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Abstract

The taxonomy of foot shapes or other parts of the body is important, especially for design

purposes. We propose a methodology based on archetypoid analysis (ADA) that over-

comes the weaknesses of previous methodologies used to establish typologies. ADA is an

objective, data-driven methodology that seeks extreme patterns, the archetypal profiles in

the data. ADA also explains the data as percentages of the archetypal patterns, which

makes this technique understandable and accessible even for non-experts. Clustering tech-

niques are usually considered for establishing taxonomies, but we will show that finding the

purest or most extreme patterns is more appropriate than using the central points returned

by clustering techniques. We apply the methodology to an anthropometric database of 775

3D right foot scans representing the Spanish adult female and male population for footwear

design. Each foot is described by a 5626 × 3 configuration matrix of landmarks. No multivari-

ate features are used for establishing the taxonomy, but all the information gathered from

the 3D scanning is employed. We use ADA for shapes described by landmarks. Women’s

and men’s feet are analyzed separately. We have analyzed 3 archetypal feet for both men

and women. These archetypal feet could not have been recovered using multivariate

techniques.

1 Introduction

A fundamental issue in the appropriate design of footwear is to know foot shape. In particular,

it is important to know the types of foot shapes and how the different feet of users can be

explained by this taxonomy, i.e. the foot shape distribution. It is not only important from the

shoe manufacturing point of view, since an improper fit prevents shoe purchase, but also

because poorly fitting footwear can cause foot pain and deformity [1], especially in women.

Therefore, numerous studies have been carried out on foot shapes [2–7].

Identifying foot shapes has a significant impact on design [8–10]. A small group of human

models that represents the anthropometric variability of the target population is commonly

used in ergonomic design and evaluation. Working with a small group of cases, the test cases,
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provides designers with an efficient way to develop and evaluate a product design. Considering

the boundary cases or the extreme cases is a common strategy in design [11]. The idea behind

considering the boundary cases is that if the design fits for the extreme cases well, then all

other less extreme body types in the target population should also be well accommodated.

Knowledge of the types of body part shapes is not only important in the design or apparel

industry [12, 13], but also in ergonomics in general [14, 15], and other disciplines such as

sport [16–18], medicine [19–21], phylogeny [22], criminalistics [23], etc. Face classification is

also important due to its application in forensic anthropology, crime prevention and new

human-machine interaction systems and online activities like e-commerce, e-learning, gam-

ing, dating and social media [24, 25]. Furthermore, taxonomy is also very important not only

in anthropometry, but also in morphometry in general, such as in animal or plant taxonomy

[26, 27] or also in genetics [28].

The method of establishing types of feet, or other parts of the body, is usually based on sub-

jective or visual elements [29]. When objective techniques have been contemplated, these have

been very simple [30]. In fact, despite performing 3D scans, that information is then summa-

rized into a series of multivariate measures [5, 7, 31]. These measures are then treated in an ad

hoc, heuristic way to couple pre-established types [12], or a cluster analysis is applied to these

measures directly or after applying factor analysis or principal component analysis (PCA) to

reduce the dimension [2, 14, 24, 32–35].

Our aim is to improve on the previous methodologies used to define taxonomies by remov-

ing the subjective steps and making the data speak for themselves. We use archetypoid analysis

(ADA) for shapes based on landmarks, which was developed by some of the authors in [36].

ADA is a variant of archetype analysis (AA), which is an unsupervised statistical learning tool.

Archetypes lie on the boundary of the convex hull of the data, meaning that they are extreme

profiles. ADA returns archetypes in data. On the one hand, this statistical tool allows us to con-

sider all the information contained in the 3D scanners, without the need for extracting vari-

ables from them, thus avoiding the step of deciding which variables may or may not be

relevant. On the other hand, the tool itself will provide the taxonomy from the data themselves,

i.e. it will provide the existing archetypes in the data, while the user only intervenes to specify

the number of archetypes to consider. If the user is not sure how many archetypes should be

considered, the tool can provide the most reasonable number of archetypes based on the

elbow criterion, which will be explained below. Furthermore, the technique returns how the

feet are formed as a function of the archetypes by using mixtures of archetypes. In other

words, each foot will be represented as a percentage of the archetypal feet; in this way, it can be

easily understood by any user who is not expert in this technique. Despite the fact that cluster-

ing is the usual technique for defining typologies, we will use a toy example to show that AA or

ADA, rather than cluster analysis (CLA), is the most appropriate statistical technique for

obtaining a taxonomy. We will use ADA instead of AA in our problem with 3D scans, because

we prefer to obtain archetypal feet corresponding to particular individuals in order to describe

those archetypal feet by some multivariate measures a posteriori.

The objective of ADA is to represent the cases by means of a convex combination (a mix-

ture) of archetypes that are actual cases, which are referred to as archetypoids. This makes the

results returned by ADA easily interpretable, even for non-experts. The difference between

AA and ADA is that in AA the archetypes are mixtures of cases, and therefore, they are not

necessarily actual cases. In other words, ADA represents the data as mixtures of extreme cases,

and not as mixtures of mixtures, as AA does. AA was defined for multivariate data by [37],

while ADA was proposed by [13]. ADA has been extended to other kind of data, such as func-

tions [38] or shapes defined by landmarks [36].
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AA and ADA applications have been growing at a great rate and they can be found in a

diverse range of disciplines, such as biology [39], computer vision [40–45], developmental psy-

chology [46], engineering [11, 13, 47, 48], finance [49], genetics [50], global development [51],

machine learning problems [52], market research [53], multi-document summarization [54],

neuroscience [55, 56] and sports [57–59].

Archetypal analysis techniques lie somewhere in between two well-known unsupervised

statistical techniques: PCA and CLA. Data decomposition techniques aim to find the latent

components, and data are expressed as a linear combination of several factors. The constraints

on the factors and how they are combined determine the definition of different statistical tech-

niques. In PCA, factors are linear combinations of variables, and therefore their restrictions

are minimal. This compromises the interpretability of the factors, but it helps explain the

variability of the data. Instead, in CLA, such as k-means algorithm, factors have the greatest

restrictions. As factors in k-means are centroids (means of groups of data), they are easily

interpretable. However, the modeling flexibility of CLA is reduced due to the binary assign-

ment of data to the clusters. In contrast, AA and ADA enjoy higher modeling flexibility than

CLA but without losing the interpretability of their factors. [52] and [13] provide a table sum-

marizing the relationship between several unsupervised multivariate techniques. ADA is also

compared with many other unsupervised multivariate techniques in [13].

Percentiles should not be used to find the boundary cases in design since with the exception

of 50th-percentiles, percentile values are not additive [60–62]. Although, different alternatives

have been considered, such as the use of CLA [63], the most common approach is based on

the use of PCA [61, 64–68]. In this approach, several extreme points are selected from the pro-

jection into the first principal components. However, the PCA-approach has several draw-

backs [69]. In [61, 67, 68] only the variation in the first two or three components is taken into

account, so unconsidered variation may represent cases that are difficult to accommodate,

which would be missing. In addition, the number of selected boundary cases with two PCs is

eight (fourteen with three PCs), which could be too high in practice. A large numbers of test

cases may overwhelm the designer and thus be counterproductive. With ADA we will obtain

the extreme cases, since this is precisely the objective of this statistical technique, and we can

control the number of extreme cases that the designer wants to consider.

Toy example

In Fig 1 a toy two-dimensional data set is used to illustrate what archetypoids mean and the

differences compared with PCA and CLA, as well as to provide some intuition on what these

pure and extreme patterns imply in Anthropometry. Two numeric variables are considered

from the data set described below: the Foot Length (FL) and Ball Width (BW) of 382 right feet

from the adult female Spanish population. We apply k-means and ADA with k = 3, i.e. we find

3 clusters and archetypoids, with standardized data. We also apply PCA.

Archetypoids are feet with extreme values, which have clear profiles: archetypoid 1 is char-

acterized by very low FL and BW values, archetypoid 2 has a very high value for BW, but a

medium value for FL, while the third archetypoid has a very high FL value together with a

medium-high value for BW. Archetypoids are the purest feet. The rest of the feet are expressed

as mixtures (collected in alpha coefficients, which is explained in Section 2) of these ideal feet.

For example, a foot with values of 244.2 and 86.5 for FL and BW, respectively, is explained by

43% of archetypoid 1 plus 57% of archetypoid 3. From the clustering point of view this foot is

assigned to cluster 1, although it is near the border of cluster 2, but clustering does not say any-

thing about the distance of this point with respect to the assigned centroid, or in which direc-

tion they are separated. In fact, that foot is quite far from its assigned centroid. This happens
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because the objective of clustering is to assign the data to groups, not to explain the structure

of the data more qualitatively.

This is compatible with the natural tendency of humans to represent a group of items by its

extreme units [70]. Fig 1B shows the partition of the set generated by assigning the cases to the

archetypoid that best explains each observation. However, when we apply k-means to this kind

of data set, without differentiated clusters, the centroids are in the middle of the data cloud.

Centroid profiles are not as differentiated from each other as archetypoid profiles. This hap-

pens because centroids have to cover the set in such a way that the set is partitioned by mini-

mizing the distance with respect to the assigned centroid (see [71] about the connection

between set partitioning and clustering). On the one hand, this means that the set partition

generated by k-means and ADA would be different (Fig 1A and 1B). On the other hand, cen-

troids are not the purest, and therefore their profiles are not as clear as those of archetypoids.

In Fig 2 we show the foot centroids and archetypoids as rectangles. Archetypoids are more

intuitively interpretable due to the extremeness of their dimensions: the first archetypoid is a

very short and narrow foot (smaller in both dimensions than the smallest centroid); the second

archetypoid is very wide, while the second centroid is similar to the mean foot; and the third

archetypoid is a very long foot that is longer than the third centroid. All the foot centroids

have the same aspect, i.e. the same FL and BW ratio as the mean foot. However, this is not the

case with ADA. Archetypoid 1 has the same ratio as the mean foot, but not archetypoids 2 and

3, which are more flattened and elongated, respectively. This can be clearly appreciated in the

Fig 1. Toy example. (A) Plot of the k-means cluster assignments. The blue triangles represent the centroids of each

cluster. (B) ADA assignments by the maximum alpha (see Section 2), i.e. assigned to the archetypoid that best explains

the corresponding observation. The blue crosses identify the archetypoids. (C) PC scores with cluster assignments.

Projected centroids are represented by blue triangles. (D) PC scores with the ADA assignments. Projected archetypoids

are represented by blue crosses.

https://doi.org/10.1371/journal.pone.0228016.g001
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PC projections of Fig 1C and 1D. The first PC is a size component composed of the addition

of FL and BW (the loadings are 0.7 and 0.7), while the second PC is a shape component com-

posed of the contraposition of FL and BW (the loadings are 0.7 and -0.7). Note that centroids

are all in the zero horizontal line, i.e. centroids do not account for different shapes. However,

archetypoids are distributed on the border of the PC score space. Archetypoid 1 is on the zero

horizontal line, but with a lower score in PC 1 than the centroids. Archetypoids 2 and 3 have

higher scores in PC 1 than the centroids, and additionally they have no zero scores in PC 2,

being negative for archetypoid 2 and positive for archetypoid 3. Note also that the feet pro-

jected on the first quadrant of the PC space correspond to feet similar to archetypoid 3, those

projected on the fourth quadrant correspond to feet similar to archetypoid 2, while the second

and third quadrant of the PC space correspond to feet similar to archetypoid 1. The mean foot,

located at the origin, coincides with the intersection where the three partitions meet them, i.e.

the mean foot is a balanced mixture between the three archetypoids. Finally, note that archety-

poids do not coincide with the individuals with the most extreme PC scores (see Fig 1D).

Unlike PCA, the objective of ADA is to obtain extreme cases, and individuals with extreme

PCA scores do not necessarily return archetypical observations. In fact, archetypes could not

be recovered with PCA even if all the components had been considered [11]. Therefore, the

appropriate statistical technique for obtaining the extreme cases is ADA.

The outline of the paper is as follows: In Section 2 we introduce our data and review ADA

for real-valued multivariate data and for shapes defined by landmarks. In Section 3, our pro-

posal is applied to our women and men data sets from the 3D foot scanner and the results are

discussed. Section 4 contains conclusions and some ideas for future work.

2 Materials and methods

Foot database

Our anthropometric database is composed of 775 3D right foot scans representing the Spanish

adult male and female population, 393 corresponding to men and 382 to women. The mean,

Fig 2. Representative feet of the toy example. The color code of each representant coincides with the color code used

in the assignments of Fig 1. The centroids of each cluster are represented by shading lines, while the archetypoids are

represented by solid colors. In order to highlight the differences and make them more easily perceptible to the human

eye, the percentiles of each representative foot were computed. The rectangles represent the increase or decrease with

respect to the median foot measurements, which are: 96 mm (BW) and 241 mm (FL). For example, the percentiles of

the first archetypoid are 1 and 2 for each variable, respectively. Therefore, in the plot, it is represented as: 96 � (1 +

(0.01-0.5)) = 49 and 241 � (1 + (0.02-0.5)) = 125.

https://doi.org/10.1371/journal.pone.0228016.g002
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standard deviation, minimum and maximum age for women (men) were: 40.8 (42.3), 11.3

(10.1), 19 (19) and 68 (67), respectively. The data set was collected from May 3rd 2006 to July

21st 2006 by IBV in the project ‘Estudio antropométrico y morfológico 3D de los pies de la

población española para su aplicación al diseño de calzado y componentes’ (IMPRDA/2005/

38) funded by Valencia Region Government (i.e. Instituto de la Mediana y Pequeña Industria

Valenciana, IMPIVA) under the programme ‘Ayudas a la Promoción del Diseño en la Comu-

nidad Valenciana’. All participants signed an informed consent complying with existing Span-

ish legislation (Ley Orgánica 15/1999, de 13 de diciembre, de Protección de Datos de Carácter

Personal, LOPD) granting the use of the data for research purposes. The data were collected by

IBV from volunteers recruited in different regions across Spain at shoe shops and workplaces

using an INFOOT laser scanner [72]. The scanning process is carried out as can be seen in

Fig 3: the user stands upright placing equal weight on each foot, in a specific position and ori-

entation. We obtain a 3D point cloud representing the complete outer surface of the foot,

including the sole of the foot. Prior to foot scanning, an expert placed five landmarks at key

anatomical locations: tip of the first toe, tip of the second toe, head of the metatarsale tibiale,

head of the metatarsale fibulare and pternion (see Fig 4). The landmarks used were non-reflec-

tive stickers with a 5 mm diameter provided by the distributor of the 3D foot scanner [72]. The

spatial location of theses landmarks was automatically detected and recorded by the software

of the 3D scanner. The accuracy of anatomical landmark location in human feet by experts is

complex to assess. While [73] reported a median intra-observer error of 2-3 mm, we estimate

that our expert had an accuracy of at least 5mm. No personal data was gathered along with the

3D point cloud.

3D foot shapes were registered using the method reported by [74] with a template made up

of 5626 vertices, using the five foot landmarks, which enables the automatic computation of 22

key foot measurements (see Fig 5). Put simply, we register the original unorganized point

clouds to a common template (template fitting process), which is initialized and guided by the

five anatomical landmarks. The template mesh was obtained by uniformly remeshing a water-

tight mesh representing one foot of the sample. A foot that was randomly selected among

those that had an average length and that did not present mild foot conditions such as bunions,

hammer toes, claw toes, cavus foot or flat foot. This method provides sufficient template fitting

accuracy. The mean, root-mean-square and maximum Hausdorff distance from the scanned

point cloud to the registered template are approximately 0.07, 0.1 and 1 mm, respectively,

which provides sufficient template fitting accuracy for objects scanned with a resolution of

0.5-1 mm.

The 22 foot measurements are used in product design and in clinical assessment. All 3D

registered feet were digitally measured with the algorithms developed by the IBV (Biomechan-

ics Institute of Valencia). Unlike body measurements, foot measurements are not standard-

ized. Only Foot Length, Ball Girth and Ball Width are considered in [75], [76] and [77]. The

definitions are those used by the Human Shape Lab of the IBV, which comply with standards

and are compatible with the accepted definitions found in the literature [78–82].

However, in contrast to the common procedure in the literature, our working data are not

the multivariate measurements, which are a mere summary of the richer information con-

tained in the 3D foot scans. Our data set are the set of landmarks; the foot shape of each indi-

vidual in our data set was represented by 5626 3D landmarks, i.e. by a 5626 × 3 configuration

matrix. Therefore, we work with 775 configuration matrices.

Other researchers can obtain the data set in the same way. The data set is saved as an R

object (.Rdata) [83], in a matrix where each row corresponds with each individual and vari-

ables are in columns. The data sets and code in free and open software R [83] for reproducing

the results are available at https://figshare.com/articles/adafeet_rar/11553324. Note that the
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availability of the code that implements the methodology allows the methodology to be applied

to any data set. In order to demonstrate the procedure in the code we carried out a systematic

sample of the landmarks and we retained 5% of the landmarks, since the same results, archety-

poids, are obtained using 5626 landmarks and 282 landmarks. In this way, if anybody wants to

Fig 3. Infoot1 scanner. Scanner used to obtain the foot scans.

https://doi.org/10.1371/journal.pone.0228016.g003
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reproduce the results, they can obtain the solution faster. Raw data obtained through project

IMPRDA/2005/38 are available on request at ibv@ibv.org.

ADA in the shape space

In the multivariate context, let fxig
n
i¼1

be a set of observations of a variable vector in Rk taken

on n individuals, that is, each observation consists of k measurements xi = (xi1, xi2, . . ., xik).

The archetypoids, {zj}j=1,� � �,p, are observed data points, so that observations can be approxi-

mated by convex combinations of the archetypoids. Then, we will define two matrices of coef-

ficients β and α, such that xi �
Pp

j¼1
aijzj and zj ¼

Pn
l¼1
bjlxl, with βjl 2 {0, 1}, 8j, l. To estimate

both matrices of coefficients, the following mixed-integer minimization problem of the resid-

ual sum squares (RSS) has to be solved:

RSS ¼
Xn

i¼1

kxi �
Xp

j¼1

aijzjk
2
¼
Xn

i¼1

kxi �
Xp

j¼1

aij

Xn

l¼1

bjlxlk
2
; ð1Þ

under the constraints

1.
Xp

j¼1

aij ¼ 1 with αij� 0 and i = 1, . . ., n and

2.
Xn

l¼1

bjl ¼ 1 with βjl 2 {0, 1} and j = 1, . . ., p.

Note that βjl = 1 for one and only one l, otherwise βjl = 0.

Fig 4. Foot landmarks. (A) Foot landmarks used in the registration of the database and foot template topology (the

last image). (B) Names of the five foot landmarks.

https://doi.org/10.1371/journal.pone.0228016.g004

Fig 5. Foot measurements. Examples of digital measurements elicited from a 3D registered foot. Only 8 of the 22

measurements will be used in Section 3, where they will be described in detail. These 8 measurements correspond to

the variables that could most influence shoe fitting according to shoe design experts.

https://doi.org/10.1371/journal.pone.0228016.g005
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However, as stated above, our data are not multivariate measurements, but a set of

landmarks.

Let X1, . . ., Xn be n = 775 k × 3 configuration matrices, each matrix containing the 3D coor-

dinates of the k = 5626 landmarks of each foot. Each matrix could be rearranged to convert it

into a vector inR3k
and the above definitions of archetypoids could be used. Nevertheless,

these matrices are not representative of the shape of the feet because any translation, rotation

or rescaling of them has the same shape. An example can be seen in Fig 6.

Hence, from a theoretical point of view we can define the shape space as:

Definition 1 The shape space Sk
3
is the set of equivalence classes [X] of k × 3 configuration

matrices X 2 R3�k under the action of Euclidean similarity transformations (translation, rota-
tion and scale change).

In order to obtain a representative element of the shape [X] of a foot, all these transforma-

tions have to be removed.

First we remove the location effect. There are different ways to remove location, but we will

use the most convenient for mathematical reasons, consisting of multiplying the configuration

matrix by the (k − 1) × k Helmert sub-matrix [84], H, i.e. XH = HX. After removing the loca-

tion, the representative of a foot is now a 3 × (k − 1) matrix that could be regarded as a vector

in the Euclidean space R3ðk� 1Þ
.

To filter scale we can divide XH by its Frobenius matrix norm, which is the centroid size,

S(X) = kXHk:

Y ¼
XH

kXHk
: ð2Þ

Y is called the pre-shape of the configuration matrix X because all information about location

and scale is removed, but rotation information remains.

It is important to note that when scale is removed, the representative of the shape of the

foot is still a (k − 1) × 3 matrix, but it cannot be regarded as a vector in a Euclidean space. We

are restricted to matrices with the Frobenius norm equal to one and, as a result, they are points

in the hypersphere S3(k−1) of R3ðk� 1Þ
(a curved subspace). Mathematically, a sphere is a Rie-

mannian manifold.

Fig 6. Three feet with the same shape. All the objects in this figure correspond to the same shape, i.e. they are

equivalent; however, their 3D coordinates are different.

https://doi.org/10.1371/journal.pone.0228016.g006
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To choose a single representative of [X] we need to eliminate the rotations and, as a result,

our data would be points on the quotient space S3(k−1)/SO(3) where SO(3) is the special orthog-

onal group of rotation matrices.

Mathematically, this space is a Riemannian submersion of the sphere. The curvature of this

space makes the data behave differently than they would do in the Euclidean space; for exam-

ple, neither the sum nor the multiplication by a scalar is defined i.e. the shape space is not a

vectorial space. Fortunately, the theory of Riemannian manifolds tells us that it is possible to

work locally in a Riemannian manifold as if we were in a Euclidean space, using the projec-

tions of the tangent space at a given point. See Fig 7.

The full Procrustes mean in S3(k−1)/SO(3) of a set of configuration matrices X1, . . ., Xn can

be defined by

½m̂� ¼ arg inf
m:SðmÞ¼1

Xn

i¼1

d2

FðXi; mÞ; ð3Þ

where dF stands for the full Procrustes distance. The mean is estimated by an iterative proce-

dure as described by [85] on pp.90-91. The full Procrustes distance between two configuration

matrices X1 and X2 is defined by:

dFðX1;X2Þ ¼ inf
R2SOð3Þ;b2R

kY2 � bY1Rk; ð4Þ

Fig 7. Tangent space at point Y on a sphere. A geometrical view of the tangent plane to a Riemannian manifold M
(S3(k−1) in our case) at a point Y, together with the exponential map.

https://doi.org/10.1371/journal.pone.0228016.g007
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where SO(3) is the orthogonal group of rotations. As explained by [85] on pp. 61-62,

dFðX1;X2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � ð
Xm

i¼1

liÞ
2

s

;

where λ1� λ2� . . . λm−1�|λm| are the square roots of the eigenvalues of YT
1
Y2YT

2
Y1, and the

smallest value λm is the negative square root if and only if YT
1
Y2 < 0.

So, in view all the above, in [36] we introduced ADA in the tangent space on the mean

shape, assuming that our data are sufficiently concentrated around the mean to consider the

tangent space a good approximation to shape space. Let us review the main points of this

result.

The map that allows us to move from the tangent space to the manifold is called the expo-
nential map. And the inverse of the exponential map is called the logarithmic map. Their

expressions for the shape space are given below.

Let S be the pre-shape of the Procrustes mean μ and Y1, . . ., Yn the preshapes of X1, . . ., Xn,

obtained using Eq 2. To obtain the expression of the projection onto the tangent plane at S of

X1, . . ., Xn, the pre-shape Yi is rotated to be as close as possible to S.

We write the rotated pre-shape as YiĜi . The expression of Ĝi can be found on p. 61 of [85]:

Ĝi ¼ UiVT
i ;

where Ui, Vi 2 SO(3) are the left and right matrices of the singular value decomposition of ST

Yi.

Then, the Kent’s partial tangent coordinates of Yi on the tangent space at S, vi, which will be

used in our work, are:

vi ¼ log SðYiÞ
sinðtraceðSTYiĜiÞÞ

traceðSTYiĜiÞ
; ð5Þ

where logS(Yi) is defined by:

log SðYiÞ ¼ ðIkm� m � vecðSÞvecðSÞTÞvecðYiĜiÞ
traceðSTYiĜiÞ

sin ðtraceðSTYiĜiÞÞ
; ð6Þ

where Ikm−m is the (km − m) × (km − m) identity matrix and vec stands for the vectorizing

operator. The vectorizing operator of an l × m matrix A with columns a1, a2, . . ., am is defined

as: vecðAÞ ¼ ðaT
1
; aT

2
; . . . ; aT

mÞ
T
.

To project back a point v in the tangent space to the shape space, the exponential map must

be used:

Yv ¼ vec� 1ðð1 � vTvÞ1=2vecðSÞ þ vÞ: ð7Þ

Finally, the configuration matrix representing v would be:

Xv ¼ HTYv: ð8Þ
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Let v1, . . ., vn be the tangent coordinates of X1, . . ., Xn. The coordinates in the tangent space

uj j = 1, ‥, p of the archetypoids Zj 2 S
k
3
, j = 1, ‥, p are obtained by minimizing:

RSS ¼
Xn

i¼1

kvi �
Xp

j¼1

aijujk
2
¼
Xn

i¼1

kvi �
Xp

j¼1

aij

Xn

l¼1

bjlvlk
2
; ð9Þ

under the constraints

1.
Xp

j¼1

aij ¼ 1 with αij� 0 and i = 1, . . ., n and

2.
Xn

l¼1

bjl ¼ 1 with βjl 2 {0, 1} and j = 1, . . ., p.

As archetypoids are actual individuals of the sample, the projection of the obtained archety-

poids from the tangent space back into the configuration space is immediate.

In summary, we apply multivariate ADA in a tangent space to the shape space.

3 Results and discussion

We have applied ADA separately for men and women, since previous studies have shown gen-

der foot shape differences [5, 7]. Furthermore, footwear designers usually propose different

designs for women and men. We have analyzed the whole sample as representative of the pop-

ulation, without removing any possible outlier, since this could be considered part of the popu-

lation variability. If we were more interested in the archetypal feet of the majority than of the

totality, outliers could be identified by computing the Procrustes distances of each foot to the

mean, as in [36]. In the same way, if we wanted to accommodate a certain percentage of the

population, then only an appropriate part of the sample could be used.

In order to determine the number p of archetypoids for women and men, RSS values have

been represented for a series of different p values in Fig 8. Although not very clear, it seems

that an elbow is found for p = 3, for men and women. In any case, a shoe design expert indi-

cated that this would be a reasonable number for design purposes (a large number of represen-

tative cases may overwhelm the designer and thus be counterproductive [11]). Therefore, in

the interests of brevity, we examine the results of 3 archetypoids. If the designer decided to

choose more archetypoids, our procedure would be the same.

The three archetypoids for women and men are displayed in Fig 9. Archetypoids corre-

spond to actual individuals, so in order to get a concise description of the archetypoids, rather

than the whole set of 22 variables, we have computed the percentiles of the most relevant

Fig 8. Screeplots for ADA with 3D landmarks. (A) Screeplot for women. (B) Screeplot for men.

https://doi.org/10.1371/journal.pone.0228016.g008
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variables in shoe design. According to shoe design experts, the variables that could most influ-

ence shoe fitting are: Foot Length, FL (distance between the rear and foremost point the foot

axis); Ball Girth, BG (perimeter of the ball section); Ball Width, BW (maximal distance

between the extreme points of the ball section projected onto the ground plane); and Instep

Height, IH (maximal height of the instep section, located at 50% of the foot length). But the fol-

lowing variables are also relevant: Toe Height, TH (maximal height of the toe section); Ball

Position, BP (distance from the rearmost point of the foot to the intersection of the ball section

and the foot axis); Instep Girth, IG (perimeter of the instep section, located at the 50% of foot

length); and Instep to Heel Girth, IHG (perimeter of the section that passes through the heel to

the instep, located at 50% of the foot length). According to footwear experts, the variable that

best describes the size of the foot is FL. As the shape corresponds to the geometrical informa-

tion that remains once the scale is eliminated, to describe the archetypal foot shapes by vari-

ables, we consider the rest of the variables after removing the scale by dividing each of the

variables by FL: BG/FL, BP/FL, BW/FL, IG/FL, IH/FL, IHG/FL and TH/FL. Table 1 shows the

percentiles of the 3 archetypoids for those variables for women and men, respectively.

According to the percentile profiles (the percentiles of A1W and A1M, A2W and A2M, and

A3W and A3M are very much alike), the three archetypoids found for men and women are

quite similar. This could indicate that in global terms the three extreme foot shapes for men

and women resemble each other. For a larger p values the majority of profiles coincide for

men and women but some are different, showing different shapes between genders. Neverthe-

less, as stated before, we concentrate on the results for p = 3 for footwear design in order to cre-

ate a design that could fit the three archetypal feet.

The percentile profile of the first archetypoid for both women and men is characterized by

medium-low percentiles for variables BG/FL, BW/FL, IG/FL, IH/FL, medium-high percentiles

for variables IHG/FL and TH/FL, and a low percentile for BP/FL. The percentile profile of the

second archetypoid for both women and men is characterized by high percentiles for BG/FL

and BW/FL, very low percentiles for BP/FL, IH/FL and IHG/FL and, medium percentiles for

IG/FL and TH/FL. Finally, the percentile profile of the third archetypoid for both women and

men is characterized by low percentiles for variables BG/FL and IG/FL, a very high percentile

for BP/FL, a medium percentile for BW/FL and, very low percentiles for IH/FL, IHG/FL and

TH/FL.

Fig 9. Three archetypoids obtained with 3D landmarks. (A) Archetypoids for women. (B) Archetypoids for men.

The first archetypoids are shown in red, the second archetypoids in green, while the third archetypoids are shown in

blue.

https://doi.org/10.1371/journal.pone.0228016.g009
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In order to view the composition of feet according to the archetypal feet, i.e. to see their dis-

tribution, Fig 10 shows the ternary plot for women and men, respectively. The ternary plot

represents the alpha values, the sum of which is one, in an equilateral triangle. In both cases,

the distributions are quite similar: the majority of feet are a mixture between the three archety-

poids, but the second archetypoid has a larger weight than the other archetypoids. There is a

small gender difference in the distribution of the purest feet: in women there is a small concen-

tration of feet that are a mixture between archetypoids 2 and 3 (they appear on the side of the

triangle that joins archetypoids 2 and 3), but in men this concentration appears on the side of

the triangle that joins archetypoids 1 and 2.

Multivariate ADA has been applied to the variables BG/FL, BP/FL, BW/FL, IG/FL, IH/FL,

IHG/FL and TH/FL to check if the same results could have been obtained using the variables

directly instead of the 3D landmarks. Table 2 shows the percentiles of the 3 multivariate arche-

typoids for women and men, respectively. The archetypal profiles for men and women coin-

cide again. However, the profiles obtained by multivariate variables and 3D landmarks are

somewhat different. The largest differences are found between the profiles of the first archety-

poids obtained with multivariate data and 3D landmarks. These differences are found in vari-

ables BG/FL, BW/FL, IG/FL, IH/FL, IHG/FL and TH/FL, especially in first four of these

variables. The second profiles are similar, with no large differences in variables BG/FL, BW/FL

and TH/FL. The third archetypoid profile with 3D landmarks is similar to the third profile

obtained with multivariate variables with some not too large differences in variables BG/FL,

Table 1. Percentiles corresponding to the 3 archetypal foot shapes of women and men obtained using 3D landmarks.

Archetypoids BG/FL BP/FL BW/FL IG/FL IH/FL IHG/FL TH/FL

A1W 24 13 32 36 32 62 58

A2W 74 9 83 42 11 7 45

A3W 26 99 45 28 3 7 6

A1M 22 15 31 38 28 67 58

A2M 75 10 86 44 10 5 46

A3M 25 98 45 29 4 5 3

The first three archetypoids correspond to the sample of women. They are denoted by A1W, A2W and A3W. The last three archetypoids correspond to the sample of

men. They are denoted by A1M, A2M and A3M. See details in the text about the meaning of the variables.

https://doi.org/10.1371/journal.pone.0228016.t001

Fig 10. Ternary plots for ADA with 3D landmarks and p = 3. (A) Ternary plot for women. (B) Ternary plot for men.

Each point corresponds to a foot, which is described by the alpha values. The corners of the triangle indicate the

location of each of the archetypoids. For example, in the first ternary plot the red point represents a foot that is

approximated by 88% of archetypoid 1 and 12% of archetypoid 2.

https://doi.org/10.1371/journal.pone.0228016.g010
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BW/FL, IG/FL and IH/FL. Therefore, the archetypal profiles obtained using the richer infor-

mation of 3D landmarks cannot be recovered entirely using multivariate data.

4 Conclusions

We have introduced ADA for the taxonomy of foot shapes defined by 3D landmarks. This pro-

cedure avoids the subjective steps of previous methodologies, such as the selection of a set of

variables from the 3D foot scans. We have shown that ADA is a more appropriate technique

for establishing types of feet (or other parts of the body) than the usual clustering techniques.

We have applied ADA to a sample of foot shapes from the Spanish adult population, and

we have analyzed the 3 archetypal feet found using 3D landmarks. We have also shown that

these archetypal feet could not be recovered using a multivariate technique. Knowing the

archetypal feet can help to design adequate footwear to improve fit and accommodate a great

percentage of the population.

As future work, the same methodology could be applied to other databases of other parts of

the body or to data sets outside the field of Anthropometry. On the other hand, if landmarks

are not the only descriptors of the observations, but other information is available, for example

color in biological data sets as described by [26] for ladybird beetles, we can extend the meth-

odology and define ADA in this new space. In that case, the objective function in Eq 1 should

be modified to take into account both sets of characteristics. Once the shapes are represented

in the tangent space, the information of both vectorial spaces could be (weighted) combined

using an adequate interior product to build the corresponding RSS.

If we do not have landmarks to describe the shapes, but instead sets or contour functions,

archetypal analysis could also be applied. Preliminary work in two-dimensional sets has been

carried out in [86] and [87], respectively, but these ideas could be extended to 3D sets or

surfaces.
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