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RICE CROP CLASSIFICATION AND YIELD ESTIMATION

USING MULTI-TEMPORAL SENTINEL-2 DATA: A CASE

STUDY OF TERAI DISTRICTS OF NEPAL

ABSTRACT

Crop monitoring, especially in developing countries, can improve food production,
address food security issues, and support sustainable development goals. Crop type
mapping and yield estimation are the two major aspects of crop monitoring that re-
main challenging due to the problem of timely and adequate data availability. Existing
approaches rely on ground-surveys and traditional means which are time-consuming
and costly. In this context, we introduce the use of freely available Sentinel-2 (S2) im-
agery with high spatial, spectral and temporal resolution to classify crop and estimate
its yield through a deep learning approach. In particular, this study uses patch-based
2D and 3D Convolutional Neural Network (CNN) algorithms to map rice crop and
predict its yield in the Terai districts of Nepal. Firstly, the study reviews the existing
state-of-art technologies in this field and selects suitable CNN architectures. Secondly,
the selected architectures are implemented and trained using S2 imagery, ground-
truth and auxiliary data in addition for yield estimation. We also introduce a variation
in the chosen 3D CNN architecture to enhance its performance in estimating rice
yield. The performance of the models is validated and then evaluated using perfor-
mance metrics namely overall accuracy and F1-score for classification and Root Mean
Squared Error (RMSE) for yield estimation. In consistency with the existing works,
the results demonstrate recommendable performance of the models with remarkable
accuracy, indicating the suitability of S2 data for crop mapping and yield estimation
in developing countries.

Reproducibility self-assessment (https://osf.io/j97zp/): 2, 2, 2, 1, 2 (input data, pre-
processing, methods, computational environment, results).
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1 INTRODUCTION

1.1 Contextual Background

Increasing population and climate change have imposed challenges in agriculture sector in
terms of productivity, food security and sustainability [1]. The 2030 Agenda for Sustainable
Development of the United Nations has explicitly defined that improving food security
and ending hunger is one of their primary goals [2]. Timely and efficient agricultural
monitoring is key to achieve this goal. In this context, remote sensing-based techniques are
proven to be an effective technique to detect the regions with inadequate and poor crop
growing conditions, to determine food-insecure areas and populations, and to monitor
the development of crops [3]. Crop type mapping and yield estimation are essential for
monitoring and decision-making process such as crop insurance, financial market fore-
casting, and addressing food security issues. Multi-temporal and multispectral satellite
images can be used to identify various types of crops and monitor their growth stages.
Freely available multispectral satellite sensor imagery with coarse-to-medium spatial
resolution such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat
are the most frequently used data source in optical remote sensing [4][5][6]. However, the
moderate spatial resolution of MODIS and lower temporal resolution of Landsat limits
the accuracy in determining a detail crop extent. In this regard, the free availability of S2
imagery with high spatial and temporal resolution has unlocked extensive opportunities
for agricultural applications that include crop mapping and monitoring as well.

As a part of the Copernicus European Earth Observation program, the S2 mission offers
global coverage of terrestrial surfaces by means of high-resolution multi-spectral data [7].
In particular, the S2 mission includes two identical satellites (S2A launched on 23 June
2015 and S2B followed on 7 March 2017) that incorporate the Multi-Spectral Instrument
(MSI). The S2 mission offers global coverage of land surfaces with innovative wide-swath
of 290km, high spatial resolution ranging from 10m to 60m, high spectral resolution with
13 bands in the visible, near infra-red and shortwave infrared of the electromagnetic
spectrum and high temporal resolution with 5 days revisit frequency. With these features,
S2 imagery has potential to overcome the issues with coarse satellite imagery and costly
data sources. Especially in developing countries, where crop monitoring process is very
important but challenging at the same time due to the major problem of data availability,
the S2 mission has an extensive scope to address these challenges and gaps. [8] also indi-
cated that high-resolution crop type maps are not available globally and S2 imagery has
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CHAPTER 1. INTRODUCTION

high potential to fill this breach of data availability and contribute to timely and accurate
crop type maps.

In addition to high-quality remote sensing data, advanced and intelligent algorithms are
essential for obtaining high accuracy in classification and yield estimation. Recently, deep
learning algorithms such as CNN, Deep Neural Network (DNN) and Recurrent Neural
network (RNN) have shown great potential in remote sensing applications such as land
cover mapping, crop mapping tree species mapping and crop yield estimation. Traditional
approaches for classification and regression tasks require feature engineering and field
knowledge to extract features from images. While with deep learning algorithms, they
have the ability to learn from multiple levels of representation [9]. These algorithms are
proven to have outperformed the classical machine learning approaches In summary, the
state-of-the-art on crop type classification and yield estimation has shifted from conven-
tional machine learning algorithms to highly advanced deep learning classifiers, and from
depending on only spectral features of single image to using both spectral and temporal
information together for better accuracy [9].

1.2 Problem Statement and Motivation

Undoubtedly, a number of programs like Food and Agriculture Organization (FAO),
Famine Early Warning System (FEWS), etc. exist that use satellite observations for crop
monitoring on a regional to a global scale. Despite all these efforts, when it comes to a
national or local scale actions, these monitoring systems do not effectively fulfill the need
for crop monitoring and management [10]. Additionally, the use of traditional approaches
for image classification is a time-consuming process that needs to be altered with the
change in datasets and this hinders the timely availability of information, crucial for
monitoring and decision-making process. Existing approaches for crop mapping and crop
yield estimation mostly rely on survey data and other variables related to crop growth
such as weather, precipitation and soil properties. These approaches are very successful
in developed countries like in the United States, where adequate data with high quality
are freely available [11]. However, in developing countries such as Nepal, complete and
timely updated data are typically not available where the prediction of yields is most
needed.

In Nepal, the national economy is dominated by agriculture. In a country where major
part of the population is directly engaged in farming for their living, a high degree of
spatial and temporal variability, traditional agricultural practices, climate change, and its
vulnerability have imposed a serious challenge in effective and sustainable agriculture
production [10]. In these circumstances, freely available S2 imagery motivates to conduct
research and development in this field to address such challenges and make an effort
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CHAPTER 1. INTRODUCTION

towards sustainable solutions. The fact that Deep Learning (DL) in agriculture has outper-
formed the existing approaches and is growing popularity with its modern and promising
technique, [12] also adds motivation to conduct this study.

1.3 Research Aims and Objectives

This work aims to support the crop monitoring process by investigating the viability of
S2 data for rice crop classification and crop yield estimation in the Terai region of Nepal
using a deep learning approach. To fulfill this aim, the following are the specific objectives:

• To review existing state-of-art deep learning algorithms for rice crop classification
and yield estimation and select suitable architectures.

• To implement and optimize the performance of the chosen architectures.

• To evaluate the performance of classification and yield estimation models using
performance metrics and validate their performance with reference to the existing
works.

1.4 Methodology

The structure of this thesis can be broadly organized into four stages namely; i) review
and choice of network architecture; ii) dataset download/collection and preparation; iii)
design, implementation, and analysis of network architectures, and iv) performance com-
parison. The detailed structure of the overall methodology is shown in 1.1.

In the first stage, a number of existing deep learning approaches used for crop classifica-
tion and crop yield estimation were reviewed. Considering the availability of the dataset
and performance of deep learning algorithms, DNN was chosen as the core algorithm for
addressing both the problems of classification and yield estimation. Besides this, Support
Vector Machine (SVM) and Support Vector Regression (SVR), the mostly used classical
machine learning algorithms for classification and regression problems, were used as
baseline algorithms to compare the results of chosen CNN architectures against them.

Secondly, considering the rice crop phenology in the study area i.e., the Terai region of
Nepal, S2 Level-1C (L1C) MSI images were downloaded for the years 2016-2018. These
images were converted to atmospherically corrected S2 products, resampled to 20 m and
further processed to feed the images to the CNN architecture for rice crop classification. In
addition to these processed S2 images, ground truth-rice yield data, soil and climate data
were collected and processed to 20 m in order to implement CNN architecture for yield
estimation.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Overall methodology of the thesis

The third stage deals with the design, implementation, and analysis of the chosen CNN
architectures. For classification purpose, three variations of 2D CNN and one 3D CNN
architectures were implemented to inspect how the performance of the classifiers vary
with the variations in the network architecture. For the second case which is the yield esti-
mation process, two CNN architectures (2D and 3D CNN) were designed and employed.
Several experimental designs were conducted so as to select the optimal values of the
hyperparameters.

Finally, in the last phase, the performance of all the models using quantitative and qualita-
tive approaches was evaluated. For a quantitative approach, two metrics namely overall
accuracy and F1-score were used as measures to evaluate the performance of each classifi-
cation approach. Similarly, RMSE was used for the performance evaluation of architectures
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CHAPTER 1. INTRODUCTION

used for yield estimation. Additionally, visual inspection of classification and yield es-
timation maps were used as a means for qualitative evaluation. Lastly, the optimized
performance of the chosen architectures was validated with reference to the corresponding
works from which these architectures were adopted to verify the usability of S2 data and
the approach in developing countries like Nepal.

1.5 Contribution

In a broader picture, this study is one of the first studies (as per the author’s knowledge)
that has introduced the use of S2 data for rice yield estimation including its classification
by using a deep learning approach in developing countries with a case study in Nepal.
The main contributions of this thesis consist of:

• Exploring the feasibility of using Sentinel 2-MSI data for crop classification and yield
estimation in developing countries.

• Validating the suitability of S2 data combined with a deep learning approach for
accurate rice crop management and sustainability with a case study of Nepal.

• Comparison of chosen CNN architectures and finding the best performing model in
the study area.

• Introducing a variation in existing 3D CNN architecture [13] by removing the channel
compression module to optimize its performance.

1.6 Thesis Organization

This thesis is divided into seven chapters. Chapter 1 introduces the contextual background
of the thesis, states the problem and motivation behind the work, aims and objectives
and highlights the contribution of the work. Chapter 2 reviews the related works on the
existing methods for crop classification and yield estimation using remote sensing imagery
and emphasizes on the state-of-art technologies with special focus on rice crop. Also, this
chapter deals with the selected CNN architectures to be implemented to fulfill the objective
of the study. Chapter 3 provides the theoretical background of the convolutional neural
network architecture along with the baseline algorithms. Chapter 4 familiarizes with
the study area and presents the datasets used as input for CNN architectures. Chapter 5
presents the methodological description of implementation, training, experimental settings
and performance evaluation of chosen CNN-based classifiers for classification and yield
estimation purposes. In Chapter 6, the results of the experiments are shown, interpreted
and discussed. Finally, the thesis ends with the conclusion and future directions of the
work in Chapter 7.
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2 LITERATURE REVIEW

This chapter provides a comprehensive review of the existing state-of-art on crop clas-
sification and yield estimation using remote sensing technology combined with deep
learning techniques. The chapter is divided into two sections. The section 2.1.1 represents
the traditional approaches used for crop mapping, especially rice crops. Thereafter, it deals
with the deep learning approaches used in classification and finally explains the choice
of network architectures and baseline. Similarly, the section 2.2.1 explains the traditional
approaches used, deep learning algorithms, and choice of architecture and baseline for
(rice) crop yield estimation.

2.1 Crop Classification

2.1.1 Traditional Approaches for Crop Classification

Remote sensing-based techniques are proven to be an effective technique for crop classi-
fication and crop area estimation compared to traditional ground-based surveys which
consume a lot of money and time. Time-series observations are essential to monitor the
crop growth and multi-temporal remote sensing is an efficient source for this. Its classi-
fication accuracy is higher than using mono-temporal images because it considers the
crop information in different growth stages [4][14]. In multi-temporal remote sensing,
various classification approaches and data sources have been used in past studies for crop
mapping, especially rice crop. In terms of approaches for rice crop classification, they can
be grouped into two types in general which are supervised and unsupervised classification
[15]. Under supervised classification, knowledge-based [16] and phenology-based [17][18]
approaches are the typical methods used.

In terms of data source, both optical and micro-wave based remote sensing have been
used. In optical remote sensing, vegetation indices derived from images are used as a
basis for rice crop classification. The commonly used indices are Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water
Index (LSWI) [9][19]. Direct use of time series vegetation indices is effective for the crops
that show distinct temporal characteristics [4][16]. A widely used approach of process-
ing multi-temporal data is extracting the phenological metrics which may improve the
classification accuracy than using the original vegetation indices values. Freely available
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CHAPTER 2. LITERATURE REVIEW

multispectral satellite sensor imagery with a coarse-to-medium spatial resolution like
MODIS and Landsat are the most frequently used data source in optical remote sensing
[4][5][6][10]. However, the moderate spatial resolution of MODIS limits the accuracy in
determining a crop extent and lower temporal resolution of Landsat images limits the
usage of phenology-based crop classification and monitoring. A major limitation found in
optical remote sensing is the influence of cloud and cloud shadows during the rice grow-
ing season. Considering this aspect, microwave-based remote sensing has an advantage
that it can work in all weather conditions. However, low temporal resolution and data
cost have limited agricultural applications of Synthetic aperture radar (SAR) images.

Recently, the free availability of Sentinel imagery with the high spatial and temporal
resolution has opened a broad opportunity for a wide range of pre-operational and oper-
ational applications in the agricultural domain [20] resolving the issues with the coarse
resolution of optical imagery and SAR. [21] has demonstrated Sentinel -1A and 2A’s
remarkable potential for crop classification and suggested the integration of Sentinel-1A
and 2A for high accuracy crop classification. However, with only Sentinel-1, [19] showed
that high heterogeneity in pixel values of SAR image (Sentinel-S1) lowered the accuracy
of land cover classification. It also concluded that although combining both sentinel-1
and sentinel-2 resulted in the highest accuracy, when multi-temporal data is available,
it is not necessary to combine images from different sensors to obtain high accuracy results.

The use of traditional approaches for image classification is a time-consuming process
that needs to be altered with the change in data sets and this hinders the timely avail-
ability of information, crucial for monitoring and decision-making process. In addition
to high-quality remote sensing data, advanced and intelligent classification algorithms
are essential for obtaining high accuracy n classification provided that there are enough
training data. Conventional classification methods such as SVM [22] Random Forest
(RF) [23], and Decision Trees (DTL) [17][21][24][25][26] have been successfully applied
in crop classification. While significant effort has been done to classify crops with these
approaches, these algorithms require careful feature engineering and considerable domain
knowledge to extract features from raw data [9][20].

2.1.2 Deep Learning Algorithms for Crop Classification

Recent developments in neural network methods through more layers and back-propagation
optimization (deep neural network) have significantly increased the use of neural net-
works that have been developed several years ago. DL in agriculture is new and gaining
momentum recently. Based on the study of 40 recent (past four years) research papers
that used DL in agriculture, [12] have concluded that DL has outperformed traditional
approaches for image classification. DL is a deeper neural network that provides a hier-
archical representation of the data which allows better learning capabilities in terms of
capturing the full complexity of problems to be addressed. In this section, promising DL
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approaches used for crop classification are discussed.

One of the first works on crop classification using CNN classifiers to multi-source multi-
temporal satellite imagery was published by [20]. The study introduced one 2D CNN for
spatial feature learning and one 1D CNN for spectral feature learning for crop classification
which outperformed Multilayer Perceptrons (MLP) and RF classifier with overall classifi-
cation accuracy of 94.6% achieved by 2D CNN. [27] employed a patch-based deep-learning
CNN algorithm to extract rice crop using multi-temporal Landsat-like data, phenology
data, and land-surface temperature. With multitemporal spectral bands as input, the 2D
CNN achieved the overall classification accuracy of 91.23% demonstrating its better per-
formance as compared to traditional machine learning classifiers, support vector machine
and random forest. However, the paper did not consider the spatial pattern of the study
area.

Authors in [27] highlighted that with a 2D CNN classifier, the extracted features in the
third dimension (spectral or temporal) are averaged or collapsed to a scalar which results
in inaccurate extraction of third-dimensional features. To overcome this problem of 2D
CNN, the study proposed a 3D CNN with an active learning strategy for crop classifi-
cation including rice using multi-temporal satellite data. When compared to a 2D CNN
that shared the same architecture of 3D CNN except for the learned representation, 1.2%
increase in overall accuracy was seen concluding that 3D CNN could be a better feature
extractor for spatio-temporal remote sensing data. [28] used two deep neural networks:
one-dimensional CNN (Conv1D) and Long Short Term Memory (LSTM) based RNN
for multi-temporal crop classification using Landsat EVI time series. Three widely used
non-deep-learning classifiers namely XGBoost, RF, and Support Vector Machine (SVM)
were tested for comparison. The study demonstrated the lowest accuracy of LSTM with
an overall accuracy of 82.41% among all classifiers and One-dimensional CNN (Conv1D)
achieved the highest accuracy of 85.54% . The paper also attempted Three-dimensional
CNN (Conv3D), which had the highest accuracy among all since it utilized pattern in both
spatial and temporal dimensions, providing more scope of classification with 3D CNN for
higher accuracy.

2.1.3 Choice of Network Architecture and Baseline

As this study focuses on assessing the performance of existing deep learning classifiers
with S2 imagery in the study area, the choice of network architecture is based on the review
of previous works as discussed in 2.1.2. Exploring the trend of deep learning in rice crop
classification, it is confirmed that CNN can perform better than other algorithms including
LSTM for rice crop classification. Therefore, CNN is chosen as a core algorithm for rice
crop mapping. [27] employed a simple patch-based ConvNet network with reference to
the network architecture used by [29] for rice crop mapping and demonstrated its highest
accuracy than the two full CNNs, a patch-based VGG-16 network [30] and a pixel-based
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S.N. Models Reference Paper
1. ConvNet (2D CNN) Zhang et al. [27]
2. 2D CNN Ji et al. [33]
3. 3D CNN Ji et al. [33]
4. SVM Baseline

Table 2.1: List of chosen patch-based CNN architectures and baseline algorithm

Fully Convolutional Network (FCN) [31]. In the same year, [27] proposed a 3D CNN
approach for rice crop classification which was based on widely used neural network
architecture, VGGnet [32] where all 2D convolutions are replaced by 3D convolutions. The
same architecture was employed to develop 2D CNN architecture and the performance
evaluation of these two models demonstrated the higher classification accuracy of 3D CNN.
Considering the higher accuracy of patch-based CNN than pixel-based, both the above-
mentioned architectures were employed with an objective of evaluating and comparing
the classification accuracy of the selected CNN architectures with S2 data in the study area.

An SVM classifier, well-known for high performance among the non-deep learning classi-
fiers [27] and often established as a baseline model in the classification tasks is used as
a baseline model in this study. In general, SVM with Radial Basis Function (RBF) kernel
is considered to be a reasonable first choice to handle the case where the relationship
between class labels and attributes is nonlinear. Having said that, [29] demonstrated higher
accuracy of linear SVM in comparison to SVM with RBF kernel when the input dataset is
huge. Therefore, taking this into, a linear SVM has been employed as a baseline model for
comparing classification results. The network architectures and baseline algorithm chosen
for rice classification purpose are summarized in Table 2.1.

2.2 Crop Yield Estimation

2.2.1 Traditional Approaches for Crop Yield Estimation

Establishing models for estimating crop yield is very important but challenging at the
same time in the remote sensing field. The classical approaches to predict or estimate crop
yield include the use of manual surveys, Crop Simulation Model (CSM) or remote sensing
data. Manual surveys require in-situ crop information, which are costly and difficult to
scale to other regions. CSMs simulate the crop development, growth and yield through
statistical, mechanistic or functional models as functions of soil, weather and management
practices [34]. However, these models require large datasets for model calibration and
therefore may not be applicable for developing countries where data is scarce and sparse.
Many studies have shown the use of remote sensing technology to estimate the crop
production by employing statistical methods such as regression model. [35] employed
a piecewise linear regression method with a breakpoint to predict corn and soybean
yields using NDVI, surface temperature, precipitation, and soil moisture. [36] used a
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stepwise regression method for estimating winter wheat yields using MODIS NDVI data.
[37] estimated crop yields with the prediction error of about 10% in the US Midwest by
employing Ordinary Least Squares (OLS) regression model using time-series MODIS
products and climate dataset. In summary, the classical approach for crop yield estimation
is mostly based on the multivariate regression analysis using the relationship between crop
yields and agro-environmental variables like vegetation indices, climatic variables, and
soil moisture. These approaches have compactly summarized the information related to
vegetation growth with the use of vegetation indices which depend on a smaller number
of available bands, usually two. But the bands which are ignored with this approach could
have additional important information to predict the yield with more accuracy.

With advances in Machine Learning (ML), researchers have applied machine learning
algorithms to remote sensing imagery for crop yield prediction. [38] introduced the use of
Artificial Neural Network (ANN) through a back-propagation algorithm in forecasting
winter wheat crop yield using remote sensing data to overcome the problem that existed
in using traditional statistical algorithms (especially regression models) due to nonlinear
character of agricultural ecosystems. The study demonstrated high accuracy of ANN
compared to results from a multi-regression linear model (MR model). The commonly
used machine learning techniques include SVM, DT, and MLP [39]. These techniques have
contributed to improving the accuracy of crop prediction. However, these approaches
require feature engineering. On the other hand, with deep learning algorithms, they auto-
matically learn the relevant features from the raw data effectively.

2.2.2 Deep learning in Crop Yield Estimation

One of the first works on employing a deep learning approach for crop yield estimation
was done by [40]. The study employed a Caffe-based deep learning regression model with
satellite, climate and environmental data to estimate corn crop yield at county-level in
the United States. The proposed architecture achieved an RMSE of 6.298 outperforming
the performance of SVR. [11] introduced a new dimensionality reduction technique i.e.
treating raw images as histogram of pixel counts under the assumption of permutation
variance and trained deep learning architectures CNN and LSTM on these histograms to
predict county-level soybean yields in U.S. To address spatial and temporal dependencies
across data points, the paper proposed the use of linear Gaussian Process layer on the top
of these neural network architectures. To compare with prior works, the inputs datasets
used for this study are long-term (2003-2015) MODIS satellite-based surface reflectance,
LST and land cover data. The baseline methods used to compare the results were ridge
regression, decision trees, and a DNN with 3 hidden layers. The results demonstrated
that CNN and LSTM approaches outperformed the other competing techniques used
as baselines. Also, prediction was improved by addition of linear GP resulting in 30%
reduction of RMSE from baselines.
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The location invariant assumption by [11] discards the spatial information of satellite
imagery which can also be crucial information for crop yield estimation. To overcome this,
[13] introduced a 3D CNN approach that considers both spatial and temporal features
for yield prediction. Firstly, the paper replicated the Histogram CNN approach of [11]
with the same input dataset and set this as a baseline for their novel approach, 3D CNN.
Considering the computational cost, a channel compression model was applied to lessen
the channel dimension from 10 to 3. Thereafter a 3D CNN was stacked to the model.
The proposed 3D CNN architecture outperformed the replicated Histogram CNN and
non-deep learning classifiers used as baselines [11] with an average RMSE of 5.27 bushels
per acre (around 355 kg/ha). Continuing to the same data, [41] proposed a novel approach
of deep CNN-LSTM model for end-of-season and in-season soybean yield prediction. The
proposed network consisted of 2D CNN followed by LSTM where CNN learns the spatial
features and LSTM is used to learn the temporal features extracted by CNN. The proposed
model achieved reduced RMSE of average 329.53 kg/ha which was better than CNN and
LSTM models.

Recently, [42] applied a CNN model to predict crop yield using NDVI and Red, Blue,
Green (RGB) images acquired from Unmanned Aerial Vehicle (UAV). The result showed
the better performance of CNN architecture with RGB data. [43] proposed a novel CNN
architecture which used two separate branches to process RGB and multispectral images
from UAV to predict rice yield in Southern China. The resulting accuracy outperformed
the traditional vegetation index-based regression model. The study also highlighted that
unlike the vegetation index-based regression model, the performance of CNN for yield
estimation at the maturing stage is much better and more robust.

2.2.3 Choice of Network Architecture and Baseline

Based on the related literature discussed in section 2.2.2, CNN and LSTM are mostly used
deep learning algorithms to address the problem for crop yield prediction with high accu-
racy. On the one hand, when these algorithms were used separately, [11] demonstrated
that CNN achieved higher accuracy than LSTM. On the other hand, the combined model,
CNN-LST performed relatively better [41]. However, these experiments were conducted
using a long-term dataset with a high temporal dimension. The limited temporal dimen-
sion of the dataset in this study limits the use of the LSTM model. Therefore, for rice crop
yield estimation also, CNN is chosen as a core algorithm. Exploring the performance of
various architectures of CNN in the previous studies, 3DCNN proposed by [13] achieved
the highest accuracy to date and is therefore chosen as the base architecture for this study.
Similar to SVM, SVR is commonly used to perform yield prediction and will be used as a
baseline to compare the performance of 3D CNN against it.
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3 THEORETICAL BACKGROUND

This chapter is meant to serve as the theoretical foundation of the concepts used in the
thesis. The first section presents a brief explanation about the classical machine learning
approaches which have been selected as baselines for the crop classification and yield
estimation tasks. The second section starts with some limelight on deep learning and
neural networks which is followed by background concepts of CNN in detail.

3.1 Classical Machine Learning Approach

This section gives a brief theoretical overview of the classical machine learning algo-
rithms namely SVM and SVR used as baselines for comparing the performance of CNN
algorithms used for rice crop classification and yield estimation respectively.

3.1.1 Support Vector Machine

SVM, as proposed in statistical learning theory [44], is known to be an effective kernel-
based classification algorithm that is based on statistical learning theorem. The main
objective of SVM is to find the optimal linearly separating hyperplane which maximizes
the margin. The key idea behind kernel tricks is to map data in to a higher-dimensional
space so that different groups or classes can be linearly separable [45]. Mathematically, the
optimization problem for support vector machine can be formulated as,

min
w,b

1
2
‖w‖2

s.t. yi

(
wTxi + b

)
≥ 1 , i = 1, ..., m

(3.1)

where (w, b) defines a hyperplane that separates all the training data into the two labeled
classes, xi are the input data and yi are labels. This is a quadratic optimization problem
subject to linear constraints. The objective is a convex function with a unique minimum.
For linearly non-separable classes, non-linear decision boundaries can be constructed
using for instance, a radial basis function (RBF) [16][46].
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3.1.2 Support Vector Regression

A regression model estimates a continuous-valued multivariate function. SVR is an ex-
tension of SVM algorithm which was introduced for regression scenarios to predict the
numerical property values [47]. In case of SVM an optimal hyperplane is generated for
class label prediction, on the other hand in SVR, a different function is derived based
on training data to predict numerical values. SVR has proven to be an effective tool for
estimating the real-value function.

3.2 Artificial Neural Networks and Deep Learning

ANN and DL are state-of-art technology that is providing the best solution to existing
machine learning algorithms. ANN is a type of machine learning and is inspired by
the biological nervous system and consists of interconnected neurons that work in a
distributed fashion to learn from input in order to optimize its final output [48]. DL also
belongs to a broader family of machine learning and is inspired by ANN. Although DL
is similar to ANN, it constitutes a deeper neural network that allows better learning
capabilities to capture the full complexity of the considered data or phenomenon [49].
Deep learning architectures such as deep neural networks, unsupervised pre-trained
networks, recurrent neural networks, recursive neural networks and CNN have been
successfully applied to diverse fields including computer vision, speech recognition, audio
recognition, natural language processing, medical image analysis, and so on with high
accuracy and have proven to be superior than the classical machine learning algorithms.
Since we have chosen CNN as a core algorithm for this study, the following subsections
deal with the detailed architecture of CNN.

3.2.1 Convolutional Neural Networks

CNNs are biologically inspired feed-forward neural networks that extend the classical
artificial neural network approach by adding multiple convolutional layers and filters
that allow representing the input data in a hierarchical way [50]. CNN exhibits high
performance in image processing tasks, thereby positioning itself as the current state-of-
the-art of image classification methods. Traditional neural networks (deep or shallow
ones) which are characterized by 1D architectures are composed of (Fully Connected
(FC)) layers. Whereas in CNN, hidden activation is calculated by multiplying small local
inputs against weights and exploits spatially local association by applying a local pattern
of connectivity between adjacent layer neurons. The weights are then shared across the
entire input space. The output volume of CNN is composed of feature maps which are
then used as input to the next layer. The basic concepts employed in CNN are explained
in the following subsections:
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3.2.1.1 Basic Architecture

The basic architecture of CNN consists of alternatively stacked convolutions blocks and
pooling layers followed by one or more fully connected layers. The convolutional blocks
are usually composed of convolutional layers followed by batch normalization layers and
nonlinear activation functions. The convolution and pooling layers act as feature extractors
from the input images. At last, the fully connected layer, after a series of convolution and
pooling, gives the class score of each pixel through the network in a feed-forward manner.
A detailed explanation is presented here.

Convolutional layer

The convolutional layer is the core building block of the convolutional network that
consists of filters (also termed as kernels) which are applied over the image to extract
different features learned by the network. Convolution layer computes the output of
neurons that are connected to the local regions in the input by conducting dot product
between their weights and biases and a specific region to which they are related in the
input range [48]. Mathematically,

xl+1 = f (Wlxl + bl) , (3.2)

where xl+1 is the output with n feature maps of the lth convolution layer, Wl is weight
matrix defined by the filter bank with kernel size N × N and bl is the bias of the lth convo-
lution layer, and f () being the nonlinear activation function.

In this study, the input is taken from multispectral-temporal images. The basic way is
to treat each channel independently and generate a uniform-sized image patch around
the same images. Let us suppose a multispectral image X ∈ R(M×D×H) where M, D,
H are the spectral bands, width, and height respectively. The pixel x(i, j) of X (with
i = 1, 2, . . . , D and j = 1, 2, . . . , H) can be defined as the spectral vector x(i, j) ∈ RM =

[x1(i, j), x2(i, j), ..., xM(i, j)]. Let us define a neighboring region (image patch) q(i,j) ∈ R(p×p)

around x(i,j), composed of pixels from ((i − (p2), j − (p2)), ((i + (p2), j − (p2)), ((i −
(p2), j + (p2)), ((i + (p2), j + (p2)). With q taking account of spectral information, it can
be redefined as q(i,j) ∈ R(M×p×p). The convolution layer takes a p× p image patch with M
channels centered at a pixel x(i, j) and two-dimensional filter kernel N× N with k number
of filter. Let yk(i, j) be pixel value at output feature map and wk(r, s) be weight value at
(r, s) at kth filter. Then mathematically, the convolution process is defined as [33],

yk (i, j) =
M

∑
m=0

{
N−1

∑
r=0

N−1

∑
s=0

wk (r, s) xm (i, j) (i + r, j + s)

}
+ bk, (3.3)

The convolution operation in a normal image down-samples the output image size by an
amount that depends on the filter size. To avoid this, padding is used which essentially
preserves the original input image size. Padding is simply a process of adding layers of
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zeroes to the input images. There are two types of padding namely valid padding which
implies no padding at all and same padding which means the output feature map has the
same dimension as the input image.

Batch normalization is a process to reduce the co-variance shift by normalizing the
layer’s inputs over a mini-batch. It enables independent learning process in each layer
and regularizes and accelerates the training process. Mathematically, it is defined as:

BN (x) =
x− E (x)√
Var (x) + ε

γ + β, (3.4)

where E is expectation operator, γ and β are learn-able parameter vectors, respectively,
and ε is a parameter for numerical stability. This layer makes the hyperparameter search
much easier and make the neural network more robust and enable easier training of the
deep network.

Activation functions are used to embed non-linearity into the neural network thereby
enabling the neural network to learn nonlinear representations. Activation function can
be expressed as:

Z (yk (i, j)) = f

(
K

∑
k=1

xk (i, j)wk + bk

)
, (3.5)

where f () is a non- linear function. There are varieties of activation functions such as
sigmoid function, Tanh, Rectified Linear Unit (ReLU) [51] and Exponential Linear Unit
(ELU). Sigmoid and Tanh tend to saturate when initialized weights are too high and give
rise to a problem of vanishing gradient if gradient tends to zero. ReLU solves this problem
by thresholding the negative inputs to zero and passing the positive inputs unchanged
[52]. ReLU is proven to be computationally efficient and effective for convergence and is
defined as

A (yk (i, j)) = max (0, Z (yk (i, j))) , (3.6)

Pooling layer

The pooling layer is a sub-sampling operation along the spatial dimensions of feature
maps, typically applied after a convolution layer, which does some spatial invariance [48].
Usually, in pooling, some predefined functions (e.g. maximum, average, etc.) are applied
to summarize the signal and spatially preserving discriminant information. Max-pooling
is a non-linear sub-sampling operation whereas average pooling, on the other hand, can
be thought of as a low-pass (averaging) filter followed by sub-sampling. The pooling
region can be overlapped or non-overlapped and in the latter case, the more information is
lost. The output of max pooling for a local region of dimension k× k can be mathematically
defined simply as,

15



CHAPTER 3. THEORETICAL BACKGROUND

yk
(
ip, jp

)
= max

0≤ip≤np −1,0≤jp≤np −1
A (yk (i, j)) , (3.7)

The parameters to be defined by the user are the size of the window and stride (number of
steps between the consecutive convolutions). After pooling layer the output is a 3D cube
composed of one 2D map per filter with a reduced spatial dimension.

Fully Connected Layer

In a typical CNN architecture, the FC layer is usually placed at the end of the network after
several convolutions and pooling layers. FC layer takes the output of the previous layers,
flattens them and turns them into n (number of classes) dimensional vector that can be input
to the next stage. Each number in this n-dimensional vector represents the probability that
a certain feature belongs to one of the predefined classes. If there are multiple FC layers,
the initial layers take the outputs from previous layers and apply weight to predict the
correct label and the last FC layer gives the final probabilities for each label. In a FC layer,
neurons have connections to all the activations in the preceding layers which is analogous
to the output layer of MLP [48].

Classification layer

The output from the fully connected layer is fed to the classifier layer to calculate the
probabilistic output of each class. The classification layer calculates the cross-entropy loss
for multi-class classification problems with mutually exclusive classes. The most common
classifier for multi-class classification is softmax [53] and for a binary classification prob-
lem, it reduces to be a logistic regression. A Softmax function limits the output into the
range of [0 1] which allows being interpreted as a probability.

Let us assume nk × nk ×U is the form of the output of the CNN, where U is the number
of channels of output image patch m. X = [x1, x2, ... , xu]

T represent the pixel value in
the output of fully connected layer and softmax function is used to generate a vector
K = [k1, k2, ... ku]

T of real values in the range of [0,1] which represents a categorical
distribution . The equation 3.8 shows how softmax function predicts the probabilities of
jth class given the sample vector X.

Kw,b =
exp

(
xwj
)

∑U
u=1 exp (xwu)

, (3.8)

Regression Layer

For regression problems, the classification layer of CNN is replaced by the regression layer.
A regression layer returns the regression output of the neural network and computes the
half-mean-squared-loss for regression problems. Mathematically,

loss =
1
2

nknkU

∑
i=1

(yi − xi)
2 , (3.9)

16



CHAPTER 3. THEORETICAL BACKGROUND

where nk × nk ×U is the dimension of final output of the CNN; yi being target output and
xi being network prediction for response i.

Regularization

Over-fitting is a serious problem in the deep learning networks where networks are
powerful enough to fit itself to the training data resulting in large gap between the training
and test errors. Regularization techniques are used to prevent overfitting the data (to
reduce high variance) in the network and reduce its generalization error. There are several
regularization techniques such as L2 and L1 regularization, dropout, and early stopping.
L1 regularization makes the model sparse and that only contributes to regularize the
model to less extent and therefore is not used often. L2 regularization (also known as
weight decay) is one of the most commonly used regularization techniques. It basically
minimizes the sum of the square of the differences (S) between the target value yi,j and
the estimated values f

(
xi,j
)

:

S =
N

∑
i=1

N

∑
j=1

(
yi,j − f

(
xi,j
))2 , (3.10)

Dropout is another powerful regularization technique that randomly knocks out units
in the network resulting in a smaller network. The smaller network seems to have a
regularization effect. Early stopping is a simple yet effective regularization technique
while training the neural networks. It is used to stop the training of the neural network
(with training dataset) at a point when the performance on a validation dataset starts to
degrade.

3.2.1.2 Training

The training process of CNN can be divided into three major steps: forward computation,
loss optimization, and back-propagation and parameter updating.

Forward Computation

Firstly, the input is fed through the neural network architecture consisting of a series
of convolution, pooling and fully connected layers as explained in the previous subsec-
tion. The network outputs the predicted labels or values depending upon the network
architecture (classification or regression).

Loss Optimization

Secondly, the output of the network needs to be optimized by adjusting the values of
parameters such as weights and bias, that are being learned by the network. The optimiza-
tion problem defines the uncertainty in determining the optimal set of parameters which
is quantified by the loss function. In the case of softmax classifier, the cross-entropy loss
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for each vector is computed as negative log-likelihood of the training dataset N under the
model.

L (W, b) = − 1
N

N

∑
i=1

(
yilogKw,b

(
xi
))

, (3.11)

where yi represents a possible class and xi is the data of i instance, W is the weights, and
N represents a total number of instances.

Back Propagation

Finally, training of the network must be done for extracting the parameters that minimize
the loss. The network tries to reduce this error by changing the weights of neurons in
every iteration through the backpropagation mechanism. Several optimization algorithms
exist to make the training process faster such as Stochastic Gradient Descent (SGD) with
momentum, Adaptive Gradient (AdaGrad), Root Mean Square Propagation (RMSProp),
and Adaptive Moment Estimation (Adam) among which we will discuss in brief about
two algorithms which have been used for this study namely SGD with momentum and
Adam.

Stochastic Gradient Descent with Momentum:

SGD with momentum basically calculates the exponentially weighted average of the
gradients and consider that gradient to update the weights. It is used for faster convergence
of the loss function. α (learning rate) and β (momentum) are the two hyperparameters
which control the exponentially weighted average. In practice, the most common value
of β is 0.9. Mathematically, the SGD method with momentum can be described by the
following:

W(n+1) = W(n) − ∆W(n+1), (3.12)

where W(n) and W(n+1) denote the old parameters and new parameters respectively and
∆W(n+1) represents the increment in the current iteration which is the combination of old
parameter, gradient and historical increment:

∆W(n+1) = α

(
dwW(n) +

∂L (Wb)
∂W(n)

)
+ β∆W(n), (3.13)

where L(W,b) is the loss function, α is the learning rate for step length control and dw and
β denote the weight decay and momentum respectively-

Adam optimization algorithm:

Adaptive Moment Estimation (Adam), introduced by [54], is also based on mini-batch gra-
dient descent and computes adaptive learning rates for each parameter. It is an extension
to stochastic gradient descent which basically takes momentum and RMSprop and puts
them together. The algorithm specifically calculates an exponential moving average of the
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gradient and the square gradient, and the β 1 and β 2 parameters control the decay rates
of these moving averages.

mt = β1mt−1 + (1− β1) g1, (3.14)

ϑt = β2ϑt−1 + (1− β2) g2
t , (3.15)

where mt and ϑt are estimates of the first moment and second moment of the gradient
respectively. In practice, the default value for β 1 and β 2 , 0.9 and 0.999 are most commonly
in use. The bias corrected first, and second moment estimates are then computed as:

m̂t =
mt

1− βt
1

, (3.16)

ϑt = β2ϑt−1 + (1− β2) g2
t , (3.17)

Finally, these biased corrected moment estimates are used to update parameters using
adam update rule:

θt+1 = θt −
α√

ϑ̂t + ε

m̂t , (3.18)

3.2.1.3 Parameters and Hyperparameters

Parameters are the variables that model updates during the back-propagation phase.
Weights and biases are the core parameters of deep neural networks. Whereas, hyperpa-
rameters are the specific “higher-level” properties of the models which should be fixed
prior to the training process. The value of these parameters cannot be directly learned
from the regular training process of the model. Hyperparameters need to be tuned for
each problem because the best model hyperparameters for one dataset will not be best for
all datasets. The process of finding the combination of hyperparameter values for a model
that performs the best as measured on a validation dataset is termed as hyperparameter
tuning (also known as hyperparameter optimization). Hyperparameters can be divided
into two types: hyperparameters that determine the network structure such as kernel
size, stride, padding hidden layers, and activation function and hyperparameters that
determined the network training process such as learning rate, batch size, number of
epochs, regularization techniques and so on. Here, we will focus on the second type and
a brief explanation of some influential hyperparameters is presented in the following
subsection:

Learning Rate:

Learning rate simply means how fast a network learns. It quantifies the learning process of
a model that can be used to optimize its capacity. Choosing a learning rate is challenging
as a value too small causes the model to take much time to converge, whereas a value too
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large cause model to diverge and loss might fluctuate indefinitely [55]. A general approach
used by many of the previous works was to start out with a high learning rate and lower
it as the training goes on. One point to note is that the learning rate is very dependent on
the network architecture. The updating of the learning rate can be formulated as:

αt = α0 ∀t < τ (3.19)

αt = α0tdt, (3.20)

where α0 and αt are initial learning rate and learning rate at iteration t; d is decay parameter.
τ and α are set up to adapt depending upon the present thresholds of the loss function.

Mini-batch size:

When the mini-batch size is equal the size of the input, then it is known as batch gradient
descent (too long per iteration) and when the mini-batch size is equal to the one (noisy
and doesn’t converge), then it is known as Stochastic gradient descent. In practice, the
mini-batch size of an appropriate value between 1 and the max value (not so big or small)
is chosen which gives the fastest learning.

Number of epochs:

It is a hyperparameter that controls the number of complete passes through the training
dataset. The weights are updated after each epoch and hence produce better results.
However, using many epochs might over fit the training process and this is when early
stopping can be used which prevents the overfitting of the model.

3.2.2 3D Convolutional Neural Network

In 2D CNN, all the spatio-temporal images are stacked together as the input and after the
first convolution, the temporal information is collapsed completely [33]. To prevent this,
3D CNN uses 3D convolutions that apply 3-dimensional filters to the dataset resulting in
a 3-dimensional volume space. In 3D CNN, the 3D convolution pooling operations are
performed spatio-temporally which shows its ability to model the temporal information
better than 2D CNN [56]. 3D CNN is not only limited to event detection in videos or 3D
medical imaging but also applied to 2D input space such as images.

The convolution in equation 3.3 for 2D convolution can be modified to extract and reserve
the dynamic features through consecutive periods and can be written as:

yk (i, j, h) =
M

∑
n=0

{
N−1

∑
r=0

N−1

∑
s=0

N−1

∑
t=0

wk (r, s, t) xm (i, j, h) (i + r, j + s, h + t)

}
+ bk, (3.21)

where xm(i, j, h) is input pixel at input image or feature map and ym (i, j, h) are input and
output pixel value at output feature map, wk (r, s, t) be weight value at (r, s, t) at kth filter
and b is the bias.
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4 STUDY AREA AND DATASETS
USED

This chapter introduces the study area in the first part and provides the background
information behind the motivation of conducting the study in this area. The second part
of this chapter is focused on explaining the datasets that have been considered for the
implementation of the designed algorithms.

4.1 Study Area

Figure 4.1: Study area with elevation profile and sentinel tiles

This study is based on 20 districts of the Terai region of Nepal that comprise a lowland in
southern Nepal (Figure 4.1). Nepal is a small landlocked country with an area of 147,181
km2 stretching from 26◦ 22’ to 30◦ 27’ N and from 80◦ 04’ to 88◦ 12’ E. The principal
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economic activity of Nepal is agriculture, which constitutes about one-third of the Gross
Domestic Product (GDP) and employs nearly three-fourth of the labor force [57]. Of the
total basic crop production, paddy production is the highest in the country sharing 20.75%
of the total GDP from agriculture [58]. Even though the Terai region covers just 23.1%
of the total area of the country, it comprises 49% of the total agricultural land. The rice
production is mainly located on the Terai districts which contributes about 70% of the total
rice production of the country. As a result, the domestic food security of Nepal is critically
reliant on the sustainability of the cereal production system of this region. According to
CBS (2011), 84% of the farm households in the Terai region are actively engaged in rice
production. However, the growth rate of the agricultural sector of Nepal is too low to meet
the growing food demand of the increasing population, indicating that public and private
investments in the agricultural Research and Development (R&D) sector would increase
cereal productivity in Nepal [59].

4.2 Datasets used

4.2.1 S2 Level-1C products

S2
Bands

Band Names Central Wave-
length (nm)

Bandwidth
(nm)

Spatial Reso-
lution (m)

Band 1 Coastal Aerosol 443 20 60
Band 2 Blue 490 65 10
Band 3 Green 560 35 10
Band 4 Red 665 30 10
Band 5 Vegetation Red

Edge
705 15 20

Band 6 Vegetation Red
Edge

740 15 20

Band 7 Vegetation Red
Edge

783 20 20

Band 8a Near-Infrared 842 115 10
Band 8b Vegetation Red

Edge
865 20 20

Band 9 Water Vapour 945 20 60
Band 10 SWIR-Cirrus 1375 30 60
Band 11 SWIR 1610 90 20
Band12 SWIR 2190 180 20

Table 4.1: S2 spectral bands definition, Source: [60]

The key phases of the rice crop cycle, i.e. start of the season, the peak of season and end of
the season, in the Terai region of Nepal correspond to mid-July, mid-September, and mid-
November respectively [10]. Therefore, the L1C products during these key periods were
downloaded for the years 2016-2018. In case of missing or corrupted images, products
within a week before or after the mid-month were downloaded. 14 sentinel tiles (zone
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44 and 45) in total covered the study area as shown in (Figure 4.1. Therefore, a total of
126 L1C products were downloaded. The S2 L1C products are provided free from ESA’s
Scientific Data Hub (SDH) in Standard Archive Format for Europe Format (SAFE) files.
S2 sensor provides a total of 13 spectral bands with a high spatial resolution ranging from
10m to 60m (Table 4.1). Among these spectral bands, the classical RGB and Near Infrared
(NIR) bands with 10m spatial resolution are dedicated to land applications. The 20m
bands which 4 narrow bands in the vegetation red edge spectral domain and 2 Shortwave
Infrared (SWIR) large bands, which are used for snow/ice/cloud detection and moisture
stress assessment. The remaining bands at 60m are dedicated to atmospheric correction
and cirrus detection.

Both satellites have a wide-swath of 290 km and fly in the same orbit phased at 180◦

providing a high temporal resolution with a revisit frequency of 5 days for S2 operational
data products [61]. S2 L1C and Level-2A (L2A) products are provided in tiles, also called
granules, which consist of 100× 100 km2 ortho-images in UTM/WGS84 projection. The
Universal Transverse Mercator (UTM)system divides the Earth’s surface into 60 zones.
Each UTM has a vertical width of 6◦ of longitude and a horizontal width of 8◦ of latitude.
On the one hand, L1C products are top-of-atmosphere Top-of-Atmosphere (TOA) radiance
images which are radiometrically and geometrically corrected as well as orthorectified
using the global Digital Elevation Model (DEM). On the other hand, L2A products provide
Bottom-of-Atmosphere (BOA) reflectance images derived from the corresponding L1C
products. For this study, L1C products are considered since L2A products are only available
from the end of 2018 for regions outside Europe.

Sentinel Data Processing

A total of 126 S2 L1C products were converted to atmospherically corrected L2A products
using the Sen2Cor processor which is based on algorithms proposed in the Atmospheric/-
Topographic Correction for Satellite Imagery (ATCOR) [62]. Sen2Cor is supported by ESA
as a third-party plugin for the S2 toolbox (standalone version). It runs in the ESA Sentinel
Application Platform (SNAP) or from the command line. Additionally, topographic cor-
rection with a 90m digital elevation database from CGIAR-CSI (http://www.cgiar-csi.org)
and cirrus corrections were applied [63]. Topographic correction here is purely radiometric
and does not change the image geometry. However, the resulting products showed that
cirrus correction with Sen2Cor was not effective. Moreover, the products had significant
cloud and cloud shadows. So, to deal with these problems, cloud mask data available
with L1C products that specifies the percentage of cloudy pixels and cirrus pixels, was
considered during the post processing of L2A products. The whole process was performed
in batch processing from the command prompt. The whole process was performed in
batch processing from the command prompt.
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Figure 4.2: S2 L2A data processing chain in SNAP Graph Builder

After generating L2C products, the next step was to calculate the NDVI. This process
involves a chain of data processing tools as shown in Figure 4.2. Taking into account the
total size of the considered products (over 100 GB) and the high computational cost of
managing such data volume, we decided to store the final products in 20 m instead of 10
m. Therefore, the resulting L2A products were all resampled to 20 m. Thereafter, a spatial
subset was applied to clip the images to the extent of the study area. Among the 13 spectral
bands of S2, the three bands with 60 m resolution (B01, B09, and B10) are dedicated to
atmospheric correction and cirrus detection. These bands are typically not considered in
crop classification tasks [7] so, they were excluded from the output data. As a result, 4
bands resampled to 20 m (B02-B04 and B8a) and 6 bands with a nominal spatial resolution
of 20 m (B05-B07, B8b, B11, and B12) were concatenated for the considered data processing
chain. Bands B04 and B8a bands represent the red and NIR channels respectively (see
Table 4.1) and were used to calculate the NDVI using BandMaths tool as follows:

NDVI =
(ρnir − ρred)

(ρnir + ρred)
, (4.1)

where ρnir represents the reflectance of the near-infrared band and ρred represents the
reflectance of the red band. NDVI is the most commonly used indicator to monitor
vegetation health and classifies vegetation extent. As a result, the resulting NDVI product
was also merged as an additional band to the final product in the GeoTIFF file format.
Considering the presence of significant cloud coverage in the images, cloud mask data
available with L1C products was also concatenated with the bands. An option is to use
these cloud masks to filter the images when training the corresponding crop classification
models. Due to the high cloud cover in June (heavy monsoon period), only the images of
September and November have been considered for the classification and yield estimation
experiments reported in this work.

4.2.2 Ground-Truth Data: Rice Mask

Considering the major limitation on the availability of a real high-resolution ground-truth
map of rice crops in the study area, the rice mapping approach adopted by [10] was
utilized in the long-term period 2006-2014 to generate the final ground-truth rice map
considered in this work. Specifically, this procedure considers the most optimistic rice
map based on the classification conducted using MODIS data. The resulting rice map has
also been filtered by using the land cover mask produced by [22] in order to ensure that
the ground-truth maps do not include non-agricultural areas if any. Finally, the output
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S.N. Climate Variables Unit
1. Rainfall Millimeter (mm)
2. Maximum temperature Degree Celsius (◦C)
3. Minimum temperature Degree Celsius (◦C)
4. Relative Humidity Percentage (% )

Table 4.2: Climate data used for yield estimation purpose

map was re-projected to the UTM/ WGS84 projection and resampled into 20 m to extract
the corresponding ground-truth rice labels for the S2 spatial resolution.

4.2.3 Rice Crop Yield data

We set rice yield data published by the Ministry of Agriculture and Livestock Development
(https://mold.gov.np/), Government of Nepal, as a target of estimation. The yield data
was downloaded for the considered years 2016-2018. While most of the studies discussed
in section 2.2.2 were conducted using county-level data, we only have the option of using
district-level data (larger administrative unit). The scarcity in ground truth yield data is a
major challenge in developing countries like Nepal. To feed the yield data as ground-truth
labels in the network, firstly, the yield values in kilogram per hectare (kg/ha) is converted
to kg/pixel where an area of each pixel is 400 square meter. Secondly, the rice pixels from
rice mask used in classification tasks are labeled with these values. The final results are
then again summarized to kg/ha.

4.2.4 Auxiliary data

The agricultural practice in the study area is mostly dependent on natural irrigation due
to lack of irrigation facilities which is one of the production constraints in the study area.
As climatic variables have a significant impact on crop production, they are also used
as input datasets in addition to S2 data, for yield estimation process [25]. Furthermore,
the authors in [42] suggested that in addition to spectral data, soil and climate data can
contribute to further improvements to crop yield estimation results. The auxiliary data
that are used in this study for rice yield estimation process are explained below:

Climate data

The climatic data that are used in this study are listed in Table 4.2. These data are made
available from the Department of Hydrology and Meteorology, Government of Nepal
(https://www.dhm.gov.np/). Considering the time period during which the images
were downloaded, 15 days average (1 week before and after the considered date) of
each of these climatic variables was calculated from the available daily data. Spatial
interpolation of these data was performed using the ordinary kriging method as supported
by [64][65] and the dataset of the whole country was used for this. The experimental
space-time semivariogram was calculated for each climate data and for each time period.
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Leave one out cross-validation method was used to assess the error associated with the
model with parameters, producing a Mean Error (ME)and RMSE. The model parameter
with least ME and RMSE are used for surface generation of particular climate data. The
resulting raster data were then normalized within the range of [0-1] by using min-max
normalization, which is a general procedure used in machine learning algorithms. The
min-max normalization is done using the following formula:

xnorm =
x−min(x)

max(x)−min(x)
, (4.2)

where x denotes the original value and xnorm is the resulting normalized value. After
normalization, similar to the ground-truth rice mask, the normalized climate data in raster
format were re-projected, re-sampled, clipped to tiles maintaining the spatial extent of
tiles.

Soil Data

Soil data of spatial resolution 250m were downloaded from Krishi Prabidhi Project site
(https://krishiprabidhi.net/). The Krishi Prabidhi project is led by the International

Maize and Wheat Improvement Centre and collaborates with different divisions of
MOALD and private sector for increasing national crop productivity, economic welfare,
and household-level food security. The soil data includes six variables namely:

• Boron Contain,

• Clay Contain,

• Organic Matter,

• PH,

• Sand, and

• Total Nitrogen.

The soil data were also normalized within the range of [0-1]. Like previous data, these
data were also re-projected, re-sampled to 20m, clipped to tiles maintaining the spatial
extent of tiles and finally stacked as a single layer with multiple bands in order to be used
in the CNN model
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5 METHODOLOGICAL
DESCRIPTION

This chapter explains the methodology adopted for the implementation of chosen net-
work architectures and the approach used for their performance evaluation. The first
half starts with an explanation of network architectures of all the classification models.
This is followed by deep insights on the procedure for network training, experimental
settings, classification, and performance evaluation based on qualitative and quantitative
approaches. Similarly, the second half is concerned with the details of network architecture
used for yield estimation purpose together with the detailed process used for network
training, experimental setup, yield estimation and evaluation of models’ performance.

5.1 Classification

5.1.1 Classification Models

For rice crop classification purpose, firstly, we are considering a simple 2D CNN archi-
tecture of the ConvNet network which will be referred to as ConvNet 2D-1 hereafter.
Additionally, we are considering the architectures that we have chosen based on a review
of related works explained in sections 2.1.2 and 2.1.3. The second 2D CNN architecture
based on [27], will be denoted as ConvNet 2D-2. Similarly, the third form of 2D CNN
and the fourth architecture, 3D CNN based on [33] will be mentioned as ConvNet 2D-3
and ConvNet 3D respectively henceforward. The three variations of 2D CNN have been
employed to analyze how the classification accuracy varies with the change in network
architecture. Furthermore, SVM is employed as a baseline algorithm.

5.1.1.1 Patch-Based CNN Network Architectures

CNNs extend the classical artificial neural network approach by adding multiple con-
volutional layers and filters that allow representing the input data in a hierarchical way
[50]. All the CNN architectures chosen for crop classification purpose follow a typical
CNN architecture with a concatenation of convolution and pooling layers followed by
the fully connected layer(s). Additionally, all four architectures are patch-based CNN
which extract image patches and classify the center pixel of the patch. A patch-based
CNN is proven to perform better than pixel-based CNN [27][66]. It considers the spatial
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relationship of a pixel to its neighborhood and the salient features in a patch are indicative
of the belonging to one class or another. The following subsections give a brief explanation
of each architecture:

ConvNet 2D-1

For a 2D CNN network architecture, all the spectral bands of the available time period
are stacked up to form a 3D tensor. The first 2D CNN model, ConvNet 2D-1 comprises
of 4-layer as shown in Figure 5.1. The initial three layers consist of the concatenation of
convolution and pooling with 8, 16 and 32 number of filters respectively. The number
of filters is doubled with each subsequent convolutional layer to increase the number of
feature maps in the hidden layers. A small kernel size of 3 × 3 is used to represent the
multi-level features. The rectified nonlinear activation function (ReLU) is performed after
every convolution to introduce non-linearity to the CNN and is followed by the batch
normalization layer. Then a max-pooling layer follows with size 2 × 2 and stride 2 that
down samples the spatial dimension of the input and reduces the computational burden.
In the last layer i.e., the FC layer, each neuron provides a full connection to all the learned
feature maps issued from the previous layers. The fully connected layer together with a
softmax activation at the end uses learned high-level features to classify the input images
into predefined classes: rice and non-rice.

Figure 5.1: Architecture of ConvNet 2D-1 (Conv2D: 2D convolution, MP: Max-pooling,
FC: Fully connected, m: number of channels, n: temporal depth, p: patch size)

ConvNet 2D-2

The second 2D CNN model, ConvNet 2D-2 (Figure 5.2 is also a 4-layered network but
differs from the first in terms of the number of convolutional layers, kernel size and
numbers and number of fully connected layers. This network architecture consists of 2
convolutional layers with 400 and 800 number of filters of size 5× 5, which is much higher
than the ConvNet 2D-1. Two fully connected layers with 1000 and 2 neurons respectively
follow at the output end. The first fully connected layer collects all the output from the
previous layers as a flat array and finally, the last fully connected layer classifies into rice
and non-rice as like in the previous model.
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Figure 5.2: Architecture of ConvNet 2D-2 (Conv2D: 2D convolution, MP: Max-pooling,
FC: Fully connected, m: number of channels, n: temporal depth, p: patch size)

ConvNet 2D-3

Figure 5.3: Architecture of ConvNet 2D-3 (Conv2D: 2D convolution, AP: Average-pooling,
FC: Fully connected, m: number of channels, n: temporal depth, p: patch size)

The final form of 2D CNN, named ConvNet 2D-3 (Figure 5.3) has taken a neural network
developed by Oxford’s Visual Geometry Group (VGGnet) [32] as a template to train the
CNN. Unlike previous two 2D CNN models, this network architecture comprises 5 layers
among which the first three are convolutional layers with 32, 32 and 64 number of kernels
of size 3 × 3. Another difference in this model is the use of average pooling instead of
max-pooling after each convolution. The last two layers are fully connected layers with 64
and 2 neurons respectively.
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ConvNet 3D

The final model considered for classification experiments is ConvNet 3D (Figure 5.4) which
is exactly the same with ConvNet 2D-3 except for the way input images are fed to the
network and all 2D convolution operations are replaced by 3D. Unlike in 2D CNN, in 3D
CNN the temporal information is stored in a separated dimension which results in 4D
tensor (spatial, spectral and temporal dimensions). Since temporal information is available
for just two time periods for each year, the temporal dimension is preserved until the first
fully connected layer by using a pooling layer of size 2 × 2 × 1.

Figure 5.4: Architecture of ConvNet 3D (Conv3D: 3D convolution, AP: Average-pooling,
FC: Fully connected, m: number of channels, n: temporal depth, p: patch size)

5.1.1.2 Baseline Algorithm: SVM

The initial experiment in this study with the RBF kernel revealed that the computational
cost in terms of time is not affordable for such large datasets. As a linear SVM has
been tested and proposed as optimal when the number of features is large [29], we also
employed a linear SVM with pixel-based inputs.

5.1.2 Network Training

In order to maintain the same environment of data inputs, we considered only the S2
spectral images as input in all the models. As S2 images are processed in tile levels (5490
× 5490 pixels), the ground truth rice mask is also exported in tiles. All the network archi-
tecture explained in the previous section are patch-based CNN architecture. Therefore, we
used image patches centered in the pixel of interest. Note that only those patches with the
central pixel belonging to the region of Terai, also termed as valid patches, were extracted.
In all cases, the input patch is abstracted into multi-level representations to classify the
central pixel.

Before extracting image patches, firstly, the NDVI threshold (below 0.1) was applied to
mask out the non-vegetation areas from Sentinel bands. This process also the clouds since
they are characterized by negative NDVI values. Therefore, the cloud masks from S2 L1C
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products which were considered as an option to filter the clouds from the images were
not essential after applying the NDVI threshold. Secondly, the most optimal ground truth
pixels were generated considering the availability of the corresponding S2 pixels in all
the temporal images. On the one hand, in case of 2D CNNs, all the spectral bands of n
temporal dimension (2 in this case) are stacked together to feed the network while on
the other hand, in case of 3D CNN, temporal feature are stored separately in another
dimension so that the temporal information does not collapse in the first convolution
operation.

The general procedure of the training stage is shown in Figure 5.7. Image patches with
corresponding GT labels are input to the classification models as the training samples.
The Softmax function is then performed on the output feature map generated by the last
fully connected layer to predict the class distribution in categorical output. Thereafter,
a cross-entropy loss is calculated by comparing the predicted labels against GT labels.
This loss value is back propagated to update the network parameters using SGD with
momentum.

Figure 5.5: General procedure of training classification networks (modified after [30])

5.1.3 Experimental Settings

The experiments carried out in this study (classification and yield estimation) were built
on the top of deep learning framework of MATLAB 2019b and were executed on a server
with Intel(R) Core (TM) i7-6850K processor with 64 Gb RAM and 2 GPUs (GeForce RTX
2080 Ti 11GB and GeForce GTX 1080 Ti 11GB) for parallel processing.

The input data consists of m × n patches with p × p size where m and n are the numbers
in the spectral and temporal dimension respectively, and p is the patch size with the
same width and height. In our case, the number of spectral bands is 10 and the temporal
dimension is 2. In the initial experiments, patch size (p) is set to 21 × 21 and is fine-tuned
later along with the other hyperparameters. To validate and optimize the classification
models, all the experiments are conducted with data from 2016. To ensure maximum
datasets for training, from the 14 tiles covering the study area (Figure 4.1), 13 tiles were
used for training the network (considering a 10% of this data for validation purposes)
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and the remaining tile for the test. While an ideal case would be training and testing the
networks with each of the 14 tiles out, one at a time and averaging the classification result,
it is important to note that computational time required for training process is expensive
and unaffordable with this scenario. Therefore, we used this one-tile-out scheme for only
three random test tiles (T45RVK, T45RUK, and T44RQR) in order to generate an average
classification result for all the tested models.

During the experiments, the training set was used to train the network while the validation
dataset was used to fine-tune hyperparameters and to perform early stopping. Overall
accuracy was considered as a criterion for evaluating these experiments. All the networks
are trained using the SGD with momentum for a maximum of 30 epochs (Table 5.1). The
training data is shuffled before each training epoch and the validation data is shuffled
before each network validation. Early stopping is integrated into the training process to
stop the training after n non-improving iterations to avoid the overfitting of the model.
The hyperparameter n is called patience [67] which is set to 100 in all the experiments.
Momentum and L2 regularization value were set to 0.9 and 0.00005 [27].

Hyper-
parameters

Optimizer Epochs Validation
Patience

Momentum L2 Regular-
ization

Values SGD with mo-
mentum

30
(Max)

100 0.9 0.00005

Table 5.1: Hyperparameters values for CNN models

5.1.3.1 Sensitivity to Hyperparameters

The hyperparameters that were investigated in classification experiments were patch size,
learning rate, and mini-batch size (Table 5.1). The values of these hyperparameters to be
tested are selected based on the reference network architectures from [27] and [33]. Note
that we are maintaining a general scheme to compare the performance of models in fair
conditions. During the experiments, when one hyperparameter’s value is changed, other
hyperparameters are kept constant to determine the optimal hyperparameter values.

Hyperparameters Value
Patch size 9,15,21
Learning rate 0.01, 0.001
Mini-batch size 100, 500

Table 5.2: CNN sensitivity experiments on hyperparameters (Patch size, Learning rate,
and Mini-batch size)

Patch size:

In a patch-based CNN, the center pixel of the patch is classified considering its spatial
relationship with the neighboring pixels and the salient features of the patch. It is there-
fore important to determine an appropriate patch size that can capture spatially, local
correlation of the center pixel to the surrounding pixels. To evaluate the performance of
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CNN architecture with the varying patch sizes, 3 patch sizes; 9, 15 and 21 were selected
(Table 5.2). Considering the presence of a significant amount of noise (cloud and shadows)
which could cause mixed pixels effect [33], patch size higher than 21 was not considered.

Learning Rate:

Learning rate is a hyperparameter that tests how much to change the model each time
the weights of the model are updated in response to the predicted error. It is one of the
most important hyperparameters to be tuned while configuring a neural network. The
effect of the learning rate was investigated by varying its values during the experiments
while maintaining a fixed configuration of other parameters and hyperparameters. Two
values of learning rate: 0.01 and 0.001 were tested during the experiments. These values
are chosen from the papers from which the network architectures are adapted.

Mini-batch Size:

The optimization that uses mini-batch gradient descent divides the training data into
small batches that are used to calculate error in the model and update model coefficients.
Two values of mini-batch: 100 and 500 were tested in the experiments.

5.1.3.2 Significance of Multi-temporal Inputs

As mentioned before in section 4.2.1, the images of June (start of the season) could not
be used due to high cloud cover and therefore, images of only two time periods have
been used for all the experiments. In this scenario, one more experiment was conducted
to verify if temporal information from images of only two time periods (September and
November) is adding contribution to the performance of the classifiers in comparison to
the use of single time period (September) images.

5.1.4 Performance Evaluation

During the experiments to select the optimal hyperparameters, the performance of the
models was evaluated using overall accuracy metrics. After these experiments, the models
with the best hyperparameter combinations were selected for final training and classifi-
cation of the input dataset. The final classification results were evaluated quantitatively
using metrics namely overall accuracy and F1-score statistics and qualitatively through
visual inspection of maps. The details about these measures are presented below:

5.1.4.1 Quantitative Approach

In this process, the classifiers were evaluated with the test dataset against the ground truth
using these performance metrics. The metrics are based on four classification outputs
as shown in the confusion matrix in Table 5.3. This is because we are considering rice
mapping as a binary classification where rice pixels are positive class and non-rice pixels
are negative.
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Actual

Predicted Class/ Classified Class

Class

True False
True True Positive False Negative
False False Positive True Negative

Table 5.3: Confusion matrix (Description of TP, FP, TN, and FN)

In a binary classification model, each instance/pixel is classified into two classes, true and
false classes. This gives rise to four possible classifications for each instance which are True
Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN) [25]. TP
indicates the number of correct predictions that a target pixel (rice pixel) is positive (rice
class); FP denotes the number of non-target pixels (non-rice pixels) classified as positive;
TN is the number of correctly classified non-target pixels, and FN denotes the number
falsely classified target pixels as non-targets. In Table 5.3, the classifications that are shown
on the diagonal are the correct classifications which are TP and TN. From the confusion
matrix, a number of performance metrics can be derived.

Precision and Recall

Precision refers to the ratio of correctly classified positive pixels to all the predicted
positive pixels. In other words, precision is an indication of out of predicted positive, how
many of them are positive. Recall refers to that of correctly classified positive pixels to all
observations in the actual class. Precision is useful when the cost of FP is high while recall
is important when the cost of FN is high. Precision and recall can be computed as [25]:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

(5.1)

Overall Accuracy

Overall accuracy is the measure of all the correctly identified classes. It is mostly used
when all classes are equally important i.e. when TP and TN are more important. Overall
accuracy is usually expressed as a percentage, with 100% accuracy being the corrected
classification where all inputs are correctly classified.

OverallAccuracy =
TP + TN

TP + FP + TN + FN
(5.2)

F1-Score

F1-score is the harmonic mean of precision and recall. It takes both false positive and false
negative into account. These metrics might be a better measure when there is an uneven
class distribution (a large number of true negatives). F1- score is calculated as:

F1 =
2× Precision× Recall

Precesion× Recall
(5.3)

34



CHAPTER 5. METHODOLOGICAL DESCRIPTION

5.1.4.2 Qualitative Approach

Once the hyperparameters are tuned, the trained models with the best hyperparameters
combination are used to classify the images into maps representing rice and non-rice.
During this process, patch-based multitemporal images are defined as input along with
the selected training model. The image patches are then classified into predicted labels
corresponding to the predefined classes in an iterative manner to generate the classified
map.

5.2 Yield Estimation

To address the second part of the study which is rice yield estimation, firstly we considered
a simple 2D CNN architecture of the ConvNet network. Additionally, we implemented the
chosen 3D CNN network architecture as discussed in section 2.2.3. As a baseline algorithm,
SVR was employed.

5.2.1 Network Architecture

Similar to the CNN models used for rice classification, both the 2D CNN and 3D CNN
models that are implemented for estimating the rice yield are patch-based i.e. for each
image patch extracted, rice yield for the center pixel of the patch is estimated. The following
subsections briefly describe the architecture of these models:

2D CNN

The network architecture of 2D CNN for rice yield estimation is exactly similar to the
ConvNet 2D-1 network (Figure 5.1) which was designed for rice classification purpose,
except that the classification layer is replaced by the regression layer. While the last fully
connected layer in the classification models has two neurons for two predefined classes:
rice and non-rice, the FC layer for the regression task consists of 1 neuron to estimate rice
yield.

3D CNN

The author in [13] used a channel compression module to reduce the channel dimension
from 10 to 3 without altering the spatial or temporal dimensions considering that all the
10 channels are not of equal importance. Taking this into account, we also started our
network using the dimensionality reduction technique to reduce the number of channels
to 3. For this, the 3D CNN network architecture consists of two 3D-convolutional layers
at the beginning. The first layer takes the input tensor and uses 10 filters performing
3D-convolutions with kernel size 3 × 3 × 2. The second layer takes the output from the
first layer and performs 3D-convolution with kernel size 1 × 1 × 2 using 3 filters. Figure
5.6 shows the architecture of 3D CNN and Table 5.4 lists the details of each layer of the
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architecture.

Figure 5.6: Architecture of 3D CNN. The detail architecture of each layer is listed in Table
5.4

.

Blocks Layers Filters Kernel
Size

Stride Padding Output Size

DR DR-1
(conv3D)

10 3× 3× 2 1× 1× 1 1× 1× 1 10× 2× 21× 21

DR-2
(conv3D)

3 1× 1× 2 1× 1× 1 0× 0× 1 3× 2× 21× 21

Conv-1 Conv3D-1 64 3× 3× 2 1× 1× 1 1× 1× 1 64× 2× 21× 21
Max-Pool-1 - 2× 2× 1 1× 1× 1 - 64× 2× 21× 21

Conv-2 Conv3D-2 128 3× 3× 2 1× 1× 1 1× 1× 1 128× 2× 21× 21
Max-Pool-2 - 2× 2× 1 2× 2× 1 - 128× 2× 10× 10

Conv-3 Conv3D-3a 256 3× 3× 2 1× 1× 1 1× 1× 1 256× 2× 10× 10
Conv3D-3b 256 3× 3× 2 1× 1× 1 1× 1× 1 256× 2× 10× 10
Max-Pool-3 - 2× 2× 1 2× 2× 1 - 256× 2× 5× 5

Conv-4 Conv3D-4a 512 3× 3× 2 1× 1× 1 1× 1× 1 512× 2× 5× 5
Conv3D-4b 512 3× 3× 2 1× 1× 1 1× 1× 1 512× 2× 5× 5
Max-Pool-4 - 2× 2× 2 2× 2× 2 - 512× 1× 2× 2

FC-1 FC-1 - - - - 1024
FC-2 FC-2 - - - - 1

Table 5.4: Layers architecture of the 3D CNN

After the dimensionality reduction (DR) module, the network is composed of the con-
catenation of convolutional blocks and max-pooling layers. The convolutional blocks are
composed of 3D convolutional layers with 3 × 3 × 2 kernel, stride 1 × 1 × 1 and padding
1 × 1 × 1 which are followed by batch normalization layer and ReLU activation layer. The
convolutional blocks are then followed by max-pooling layers with kernel and stride 2 × 2
× 1 to maintain the temporal depth. The spatial dimension of the input data is maintained
the same until the second convolutional layers after the channel compression module
which is then reduced to half after each max-pooling layer. Considering the limitation
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in the temporal dimension, temporal depth is maintained until the last convolutional
layer and then reduced to half by the last max-pooling layer. The output features from the
last max-pooling layer are then flattened into a fully connected layer with 1024 neurons
which is followed by the final FC layer with 1 neuron for predicted yield values. The
regression layer at the end outputs the regressed values and calculates layer computes the
half-mean-squared-loss during the model training process.

5.2.2 Network Training

For the yield estimation task, the number of input channels for each timestamp is 20 (10 S2
bands, 4 climate bands, and 6 soil bands). Each channel is normalized to the range of [0,1]
using the min-max normalization technique before feeding the input data to the network.
NDVI threshold below 0.1 is applied in these models as well, to filter non-vegetation
and cloud pixels from the input data. For ground truth labels, per pixel yield (kg/pixel)
for each district is calculated from district level production data. Note that only those
patches were considered valid, which do not contain no-data pixels and whose center
pixel contains yield information to avoid noise during the training process.

The general procedure of the training stage in the estimation process is shown in Figure
5.7. The valid input patches with corresponding GT labels are input to the yield estimation
models as the training samples. In the network architecture, convolution and pooling
layers extract important features from the input images and the level of extraction/
abstraction depends upon the complexity of the network. For regression problems, a fully
connected layer typically precedes the regression layer. In 3D CNN, two FC layers are
used where the first FC layer in network collects all the output from the previous layers
as a flat array and the last fully connected layer predicts the yield corresponding to the
input sequence. The regression layer predicts the regression output and computes the
half-mean-squared-loss by comparing it against the GT labels. This loss is backpropagated
to update the network parameters using Adam optimization.

Figure 5.7: General procedure of training yield estimation networks (modified after [31])
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5.2.3 Experimental Settings

The input for the CNN models for yield estimation is similar to that for classification i.e. it
consists of m × n patches with p × p size where m and n are the numbers of channels and
temporal depth respectively, and p is the patch size with same width and height. Patch
size (p) is set to 21 × 21 as it is proven to be the optimal patch size in the classification
experiments. The number of channels (m) is 20 and temporal depth (n) is 2. The networks
are trained using Adam optimizer for 30 epochs. The learning rate and mini-batch size are
set to 0.001 and 100 respectively [13]. To train, validate and test the performance of the
CNN models, the data for all the available years (2016-2018) are used. Early stopping is
integrated into the model based on the validation dataset in order to avoid the overfitting
of the model. We have designed two experimental setups based on how the whole dataset
is divided into training and validation/test datasets. RMSE in kg/ha is used as a criterion
to evaluate the results of experiments.

Experiment 1:

In the first experiment, from the whole dataset of three years, 70% is used for training and
the remaining 30% for validating the models.

Experiment 2:

In the second experiment, data from 11 out of 14 tiles were used to train the models while
the remaining 3 tiles (T45RVK, T45RWK, and T45RXK) which cover 5 districts, were used
to test the performance of the model.

Under these experimental setups, we will be testing the following scenarios:

1. Variation in ground truth data

Taking into account that the ground truth data is very sparse (district level), two
approaches are considered to feed the ground truth labels to train the network.

a) The first approach is to calculate the yield per pixel (kg/pixel) by dividing
the total production of each district by the total number of rice pixels in that
district so that each rice pixel of a particular district is labeled with the same
yield value.

b) The second approach is to vary the per pixel yield (by 10% ) in proportion to
corresponding NDVI values of pixels in the peak of the season (September).
NDVI based yield variation is based on the assumption that the higher the
NDVI values, the healthier the vegetation and the larger the yield and vice
versa.

Let Yo(i, j) be original rice yield value of a pixel at (i, j) obtained from the first
approach a), and Y′o(i, j) be new yield value at corresponding pixel after variation.
The average NDVI value na over the image of dimension M× N can be calculated
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as

na =
N

∑
i=1

M

∑
j=1

n(i,j)

MN
, (5.4)

where n(i,j) be NDVI value at pixel (i, j). The variation factor for NDVI value at each
pixel (i, j), f(i,j)is calculated as:

f(i,j) =
n(i,j)

na
(5.5)

Now, the original yield value Yo(i, j) can be transformed into new yield value Y′o(i, j)
using this variation factor with variation percentage v of 10% as follows:

Y′o(i, j) =


Yo(i, j) + vYo(i, j) f(i,j), i f f(i,j) > 1

Yo(i, j), i f f(i,j) = 1

Yo(i, j)− vYo(i, j) f(i,j), i f f(i,j) < 1

2. Testing the significance of channel compression module in 3DCNN

As suggested by [13] for future work, we also tested whether the channel compres-
sion module contributes to the performance of the 3D CNN model besides reducing
the computational cost. To perform this test, we will evaluate the performance of the
3D CNN model with and without the channel compression module.

3. Importance of auxiliary data

Additionally, we are conducting a test to see if the auxiliary data (climate and soil)
is contributing to the rice yield prediction. To check this, both the 2D CNN and 3D
CNN models are implemented with and without the auxiliary data (with only S2
data).

5.2.4 Performance Evaluation

All the experiments for yield estimation are quantitatively evaluated using RMSE metrics:
After the results from experiments, the scenario in which the models performed the best is
selected for the final training and regression. The results are then quantitatively evaluated
based on RMSE and qualitatively through the visual inspection of regression maps.

5.2.4.1 Quantitative Approach

RMSE is the most commonly used metric for this purpose and all the related works
discussed in section 2.2.2 have used RMSE to compare the results between the expected
and predicted yield values. The following subsection explains it briefly:
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Root Mean Square Error (RMSE)

Root mean square error is a standard way to quantify the error of a model in predicting
quantitative data. It is the square root of the average of squared differences between the
expected and the observed values. In other words, RSME is the standard deviation of the
residuals (prediction errors). It is a loss function commonly used in the regression task to
verify the experimental results. The formula to calculate RMSE is shown in the equation:

RMSE =

√
1
n

n

∑
i
(yi − ŷi)

2 (5.6)

In this equation, yi is the expected value, ŷi is the observed value and n is the number
of samples. In the case of RMSE metrics, the errors are squared before they are averaged
ensuring the error is always positive. For this study, RMSE is calculated in Kg/ha (kilogram
per hectare) as the ground truth production data is available in the same unit.

5.2.4.2 Qualitative Approach

After obtaining the results from experiments under different scenarios, the best performing
models among all scenarios are selected to generate the regression maps. The approach
for generating the regression maps is similar to that of classification maps as explained in
section 5.1.4.
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6 RESULTS AND DISCUSSION

This chapter explains the findings of the experimental designs and performance compar-
ison as described in Chapter 6. This chapter is also divided into two sections. The first
section reports the findings of CNN design experiments with different hyperparameter
combination. This is followed by a detailed explanation of the performance evaluation of
different classifiers and their comparison with the existing work. This section ends with
the comparison of classification maps generated by all the implemented classification
models.

6.1 Classification

6.1.1 CNN Hyperparameter Sensitivity Analysis

6.1.1.1 Effect of Patch Sizes

Figure 6.1: Effect of varying input patch size

Figure 6.1 illustrates how the classification performance of all the CNN models varies
with the change in input patch size. While varying the input patch size in this experiment,
the learning rate value was set to 0.01 and mini-batch size to 100. It is clear from the figure
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that the classification accuracy increased with increasing patch size and all the classifiers
achieved the highest overall accuracy with patch size 21 indicating the importance of
spatial context for classification. Therefore, the input patch size of 21 will be considered
hereafter in all the remaining experiments.

6.1.1.2 Effect of Learning Rate

Figure 6.2: Effect of the varying learning rate

The effect on models’ performance with a change in learning rate is demonstrated in
Figure 6.2. In this experiment, the patch size is set to 21 and mini-batch size to 100. As a
result, the first model, ConvNet 2D-1 achieved an overall accuracy of 91.6% with a learning
rate of 0.01 and 91.3% with a learning rate of 0.001indicating the improved performance
of the model with higher learning rate value. In contrast to this result, the remaining three
models: ConvNet 2D-2, ConvNet 2D-3 and ConvNet 3D exhibited better overall accuracy
of 92.7% , 91.8% , and 92.3 % respectively with the smaller learning rate of 0.001which is
0.8% , 0.1% , and 0.4% higher than that with 0.01. This result also supports the result of
[33] in the case of the last two models.

The learning rate plays an important role in the network convergence in order to train
a model efficiently and has a significant effect on generalization accuracy. In particular,
lowering the learning rate below that which results in the fastest convergence can sig-
nificantly improve the accuracy of generalization, especially when dealing with large,
complex problems [55]. The experimental results on varying learning rates apparently
indicate that the complex networks have better performance with a smaller learning rate.
Based on the experimental results, the learning rate of 0.01 is used for ConvNet 2D-1 and
0.001 is used for the other three models in upcoming experiments.
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6.1.1.3 Effect of Mini-batch Size

Figure 6.3: Effect of varying mini-batch size

The bar chart in Figure 6.3 represents the change in models’ performance with the varying
mini-batch size. It is clear from the figure that the models perform better with the mini-
batch size 100 whereas the overall accuracy of all the models lowered with the mini-batch
size 500. The result can be interpreted as larger mini-batch sizes tend to degrade the
generalization of the classifiers which results in lower accuracy [68].

6.1.2 Significance of Multi-temporal Inputs

Figure 6.4: Significance of multi-temporal inputs
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Figure 6.4 clearly demonstrates that the overall accuracy of all CNN-based classifiers
increased significantly with the use of multi-temporal images (September-November)
instead of using images of a single time period (September). Since the fourth model,
ConvNet 3D requires input images of more than one time period, only 2D CNN-based
models are compared in this experiment.

6.1.3 Performance Evaluation of Classifiers

After the hyperparameters tuning experiments, each model with the best hyperparameter
combination was implemented to classify the rice crop for each year. Along with the four
patch-based CNN architectures as explained in section 5.1.1, pixel-based SVM is employed
as a baseline for rice crop classification. To evaluate the performance of all the classifiers
two metrics namely overall accuracy and F1-score were used. As explained in section 5.1.2
in detail, a one-tile-out scheme for three random tiles (T45RVK, T45RUK, and T44RQR) is
used to generate an average classification result for the all the classification models in all
the years considered (2016-2018).

Table 6.1 shows the classification result of all the classifiers including SVM for the years
2016-2018. For instance, if we see the classification results of 2016 in the table, it clearly
depicts that all the CNN-based models have outperformed the performance of the classical
SVM classifier. The pixel-based SVM classifier achieved an overall accuracy of 81.47%
which on average is over 10% lower than all the CNN models. Similarly, in the same
ratio, the values of precision, recall, and F1-score for rice class (the class we are interested
in) are lesser than that of all CNN-based models. Among the chosen CNN classifiers,
ConvNet 2D -2 showed the best performance with the highest overall accuracy if 91.77%.
The second-best model is ConvNet 3D which is followed by ConvNet 2D-3 with the
overall accuracy of 91.77% and 92% respectively. Among the CNN classifiers, the lowest
classification accuracy (91.33% ) was obtained from the first model i.e. ConvNet 2D-1.
Furthermore, if we see the classification results of the remaining years, we can observe the
same pattern in the accuracy achieved by all the tested models in terms of both specific
and relative accuracies. The consistency of the results reveals that the CNN approach is
able to better generalize across the considered years.

The classification results averaged for three considered years are shown in Table 6.2. As
the classification results are consistent in all these years, the averaged result is in line with
the result of 2016. This means that the least accuracy is obtained by SVM with an average
overall accuracy of 81.66% . This result supports the findings from the previous studies
that CNN-based models are able to extract the features and classify the rice pixels way
better than the classical SVM approach. Thereafter, ConvNet 2D-1 has the lowest overall
accuracy of 91.23% among all the CNN models. The reason behind the consistent lowest
performance of this model can be justified by the simplicity of the network architecture
which is not able to accurately learn the features and optimally classify the rice pixels.
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Year 2016
Model Class Precision Recall F1 OA

SVM
Rice 0.75 0.72 0.73 81.47

Non-rice 0.85 0.90 0.86

ConvNet 2D-1
Rice 0.87 0.88 0.88 91.33

Non-rice 0.94 0.93 0.93

ConvNet 2D-2
Rice 0.90 0.88 0.89 92.87

Non-rice 0.93 0.95 0.94

ConvNet 2D-3
Rice 0.87 0.90 0.89 91.77

Non-rice 0.94 0.93 0.94

ConvNet 3D
Rice 0.88 0.90 0.89 92.00

Non-rice 0.94 0.93 0.94
Year 2017

Model Class Precision Recall F1 OA

SVM
Rice 0.76 0.77 0.77 81.63

Non-rice 0.85 0.85 0.85

ConvNet 2D-1
Rice 0.86 0.92 0.89 91.40

Non-rice 0.94 0.91 0.93

ConvNet 2D-2
Rice 0.90 0.94 0.91 93.57

Non-rice 0.96 0.93 0.95

ConvNet 2D-3
Rice 0.88 0.90 0.89 91.73

Non-rice 0.94 0.93 0.93

ConvNet 3D
Rice 0.88 0.92 0.90 91.93

Non-rice 0.95 0.92 0.93
Year 2018

Model Class Precision Recall F1 OA

SVM
Rice 0.78 0.77 0.78 81.87

Non-rice 0.85 0.85 0.85

ConvNet 2D-1
Rice 0.88 0.92 0.90 90.97

Non-rice 0.93 0.91 0.92

ConvNet 2D-2
Rice 0.90 0.94 0.92 92.90

Non-rice 0.95 0.92 0.94

ConvNet 2D-3
Rice 0.88 0.92 0.90 91.30

Non-rice 0.94 0.91 0.92

ConvNet 3D
Rice 0.89 0.92 0.90 91.83

Non-rice 0.94 0.92 0.93

Table 6.1: Classification results in terms of precision, recall, F1-score, and overall accuracy
for years 2016-2018
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Model Class Precision Recall F1 OA

SVM
Rice 0.76 0.75 0.76 81.66

Non-rice 0.85 0.87 0.85

ConvNet 2D-1
Rice 0.87 0.91 0.89 91.23

Non-rice 0.94 0.92 0.93

ConvNet 2D-2
Rice 0.90 0.92 0.91 93.11

Non-rice 0.95 0.94 0.94

ConvNet 2D-3
Rice 0.88 0.91 0.89 91.60

Non-rice 0.94 0.92 0.93

ConvNet 3D
Rice 0.88 0.91 0.90 91.92

Non-rice 0.94 0.93 0.93

Table 6.2: Average classification results in terms of precision, recall, F1-score, and overall
accuracy

Subsequently, if we see the classification accuracies of ConvNet 2D-3 and ConvNet3D, the
performance of the later is better than the former. The average overall accuracy obtained by
ConvNet 3D is 91.92% which in the case of ConvNet 2D-3 is 91.60% . As explained in 5.1.1
that the network architecture of these two models is exactly the same except the input data
representation, it could be inferred that the improved performance of the ConvNet 2D-3
is contributed by the temporal features extracted by the 3D CNN-based model. This re-
sult also supports the findings of [33] from which both the network architecture is adopted.

Among all these classifiers, ConvNet 2D-2 achieved the highest accuracy in terms of
all the metrics (precision, recall, F1-score, and overall accuracy). The average overall
accuracy obtained by this model is 93.11% which is 1.19% higher than ConvNet3D. While
the 3D CNN-based model is expected to perform the best in theory and from previous
studies, in this case, the 2D CNN-based model, ConvNet 2D-2 contrasts the expectation
by demonstrating the better result. This can be justified by two reasons. Firstly, in contrast
to the previous studies which dealt high temporal dimension of the data, the limited
temporal data of two time period is not able to fully exploit the potential of 3D CNN
model. Secondly, the network architecture of ConvNet 2D-2 (see Figure 5.2) consists of a
large number of filters as compared to ConvNet3D and apparently with a higher number
of filters, the network is able to extract a higher number of extractions from image data
helping in the better performance of the model.

6.1.4 Comparison with the existing works

Besides the performance evaluation of the implemented networks and comparison of the
resulting accuracy among them, further, exploration is done in an illustrative way, with the
results from previous studies which have implemented the adopted network architecture
with different dataset in a different study area. This is done to check the suitability of
Sentinel-2 for crop classification, in particular, rice crop in this case, in the study area. The
overall accuracy of the implemented models and that from the existing works are listed
in Table 6.3 for comparison. [27] showed that it is possible to obtain an average OA of
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Zhang et al. [27] Ji et al. [33]
Model Landsat-8 (30m) GF1 (15m) GF2 (4m) Sentinel-2 (20m)

ConvNet 2D-2 91.3% - - 93.11 %
ConvNet 2D-3 - 77.2% 95.6% 91.60%
ConvNet 3D - 79.4% 96.8% 91.92%

Table 6.3: Comparison of classification accuracy with existing works

91.23% when using Landsat-8 to identify rice crops. The network architecture adopted
from this study is ConvNet 2D-2 which demonstrated the highest classification accuracy
with an average OA of 93.11% . The increased accuracy can be attributed to the higher
spatial resolution of S2 in comparison to the medium resolution of Landsat which adds
motivation to conduct further relevant studies in the future using S2 data.

In [33], the authors achieved OA of 77.2% and 79.4% with 2D CNN and 3DCNN models re-
spectively using Gaofen1(GF1) images with a spatial resolution of 15m. Furthermore, with
the use of Gaofen2 (GF2) images with a high spatial resolution of 4m, the study achieved a
very high average OA of 95.6% and 96.8% with 2D CNN and 3DCNN models respectively.
In comparison to these results, the models ConvNet 2D-3 and ConvNet3D adopted from
this study achieved an average OA of 91.60% and 91.92% respectively. On the one hand,
our results demonstrate much higher accuracy of S2 images with 20m spatial resolution
in comparison to the results obtained by [33] with GF1 images of 15m spatial resolution
and relatively lower accuracy in comparison to the results with GF2 images of 4m spatial
resolution. On the other hand, the 3D CNN employed by [33] contributes an additional
accuracy of 2.2% and 1.2% with GF1 and GF2 images respectively which in our case is an
average of 0.32% with S2 dataset. As explained earlier, the reason behind this relatively
lower contribution of the 3D CNN architecture is the limited temporal data available for
the study besides the resolution of the S2 data and new study area where the models are
implemented. In summary, the comparison of the classification results obtained from this
study with the existing works clearly suggests the suitability of S2 MSI data, with a high
spatial and temporal resolutions, for rice crop mapping in developing countries like Nepal.

6.1.5 Comparison of Classification Maps

An example of rice maps generated by all the models that we implemented, and the
corresponding ground-truth maps are shown in Figure 6.5. The generated maps are of tile
T45RUK in the year 2016. The green pixels in the classified maps represent rice, brown
pixels signify non-rice and white pixels are those which were filtered with the NDVI
threshold and include non-vegetation areas and clouds.
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Figure 6.5: (a) Ground truth-map of T45RUK tile in 2016; Rice maps generated by (b)
SVM, (c) ConvNet 2D-1, (d) ConvNet 2D-2, (e) ConvNet 2D-3, and (f) ConvNet 3D (Blue
and red circle represent exemplary areas used for discussing visual difference in model
performance)

From a qualitative perspective, we can visually compare the rice maps generated by the
CNN models and SVM against the ground truth map. For instance, if we compare Figure
6.5 (a) with Figure6.5 (b), we can see that the rice map generated by SVM is not smooth
and has salt-and-pepper noise. Unlike the result from SVM, the rice maps generated by the
CNN-based models are smoother and resemble the ground-truth map to a great extent in
a broad view. At a closer look, we can notice some areas where the predicted labels differ
from the ground-truth map. For example, ConvNet 2D-1 (Figure 6.5(c)) has overpredicted
the rice pixels in an area highlighted with a blue circle in comparison to the maps from
other models while the map from ConvNet 2D-2 in that area shows the most match with
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the ground-truth map. Similarly, in the area highlighted with a red circle, all the models
have underpredicted the rice pixels especially, ConvNet-2D. This could be because of the
presence of noise in the image (white pixels) which is impacting the prediction of the
CNN models. Overall, the qualitative analysis through the visual comparison of the maps
depicts that the rice maps generated by CNN models resemble the ground-truth, but it is
difficult to compare the performance of the models visually.

6.2 Yield Estimation

6.2.1 Experiment 1

As we have mentioned earlier that we have limited time-series S2 data and sparse ground-
truth in the study area, in the first experiment, we are validating the performance of the
CNN networks in this scenario. For this, the whole dataset from 3 years is randomly
divided into training (70%) and validation (30%) dataset without considering the extent of
S2 tiles or district boundaries.

1. Variation in ground-truth labels

To use ground-truth yield data for training the network, in the first case, pixel level
yield (kg/pixel) is computed from district level yield (kg/ha). This results in the
uniform ground-truth labels (GT labels) for each district without any variation.
While in the second case, the resulting GT labels are varied by 10% in proportional to
the corresponding NDVI value of S2 images in the peak of the season. The network
performance of both the models was validated with these two types of GT labels
and the result is shown in Figure 6.6.

Figure 6.6: Effect of variation in the ground-truth labels (model validation)

Figure 6.6 reveals that both the models performed better without GT labels variation
with lower RMSE than that with variations in the labels. This indicates that introduc-
ing variation in the input labels is not helping in the improvement of the network
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performance.

2. Testing the significance of channel compression module in 3DCNN

Figure 6.7: Effect of dimensionality reduction (model evaluation)

As mentioned earlier in section 6.1.2, an additional test was done to check if the
dimensionality reduction technique from 20 channels to 3 is contributing to the
performance of the 3D CNN model. The result of this test as shown in 6.7 clarifies
that the model performed better without the dimensionality reduction technique
with reduced RMSE from 186kg/ha to 169 kg/ha. This suggests the use of all the
channels during network training instead of projecting the number of channels from
20 to 3 so as to improve the performance of the model. Figure 6.8 shows the 3D CNN
architecture after introducing a variation by removing the dimensionality reduction
module.

Figure 6.8: Variation in 3D CNN architecture by removing dimensionality reduction
module

3. Importance of auxiliary data
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The last test was conducted to verify if the auxiliary data (climate and soil data)
is providing an additional contribution to the model performance in the yield
prediction process. To verify this, the models’ performances were evaluated with
and without auxiliary data and the result is illustrated in Figure 6.9. It seems evident
from the result that the use of auxiliary data in the yield estimation process has an
added contribution resulting in improved performance.

Figure 6.9: Contribution of auxiliary data in yield estimation (model validation)

6.2.2 Experiment 2

The results from experiment 1 make it clear that both the models are able to estimate the
rice yield by with low RMSE. This indicates that the model is performing well with the S2
data along with auxiliary data in the study area. After the model validation, in experiment
2, we are evaluating the performance of the model with 3 test tiles that cover 5 districts.
These test tiles are from years 2016-2018 so, the models will predict the average yield and
calculate the mean RMSE. Similar to the tests in experiment 1, we have conducted the
tests to evaluate the model performance in three different scenarios as explained below:

1. Variation in ground-truth labels

In line with the result in experiment 1, both the model performed better without
variation in GT-labels. However, it is important to notice that RMSE values are
relatively higher in both models indicating that the models are not able to generalize
properly in the new dataset. Moreover, a simple 2D CNN is performing better than
a complex 3D CNN model which is exactly opposite to our expectation. The reason
behind this is clarified in the following test.
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Figure 6.10: Effect of variation in the ground-truth labels (model evaluation)

2. Testing the significance of channel compression module in 3DCNN

By removing the dimensionality reduction module form the network architecture,
RMSE of 3D CNN reduced significantly from 580 kg/ha to around 400kg/ha. With
this, the performance of 3D CNN got improved than 2D CNN (530 kg/ha) as well.
Therefore, it is clear that in the initial experiment, the 3D CNN was performing
worst because the channels were projected before the network training process which
lowered the model performance.

Figure 6.11: Effect of dimensionality reduction (model evaluation)

3. Importance of auxiliary data

The last test to verify the significance of auxiliary data in the yield estimation
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process in the test dataset (Figure 6.12), indicates clearly that both the CNN models
performed better with lower RMSE with the use of auxiliary data besides the S2
data.

Figure 6.12: Contribution of auxiliary data in yield estimation (model evaluation)

6.2.3 Performance Evaluation of CNN-based Regression Models

Based on the results obtained from the experiments conducted with different scenarios,
the best result obtained for each model was considered. To summarize, the 2D CNN model
performed best without GT labels variation and with auxiliary data. In addition to these
scenarios, 3D CNN demonstrated the highest performance without dimensionality reduc-
tion module in the network architecture. Besides these CNN models for regression, a linear
SVR was employed as a baseline algorithm for yield estimation with pixel-based data
input. Table 6.3 shows the RMSE values obtained from all the models while estimating the
rice yield.

The results clearly depict that both CNN models performed better than SVR and 3D CNN
achieved the lowest RMSE signifying the best performance in the yield estimation process.
Obviously, all the models obtained significantly lower RMSE in experiment 1 in which
the validation dataset is randomly taken from the training dataset. While in experiment 2,
the RMSE of models is higher since we are evaluating the performance of the model in a
completely new area. Despite the differences, the performance of 3D CNN in experiment
2 is remarkable considering the limitations in the data. Considering average yield per
hectare of districts, this RMSE value of 3D CNN represents around 5% error in experiment
1 and around 11% error in experiment 2 in the estimated yield.
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6.2.4 Comparison with the existing works

(kg/ha)
Models Experiment 1 Experiment 2
SVR 357.23 609.12
2D CNN 235.5 551.75
3D CNN 169 404.25

Table 6.4: Results of SVR, 2D CNN, and 3D CNN in terms of RMSE (kg/ha)

The author in [13] predicted soybean yield in the U.S by using long term MODIS dataset (13
years) for training the 3D CNN model and evaluated its performance with test dataset of
a year. This study achieved recommendable results with an average RMSE of 5.27 bushels
per acre which is around 355 kg/ha. While we adopted the same network architecture of
3D CNN for this study in estimating rice yield, the network is implemented in a different
study area, using the Sentinel-2 dataset of 3 years with a temporal depth of 2 times per
year. Moreover, we have introduced a variation in the 3D CNN network by avoiding
the dimensionality reduction technique. While it is obvious to get better accuracy in
experiment 1, the result validates the model performance in our scenario. In the second
experiment which is more practical in terms of implementation, RMSE of 404.25 kg/ha
is obtained which is quite high in comparison to the result from [13] with RMSE of 355
kg/ha. However, considering the limitations in the temporal dataset and the use of sparse
ground-truth data, the results obtained from the model are still remarkable.

6.2.5 Comparison of Regression Maps

Figure 6.13 shows an example of maps illustrating the yield estimated by (b) SVR, (c)
2D CNN, and (d) 3D CNN and the corresponding ground-truth map (a). Variation in
yield is represented by shades of green color where dark green represents high yield
values and the lighter shade represents low yield. The district boundary is shown in black
color. Similar to classification maps, white pixels indicate no data areas and brown color
represents no production areas. If we see the ground-truth map (Figure 6.13 (a)), variation
in yield per district is visible. In comparison to the ground-truth, the output from SVR
shows that yield is overestimated resulting in the highest RMSE value as shown in Table
6.4. On the contrary, the maps generated by CNN models show more similarity to the
ground-truth map. However, at a closer look, we can see some differences. For instance, in
the area highlight by a red circle in Figure 6.13, the regression map from 2D CNN shows
slightly overestimation in yield that that from 3D CNN as compared to the ground-truth.
In a broader look, with visual maps, it is difficult to evaluate the performance of models
precisely.
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Figure 6.13: (a) Ground-truth map of T45RUK tile; Maps showing estimated yields, gener-
ated by (b) SVR, (c) 2D CNN, and (d) 3D CNN
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7 CONCLUSION AND FUTURE
WORKS

7.1 Conclusion

This thesis presents the use of multitemporal Sentinel-2 images for rice crop classification
and yield estimation using the deep learning framework with a focus on developing
countries. The feasibility of this work was tested through a case study in Terai Districts of
Nepal which is one of the developing countries. The results demonstrate the viability of
S2 images for rice crop classification and yield estimation in developing countries where
data is scarce, and ground-surveys are expensive and time-consuming.

The conclusions of this thesis are presented based on the objectives which are:

1. To review existing state-of-art deep learning algorithms for rice crop classification and yield
estimation and select the suitable architectures.

In Chapter 2, existing deep learning algorithms for crop classification and yield
estimation using multi-temporal satellite imagery were reviewed. After exploring
the trend of deep learning approaches used in this field, CNN was chosen as a core al-
gorithm because of its remarkable performance in previous works. For classification,
we employed four patch-based CNN models namely ConvNet 2D-1, ConvNet 2D-2
[27], ConvNet 2D-3, and ConvNet 3D [33] to investigate the difference in model
performance with the change in network architecture. Similarly, for yield estimation,
we employed 2D CNN and 3D CNN [13] models. Furthermore, SVM and SVR
were employed as the baseline algorithm.

2. To implement and optimize the performance of the chosen architectures

To fulfill the second objective, all the chosen CNN models and baseline algorithms
were implemented in Chapter 5. The models’ sensitivity to hyperparameters were
tested to select the optimal hyperparameter values and enhance model performance.
In addition to this, several experiments were conducted considering different sce-
narios of data input to the CNN models.

• By performing experiments to investigate the significance of multi-temporal
data in rice classification, we conclude that the use of multi-temporal data
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improves the classification accuracy as opposed to the use of images of a single
time period.

• By performing the experiments to explore the implication of the use of auxil-
iary data (climate and soil) on the yield estimation process, we conclude that
auxiliary data add a contribution to the model performance resulting in better
yield estimation.

• By performing the experiment to investigate the role of channel compression
module in yield estimation network architecture, we conclude that channel
compression at the beginning reduces the model performance and it is advised
to consider all the available spectral bands to enhance the learning process of
models and improve the results.

3. To evaluate the performance of classification and yield estimation models using performance
metrics and validate their performance with reference to the existing works..

The evaluation of classification models based on overall accuracy and F1-score
statistics demonstrate that the CNN models outperformed the SVM approach of
classification. Among the CNN models, ConvNet 2D-2 obtained the highest classi-
fication accuracy followed in order by ConvNet 3D, ConvNet 2D-3 and ConvNet
2D-1. From the results, we can infer two things: firstly, in case of similar network ar-
chitecture, 3D CNN performed better than 2D CNN confirming that spatio-temporal
representations in 3D CNN improve the classification accuracy. Secondly, the better
performance of ConvNet 2D-2 indicates that the complexity of network architecture
with a large number of filters is contributing to increased accuracy of the model and
also suggests the 3D form of this model could result in the best accuracy among
all. Similarly, the evaluation of yield estimation models based on root means square
error showed that 3D CNN models outperformed the basic 2D CNN and SVR.

In the last phase, the reliability of the performance of the implemented models was
checked with reference to the accuracy obtained in the corresponding works from
which the network architectures were adopted. The comparison shows that we have
obtained remarkable accuracy in both rice classification and yield estimation process
suggesting the feasibility of both dataset and approach for crop monitoring process
in developing countries as well.

With this, we have successfully achieved our aim which is “to support crop monitoring
process by investigating the viability of Sentinel-2 data for rice crop classification and crop yield
estimation in the Terai region of Nepal using deep learning approach” . We forsee that deep
learning-based crop classification and yield estimation using freely available Sentinel-2
imagery will contribute to more efficient crop growth monitoring and managing agricul-
ture practices in the future.
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7.2 Future Works

The results presented in chapter 6 have room for improvement with more possible scenar-
ios to be explored. Following are the list of recommended works for future as identified
by the author:

• Image fusion techniques can be considered to fill the data gaps due to significant
cloud cover and to reduce the effect of data noise in model performance.

• Increasing per year temporal depth of S2 images can be advantageous in both the
classification and yield estimation process. However, we have to keep in mind that
this will also increase the data volume and computational costs especially when the
study area is large.

• Considering the limited data availability for the yield estimation process, the use
of pre-trained networks, if available in this scenario, can be explored to see if they
improve the results.

• Successful results from the use of the multi-receptive-field network in the super-
resolution field suggest that it could be advantageous in this field as well. So, this
approach can be explored in further studies.

• Exploration of deeper CNN architectures like residual network (ResNet) and Incep-
tion net in this field is recommended since it has not been done yet.
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