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The evolution of quantum light through linear optical devices can be described by the scattering
matrix S of the system. For linear optical systems with m possible modes, the evolution of n input
photons is given by a unitary matrix U = ϕm,M(S) derived from a known homomorphism, ϕm,M ,
which depends on the size of the resulting Hilbert space of the possible photon states, M. We
present a method to decide whether a given unitary evolution U for n photons in m modes can be
achieved with linear optics or not and the inverse transformation ϕ−1

m,M when the transformation can
be implemented. Together with previous results, the method can be used to find a simple optical
system which implements any quantum operation within the reach of linear optics. The results come
from studying the adjoint map bewtween the Lie algebras corresponding to the Lie groups of the
relevant unitary matrices.

I. INTRODUCTION

The action of a linear optical device can be
described for classical (coherent) light fields as
well as for single photon states using unitary
matrices. The unitary transformations induced
by linear optical devices for generic n-photon
states of m modes are difficult to compute due
to the indistinguishability of photons. Our
paper studies the evolution of states of light
through a linear optical interferometer acting
on n photons in m different modes. These de-
vices are also called linear optics multiports and
conserve the total number of photons.
More precisely, we provide a prescription to

assess whether a particular unitary U acting
the space of n-photon states distributed on m

modes can be realized by a linear optical setup,
cf. Theorem 1, and, if it can, give a recipe to
build a device implementing it, cf. Theorem
2. Throughout the text we will provide two
worked examples of the method.
We will work in the Hilbert space Hm,n of the

quantum states |ψ〉 of n photons in m modes,
with superpositions of the form

|ψ〉= ∑
n1+···+nm=n

αn1,...,nm |n1 · · ·nm〉 ,

∗ juagar@tel.uva.es
† gimenov@mat.uji.es
‡ moyano@uji.es

where |n1 · · ·nm〉 is a state with nk photons in
the k-th mode. This space is isomorphic to CM,
where

M = dimCHm,n =

(

m+ n− 1

n

)

since each photon number state is orthogonal
to the rest:

〈n′1 · · ·n′m|n1 · · ·nm〉= δn′1n1
· · ·δn′mnm

.

Linear interferometers are described by m×m

unitary matrices S ∈ U(m) (the unitary group
of m×m unitary matrices). The interferometer
characterized by S naturally induces a transfor-
mation ϕm,M(S) of arbitrary input states

|ψ〉 → ϕm,M(S) |ψ〉 .

In order to understand the action of the inter-
ferometer S on multiple photon states we need
to study the underlying transformation ϕm,M

from U(m) to the U(M), the group containing
the unitary matrix U which gives the evolu-
tion of the n-photon state in Hm,n. Aaronson
and Arkhipov [1] give a nice algebraic descrip-
tion of the resulting one-to-one correspondence,
which turns out to be a group homomorphism
we call the (m,M)-photonic homomorphism (see
also [2–4] for alternative descriptions).

This paper gives the inverse transformation
ϕ−1

m,M(S), providing a way to implement any pos-
sible linear interferometer. Apart from being
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interesting in itself, this result also has applica-
tions to linear optics quantum computing [5, 6]
and in boson sampling, a problem which could
prove quantum systems can outperform classi-
cal computers [1, 7].

A. Organization of the paper

In Section II we give an informal overview
of the results. First, Sections IIA and II B in-
troduce the basic concepts we need. Then, in
Section II C, we give a general explanation of
our results. Section IID presents the concept
of the adjoint representation, which is funda-
mental in our method. Section II E describes
our preferred basis when working with unitary
algebras and Section II F introduces the state
space we will use for our guided examples in
the rest of the paper.
Section III gives a necessary and sufficient

condition for a unitary to be implemented with
linear optics and Sections III A and III B show
concrete examples of operations which cannot
and can be implemented with linear optics, re-
spectively.
Section IV shows the method that finds the

scattering matrix of the linear system which
gives a given unitary operation U (if it exists).
Section IVA shows the necessary steps, which
are illustrated for an example in Section IVB.
Section V gives the detailed proofs of the

Theorems on which our results are based.
Finally, Section VI discusses the importance

of our results and their limitations.

II. OUTLINE OF THE RESULTS AND
DEFINITIONS

A. Optical realizations and their
implementation

Any linear interferometer with m modes is
completely described by an m×m unitary scat-
tering matrix S which has a limited number of
degrees of freedom, 2m2 − 1. This means that,
except for trivial cases when n= 1 or m = 1, lin-
ear multiports can only provide a limited subset
of all the possible operations over n photons in
m modes, which are described by M×M unitary
matrices U with 2M2 −1 degrees of freedom [8].
The scattering matrices S are elements of

the unitary group U(m) and any general evo-

lution U on Hm,n is an element of the uni-
tary group U(M). The subgroup of all the
operations which can be implemented with
linear optics is described by the image sub-
group of ϕm,M, imϕm,M = {B ∈ U(M) : ∃A ∈
U(m) such that ϕm,M(A) = B}. We say

Definition 1 a matrix U ∈U(M) is an (m,n)-
optical realization if U ∈ imϕm,M.

In this paper, we relate these groups to give
a decision criterion that checks if any particular
operator U is in imϕm,M (it is an (m,n)-optical
realization) and, if it is possible, compute the

inverse ϕ−1
m,M(U) and recover the unitary ma-

trix S of the linear interferometer which gives
the desired evolution. Once we find S, we can
use previous known results which tell how to
build any desired multiport with a fixed scatter-
ing matrix using only beam splitters and phase
shifters [9] or only beam splitters [10, 11], clos-
ing the full circle for the experimental imple-
mentation of U .

B. Linear optical evolution from the
unitary (group) and Hermitian (algebra)

matrices point of view

The map ϕm,M is a differentiable group ho-
momorphism [1] and it induces an algebra ho-
momorphism, dϕm,M, as described by the com-
mutative diagram

u(m) u(M)

U(m) U(M)

dϕm,M

exp exp

ϕm,M

which relates the unitary groups U(m) and
U(M) containing the scattering matrix S and
the n-photon evolution operator U , respec-
tively, to the algebras u(m) and u(M) whose ele-
ments correspond to antihermitian matrices iHS

and iHU which give an equivalent description
of the evolution through exponentiation of the
Hamiltonians HS and HU (S= eiHS andU = eiHU )
[12, 13].

Both the homomorphism ϕm,M and the differ-
ential dϕm,M can be described in terms of the

the photon creation, â
†
i , and annihilation, âi,

operators for mode k [24], which act on states
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with nk photons in the k-th mode following

â
†
k |nk〉k =

√

nk + 1 |nk + 1〉k ,

âk |nk〉k =
√

nk |nk − 1〉k , n ≥ 1, âk |0〉k = |0〉k .

(1)

The homomorphism ϕm,M can be understood
from studying the evolution of the creation op-
erators â

†
k in the Heisenberg picture under the

action of a unitary U , â
†
k −→ Uâ

†
kU†. For an

n-photon input state

|n1n2 . . .nm〉=
m

∏
k=1

(

â
†nk

k√
nk!

)

|00 . . .0〉 , (2)

the output state after a linear interferometer
described from the elements of S as [2–4]:

U |n1n2 . . .nm〉=
m

∏
k=1

1√
nk!

(

m

∑
j=1

S jkâ
†
j

)nk

|00 . . .0〉 .

(3)
We can also write the elements of U from the
permanent of different submatrices of S [4].
From the differential dϕm,M [13], we can write

the effective Hamiltonian HU of a linear optical
transformation as:

〈p| iHU |q〉= 〈p|
m

∑
l=1

m

∑
j=1

iHS jl â
†
j âl |q〉 , (4)

where |p〉 and |q〉 are the photon number states
in our Hilbert space. The same results can be
reached from alternative points of view [12, 14–
17].

C. Summary of the results

The main design procedure is based on a sim-
ple basis decomposition in the image subalgebra
of the Hamiltonian, with a detour due to the
complications that appear when finding matrix
logarithms.
If we know the desired final Hamiltonian, HU ,

we can check if it can be implemented with lin-
ear optics by looking for a linear combination

iHU = ∑
i

Xibi (5)

of elements of the basis {bi} of the image subal-
gebra d ⊆ u(M) for i = 1, . . . ,m2. The elements
bi = ϕm,M(ai) are the image of the elements of
a basis {ai} of u(m). HU can be implemented

with linear optics if Eq. (5) has a solution.
Since ϕm,M is a linear transformation, the ef-
fective Hamiltonian in u(m) is

iHS = ∑
i

Xiai (6)

for the same coefficients Xi. Now, S = eiHS is the
unitary matrix of the desired linear interferom-
eter, for which there are known methods for an
experimental implementation [9–11].

The problem reduces to solving Eq. (5),
which can be expressed as a system of M ×M

linear equations, one for each matrix element,
and m2 indeterminates (the size of the basis). If
the system is not consistent, we know HU can-
not be implemented exactly using only linear
optics.

Unfortunately, finding whether a given uni-
tary U ∈U(M) is an optical realization is more
involved. In principle, it seems we could just
take iHU = logU and proceed as before, but, un-
like the exponential map, the matrix logarithm
is a multivalued function. Computing the ma-
trix logarithm of a unitary numerically presents
some challenges, particularly if it has degener-
ate eigenvalues, as many interesting operations,
such as the Quantum Fourier Transform, do.
However, there are reliable methods to obtain
a Hamiltonian matrix from a unitary [18].

The greatest obstacle is choosing the correct
branch when we are restricted to a subgroup.
For a unitary in the image subgroup, we need to
guarantee that the logarithm branch we choose
is in the image subalgebra iHU ∈ d. Otherwise,
we will not be able to find a decomposition in
terms of the basis of the image subalgebra, even
if U can really be implemented.

We need a method to find a Hermitian ma-
trix in the form given by Eq. (4). These ma-
trices have a strong structure. The only non-
zero elements are in positions which correspond
to transitions between states that are, at most,
one photon away from each other (for input
states |p〉 and |q〉 which only differ in the pho-
ton number in two positions, one mode giving
the photon to the other [13]).

The main contribution of our method is giv-
ing an alternative way of finding a suitable ba-
sis decomposition, when there is one, by using
the adjoint representation. The method avoids
using the usual matrix logarithm calculations.
There is no need to compute any eigenvalues
and we mostly use simple linear algebra meth-
ods (matrix multiplication and Gaussian elimi-
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nation to solve linear systems). If the operation
U cannot be implemented, we prove it and if it
can, we give a complete description in terms of
a linear interferometers.

D. The adjoint representation

We will find the inverse of the ϕm,M using
the adjoint representation, which gives an alter-
native way of describing linear interferometers
and can help to study the evolution of unitary
operators [19].
Let AdU : u(M) → u(M) be the adjoint map

defined by AdU (iHU) = UiHUU† [20]. We can
also define AdS : u(m)→ u(m) for the scattering
matrix so that AdS(iHS) = SiHSS†.
When U is an optical realization, the group of

linear interferometers can be equally described
by m×m unitaries S, by M ×M unitaries U in
the image subgroup or by the Hermitian ma-
trices HS and HU with iHS and iHU in the as-
sociated unitary algebra and image subalgebra.
Additionally, if U is in the image subalgebra,
the adjoint will also describe the same physical
system. Finding the inverse in this representa-
tion is easier and this is the path we choose.
The adjoint map is conceptually similar to

computing the evolution in the Heisenberg pic-
ture. The terms â

†
j âl in the effective Hamilto-

nian given by Eq. (4) evolves under the action
of the adjoint as

Uâ†
j âlU

† =Uâ†
jU

†UâlU
†, (7)

which, for the definition we use of the adjoint,
is to the product of the evolution of the cor-
responding creation and destruction operators
under U−1 =U† in the Heisenberg picture.
In our derivation, we use the fact that, for lin-

ear transformations, we can relate the adjoint
representations of S and U = ϕm,M(S) so that

AdS(v) = dϕ−1
m,M(AdU(dϕm,M(v))), (8)

for any v ∈ u(m).

E. Bases for the u(m) algebra and the
image subalgebra

Consider the canonical basis {|1〉 =
|1,0, . . . ,0〉 , |2〉 = |0,1, . . . ,0〉 , . . . , |m〉 =

|0, . . . ,0,1〉} of Cm. The matrices

e jk :=
i

2

(

| j〉 〈k|+ |k〉 〈 j|
)

(9)

f jk :=
1

2

(

| j〉 〈k|− |k〉 〈 j|
)

give a basis of u(m). The real linear combina-
tions of the matrices

e jk for k ≤ j = 1, . . . ,m (10)

f jk for k < j = 1, . . . ,m,

give any desired antihermitian matrix in the al-
gebra.

Observe that e jk = ek j and f jk = − fk j . From
Eq. (4), we see the basis of u(m) transforms
into

dϕm,M(e jk) =
i

2

(

â
†
j âk + â

†
kâ j

)

6= 0

dϕm,M( f jk) =
1

2

(

â
†
j âk − â

†
kâ j

)

6= 0,

and therefore the map dϕm,M is injective and
gives a basis of the image subalgebra.

F. Example space: 5 photons in 2 modes

To illustrate our results, we will give a few
examples using linear interferometers with m =
2 modes and n = 5 input photons, for which
we have a Hilbert space of dimension M =
(

2+5−1
5

)

= 6. We choose the basis

{|5,0〉 , |4,1〉 , |3,2〉 , |2,3〉 , |1,4〉 , |0,5〉} (11)

of C6. For our reference bases, the ith basis
element corresponds to a column vector filled
with zeros except for a single 1 in the ith row.

The (2,6)-photonic homomorphism will be
denoted as ϕ2,6 : U(2) → U(6). The basis for

C2 will be

{|1,0〉, |0,1〉} . (12)

We study how AdU acts on d = dϕ2,6(u(2))
using the basis {e11,e12,e22, f12} of u(2),

e11 = i

(

1 0

0 0

)

e12 =
i
2

(

0 1

1 0

)

e22 = i

(

0 0

0 1

)

f12 =
1
2

(

0 1

−1 0

)

.
(13)

The U and iHU matrices in these examples
are given for the state order of the basis in
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Eq. (11), i.e. U11 = 〈1|U |1〉 = 〈50|U |50〉, . . .,
U32 = 〈3|U |2〉= 〈32|U |41〉, . . ., U66 = 〈6|U |6〉=
〈05|U |05〉. The same applies to S and iHS and
the basis in Eq. (12).
For a given iHS ∈ u(2), the corresponding

element in the image subalgebra d, iHU =
dϕ2,6(iHS), is given by [13]:

〈p| iHU |q〉= 〈p|
m

∑
l=1

m

∑
j=1

iHS jl â
†
j âl |q〉 , (14)

The matrices {ai} in the basis of u(2),
ordered as in Eq. (13), give us a basis
{b1,b2,b3,b4} of the image subspace d ⊆ u(M),
with bi = dϕ2,6(ai) where

b1 :=dϕ2,6(e11) = iâ
†
1â1 = in̂1

=i















5 0 0 0 0 0

0 4 0 0 0 0

0 0 3 0 0 0

0 0 0 2 0 0

0 0 0 0 1 0

0 0 0 0 0 0















. (15)

b2 :=dϕ2,6(e12) =
i

2
(â†

1â2 + â
†
2â1)

=
i

2

















0
√

5 0 0 0 0√
5 0 2

√
2 0 0 0

0 2
√

2 0 3 0 0

0 0 3 0 2
√

2 0

0 0 0 2
√

2 0
√

5

0 0 0 0
√

5 0

















.

(16)

b3 :=dϕ2,6(e22) = iâ
†
2â2 = in̂2

=i















0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 4 0

0 0 0 0 0 5















. (17)

b4 :=dϕ2,6( f12) =
1

2

(

â
†
1â2 − â

†
2â1

)

=
1

2

















0
√

5 0 0 0 0

−
√

5 0 2
√

2 0 0 0

0 −2
√

2 0 3 0 0

0 0 −3 0 2
√

2 0

0 0 0 −2
√

2 0
√

5

0 0 0 0 −
√

5 0

















.

(18)

III. EXISTENCE OF A UNITARY
EVOLUTION VIA LINEAR OPTICS

The adjoint representation gives us a neces-
sary and sufficient condition for the implemen-
tation of any given unitary operator U with lin-
ear interferometers.

Theorem 1 U ∈ imϕm,M ⇐⇒ AdU |d is an au-

tomorphism.

Theorem 1 gives a criterion to decide whether
a matrix U ∈ U(M) is an (n,m)-optical realiza-
tion or not. A quantum operation U can be
implemented with linear optics if and only if
AdU |d is an automorphism (for any v in the
image subalgebra d, the adjoint UvU† remains
in the subalgebra). We only need to see this is
the case for a basis of d, which can be obtained
by transforming the elements of a basis of u(m)
by the algebra homomorphism dϕm,M.

We can choose a basis of u(m) {a1, · · · ,am}
following Equations (9) and (10) so that any
element in the algebra can be expressed as a
real linear combination of the ai matrices. For
that basis, the matrices bi = dϕm,M(ai) form a
basis for d.

U is an optical realization if and only if, for
any v that is a real linear combination of the
computed bi, we can also write UvU† in the
same basis. There must exist real coefficients
Xi j such that

UbiU
† =

m2

∑
j=1

Xi jb j, i = 1, . . . ,m2. (19)

In order to check whether a given U can be re-
alized with linear optics we need to satisfy m2

equations with M×M complex matrices, one for
each element of the basis, for a total of m2M2

independent real equations [22] with m4 inde-
terminates. If the system is consistent, U is an
(n,m)-optical realization.

A. Example 1: An impossible operation

In our example state space, see Section II F,
in order to decide whether a matrixU is a (2,6)-
optical realization or not, by Theorem 1, we
have to compute Ad U and see if Ad U(v) ∈ d

for any v ∈ d.
The adjoint is linear and it is enough to ver-

ify the property for the vectors in the basis
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{b1,b2,b3,b4} of d. This leads to a real linear
system with 22 ·62 equations

Ad U (b j) =
4

∑
k=1

X jkbk, j = 1, . . . ,4 (20)

in the 24 indeterminates X jk belonging to R.
If the system is consistent, then U is a (2,6)-
photonic realization.

First, we are going to use Theorem 1 to show
that not every unitary 6× 6-matrix is a (2,6)-

optical realization. If we take the matrix

U =















0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1















, (21)

the system (20) is inconsistent. Consider, for
instance, Eq. (20) for b2:

Ub2U† = X21b1 +X22b2 +X23b3 +X24b4, (22)

which, in matrix form, is

























0 0 3i
2

0
√

2i 0

0 0
√

2i

√
5i

2
0 0

3i
2

√
2i 0 0 0 0

0

√
5i

2
0 0 0 0

√
2i 0 0 0 0

√
5i

2

0 0 0 0

√
5i

2
0

























=





























5iX21
iX22

2

√
5+

√
5X24
2

0 0 0 0

iX22
2

√
5−

√
5X24
2

4iX21 + iX23

√
2iX22 +

√
2X24 0 0 0

0
√

2iX22 −
√

2X24 3iX21 +2iX23
3i
2

X22 +
3X24

2
0 0

0 0 3i
2

X22 − 3X24
2

2iX21 +3iX23

√
2iX22 +

√
2X24 0

0 0 0
√

2iX22 −
√

2X24 iX21 +4iX23
iX22

2

√
5+

√
5X24
2

0 0 0 0
iX22

2

√
5−

√
5X24
2

5iX23





























. (23)

The system is clearly inconsistent. In the first
row we see two constants, 3i

2
and

√
2i, which

should be equal to zero, which is impossible.
Therefore, since Ad U is not an automor-

phism of d, we have that U /∈ Im(ϕ2,6) by The-
orem 1 and U is not a (2,6)-optical realization.
Another way to show that inconsistency is

noticing that, if v ∈ d, then 〈n′1,n′2|v|n1,n2〉 6= 0

implies that the input state |n1,n2〉 is, at most,
one photon away from the output state |n′1,n′2〉
(cf. Eq. (4) and [13]).
This is not the case for the given U and our

basis order in Eq. (11): notice that |2,3〉 is two
photons away from |4,1〉, but
〈4,1|Ad U (b2)|2,3〉=〈4,1|Ub2U

†|2,3〉

=〈4,1|b2|5,0〉=
√

5

2
i 6= 0.

(24)
B. Example 2: An optical realization

Continuing with III A, let us show that for
the operator

U =





















√
2

8

√
10
8

√
5

4

√
5

4

√
10
8

√
2

8√
10
8

3
√

2
8

1
4

− 1
4

− 3
√

2
8

−
√

10
8√

5
4

1
4

−
√

2
4

−
√

2
4

1
4

√
5

4√
5

4
− 1

4
−

√
2

4

√
2

4
1
4

−
√

5
4√

10
8

− 3
√

2
8

1
4

1
4

− 3
√

2
8

√
10
8√

2
8

−
√

10
8

√
5

4
−

√
5

4

√
10
8

−
√

2
8





















,

(25)

there exists a matrix S in U(2) such that
ϕ2,6(S) =U .

We start by solving the system in Eq. (20).
We write one matrix identity for each element
in the {bi} basis. For instance, for b1:

Ub1U† = X11b1 +X12b2 +X13b3 +X14b4, (26)

becomes
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5i
2

√
5i

2
0 0 0 0√

5i
2

5i
2

√
2i 0 0 0

0
√

2i 5i
2

3i
2

0 0

0 0 3i
2

5i
2

√
2i 0

0 0 0
√

2i 5i
2

√
5i

2

0 0 0 0

√
5i

2
5i
2

























=





























5iX11
iX12

2

√
5+

√
5X14
2

0 0 0 0

iX12
2

√
5−

√
5X14
2

4iX11 + iX13

√
2iX12 +

√
2X14 0 0 0

0
√

2iX12 −
√

2X14 3iX11 +2iX13
3i
2

X12 +
3X14

2
0 0

0 0 3i
2

X12 − 3X14
2

2iX11 +3iX13

√
2iX12 +

√
2X14 0

0 0 0
√

2iX12 −
√

2X14 iX11 +4iX13
iX12

2

√
5+

√
5X14
2

0 0 0 0
iX12

2

√
5−

√
5X14
2

5iX13





























, (27)

from which we see X11 = 1
2
, X12 = 1, X13 = 1

2
and X14 = 0. If we repeat the same operation
for each bi in the basis, we see the system (20)
is consistent and its solutions are given by the
matrix

X = (X jk) =







1/2 1 1/2 0

1/2 0 −1/2 0

1/2 −1 1/2 0

0 0 0 −1






. (28)

Therefore, since Ad U is a linear map so that
Ad U : dϕ2,6(u(2)) → dϕ2,6(u(2)), we know (by
Theorem 1) that there exists at least one S ∈
U(2) such that ϕ2,6(S) =U .

IV. IMPLEMENTATION OF THE
POSSIBLE OPERATIONS USING

LINEAR OPTICS

When the operation can be implemented, we
can give an explicit implementation which uses
the solution to the system of equations. Let
U ∈U(M), then Theorem 1 shows that, if AdU |d
is an automorphism, there exists an S ∈ U(m)
such that ϕm,M(S) = U . The goal is to obtain
an algorithm which provides this S.

Theorem 2 For some S=∑ℓ j Sℓ j |ℓ〉〈 j| ∈U(m),
let AdS : u(m) → u(m) be the adjoint

map, then there exist ℓ0, j0 such that

−i〈ℓ0|AdS(e j0 j0) |ℓ0〉= |Sℓ0 j0 |2 6= 0 and

S= eiθ ∑
ℓ, j

〈ℓ|AdS( f j j0) |ℓ0〉− i〈ℓ|AdS(e j j0) |ℓ0〉
√

−i〈ℓ0|AdS(e j0 j0) |ℓ0〉
|ℓ〉〈 j| ,

(29)
with θ ∈R.

All the relevant adjoint operators can be
written from AdS(ai) for the elements ai of the
basis of u(m) and the desired U .
Notice that

dϕm,M(Ad S(ai)) =

Ad U(dϕm,M(ai))) =
m2

∑
j=1

Xi jdϕm,M(ai) (30)

for the Xi j from the system in Equation (19),
which must be consistent (otherwise we know
the operation cannot be realized). Both dϕm,M

and dϕ−1
m,M are linear and

Ad S(ai) = dϕ−1
m,M(

m2

∑
j=1

Xi jdϕm,M(ai)) =
m2

∑
j=1

Xi jai

(31)
where all the Xi j and ai are known.

A. Implementation recipe

Given an operator U , we first solve the sys-
tem in Eq. (19) (or say it cannot be realized if
it is inconsistent).

Then, we try different integer pairs ℓ, j in

|Sℓ j|2 =−i〈ℓ|AdS(e j j) |ℓ〉 . (32)

If the chosen |Sℓ j|2 = 0 we have one element
of S. We continue until we find a pair ℓ0, j0
which gives a nonzero element of S. This Sℓ0 j0 =

eiθ |Sℓ0 j0 | will be our reference.
We can only compute the modulus, but, if we

use the same Sℓ0 j0 for all the ℓ, j pairs, all the
elements of S will have the same global phase,
which can be ignored. Using Eq. (31) and The-
orem 2, we can compute all the elements of a
scattering matrix S which realizes the desired
operator U . The scattering matrix, in turn, can
be used to build the desired device with linear
optical elements [9–11].

B. Implementation example

In Section III B we proved the existence of a
matrix S ∈ U(2) such that ϕ2,6(S) = U for the
unitary operation U in Eq. (25). In order to
find this matrix S up to global phase we apply
Theorem 2.

We first look for a nonzero element of S from
Eq. (32):

|Sℓ j|2 =−i〈ℓ|AdS(e j j) |ℓ〉 . (33)
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We start with ℓ= j = 1

|S11|2 =−i〈1|AdS(e11) |1〉 . (34)

We also need to use Eq. (31)

Ad S(ai) = dϕ−1
m,M(

m2

∑
j=1

Xi jdϕm,M(ai)) =
m2

∑
j=1

Xi jai,

(35)
which, for a1 = e11 and the matrix with the co-
efficients of the solution in Eq. (28), gives

Ad S(e11) =X11e11 +X12e12 +X13e22 +X14 f12

=
i

2

(

1 1

1 1

)

,

so that

|S11|2 =
1

2
. (36)

We obtain S11 = eiθ 1√
2
. From Theorem 2, we

see the remaining Sℓ j are:

Sℓ j =
√

2exp(iθ )(〈ℓ|AdS( f j1) |1〉− i〈ℓ|AdS(e j1) |1〉).
(37)

We use the same reference S11 to find the rest
of the entries in S:

S12 =
√

2exp(iθ )(〈1|AdS( f21) |1〉− i〈1|AdS(e21) |1〉),
(38)

S21 =
√

2exp(iθ )(〈2|AdS( f11) |1〉− i〈2|AdS(e11) |1〉),
(39)

S22 =
√

2exp(iθ )(〈2|AdS( f21) |1〉− i〈2|AdS(e21) |1〉).
(40)

All the elements can be computed from the ba-
sis {e11,e12,e22, f12} (remembering fii = 0, e jk =
ek j and f jk = − fk j). Apart from Ad S(e11), we
need the matrices

AdS( f21) =−AdS( f12) (41)

=− (X41e11 +X42e12 +X43e22 +X44 f12)

= f12 =
1

2

(

0 1

−1 0

)

,

AdS(e21) = AdS(e12) (42)

=X21e11 +X22e12 +X23e22 +X24 f12

=
1

2
e11 −

1

2
e22 =

i

2

(

1 0

0 −1

)

,

which give the solution

S12 =
√

2exp(iθ )

(

0− i
i

2

)

= eiθ 1√
2
, (43)

S21 =
√

2exp(iθ )

(

0− i
i

2

)

= eiθ 1√
2
, (44)

S22 =
√

2exp(iθ )

(

−1

2
− 0

)

|1〉) = eiθ −1√
2
. (45)

We can ignore the global phase θ and obtain
the scattering matrix

S =
1√
2

(

1 1

1 −1

)

. (46)

If we compute ϕ2,6(S) using Eq. (3), we can
check we get the desired evolution U .

Notice that, had we tried to simply take the
matrix logarithm of the unitary in Eq. (25) we
can obtain results such as

iHU =















1.293i −0.621i −0.878i −0.878i −0.621i −0.278i

−0.621i 0.738i −0.393i 0.393i 0.833i 0.621i

−0.878i −0.393i 2.126i 0.555i −0.393i −0.878i

−0.878i 0.393i 0.555i 1.015i −0.393i 0.878i

−0.621i 0.833i −0.393i −0.393i 2.404i −0.621i

−0.278i 0.621i −0.878i 0.878i −0.621i 1.848i















,

(47)

which was computed numerically and is pre-
sented rounded to three decimal places. While
this is a valid logarithm (U = eiHU ), the matrix
is not in the image subspace (it has nonzero el-
ements for transitions between states which are
more than one photon away). As a result, this
logarithm is not compatible with our approach
using the basis of d to check whether U can be
implemented or not.

V. PROOFS OF THE MAIN RESULTS

In this Section, we prove Theorems 1 and 2,
which lay the foundations for our results.

Let AdU : u(M) → u(M) be the adjoint map
defined by AdU(iHS) =UiHSU† [20].

We denote by d the subalgebra
dϕm,M(u(m)) ⊆ u(M), and by sd the subal-
gebra dϕm,M(su(m)) ⊆ u(M) where su(m) is
the special unitary algebra of dimension m

which gives by exponentiation the matrices in
the special unitary group which describe any
quantum evolution for a quantum state up to
an unobservable global phase shift. Notice that
dϕm,M : u(m)→ d is a bijection.
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A. Proof of Theorem 1

Lemma 1 Let iHU = dϕm,M(iHS) ∈ d for iHS ∈
u(m), then

tr(iHU) =

(

n+m− 1

n− 1

)

tr(iHS).

Therefore, v ∈ sd if and only if tr(v) = 0. More-

over

d= sd⊕ spanR(iIM).

a. Proof: tr(iHU) = tr(dϕm,M(iHS)) =

∑M
ℓ ∑m

j,k〈ℓ|iHS jkâ
†
j âk|ℓ〉 = ∑ℓ jk iHS jk〈ℓ|â†

j âk|ℓ〉 =

∑ℓ jk iHS jkδ jk〈ℓ|n̂ j|ℓ〉 = ∑ℓ j iHS j j〈ℓ|n̂ j|ℓ〉 =

∑ j iHS j j ∑ℓ〈ℓ|n̂ j|ℓ〉 = ∑ j iHS j j
nM
m

=
(

n+m−1
n−1

)

tr(iHS), taking into account that
the sum for the average of the photon number
operator n̂ j = â

†
j â j in mode j, ∑ℓ〈ℓ|n̂ j|ℓ〉, must

be the same for every mode (we cover all the
permutations for photon occupation). For n

total photons and M possible states, the total
sum is nM, which is divided by m for each
position.
Observe that spanR(iIM) is a subalgebra of d,

since

dϕm,M(β Im) = β ∑
jk

δ jkâ†
j âk = β ∑

j

n̂ j = β nIM.

Let iHU ∈ d and v = tr(iHU )
M

IM ∈ spanR(iIM),
since Re(tr(iHU)) = 0. Then iHU − v ∈ sd as
tr(iHU − v) = 0, hence iHU = (iHU − v) + v ∈
sd+spanR(iIM). The result follows from the fact
that sd∩ spanR(iIM) = 0.

�

Lemma 2 Let U ∈U(M), then AdU |d is an au-

tomorphism if and only if AdU |sd is an auto-

morphism.

b. Proof: We first assume that AdU |d is an
automorphism, then for any v ∈ sd

tr(AdU(v)) = tr(UvU†) = tr(v) = 0,

therefore AdU (v)∈ sd by Lemma 1. This proves
that AdU is an endomorphism. Moreover, the
kernel is trivial, since ‖AdU (v)‖ = 0 implies
‖v‖= 0 for any v, as can be checked for the trace

norm: ‖AdU(v)‖ =
√

tr(AdU (v) · (AdU(v))†) =
√

tr(UvU†(UvU†)†) =
√

tr(UvU†Uv†U†) =
√

tr(vv†) = ‖v‖.

Conversely, let us assume that AdU |sd is an
automorphism. By Lemma 1, since d = sd⊕
spanR(iIM) and AdU : spanR(iIM)→ spanR(iIM) is
the identity, then AdU |d is an automorphism.
�

We can now prove Theorem 1.
c. Proof: =⇒) Let U ∈ imϕm,M,

then there exists iHU ∈ d such that
U = exp(iHU), hence for any v ∈ d AdU (iHU) =
exp(iHU)vexp(−iHU) = v + [iHU ,v] +
1
2
[iHU , [iHU ,v]] + 1

3!
[iHU , [iHU , [iHU ,v]]] + · · ·

and clearly AdU(v) ∈ d, since iHU ,v ∈ d and the
Lie bracket is closed in d. This proves that
AdU is an endomorphism. Moreover, the kernel
is trivial, since ‖AdU (v)‖ = 0 implies ‖v‖ = 0

for some v (see proof of Lemma 2).
⇐=) Let U ∈ U(M) such that AdU |d is

an automorphism. There exists θ ∈ R such
that exp(iθ )U ∈ SU(M). Moreover, for any
W ∈ ϕm,M(SU(m)), there exists w ∈ sd with

W = exp(w), and exp(iθ )UW (exp(iθ )U)† =
U exp(w)U† = exp(UwU†) = exp(AdU(w)), by
Lemma 2, AdU(w) ∈ sd, and so exp(AdU(w)) ∈
ϕm,M(SU(m)). Finally, by Lemma 9 of [21]

exp(iθ )U = exp(iβ )U ′

for some β ∈R and U ′ ∈ ϕm,M(SU(m)). Hence

U = exp(i(β −θ ))U ′ = exp(i(β −θ )IM)exp(w′),

with w′ ∈ sd. Since [IM,w′] = 0, then

U = exp(i(β −θ )IM +w′).

Since i(β − θ )IM + w′ ∈ sd ⊕ spanR(iIM), by
Lemma 1 i(β − θ )IM + w′ ∈ d, therefore
exp(i(β −θ )IM +w′) ∈ imϕm,M . �

B. Proof of Theorem 2

a. Proof: Let S = ∑ jk S jk | j〉 〈k|. The ad-
joint map acting on the tangent vectors e jk, f jk

of u(m) gives:
〈ℓ|AdS(e jk) |h〉= 〈ℓ|Se jkS† |h〉

= ∑
s,t,µ,ν

〈ℓ|Sst |s〉 〈t|e jkS∗µν |ν〉 〈µ |h〉

=
i

2
∑

s,t,µ,ν

SstS
∗
µν 〈ℓ|s〉 〈t|

(

| j〉 〈k|+ |k〉 〈 j|
)

|ν〉 〈µ |h〉

=
i

2
∑

s,t,µ,ν

SstS
∗
µν

(

δℓsδt jδkν δµh + δℓsδtkδ jνδµh

)

=
i

2

(

Sℓ jS
∗
hk + SℓkS∗h j

)

,
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and similarly

〈ℓ|AdS( f jk) |h〉=
1

2

(

Sℓ jS
∗
hk − SℓkS∗h j

)

.

This allows us to obtain

Sℓ jS
∗
hk = 〈ℓ|AdS( f jk) |h〉− i〈ℓ|AdS(e jk) |h〉 (48)

for all ℓ, j,h,k and, for ℓ= h and j = k

|Sℓ j|2 =−i〈ℓ|AdS(e j j) |ℓ〉 . (49)

Since the matrix S is unitary, there exists Sℓ0 j0 6=
0 and there is θ ∈ R with Sℓ0 j0 = |Sℓ0 j0 |eiθ . By
(48) and (49),

Sℓ j = eiθ 〈ℓ|AdS( f j j0) |ℓ0〉− i〈ℓ|AdS(e j j0) |ℓ0〉
√

−i〈ℓ0|AdS(e j0 j0) |ℓ0〉
.

(50)
�

VI. CONCLUSIONS

In this paper, we give a way to check whether
any given linear operator U on n photons in m

modes can be implemented with linear optics
or not and, if it can, provide a explicit method
to find the multiport S which gives the desired
operator.
The method tries to write the Hamiltonian

corresponding to the desired operator in terms
of a linear combination of a basis of the subal-
gebra of all the possible Hamiltonians.
In principle, the same analysis with a decom-

position in the basis of the image subalgebra
could be directly applied to the HU coming from
computing the logarithm of the desired opera-
tor matrix U . However, computing a suitable
matrix logarithm is far from trivial. By us-
ing the adjoint representation we guarantee a
simple and flexible method for any operator U .
The computation only involves matrix multipli-
cations and solving a linear system and avoids
computing eigenvalues.
This method solves the problem completely

for any given U .
There are some limitations to this result

worth mentioning. First, it applies only to sys-
tems which can be exactly implemented, which,

as n and m grow, become a smaller subset of
the possible matrices U . In many cases we are
more concerned with finding the best approx-
imation. In a future work we will present a
different method which finds the linear optics
evolution which is locally closest to the desired
operator in terms of some operator distance.

Second, that a particular operation cannot be
implemented has limited implications to the re-
lated quantum information problem of whether
a given quantum gate can be implemented with
linear optics or not. Apart from encoding issues
(a gate might be realized using only a subspace
of the possible states), notice that, in linear in-
terferometers, permutations are not trivial. For
instance, the Quantum Fourier Transform ma-
trix might be realizable for some mapping of
the logical states to the photon states but not
for others.

Taking into account these precautions, the
inverse method we have given can be used in
quantum optics and quantum information to
search for particular quantum tasks or primi-
tives which can be implemented with linear op-
tics, such as particular instances of quantum
cloning machines [23] or simple quantum algo-
rithms showing quantum advantage. In gen-
eral, the framework provided from group theory
helps us to understand better the connections
between classical and quantum evolution in lin-
ear optics.
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