities

3.1.2 Quantum Rule-Based Systems

Thecombination of quantumgates allows to design and implement quantum logical operators.
To explore the previous definitions in quantum terms, it is needed to formulate the and(∧)
and or(∨) quantum gates.

Quantum AND gate

In this regard, figure 3.2 shows the architecture of a quantum and gate, and table 3.2 the
corresponding results obtained after 1024 executions over 64 iterations1 in IBMQ[22] Tenerife
quantum chip.

Quantum OR gate

Similarly, figure 3.3 shows the architecture of a quantum or gate and table 3.2 the correspond-
ing results obtained after 1024 executions over 64 iterations in IBM Q Tenerife quantum chip.

1Experiments were conducted at 2019-08-23 11:53:36 am, with a CNOT gate error of 0.77×10−3 using projectQ
and Python.
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Figure 3.2: Quantum and gate

Figure 3.3: Quantum or gate

Max %
measured

Min %
measured

Standard
deviation
(over 64

iterations)

Mean
(over 64

iterations)

Estimaded
percentage Precision

AND 25.5% 24.87% 1.29% 25.20% 25% 99.20%
OR 75.1% 74.81% 1.31% 75.33% 75% 99.60%

Table 3.2: Results obtained after 1024 executions over 64 iterations in IBMQTenerife quantum
chip.
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3.1. The Model

3.1.3 Representing Uncertainty inQuantum Rule-Based Systems

For practical reasons the confidence in a given fact will be called “Credibility” from this stage
forward. In such way that Credibility = 100 implies that the fact is true, and Credibility = 0
implies that the fact is false. The concept of credibility can be antonymously related with the
concept of “Degree of Disbelief” associated to a given fact. The relation between these being
Credibility = 100 − Disbelief. Going back to the Bloch sphere from section 2.2.3. The angle θ,
which represents the displacement of the qubit vector along the Z axis, from the north pole
to the south pole of the sphere, may be in three posible states:

• When Θ = 0 radians =⇒ |0〉

• When Θ = π radians =⇒ |1〉

• When 0 < Θ < π =⇒ Coherent superposition

For the reasons just explained, the quantification of Z displacements in a Bloch sphere could
be used to quantify our credibility associated to a given fact. To define a general procedure
capable of representing any degree of uncertainty (or certainty) it would be convenient to
create a single quantum gate respecting all the restrictions imposed by quantum mechanics.
In this context there are already several universal gates, but none of them explicitly works
with imprecise information in the domain of artificial intelligence. In this regard, and taking
into account what has been described so far, [2] proposal continues as follows: Let γ be the
degree of subjective disbelief that we can associate with a fact, defined in the closed interval
[vmin,vmax]. Then, γ, as any other variable (univariate distribution) can be rescaled into a
parameter δ defined in the closed interval [0, 100], by the following formula:

100

vmin − vmax
× (v − vmin)

The degree of subjective disbelief δ can be converted into an α azimuth that satisfies the
restrictions of Z displacements and is defined in the closed interval [0, π].

• When δ = 0 =⇒ Our credibility in the fact is total =⇒ α = 0

• When δ = 100 =⇒ Our credibility in the negation of the fact is total =⇒ α = π

• When 0 < δ < 100 =⇒ Subjective disbelief in the fact =⇒ 0 < α < π

Then, as previous established, δ can be also be rescaled into a parameter α defined in the
closed interval [0, π], by the following equation. Where α is compatible with the restrictions
imposed by the Bloch sphere:

α = π × δ

100
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δ (Subjective Disbelief) α (Radians) Θ (Radians)
0 0 π

2

25 π
4

3π
8

50 π
2

π
4

75 3π
4

π
8

100 π 0

Table 3.3: Correspondence between the values of the parameters δ, α and Θ

Table 3.3 illustrates the values of α as a function of the values of δ —defined in the interval
[0, 100], and the corresponding redefined values of the angle of rotation, or displacement, in
Z as:

Θ =
π−α
2

We will now define, based on the angle Θ, the following quantum gate matrix:

M(Θ) =

[
sinΘ cosΘ

cosΘ −sinΘ

]

This matrix verifies that:

M(Θ)×M(Θ)† =

[
sinΘ cosΘ

cosΘ −sinΘ

]
×

[
sinΘ cosΘ

cosΘ −sinΘ

]
=

[
1 0

0 1

]

Then, for any rule-based system, the degree of disbelief associated to a given fact can be
managed with the following quantum model:

|Ψ(Θ)〉 = |Ψ(
π − α

2
)〉 = |Ψ(

π

2
)(1− δ

100
)〉 = sin(Θ) |0〉+ cos(Θ) |1〉

Where α ∈ [0, π], δ ∈ [0, 100]

Coming sections will focus on verification and thorough evaluation of this model implement-
ing several RBS.

3.2 Implementation

3.2.1 Methodology

The evaluations needed to be developed must cover a wide angle of variables and restrictions:

• It is known in beforehand the expected results of the model, i.e., the behaviour of this
system must match that of the predictions postulated by probability theory.
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3.2. Implementation

• The model must be proven using a real quantum chip. For this purpose IBM QE cloud
quantum computing will be utilized.

• IBMQE requires a particular framework to communicate with its backend. Section 3.2.2
will delve into further explanations.

• Due to quantum computing aspects, it is impossible to know the input of the system
for each output. Which makes testing and debugging much harder.

• Dealing with a non deterministic system also makes of this a harder piece of software
to deal with. The approach chosen and the reasons are shown in section 3.3.2.

• Executions may take long queues and accomplishment times.

The particular nature of the software needed to be developed make of this project a highly
distinctive one among the classic-type software development projects. These particular traits
require a singular type of development. A SCRUM-like development will be taken as ref-
erence doing less emphasis on teamwork and more insistence on increments, functionality
and overlapping of phases. Other agile development techniques will be used, such as: evolu-
tionary development, control version and continuous improvements encouraging rapid and
flexible response to change. In particular the fact that the result of the computation is previ-
ously estimated make of this a perfect situation to use test-driven development. The process
will rely on the repetition of a very short development cycle: requirements are turned into
very specific test cases, then the software is improved so that the tests pass. Figure 3.4 shows
a schematic of the of the planned workflow. The task was divided into small iterations focus-
ing on: building working pieces of software that comply with the requisites needed, adding
functionalities and verifying their correct performance.
After each segment a small meeting was made in order to reorient the objectives and evalu-
ating these functionalities.
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Figure 3.4: Methodology time line for the model evaluation

Figure 3.5: ProjectQ compilation framework

3.2.2 Technologies

ProjectQ and Python 3

ProjectQ[23] is an open-source software framework for python and
quantum computing started at ETH Zurich. It features a compiler frame-
work capable of targeting various types of hardware, a high-performance
simulator with emulation capabilities, and compiler plug-ins for circuit
drawing and resource estimation. The framework also allows testing of
quantum algorithms through simulation and enables running them on
actual quantum hardware using a back-end connecting to the IBMQuan-
tum Experience cloud service.
Figure 3.5 shows the different compilation framework blocks:

• Main compiler engine, which executes a user-defined sequence of compilation steps by
sending the circuit through a chain of so-called compiler engines.

• Each compiler engine manipulates the circuit to, e.g., reduce the number of gates or
quantum bits required to run the quantum program. This is crucial due to quantum
decoherence times in modern simulators.
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• Engines further down the stack become more back-end-specific and take care of the
mapping of the logical circuit to the layout of the back-end.

The framework also allows for quantum circuitry drawing in several formats: PDF and LATEX
using the TikZ package.

GitHub

GitHub provides hosting for software development version control using Git.
As design goes on, it is common that there exist multiple versions of the
same software and to be working simultaneously on updates. Therefore,
for the purposes of locating and fixing bugs, it is vitally important to be
able to retrieve and run different versions of the software to determine in
which version(s) the problem occurs. GitHub offers all of the distributed
version control and source code management functionality of Git as well
as adding its own features. It provides access control and several collabo-
ration features such as bug tracking, feature requests, task management,
and wikis for every project. Git supports rapid branching and merging,

and includes specific tools for visualizing and navigating a non-linear development history.
This ensures that the majority of management of version control steps are hidden behind the
scenes.

Travis CI

When embarking on a change, the longer development continues on a branch without merg-
ing back to the mainline, the greater the risk of failures.
Continuous integration involves integrating early and often, doing a
complete build and passing all tests. Integration tests are usually run
automatically on a CI server when it detects a new commit. Travis CI is
a hosted continuous integration service used to build and test software
projects hosted at GitHub. Travis CI supports integration with external
tools such as coverage analyzers or static analyzers.

MutPy

MutPy is a mutation testing tool for Python source code that supports
standard unittest modules. It applies mutation on AST2 level and can
boost mutation testing processes with high order mutations and code coverage analysis.

2The ast module helps Python applications to process trees of the Python abstract syntax grammar
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Pylama

Pylama is a Python tool that wraps several code audit tools such as: Pylint3, Radon4 and
Pyflakes.

3.3 Evaluation

There are 3 main focus while testing the model:

• Efficiently implementing OR and AND gate. This step is crucial in order to achieve a
correct behaviour of the main rule-based systems.

• Creating pseudo-random rule-based systems.

• Computing classic (expected) values as well as quantum (experimental) values and com-
paring them.

Figure 3.2 and 3.3 show the quantum circuits for the quantum OR and AND gates. Consid-
ering that each CNOT gate used takes some time to execute, it is very important to use the
minimum number of them to minimize execution time, thus preventing system decoherence
before the computations ends. An issue to keep in mind is error propagation, which is also
proportional to the number of CNOT gates used.

3.3.1 Simulator’s structure and functions

The developed system creates pseudo-random rule-based systems and assigns each variable
a random subjective degree of disbelief. Then, computes the a priori statistical probabilities
(called ”prior” from this stage forward). The rule-based systems are converted to their quan-
tum counterpart and the experimental results are obtained in order to be later compared with
the prior results. Take for example a simple arrangement seen in figure 3.6. Prior probabilities

3Source-code, bug and quality checker for Python. They follows the style recommended by PEP 8, the Python
style guide [24].

4Python tool that computes cyclomatic complexity and Halstead metrics from the source code.
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Figure 3.6: Sample system to evaluate

can be calculated formally as follows:

P (E) ` P (C) ∧ P (D)

Since C and D are independent, rule of product postulates:

P (E) ` P (C)× P (D)

The only value left to achieve then is P (C) that can be obtained:

P (C) ` P (A) ∨ P (B)

Rule of sum states,

P (A) ∨ P (B) ` P (A) + P (B)− P (A)× P (B)

Reducing:

P (E) ` (P (A) + P (B)− P (A)× P (B))× P (D)

Assuming each variable prior probability is its specific degree of disbelief, an actual value can
be achieved.

If δ = 50, then:

P (E) = (0.5 + 0.5− 0.5× 0.5)× 0.5 = 0.375

The system then translates the rules to the correspondent quantum counterpart, seen in figure
3.7 Then, computations are done using ProjectQ framework to communicate with IBM QE
cloud quantum computing backend. The overall structure of the simulator can be seen in
figure 3.8. Measuring the fifth qubit gives us a experimental approximation of 37.69% with a
derive of less than 0.19%5.

51024 executions on IBM QE Tenerife
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Figure 3.7: Quantum homologous of 3.6

3.3.2 Property-based testing

The main problem while testing quantum circuits is verifying the outputs from the system
correspond to the correct inputs. To correctly solve this problem, the question to answer
should be: What is the best way to test a classic OR gate? The first approach would be to
check inputs and outputs.

But how can this be achieved if the input from the system can not be known? i.e. the
input qubit is in a superposition state with a given probability to collapse to both |0〉 and |1〉.
This is the situation that arises when trying to determine if quantum states or operations do
what they are supposed to do, based only on classical input-output behavior. Posing twomain
issues:

The concrete state of the qubit is not known until the end of computations, when measure-
ments are made.

The outputs are non-deterministic.

Property-based testing is a key concept to help solve the matter. The approach would be
the same as to trying to proof the correctness of an arithmetic adding function. Is it a good
approach to check random numbers and verifying that their sum adds up to the expected
value? It sure must be necessary but would not be sufficient. Other properties should be met
as well:

• Commutative: x+ y = y + x

• Additive Identity: x+ 0 = x
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Figure 3.8: Simulator workflow structure

• Some others…

The same happens when verifying the correctness of quantum circuitry. The system’s experi-
mental probabilities must match the expected values, but this is not sufficient. Other qualities
must be satisfied as well:

• The calculation must end with a measurement, collapsing the system of qubits into one
of the basic states, where each qubit is zero or one, decomposing into a classical state.

• The same observable has to show the same result every time after measurements are
done.

Finally, surveying known bounds on testing various natural properties, such as whether two
states are equal, whether a state is separable, whether two operations commute, etc.[25]

3.3.3 White-box testing

Mutation testing

Given that a huge requisite of this software is to test and thoroughly evaluate the given
model[2], the creation of tests still poses the question whether the tests are correct and suffi-
ciently cover the proposed issues. This technological problem is itself an instance of a deeper
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problem named Quis custodiet ipsos custodes6.

Mutation testing is used to help in developing effective tests or locate weaknesses in the
test data used for the program or in sections of the code that are seldom or never accessed
during execution. Mutation testing involves modifying a program in small ways, such that
unwanted problems must arise. These mutants are based on well-defined mutation operators
that either mimic typical programming errors (such as using the wrong operator or variable
name) or force the creation of valuable tests (such as dividing each expression by zero). If a
mutant is addedwithout being detected by the test suite, this indicates either that the code that
had been mutated was dead7 or that the test suite was unable to locate the faults represented
by the mutant. A large number of mutants are usually introduced, leading to the compilation
and execution of an extremely large number of copies of the program. However, MutPy(3.2.2)
allows testing for individual portions of the application.

Code audit

Many higher-level languages, such as Python, have fewer potentially vulnerable functions.
However, a comprehensive analysis of source codemay be beneficial. Code audit is an integral
part of the defensive programming paradigm. There are several tools that help with this task,
especially with the intent of discovering bugs or violations of programming conventions.
Such automated tools are applied as part of a policy-based approach only used to save time,
but the project does not rely on them for an in-depth audit.

6Who will guard the guards?
7Referring to pieces of code that are never executed
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Chapter 4

Results

Finally two new experiments were carried out. First off, an example inferential circuit
with different values of the δ parameters associated with the different facts of the rules.

The results obtained, illustrated in table 4.1, show that the approximation followed and the
proposed model produce coherent results.

On the other hand, different circuits and δ were tested to obtain more general metrics and
statistics.

4.1 Expected vs Experimental Results

4.1.1 Results ordered by different facts of the rules

Figure 4.2 represents the following rule-based system[2]:

• A AND B =⇒ X

• X OR C =⇒ Y

• D OR E =⇒ Z

• result = Z AND Y

From this, a homologous quantum circuit was designed and assigned a given degree of disbe-
lief associated with the fact of the rules. The experiment was conducted on IBM ibmq_16_mel-

bourne v1.0.0 (last calibration 2019-08-15 12:19:43 am). The backend system is represented in
figure 4.1 and results are shown on table 4.1.

4.1.2 General experiment

As a next step of the experimentation, the developed model was applied to random rules with
random δ. The experiment was conducted on IBM ibmq_16_melbourne v1.0.0 (last calibration
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4.1. Expected vs Experimental Results

Figure 4.1: Melbourne system qubit distribution and error rates.

Figure 4.2: Quantum circuit and variables assigned different disbelief degrees.
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δ(A) δ(B) δ(C) δ(D) δ(E) EXPECTED EXPERIMENTAL PRECISION

0 0 0 0 0 0 0 100%

25 0 0 0 0 0 0 100%

50 25 0 0 0 0 0 100%

75 25 25 0 0 0 0 100%

100 50 25 25 0 0.075 0.078 96.15%

0 50 25 25 25 0.05 0.0419 83.80%

25 75 50 25 25 0.15 0.1587 94,52%

50 75 50 25 25 0.2 0.1975 98,75%

75 100 50 50 25 0.25 0.2490 99,60%

100 100 75 50 25 0.275 0.2778 98,99%

0 0 75 50 50 0.65 0.6519 99,71%

25 0 75 50 50 0.625 0.6332 98,70%

50 25 100 75 50 0.9225 0.9229 99,96%

75 25 100 75 50 0.9275 0.9283 99,91%

100 50 100 75 50 0.875 0.9324 93,84%

0 50 0 75 75 0 0 100%

25 75 0 100 75 0.125 0.1181 94,48%

50 75 0 100 75 0.375 0.4105 91,35%

75 100 25 100 75 0.8125 0.8841 91,90%

100 100 25 100 75 1.0 1.0 100,00%

0 0 25 0 100 0.15 0.1446 96,40%

25 0 50 0 100 0.5 0.5031 99,38%

50 25 50 0 100 0.5625 0.5451 96,91%

75 25 50 0 100 0.59375 0.5629 94,80%

100 50 75 25 100 0.875 0.932 93,88%

Average = 96,92%

Table 4.1: Experimental results obtained with different δ values associated to the facts of the
example 4.2
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4.1. Expected vs Experimental Results

PRECISION PRECISION
DEVIATION

MINIMUM
PRECISION

MAXIMUM
PRECISION

96.45% 2.01% 98.43%1 86.71%

Table 4.2: Results obtained after 1024 executions on 128 different rule-based systems

2019-08-15 12:19:43 am). The backend system is represented in figure 4.1. The experimental
results are compared with expected results in table 4.2.
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Chapter 5

Conclusions

Disregarding the effectiveness of the model proposed in this thesis[2], the uncertainty
associated with the information on real cases has induced the development of a myriad

of models to try to solve the problem. The logical orientations of the different approaches
on uncertainty vary throughout history. Also, faced with the same problem, different mod-
els produce different results, such as: definite approaches[26], probabilistic approaches[27],
quasi-statistical approaches[1] or fuzzy methods [28]. Nevertheless, and regardless from the
approaches taken to model it, uncertainty is still an extensive problem in artificial intelligence
and, specifically, in Rule-Based Systems. The potential benefit of emerging theories could be
taken into consideration to help solve the problem.

Among these applications, those that stand out, are Quantum Computing and its akin in-
trinsically probabilistic paradigms. This thesis proposes the Q-AND and Q-OR quantum oper-
ators, equivalent to the classic AND and OR operators. Q-AND and Q-OR allow the construc-
tion ofQuantum Rule-Based Systems that benefit artificial intelligence establishing synergies
with quantum computing. This work attempts to model uncertainty using Z displacements
in the Bloch sphere[5] and δ values to represent subjectivity. A simulator was then built,
bringing close focus on software development. The proposed approach is also thoroughly
evaluated and verified using test-driven development with certain modifications to comply
with quantum requirements. The results obtained after this exhaustive validation process
allow us to conclude that Quantum Computation is an highly valid and efficient method to
solve uncertainty problems in Artificial Intelligence.
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Appendixes



.1. Materials

.1 Materials

• MacBook Air 1,6 GHz Intel Core i5

• macOS Mojave 10.14.4

• Python 3.7.4

• Integration tests on: Python 3.7.1 on Xenial Linux
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.2 Planning and cost

.2.1 Human resources

Table 1 shows human resource cost.

HUMAN RESOURCES Computer
scientist1

Project
Manager2

cost €/year 23.296,60 € 37.274,92 €
cost €/hour 13.20€ 21.13 €
total hours 257 days3 × 1 hour ≈ 257 hours 10 days4 × 1 hour ≈ 10 hours
total cost 257 hours × 13.20€ ≈ 3400€ 10 hours × 21.13 € ≈ 220€ €

Table 1: Human resource cost for the project

.2.2 Material cost

All software utilized lies on free user license and computations were also done free of charge
thanks to IBM QE.



.2. Planning and cost

Figure
1:Planning:novem

ber2018-july
2019
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Appendix A

Glossary of acronyms

RBS Rule-based system.

QRBS Quantum rule-based system.

QC Quantum computing.

AI Artificial intelligence.

QM Quantum mechanics.

CPU Central processing unit.

MOSFET Metal-oxide-semiconductor Field-effect transistor.

TFET Tunnel field-effect transistor.

CNOT Controlled not.

CCNOT Controlled controlled not.

TDD Test-driven development.
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Appendix B

Glossary of terms

Qubit Quantum bit.

Microarchitecture Describes how an instruction set architecture is implemented in a par-
ticular processor.

Dynamic execution This paradigm, used in most high-performance CPUs a processor exe-
cutes instructions in an order governed by the availability of input data and execution
units, rather than by their original order in a program.

CPU Cache Small and faster memory, closer to a processor core used to reduce the average
cost (time or energy) to access data from the main memory.

Pre-fetching Technique used by computer processors to boost execution performance by
fetching instructions or data from their original storage in slower memory to a faster
local memory before it is actually needed.

Bit Portmanteau of binary digit.
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