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Abstract

The transverse momentum flow inside jets is a sensitive measure of internal
jet structure. For the current jets in deep inelastic scattering this jet shape
measure is determined at order α2

s, i.e. with up to three partons inside
a single jet. The scale dependence of jet shapes in various jet algorithms
is discussed. Results agree well with recent measurements by the ZEUS
Collaboration, without introducing the hadronization parameter Rsep.
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Experiments at the high energy frontier require a good understanding of jets, their distri-
bution in phase space with respect to each other and to the leptons and photons produced in
mixed electroweak-QCD processes. The internal structure of jets is equally important. Internal
jet structure is intimately related to the number of jets reconstructed by different jet-defining al-
gorithms. It also is an issue in reconstructing the kinematic properties of single jets, such as their
transverse momentum or direction, and the invariant mass of two- or three-jet systems. Both
aspects are important when searching for signs of new physics in hadron collider experiments.

One measure of internal jet structure is the transverse energy flow inside jets. This internal
jet shape is defined as the fraction of a jet’s transverse energy, ET , which is deposited inside a
sub-cone of radius r < R, where R is the cone size of the jet in the η-φ plane. Such jet shape
measurements have been performed in the past at pp̄ colliders [1,2] and also in photo-production
and deep-inelastic-scattering (DIS) events at HERA [3–5], and have been compared to theoretical
calculations [6–9]. Comparisons of the shape of gluon-rich jets at hadron colliders with the quark-
dominated jets produced in ep and e+e− collisions [10] confirm the broader structure of gluon
jets, which is expected because the larger color charge of gluons as compared to quarks leads to
enhanced collinear radiation.

A major obstacle for a precise comparison of jet shape data to perturbative QCD predictions
is the fact that, at tree level, QCD jets are single, massless partons. Hence, a nontrivial jet shape
only arises at higher order, where a jet may contain two or more partons. Two partons inside a
jet, which appear in typical NLO cross section calculations, produce jet shapes at lowest order
only. Jets with three partons first appear in two-loop calculations and thus a determination of jet
shapes at true NLO, in a given physical process, is extremely demanding theoretically. Photo-
production of jets [7] or dijet production at the Tevatron [6] is a case in point: the kinematics of
the event requires at least two hard jets in the final state, with balancing transverse momentum.
A NLO jet shape, with jets consisting of three partons, thus requires four-parton final states at
tree level and one-loop corrections to all 2 → 3 processes involving quarks and gluons. These
corrections are only now becoming available [11].

In this letter we perform a full NLO jet shape calculation in a kinematically simpler situation:
DIS at HERA. At sufficiently large Q2, the scattered electron or positron in a DIS event provides
the transverse momentum which is required to balance a high-ET jet. A three-parton final state
then suffices to generate jets containing three colored partons. The soft and collinear divergences,
which are generated by integrating the three-parton contributions over the entire phase space,
are canceled by one-loop corrections to two-parton final states and two-loop corrections to one-
parton contributions. However, a single parton cannot produce internal jet structure and thus
all true two-loop effects can be neglected when determining differential jet shapes for up to three
partons. The full one-loop QCD corrections for two- and three-parton final states in DIS are
implemented in the MEPJET Monte Carlo program [12]. Consequently, it is possible to extract
full NLO jet shapes for the current jet in DIS with MEPJET.

In the following, we analyze NLO corrections to the differential jet shape ρ(r, R, ETj, ηj) for
events with a single jet of transverse energy ETj and pseudo-rapidity ηj. The differential jet
shape is defined as

ρ(r, R, ETj , ηj) =
1

d2σNLO/dETj dηj

∑

n

∫

drn

ETn

ETj

δ(r − rn)
d3σ

dETj dηj drn

. (1)

Here the sum runs over all partons, n, belonging to the jet, which have a separation rn =

2



√

(ηn − ηj)2 + (φn − φj)2 = r < R from the axis of the jet in the legoplot. In practice, both the
data and the Monte Carlo calculation replace the differential distributions by integrals over finite
bin sizes in ETj , ηj and r. Since we want to compare our NLO results with the ZEUS data, we
follow the ZEUS event selection [5] and study current jets in neutral current (NC) DIS events
with

Ee > 10 GeV , Q2 > 100 GeV2 , ETj > 14 GeV , −1 < ηj < 2 , (2)

where Ee is the energy of the scattered electron in the laboratory frame. The default jet cone
size is R = 1 and cone slices of width ∆r = 0.1 are considered. Because of the modest jet ET ,
b-quarks are unlikely to appear inside a current jet. Production of massive b̄b pairs via photon-
gluon fusion is small also, for the cuts considered below. Thus it is appropriate to perform the
calculations in a fixed 4-flavor scheme, neglecting any b-quark contributions. Matching 4-flavor
parton distributions are provided by the CTEQ4F4 set [13]; for consistency with the parton
distribution functions we use two-loop expressions for the running strong coupling constant,
with Λ

(4)

MS
= 292 MeV.

For the theoretical jet shapes, the factors in the denominator of Eq. (1) are determined
using NLO DIS cross sections at O(αs), within a given set of selection cuts. Therefore, they
correspond to 1-jet exclusive cross sections for the 1-jet cuts described below. For the ZEUS
cuts, 2-jet events also enter with single weight only. The numerator is determined at full O(α2

s)
for the NLO results and at O(αs) for the LO calculations. The default version of the MEPJET2.2
program is written for the calculation of NLO dijet cross sections in DIS, i.e. allowing for one
soft or collinear parton in the final state. For the calculation of jet shapes at NLO, up to two
soft and/or collinear partons must be generated. We have modified the MEPJET phase space
generator to cover this enlarged phase space region for two- and three-parton final states.

The matrix elements needed for the calculation of NLO jet shapes are identical to the ones
used for the NLO dijet cross section and have been tested previously [12,14]. The cancellation of
collinear and infrared singularities employs the phase space slicing method of Giele, Glover, and
Kosower [15], which removes soft and/or collinear regions of the three-parton phase space, where
some pair of final and/or initial parton momenta satisfies 2pi·pj < smin. Contributions from these
regions are approximated by the appropriate asymptotic expressions and added analytically to
the two-parton contributions, where they cancel the soft and collinear singularities of the virtual
contributions. The final result must be independent of the choice of smin, for values of this soft
cutoff sufficiently small to make the asymptotic approximations valid.

Numerical smin independence is a powerful test for the correct implementation of observ-
ables and of the phase space generator, as well as for the infrared stability of the jet clustering
algorithms [11]. Results of this smin test are shown in Fig. 1 for the differential jet shapes at
r = 0.15, 0.45, 0.65, and 0.95 in the successive combination algorithm of Ellis and Soper [16]
(see below). Within Monte Carlo statistical errors of about 1-5%, results are independent of
smin below smin ≈ 0.01 GeV2. We have checked that similar results hold for our implementation
of the PUCELL jet algorithm employed by ZEUS [4]. We will use smin = 0.01 GeV2 in the
following.

In our NLO calculation of jet shapes, the current jet contains up to three partons, which
provides a much more detailed simulation of internal jet structure than is possible in a LO
analysis. The extra detail suggests a direct comparison of NLO theory with data, with the ET

flow of hadrons in the data replaced by parton ET . Previous LO analyses modeled hadronization
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FIG. 1. smin dependence of jet shapes ρ(r) in four representative r-bins. The Ellis-Soper kT

algorithm [16] has been used, within the cuts of Eqs. (2,7) and requiring that only one hard jet,
of ETj > 5 GeV is seen in the pseudo-rapidity range −2.5 < ηj < 2.5. Errors represent Monte
Carlo statistics only. Note that results in three of the four bins have been rescaled by the factors
given in parentheses.

effects by introducing a phenomenological parameter, Rsep, which controlled the clustering of
partons with legoplot separations between R and 2R [17]. Our analysis implements the full
experimental jet algorithms at the parton level, without introducing extra, tunable parameters.
We have studied two algorithms in detail, the successive combination algorithm of Ellis and
Soper [16], called kT algorithm in the following, and the PUCELL algorithm used by the ZEUS
Collaboration [4,5], for default cone sizes of R = 1.

The kT algorithm successively combines pairs of nearest partons/protojets to new protojets,
up to a distance R in the legoplot. Initially all partons are classified as protojets of transverse
energy ET = pT . The algorithm then compares the ET ’s of protojets, via di = ET iR, with the

ET weighted distances, dij = min(ET i, ETj)
√

(ηi − ηj)2 + (φi − φj)2, of pairs of protojets in the
legoplot. The pair of protojets with the smallest dij is recombined if dij is smaller than all the
di (which implies that their distance in the legoplot is smaller than R). Otherwise the protojet
with the smallest ET , and hence the smallest di, is called a jet and eliminated from the list of
protojets. This process is iterated until all protojets have been assigned to jets. Note that some
of these jets may be eliminated by subsequent selection cuts, as in Eq. (2). Some freedom exists
in the assignment of jet momenta, i.e. in the recombination scheme. For the kT algorithm we
use the E-scheme, i.e. the jet four-momentum is the sum of the four-momenta of the partons
belonging to the jet and the jet ET is the sum of the parton pT ’s. Apart from the definition of
recombined momenta, our kT algorithm is identical to the ones described in Refs. [9,16].

The PUCELL algorithm is an iterative fixed cone algorithm. In a first step all partons with
pT > 300 MeV are considered as seeds for the formation of pre-clusters. Starting with the
highest pT seed, a pre-cluster is formed, containing this seed and all seeds within a cone of radius
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R around it. This procedure is iterated with the remaining seeds, which do not yet belong to
a pre-cluster, in order of decreasing pT . All the seeds belonging to a given pre-cluster are then
merged, according to the Snowmass convention [18], i.e., the legoplot variables of the pre-clusters
are defined as the ET -weighted averages over the seeds,

ET,p.c. =
∑

i

ET i , (3)

ηp.c. =
1

ET,p.c.

∑

i

ET i ηi , (4)

φp.c. =
1

ET,p.c.

∑

i

ET i φi . (5)

In a second step, all partons are considered, even if they fall below the seed threshold of 300 MeV.
A new cluster axis is calculated as in (3-5), in terms of all partons inside a cone of radius R of the
old (pre)cluster axis. This second step is iterated until the contents of all clusters stabilize. A
third step deals with overlapping clusters, i.e. with clusters which share partons. If the energy of
the common partons is more than 75% of the energy of the lower-energy cluster, the two clusters
are merged to a single jet. Otherwise two separate jets are formed and common partons are
assigned to the nearest jet.

We can now compare the jet shape predictions for these jet algorithms at both leading and
next-to-leading order. One way to assess the improvements from a NLO calculation is to study
the scale dependence of observables. The process at hand is inclusive DIS which basically has
a single scale only, Q, the momentum transfer carried by the virtual photon. Q is the obvious
choice for the factorization scale and we fix µ2

f = Q2 throughout. On the other hand, we are
investigating the inner structure of jets, and the average jet mass or the average transverse
momentum of partons, with respect to the jet axis, appear as reasonable scale choices1. These
scales are proportional to the intrinsic scale of the entire process, Q, and become different from
zero only at O(αs), thus suggesting αsQ

2 as a scale choice. This leads us to investigate variations
of the renormalization scale µ2

r = ξαs(Q
2)Q2 with the scale factor ξ. Searching for minimal

sensitivity [19] of ρ(r), a “correct” scale µr = Q would appear as a flat ξ-dependence near
ξ = 1/αs. Thus, for all practical purposes, our choice is general enough. For the PUCELL
algorithm and two representative bins in r, the scale variation of the differential jet shape, ρ(r),
is shown in Fig. 2.

The dash-dotted and dashed lines show the LO and NLO results for the generic ZEUS accep-
tance cuts of Eq. (2). The ET flow is somewhat higher at NLO, i.e. jets are broader. However,
the renormalization scale dependence is almost as large at NLO as for the LO case. This disap-
pointing result can be traced to a large contribution from events with an additional low ET jet.
In DIS events with two jets, at O(α2

s), at best one jet can contain two partons, and, hence, the jet
shape is modeled at LO only. In order to enhance the contribution from jets with the maximal
number of partons, which then are truly modeled at NLO, events which contain additional jets
should be eliminated. We achieve this goal by vetoing events containing any additional jets with

1The mass of the jet in an individual event appears as an integration variable in the determi-
nation of ρ(r) and is not a physical scale of the observable.
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FIG. 2. Renormalization scale dependence of the differential jet shape ρ(r) at (a) r = 0.15
and (b) r = 0.45, using the PUCELL algorithm. The dash-dotted and dashed lines are the LO
and NLO results for the acceptance cuts of Eq. (2). Also shown are LO (dotted line) and NLO
(solid line) results for events with one single jet only of ET > 5 GeV (see Eqs. (6,7)).

ETj > 5 GeV , −2.5 < ηj < 2.5 . (6)

These veto cuts are chosen such that they can be easily implemented experimentally. A further
reduction of events with hadronic activity beyond the current jet is achieved by requiring the
scattered lepton and the observed hard jet to be back-to-back in azimuth. Allowing for finite
detector resolution we require

∆φej = |φe − φj| > 3 . (7)

Also shown in Fig. 2 is the scale dependence of ρ(r) for events with the jet veto cut of Eq. (6) and
the back-to-back cut of Eq. (7). In the following we call these restrictions “1-jet cuts”. For these
1-jet events the scale independence of ρ(r) is significantly improved at NLO, out to distances of
r ≈ 0.6.

The factors in the denominator of Eq. (1) are very stable against scale variations for inclusive
DIS events, i.e. within the ZEUS cuts of Eq. (2). The 1-jet cuts, however, lead to a sizable
reduction of d2σNLO/dETj dηj in the denominator of Eq. (1), corresponding to a subtraction of
two-parton final states with dijet-type kinematics. This subtraction term is modeled at lead-
ing order only and is strongly scale dependent. However, it can be calculated at O(α2

s) also,
which results in a more reliable determination. For the 1-jet cuts we find minimal scale sensitiv-
ity [19] near µ2

r = αs(Q
2)Q2, and at this value the O(αs) and O(α2

s) results for the subtraction
terms virtually agree. We therefore use µ2

r = αs(Q
2)Q2 in the denominator, which increases the

normalization of the resulting jet shapes by 10-15% as compared to the choice µr = Q.
The renormalization scale dependences of jet shapes in the PUCELL and the kT algorithm

are compared in Fig. 3, using the 1-jet cuts. Results are shown for four representative r-bins,
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FIG. 3. Renormalization scale dependence of the differential jet shape ρ(r) at (a) r = 0.15,
(b) r = 0.55, (c) r = 0.75, and (d) r = 0.95, for events satisfying the 1-jet cuts of Eqs. (6,7).
Results are shown for the PUCELL algorithm at LO (dash-dotted line) and NLO (dashed line)
and for the kT algorithm at LO (dotted line) and NLO (solid line).

at LO (dash-dotted and dotted lines) and at NLO (dashed and solid lines). The LO curves are
virtually identical for the two algorithms. This is to be expected, since the criterion for merging
two partons is the same at LO, namely their separation in the legoplot must be less than R = 1.
Small differences are either statistical or due to the different recombination schemes for parton
momenta. At NLO, the PUCELL and the kT algorithm produce quite similar results for the
central part of the jet (at small r). In this region, sensitivity to the choice of renormalization
scale is minimal near ξ = 1 which confirms our basic choice of µ2

r = αsQ
2. At distances from the

jet axis beyond r ≈ 0.5, the iterative nature of the PUCELL algorithm is more likely to gather a
third parton into the jet, making it somewhat broader on average than jets reconstructed by the
kT algorithm. Since this broadening effect requires three partons and is therefore only modeled
at tree level in our NLO calculation, the NLO enhancement of ρ(r) at large r shows a pronounced
scale dependence, which is significantly stronger in the PUCELL than in the kT algorithm.

Differential jet shapes in DIS, as a function of ET and pseudo-rapidity of the jet, have been
measured by ZEUS [5]. In Fig. 4(a) we compare our LO and NLO QCD predictions with the
ZEUS measurements for events with at least one hard jet. This jet is identified with the PUCELL
algorithm and must lie in the interval 14 GeV < ET < 21 GeV and −1 < η < 2. The agreement
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FIG. 4. Comparison of ZEUS jet shape data [5] with QCD predictions for DIS jets recon-
structed by the PUCELL algorithm. Jet cuts are: −1 < η < 2 and (a,b) 14 GeV < ET < 21 GeV,
(b) 37 GeV < ET < 45 GeV. ZEUS data (circles and squares) are compared in the lower ET

range (a) with LO (lower band) and NLO (dashed line) QCD predictions. The upper band in
(a) and the two lines in (b) represent NLO jet shapes within the 1-jet cuts of Eqs. (6,7). The
width of the bands corresponds to varying the renormalization scale between µ2

r = αsQ
2/4 and

µ2
r = 4αsQ

2.

between data and theory in the 0.1 < r < 1 range is improved significantly at NLO. Calculation
of the jet shape at r = 0 is currently not possible, since it would require the inclusion of two-
loop contributions and the resummation of multiple soft and collinear emission. As discussed
previously, the scale dependence of the NLO results is quite large within the ZEUS acceptance
cuts. The ZEUS data (and our NLO simulations) show, on the other hand, that the jet shapes
depend very little on the jet pseudo-rapidity, and modestly on jet ET . Imposing the 1-jet cuts
of Eqs. (6,7) does not significantly change ρ(r) for the default scale choice of µ2

r = αsQ
2, but it

reduces the scale uncertainty. Included in Fig. 4 are the NLO results using the 1-jet cuts. The
NLO QCD predictions for ρ(r) agree very well with the data, up to values around r ≈ 0.8 for the
1-jet cuts and r ≈ 0.6 for the generic ZEUS cuts. This corresponds to the regions where we have
found a small scale dependence. In other words, the differences between data and NLO QCD
are consistent with higher order QCD effects. Note that the agreement between theory and data
is much worse at LO.

Similar agreement between true NLO QCD and ZEUS data is found for different jet ET and η
ranges. One example is shown in Fig. 4(b), where jet shapes for jets with 14 GeV < ET < 21 GeV
and 37 GeV < ET < 45 GeV are compared. The data and the NLO QCD predictions clearly show
that higher ET jets are narrower. It should be noted that the excellent agreement between data
and theory, at the 10% level, is obtained only when applying the minimal sensitivity criteria [19]
to pick the renormalization scale. A näıve choice, like µr = Q (roughly corresponding to ξ ≈ 10
in Fig. 3) would lead to substantially larger deviations from the experimental results.
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We have performed a first analysis of true NLO jet shapes in DIS. We find excellent agree-
ment between NLO QCD and data. This agreement is achieved without introducing extra
phenomenological parameters describing hadronization effects, like Rsep. For the PUCELL and
the kT algorithm we have shown that the scale uncertainty of the QCD predictions for jet shapes
is substantially reduced at NLO. A precise comparison of experiment with theory is facilitated by
cuts which suppress multi-jet events. Our analysis can be easily extended to other jet algorithms
and momentum recombination schemes and allows one to investigate questions like the infrared
safety of jet algorithms or the reconstruction of kinematical variables from jets at full NLO.
Their effect on the matching of theory and data for ep collisions at HERA and more generally
at hadron colliders can now be investigated at the one-loop level.
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