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MODELING MALARIA CASES ASSOCIATED WITH 

ENVIRONMENTAL RISK FACTORS IN ETHIOPIA USING THE 

GEOGRAPHICALLY WEIGHTED REGRESSION MODEL,  

2015-2016 

ABSTRACT 

In Ethiopia, still, malaria is killing and affecting a lot of people of any age group 

somewhere in the country at any time. However, due to limited research, little is 

known about the spatial patterns and correlated risk factors on the wards scale. In this 

research, we explored spatial patterns and evaluated related potential environmental 

risk factors in the distribution of malaria cases in Ethiopia in 2015 and 2016. Hot 

Spot Analysis (Getis-Ord Gi* statistic) was used to assess the clustering patterns of 

the disease. The ordinary least square (OLS), geographically weighted regression 

(GWR), and semiparametric geographically weighted regression (s-GWR) models 

were compared to describe the spatial association of potential environmental risk 

factors with malaria cases. Our results revealed a heterogeneous and highly clustered 

distribution of malaria cases in Ethiopia during the study period. The s-GWR model 

best explained the spatial correlation of potential risk factors with malaria cases and 

was used to produce predictive maps. The GWR model revealed that the relationship 

between malaria cases and elevation, temperature, precipitation, relative humidity, 

and normalized difference vegetation index (NDVI) varied significantly among the 

wards. During the study period, the s-GWR model provided a similar conclusion, 

except in the case of NDVI in 2015, and elevation and temperature in 2016, which 

were found to have a global relationship with malaria cases. Hence, precipitation and 

relative humidity exhibited a varying relationship with malaria cases among the 

wards in both years. This finding could be used in the formulation and execution of 

evidence-based malaria control and management program to allocate scare resources 

locally at the wards level. Moreover, these study results provide a scientific basis for 

malaria researchers in the country. 

Keywords:  Ethiopia. Geographically weighted regression. Malaria cases. Non-

stationary.  Spatial heterogeneity.  Risk factors 
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1 INTRODUCTION 

1.1 Motivation, rationale and background 

In Ethiopia, still, malaria is killing and affecting a lot of people of any age group 

somewhere in the country at any time. Furthermore, there are a large number of 

inpatient and outpatient due to malaria case in Ethiopia (Alemu et al. 2011); it is a 

significant loss in terms of life and money for the country. Therefore, researching 

modeling malaria cases associated with environmental risk factors in of Ethiopia is 

very relevant. In Indonesia, (Hasyim et al. 2018) conducted a similar study. In their 

research, they didn’t include climate factors data for their research data analysis, and 

they put that as a limitation of their research. Thus this research will try to solve that 

limitation by using the climate factors data and find out the association of climate 

factors with malaria cases. 

1.2 Aim and objectives 

This study aims to model malaria cases associated with environmental risk factors in 

Ethiopia, using geographically weighted regression in 2015 and 2016. 

The specific objectives are: 

 To map malaria risk areas (distinct) in the country. 

 To map estimated malaria cases in the country.  

 To investigate the impact of environmental risk factor in malaria cases          

distribution. 

  To discuss and report spatial analysis results found. 

 To model the association of environmental risk factors and malaria cases         

.  

In addressing the problem, the following research questions were formulated for the 

study:  

 Where are the annual malaria cases outbreak concentrated in 2015 and 2016? 
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 Which and where environmental risk factors are strongly associated with 

malaria cases. 

 

1.3 Significance of the study 

The finding of this research used to assist in planning, allocation of resource, drug 

distribution, and decision making concerning malaria control and monitoring in 

Ethiopia. In addition to this, the modeling of the spatial distribution of malaria cases         

associated with environmental risk factors is expected to help the country in 

preventing and controlling malaria. Moreover, the finding of this research can be 

used for other research as an input. This research work has an explicit significance 

for the researcher and used as a benchmark for interested researchers to explore the 

issues in the area for controlling and eradication of the epidemic. The outcome of the 

study also will provide information for government and nongovernment 

organizations to assist in malaria control and prevention in the country. 

1.4 Structure of the report 

This first chapter highlights the relevance of this research, lists the main objectives, 

and summarizes the methodological framework to address them. Section 2 dedicated 

to the literature review about malaria, particularly on modeling approaches to malaria 

cases. Chapter 3 dedicated to the methodological framework for modeling malaria 

cases associated with environmental risk factors using s-GWR. Chapter 4 highlights 

the result of all models and section 5 devoted to the discussion of all the results. 

2 LITERATURE REVIEW 

Malaria is still the world, mainly widespread disease parasitic that kills a lot of 

people. As world research depicts, both types of malaria Plasmodium falciparum and 

Plasmodium vivax are the cause of many death and illness in the world. For example,  

due to Plasmodium falciparum 2.6 billion and  Plasmodium vivax, 2.5 billion 

populations were at risk (Ge et al. 2017). In terms of malaria death, Africa is leading 

the world by 90%, and the other 10% was in the rest of the world (Alemu et al. 

2011). Africa also ranks the world in malaria cases  in 2017, which is about   92% or 
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2oo million malaria cases and followed by South East Asia, which is only 5% of 

malaria cases  (WHO 2018). The annual report of malaria shows, over 80% of 

malaria cases were in sub-Saharan Africa, of which over two million died due to 

disease (Alemu et al. 2011). 

Both parasite and vectors depend on temperature for growth (Shapiro, Whitehead, 

and Thomas 2017). Most of the time in Africa, the malaria cases depends on 

temperature above 28° (Mordecai et al. 2013). Malaria transmission profoundly is 

affected by climate and environmental risk factors (Ge et al. 2017). Plasmodium 

parasites are the leading cause of malaria to exist in humans. Infected female 

Anopheles mosquitoes, also known as “malaria vectors” are the main parasite that is 

killing humans by transmitting from one place to another. Plasmodium falciparum 

and Plasmodium vivax are well-recognised parasites among the five types of pests 

that are killing a lot of people globally (WHO 2016).  

Usually, in Africa, the cases of malaria depends on temperature; for example, in 

temperature above 28°, the prevalence of the disease is reduced (Mordecai et al. 

2013). Both the climate and environmental risk factors, namely relative humidity, 

precipitation, and temperature), ecological and socioeconomic variables mostly 

affect malaria transmission (Ge et al. 2017).   

Malaria is highly sensitive to climate-related disease; the study showed that the 

occurrence of short-term variations in climate factors such as precipitation, 

temperature, and relative humidity could result in a measurable malaria epidemic 

(Ankamah, Nokoe, and Iddrisu 2018). Currently, studies have been conducted to 

examine the effect of climate factor risk on malaria cases in Port Harcourt. The result 

of the study showed that the occurrence of malaria significantly dependent on the 

increase in rainfall and a decrease in temperature (Weli and Efe 2015). A similar 

study has been conducted in Ghana. The finding of the survey showed temperature 

maximum was better to predict the malaria epidemic in the country than minimum 

temperature (Ankamah et al. 2018).   

Malaria is a leading cause of social and public health problems globally, including 

Ethiopia  (WHO 2018). In Ethiopia, around 4-5 million malaria cases   have reported 

annually. The malaria case prevalent was about 75%, which make over 50 million 

people at risk (Alemu et al. 2011). Moreover, in the country, the most favorable 

temperature for malaria mosquito’s parasite epidemic ranges between 22°C and 

above 32°C (Craig, Le Sueur, and Snow 1999). 
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Recent studies showed that the life of vector-borne diseases had been highly 

influenced by interannual and interdecadal climate inconsistency (Ankamah et al. 

2018). Therefore, global climate change has been playing a great role in the malaria 

epidemic in Ethiopia. Researchers have been approved that there was a link between 

climate variability and malaria Cases in Ethiopia (Ankamah et al. 2018).It is 

confirmed by the study that the malaria occurrence elsewhere in Ethiopia and 

Senegal were strong relationships between climatic variability and rainfall (Alemu et 

al. 2011).  

3 MATERIALS AND METHODS 

In geospatial data analysis, nonstationarity is a condition in which a “global” model 

cannot clarify the relation or association between some sets of variables (Brunsdon, 

Fotheringham, and Charlton 2010). Therefore, besides global Ordinary Least 

Squares, local geographically weighted regression modeling used to analysis and 

model the association between environmental risk factors and malaria cases in 

Ethiopia at wards level. The local different of environmental risk factors to be 

studied potentially predict the response variable malaria cases  (Y) are altitude (X1), 

Relative humidity (X2), Precipitation (X3), NDVI (X4) and rainfall (X5). Moreover, 

to generate a malaria risk map based on a statistically significant hotspot, this 

research work will use  G* statistics (Yeshiwondim et al. 2009). 

For this study, we used the R programming for data cleaning (de Jonge and van der 

Loo 2013), GWR4 (Acharya et al., 2018;Manyangadze et al., 2017;Hasyim et al., 

2018;Ge et al., 2017) for modeling malaria cases, Arc Map (Acharya et al., 

2018;Manyangadze et al., 2017;Hasyim et al., 2018;Ge et al., 2017) for interpolation 

independent variables, mapping malaria cluster, and mapping of the result of GWR 

and s-GWR. Malaria cases data was tested for spatial heterogeneity (non-stationarity) 

with Global Moran’s I using GeoDa (Ge et al., 2017; Fotheringham, Charlton and 

Brunsdon, 2002) as illustrated in (Table 1). 
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Table 1 Software used for analysis  

Software used  Version  Comment 

R programming  3.6.2  Package  
library(tidyverse) 
library(psych) 
library(skimr) 
library(broom) 

ArcMap 10.6  

GWR 4.0  

GeoDa 1.14  

 

3.1 Study area and malaria dataset 

Ethiopia is located in the eastern part of African content approximately 30 -150N 

latitude and 330 -480E, longitude. Its land and water coverage is 1,000,000 and 

104,300 square kilometres, respectively (Hagose 2017) (Figure 1). The total 

population of the country is 83.7 million (Ethiopian et al. 2014). Ethiopia is one of 

the most densely populated areas in the world. The topography of the land varies 

from lowland to mountainous landscapes. The elevation in the study area varies 

between 1290 and 3000 meters above sea level (Fazzini, Bisci, and Billi 2015).  

The study area map (Figure 1) uses the World Geodetic System (WGS84) map 

projection as its reference coordinate system for data analysis. As shown in Figure 3, 

in spatial data analysis, three stages of working with spatial data were eminent: data 

acquisition and processing, data analysis and data presentation (Hasyim et al. 2018). 

GWR 4.0 version 4.09, Geoda and Arc GIS 10.6 were used for data processing, 

analysis, and visualization. Malaria cases data were collected from Ethiopian Public 

Health Institute for all wards (i.e. administrative units similar to counties or districts). 
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Figure 1: Map of the study area covering 679 wards (counties) of the entire country, 

Ethiopia. 

 

The Ethiopia Public Health Institute summarized weekly malaria cases in each ward 

in the study area between 2015 and 2016 (96 weeks in all). The malaria data 

categorized into “clinical diagnosis,” and “confirmed malaria cases.” The total 

number of malaria cases were 39592.14 over 2015-2016 in the study area. Figure 2 

shows the spatial distribution of annual malaria cases in each year.  

Malaria cases data were collected from 679 counties (wards) from 2015 to 2016 in 

the study area. Malaria incidence was computed as malaria cases divided by 

population and multiplied by 1000. 

a

 

b 

 

Figure 2: Annual average malaria incidences in each county from 2015 to 2016 



7 
 

3.2 Climate and environmental data  

Research studies on climate variability do not show any consistent pattern or trends 

in the country (Mengistu, Bewket, and Lal 2014). In Ethiopia, different studies on 

key climate variability and trend indicators have also been conducted by (Osman and 

Sauerborn, 2002; Dereje Ayalew, 2012;Jury and Funk, 2013;Abtew, Melesse and 

Dessalegne, 2009;Taye, Zewdu and Ayalew, 2013;Viste, Korecha and Sorteberg, 

2013; Mengistu et al., 2014). 

Variables shown in Table 2 characterize the basic climate and environmental 

conditions of each county (ward). The predictors were selected based on their 

probable association among malaria cases, taking into consideration the literature 

review and data availability. Previous studies have demonstrated an association of 

socioeconomic variables with malaria, such as population density (persons/km2), 

persons (immigrant population), and gross domestic product (GDP) (Ge et al. 2017). 

The climate and environmental predictors considered in this study, as well as their 

descriptions, are listed in Table 2. The selected environmental variables are monthly 

Normalized difference vegetation index (NDVI), elevation, Relative humidity, 

Temperature and Precipitation. The dataset of elevation, Relative humidity, 

Temperature and Precipitation is provided by Ethiopian Metrology Agency (EMA). 

This dataset had station data collected from 132 stations from the country. Whereas, 

Normalized difference vegetation index (NDVI) along with the spatial reference of 

the study area was downloaded from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) instruments on-board the Terra and Aqua satellites 

(https://ladsweb.nascom.nasa.gov/). For this research work, the MODIS Terra NDVI 

product (MOD13A3 Version 6), a monthly level-3 composite with a 1 km spatial 

resolution, was applied to describe the vegetation coverage of each county in each 

month. 

 

Different methods were used in other studies to interpolate environmental data by 

using deterministic techniques automatically or to estimate the values statistically at 

the grid x y co-ordinates (Berke 2004). I applied kriging interpolation to get the value 

of elevation, Relative humidity, temperature and precipitation for the entire study 

area (Figure 3). 
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Population data (2012) were collected from the Ethiopian Central Statistical Agency 

and were used to compute the malaria cases. 

 

Table 2: Variables used in the research and their sources 

Variable name Code  Source  

Elevation  Elevation  Ethiopian Metrology Agency  

Relative humidity  RH Ethiopian Metrology Agency 

Temperature  TM Ethiopian Metrology Agency 

Precipitation  PR Ethiopian Metrology Agency 

Population density Pop Ethiopian Central Statistical 

Agency  

Average Normalized 

difference vegetation 

index  

NDVI MOD13A3 product with 

Resolution/scale of Raster 1 km 

 

3.3 Data pre-processing and modeling 

The Geographically Weighted Regression (GWR) modeling approach was applied 

for exploring the association among malaria cases and local spatial predictors across 

the study area. Figure 4 depicts the schematic overview of the methodology. The 

malaria cases data were tested for spatial autocorrelation, and the explanatory 

variables were obtained for the 679 wards by interpolation techniques as a first step. 

The subsections below detail each stage of the methodological framework. 
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3.3.1 Environmental data 

Figure 4 depicts the kriging interpolation result of precipitation, temperature, relative 

humidity, and elevation for entire study area as shown bleow. 
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Figure 4: Each explanatory variable mapped 2015(left) and 2016(right) in the study 
area. 

All environmental risk factors variable were interpolated by using Kriging Spherical 

models as is illustrated in Table 3. Mean yearly interpolated climate factors data was 

used for analysis. 
Table 3: Variogram models used for interpolation of explanatory variables with ordinary kriging 

Dataset Model and parameters Model name and 
values 

Temperature model Spherical 

 nugget 0.001 

 range 4.2 

 Partial sill 1.067 

Precipitation  model  Spherical 

 nugget 0.0009 

 range 5.24 

 Partial sill 0.998 

Relative humidity  model  Spherical 

 nugget 0.0010 

 range 4.611 

 Partial sill 1.025 

Elevation  model  Spherical 

 nugget 0.001049 

 range 4.0217 

 Partial sill 1.0495 
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3.3.2 Data cleaning and normalization  

Data cleaning and exploring were done by using R software. Logit and log malaria 

cases were used to discover if bivariate relationship were linear or not using B-

splines explanatory analysis (Figure 17) in Appendix 7.1. 

 

3.3.3 Spatial analysis of malaria 

Initially, before applying regression analysis, we generate a malaria risk map, or hot-

spots map, using local Gi* statistics (Yeshiwondim et al. 2009): 

       
        

     
                                         

 

Where, wij is a geospatial weight matrix at a given distance lag in kilometers (d), 

(wij(d)) is 1 for location distance from j to i is within d; otherwise wij(d) is 0). The 

existence of hotspot of malaria indicators will be determined based on the value of Z-

score. A high positive value of Z >1.96, showed that the position distinct i is 

surrounded by relatively high malaria cases region. In contrast, a high negative Z-

score value indicates that the location separate i is surrounded by relatively low (cold 

spot) malaria incidence in distinct areas. Otherwise, random distribution of malaria 

cases for high and negative value of Z ≥-1.96 and ≤1.96 (Yeshiwondim et al. 2009). 

Anselin’s Local Indicators of Spatial Association (LISA) method, particularly the 

Local Moran’s I Statistic (Anselin 1995), was used to  map the local clusters of high 

malaria cases. LISA calculates a measure of spatial association for each ward 

locations. A local Moran’s I autocorrelation statistic at the location i (Acharya et al. 

2018)can be expressed as 

                                               

 

                    

where zi and zj are the standardized scores of attribute values for unit i and j, and j is 

among the identified neighbors of i according to the weights matrix wij. 

 

3.3.4 Regression analysis  

Geographically weighted regression (Ge et al. 2017) is a suitable method for spatially 

varying relationship data analysis. In regression data analysis, for example, ordinary 
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least squares (OLS), generally assume fixed relationships between dependent and 

independent variables in the study area. However, Geographically weighted 

regression (GWR) lets the regression parameters to differ locally by disseminating 

location-wise parameter estimates for all independent variables (Fotheringham et al. 

2002). GWR determines the spatial variabiliy of coefficients within the study area, 

and the explanatory power of explanatory variables is spatially measured for local 

analysis (Ge et al. 2017). It has been widely used as a tool to explore non-

stationarity, and its execution has been improved with new contributions, such as 

new sets of kernel functions (Chasco, García, and Vicéns 2007), best bandwidth 

selection (Páez, Uchida and Miyamoto, 2002; Ge et al., 2017),  and optimum 

distance metric selection (Lu et al., 2015; Ge et al., 2017). 

In past years, GWR has been used in several fields, for example, environmental 

science and meteorological science discipline (e.g., (Pasculli et al., 2014; Videras, 

2014; Ge et al., 2017;   Yao and Zhang, 2013), Geographic information science and 

 Remote Sensing  (e.g. (Gao and Li, 2011; Ge et al., 2017; Su, Xiao and Zhang, 

2012; Wang, Kockelman and Wang, 2011), and mainly public health and disease 

(e.g. Ge et al., 2017; McKinley et al., 2013). In the studies with human health, the 

GWR methods have been applied to discover the spatial dissimilarities of heavy 

metals in the soil (McKinley et al. 2013), climate variables (Ge et al. 2017), air 

pollution (Jephcote and Chen 2012), and socioeconomic variables (Chi et al. 2013). 

The model GWR is appropriate for non-stationary variables (Fotheringham et al. 

2002). In the first step, the average annual malaria cases  in all two years (2015-

2016) was tested for spatial heterogeneity (non-stationarity) with Global Moran’s I 

statistic. 

In many studies, to deal with data with zero malaria cases, the malaria case data were 

adjusted by a Bayesian model (Ge et al. 2017). The malaria data we used had not 

consisted of a large number of locations with zero malaria cases; therefore, we didn’t 

apply the Bayesian model for this study. 

In regression, multicollinearity could occur if one explanatory variable was a linear 

function of another explanatory variable and formerly observed in GWR modeling 

 (Hasyim et al. 2018). The independent variables “altitude,” “relative humidity,” 

“precipitation,” “NDVI,” and “temperature” were tested for multicollinearity. To 

investigate the colinearity problem among the independent variables, we used indices 

that are based on the predicted variance of modeling Variance Inflation Factor (VIF) 
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(Halimi et al. 2014). We considered the most often applied criteria that establish that 

variables with VIF greater than 4 warrant further investigations, and those with VIF 

greater than 10 indicate serious multicollinearity. 

Ordinary Least Squares was initially used before the GWR model to examine global 

statistical relationships between dependent and explanatory variables, including the 

multicollinearity assumption. At this level, the presence of local variation in 

relationships was not taken into account in regression.The OLS regression model 

was used to assess the global relationship between malaria cases and the selected 

envriomental risk factors. The method of least square expressed in the following 

equation (Acharya et al. 2018): 

 

                                                                    

 

   

 

Where yi is the ith examination of the response variable, ajxij is the ith examination of 

the Kth explanatory variable, and εi is the error terms. The global model assumes that 

the rate of neighborhood ward i is independent of neighboring j and that residuals 

usually distributed in terms with zero mean. 

Since the study area was characterized by spatial heterogeneity, we used the GWR 

model as an alternative to examine the local relationship between the dependent and 

independent variables (Hasyim et al. 2018). With the discussed dependent and 

independent variables, the GWR model can be formalized as 

 

                     

 

   

                     

 

 

Where y is the value of malaria cases at the location u, xt is the value of explanatory 

variable t at the location u, βt (u) is the regression coefficient at the location u, and ԑ 

is the random error with mean 0 and variance σ². 

In the GWR model, each explanatory variable has different regression parameters 

due to spatially varying parameters in weighted analysis regression (Mar’ah, 

Djuraidah, and Wigena 2017). 
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The GWR model that has both local and global parameters is known as Mixed 

Geographically Weighted Regression or Semi-parametric Geographically Weighted 

Regression (Nakaya et al. 2005). According to (Mar’ah et al. 2017), a stepwise 

procedure that allows all possible mixture of global and local parameters was tested, 

and the optimum mixed/semi-parametric model was selected based on the smallest 

corrected Akaike Information Criterion (AICc) value. The spatial variability test (F-

Test) was used by the model to determine local parameters in the model (Mei, Wang, 

and Zhang 2006). The specified local and global parameters depend on the 

confidence interval of GWR coefficients (Mar’ah et al. 2017). 

 In the GWR models, a weight matrix is calculated to calibrate the model and 

distinguish the spatial association among nearby wards. A fixed Gaussian kernel 

function was applied for the weighting scheme (Hasyim et al. 2018). The optimal 

distance threshold was determined by minimizing the AICc of the model. 

A Gaussian kernel is appropriate for fixed kernels as it can prevent the risk of there 

being no data within a kernel (Nakaya 2016). The golden search method was applied 

to decide the best bandwidth size for geographically weighting efficiently. The best 

bandwidth and the related weighting function were attained by selecting the smallest 

AICc score. The fixed Gaussian kernel for geographical weighting used in this 

study(Nakaya 2016) is as follows: 

 

                                                         (4) 

 

Where wij is the weight value of the observation at the location j to estimate the 

coefficient at location i, dij is the Euclidean distance between i and j, and b is the size 

of the fixed bandwidth given by the distance metric. The positive [negative] 

association between response and explanatory variables can be indicated by a 

positive [negative] regression coefficient βt(u) of the explanatory variable t at the 

location u. If one explanatory variable Xt (i.e. environmental risk factor) has a 

positive [negative] coefficient at the location u, it means that when Xt increases at 

the location u, it is expected that the malaria cases(Y) increases [decreases] at the 

location u, assuming all other factors remain constant. 
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Finally, we applied Semiparametric Geographically Weighted Regression (s-GWR) 

models treating some predictors as global while others as local. The s-GWR model is 

expressed in the following equation  (Fotheringham et al. 2002): 

         

  

   

          

  

     

                                                       

 

where for observation i,        is the geographical location,        
  are the ka 

global coefficients associated with the set of global explanatory variables        
 , 

            
       are the kb local coefficient functions associated with the set of 

local explanatory variables        
         

The selected environmental variables (Elevation, precipitation, temperature, NDVI, 

and relative humidity) correspond to the explanatory variables, and the pre-processed 

annual average malaria cases is the response variable in the GWR and s-GWR 

models of 2015 and 2016. OLS regressions were also fitted for comparison purposes. 

Diagnostic information provided includes the overall R
2
, AICc, and the analysis of 

spatial autocorrelation of the residuals. 

Some results of the GWR and s-GWR models (e.g., local R
2
, local coefficients, and 

estimated cases and residuals) were mapped using the ArcGIS10.6. Mapping local 

parameters make a straightforward interpretation based on recognized characteristics 

and spatial background of the research area (Goodchild and Janelle 2004). On the 

other hand, only mapping the predictor’s local coefficients does not provide a way of 

knowing whether they are significant anywhere on the study region (Matthews and 

Yang 2012). Accordingly, statistically significant wards where pseudo-t values 

exceed ± 1.96 were considered as relevant (Ehlkes et al., 2014; Acharya et al., 2018; 

Wabiri et al., 2016; Matthews and Yang, 2012). 
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4 RESULTS 

4.1 The spatial analysis and distribution of malaria Cases          

A total of 19687.31 cases in 2015 and 456807.8 cases in 2016 in a total population of 

approximately 99,870,000 and 102,400,000 in Ethiopia were recorded in 2015 and 

2016, respectively. This translates to overall annual malaria cases of 0.197 per 1000 

and 4.461 per 1000 inhabitants in 2015 and 2016, respectively. 

The malaria cases were distributed in the wards, as shown in Figure 5. The results of 

the global spatial autocorrelation test for the 2015 and 2016 years data showed 

significant spatial dependence in several wards for all yearly cases: minimum 

Moran’s I = 0.323, p < 0.05 (2015), and maximum Moran’s I = 0.514, p < 0.05 

(2016). The significant local spatial autocorrelation result for malaria cases ensured 

the suitability of the malaria cases data as the response variable in GWR models. 

Local spatial autocorrelation of each year was assessed with local indicators of 

spatial association (LISA) (Anselin 1995), namely the Local Moran’s I statistic 

Figure 5 and the Getis-Ord Gi* statistic (Figure 6). The Local Moran’s I maps 

showed the hot-spot regions (high-high) and cold-spot regions (low-low), where hot-

spot location means the malaria cases  of a particular spatial unit is high, and malaria 

cases of its surrounding units are also high, and cold-spot region implies the 

opposite. 

 

a 

 

 

b 
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c 

 

 

d 

 

 Figure 5 Local Moran’s I test maps of malaria cases and corresponding significance 

for 2015 (top) and 2016 (bottom). 

 

The hot-spot locations of malaria cases in 2015 Figure 5a were the wards along the 

west, the northwestern part of the country, whereas the cold-spot were along the 

west, the central and southeastern part of the country. The hot-spot locations of 

malaria cases in 2016 Figure 5c were very high malaria cases in the wards along the 

northwest, and the west northern part of the country, whereas the cold-spot were 

wards along the western, central, and southeastern part of the country. A few zones 

exhibit local negative spatial autocorrelation where wards with low values of malaria 

cases  correlate with high neighbouring values (10 and 9 Low-High wards in 2015 

and 2016 respectively), and wards with high values of malaria cases  correlate with 

low neighbouring values (8 High-Low wards in 2015). 

Figure 6 depicts the annual malaria cases distribution in 2015 and 2016 at wards 

level in the country using Hot Spot Analysis (Getis-Ord Gi* statistic).  Accordingly, 

in 2015 the yearly malaria cases hot-spot distribution was along the north and 

northwestern region of the country. In contrast, in 2016, the annual malaria cases          

hot-spot distribution was along the northern part of the county (Figure 6b). These 

results also highlight the spatial nonstationarity of malaria cases. 
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Figure 6. Hot-spot (Getis-Ord Gi* statistic) results of malaria cases   in 2015 (a) and 

2016 (b) 

 

4.2 Spatial analysis of predictors 

The explanatory variables were assessed using spatial autocorrelation, and it was 

found to be significant for five of the independent variables Figure 7. A local 

Moran’s I analysis result identified along with the hot-pot and cold-spot distributions 

of the five variables. The hot-spot locations of Elevation Figure 7a were the wards 

along the north-central part of the country. The temperature hot-spot areas were in 
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the southern-eastern, northeastern lowlands and western regions of the country as 

depicted in Figure 7b.  Relative humidity hot-spot distribution was along the central 

areas of the country as drew in Figure 7c. Precipitation hot-spot distribution was 

wards along the Western and Central regions of the country Figure 7d. Figure 7e 

showed hot-spots in the normalized difference vegetation index (NDVI) distribution 

along the southwestern part of the country. 

a

 

 

 

b
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e

 

 
 

Figure 7: Distribution of selected explanatory variables with their corresponding 

local (1st column) and global Moran’s I tests (2nd column) 
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4.3 Ordinary Least Squares model 

The coefficients of the Ordinary Least Squares models have the same value for all 

points within the study area (Table 4) and (Table 5). Thus, the global regression 

models could not capture the process for spatial heterogeneity and varying 

relationships in the data. In the 2015 model (Table 4), none of the regression 

coefficients is significantly different from zero at the 5% significance level (p-

value>0.05), though the coefficient of temperature (TM2015) is significant at the 

10% significance level. In the 2016 model (Table 5) all coefficients are significant at 

the 5% level (p-value0.05), except NDVI2016. 

In the two models (2015, 2016), all independent variables have VIF<4, so there is no 

evidence of multicollinearity among them as shown in Table 4 and Table 5. 

Therefore, it is appropriate to use them in the local models. 

Table 4: Summary of OLS Results - Model Variables for 2015 

Variable Coefficient StdError 
t-

Statistic 
p-value 

Robust 
StdError 

Robust_t 
Robust 
p-value 

VIF 

Intercept  -37.078 65.507 -0.566 0.571 71.985 -0.515 0.606 ……. 

Elevation  -0.009 0.008 -1.120 0.262 0.009 -0.962 0.335 1.687 

TM2015 3.083 1.598 1.930 0.053 1.777 1.735 0.083 3.416 

RH2015 0.193 0.521 0.371 0.710 0.581 0.332 0.739 3.856 

PR2015 0.246 0.166 1.481 0.138 0.198 1.242 0.214 3.252 

NDVI2015 -0.002 0.002 -1.441 0.149 0.002 -1.589 0.112 2.208 

 

Table 5: Summary of OLS Results - Model Variables for 2016 

Variable Coefficient StdError t-Statistic p-value 
Robust 

StdError 
Robust_

t 
Robust 
p-value 

VIF 

Intercept  -9252.87 2844.84 -3.252 0.001* 3677.108 -2.516 0.012* …… 

Elevation  2.895 0.34 8.451 0.000* 0.551 5.251 0.000* 1.731 

TM2016 411.115 69.41 5.922 0.000* 100.407 4.094 0.001* 3.807 

PR2016 6.261 4.97 1.258 0.208 2.211 2.831 0.004* 2.096 

RH2016 -51.043 21.51 -2.372 0.018* 25.473 -2.003 0.045* 3.951 

NDVI2016 -0.027 0.08 -0.331 0.741 0.053 -0.508 0.611 1.655 

 

 

4.4 Geographically Weighted Regression model 

 The GWR models were used to explore the local effects of variables on malaria 

cases in all wards in 2015 and 2016. The independent variables were temperature, 
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elevation, relative humidity, precipitation, and predictor variable derived from 

remote sensing data (NDVI).  

The pseudo-t statistics in the GWR model indicate the statistical significance of 

locally varying coefficients for the explanatory variables. Figure 8 depicts the spatial 

distribution of pseudo-t values for all independent variables for both years in the 

study area. Pseudo-t values were computed by dividing independent coefficient 

estimates by their standard errors, with statistical significance defined as a pseudo-t-

value greater than or equal to 1.96 (positive relationship) or pseudo-t value smaller 

than or equal to -1.96 (negative relationship) (Nakaya et al., 2005;Kuo et al., 2017). 

The non-significant coefficients are represented in yellow in Figure 8, with a 

statistically significant positive association in red/orange and negative statistically 

significant relationship in green/light green. Figure 9(a-e) and Figure 10(a-e) shows 

local coefficients for independent variables for both years in the GWR models. It 

effectively reveals how the direction and strength of the relationship between each 

predictor and response variable vary over space. Table 6 and Table 7 summarize the 

values of the maps of GWR local coefficients in Figure 9(a-e) and Figure 10(a-e), 

and also show global adjustment measures (R
2
, Adjusted R

2
 and AICc). Despite the 

higher Adjusted R
2
 in 2016 model, the 2015 model has a better global fit considering 

its lowest value of the AICc. All these results are further discussed below. 

 

 

Table 6. Summary of the locally varying coefficients of the variables on the GWR model in 2015. 

Coefficients  Minimum Lower quartile Median  Upper quartile  maximum 

Intercept  -113.919 9.149 29.276 63.560 431.059 

Elevation  -237.415 -42.757 -13.933 -4.582 177.795 

TM2015 -143.665 -9.475 2.745 17.829 294.543 

RH2015 -362.737 -11.673 7.165 17.128 583.187 

PR2015 -206.090 -15.310 -1.958 5.260 339.122 

NDVI2015 -120.831 -8.291 -2.489 2.265 56.994 

R
2
 = 0.630, Adjusted R

2 
=0.515, AICc= 7311.884 
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Table 7  Summary of the locally varying coefficients of the variables on the GWR model in 2016. 

Coefficients  Minimum 
Lower 
quartile 

Median  
Upper 
quartile  

maximum 

Intercept  -13284.062 5.503 15.931 30.822 9390.445 

Elevation  -4007.037 -15.514 -2.653 11.094 4683.572 

TM2016 -4299.357 -11.299 0.523 16.990 4500.589 

PR2016 -19773.517 -26.501 -5.672 1.107 5874.614 

RH2016 -13530.506 -26.221 0.522 9.315 4867.645 

NDVI2016 -798.797 -4.291 -0.748 6.899 10148.366 

R
2
= 0.680, Adjusted R

2
= 0.608, AICc=12349.729 

 

In 2015, temperature coefficients showed a positive and negative correlation with 

malaria case per wards and were significant in some wards located to the 

northwestern, southwestern part of the study areas Figure 8g. Elevation 2015  

estimated coefficients showed a positive and negative relationship with malaria cases         

per ward and was significant in some wards located to the northern, southwestern, 

and southern part of the study areas (Figure 8i). In 2015, the estimated NDVI 

coefficients showed a positive and negative relationship with malaria cases  per 

wards and were significant in some wards located to the northwestern, northeastern 

and southern part of the country Figure 8a. In 2015 precipitation estimated 

coefficients showed a positive and negative correlation with malaria cases per wards 

and were significant in some wards located to the western, northwestern, 

southwestern, and south-central parts of the study area (Figure 8c). In 2015 relative 

humidity estimated coefficients showed a positive and negative association with 

malaria cases per wards and were significant in some wards located to the northern 

and western part of wards in the study area (Figure 8d). In 2016 NDVI estimated 

coefficients depicted only positive correlation with malaria cases per wards and were 

significant in some wards located to the northeastern wards of the country (Figure 

8b). 

In 2016 Precipitation estimated coefficients showed an only negative relationship 

with malaria cases per wards and were significant in some wards located to the 

northern part of the country (Figure 8d). In 2016 relative humidity, temperature, and 

elevation estimated coefficients depicted a positive and negative correlation with 

malaria cases per wards and were significant in some wards located to the northern 

part of the country (Figure 8h, f, and j). 
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Figure 8. Pseudo t-values for independent variables in 2015 (left) and 2016 (right) 
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Figure 9. GWR local coefficients of the 2015 model (a-e) 
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Figure 10.GWR local coefficients of the 2016 model (a-e) 

 

 

 

 

 

In 2015 temperature is significantly and positively related to malaria cases in the 

following 28 Wards: 

 Gidami,  Jimma Horo,  Dale Wabera, 

 Gawo Kebe,  Babo,  Gudetu Kondole,  

 Maok Omo,   Begi,  Kiltu kara,  

 Mana Sibu,   Bambasi,   Assosa,  

 Menge,   Homosha,   Biligidillu,  

 Sirba Abaya,   Kumuruk,   Sherkole, 

 Guba,   Anfilo,   Yama Logi welel,  

 Hawa Gelan,   Dale sadi,   Ayira Guliso,  

 Boji Chekorsa,   Nejo,  Agalmoeti, 
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 Qura,   Mirab Armacho,   Tsegede,  

 Kafta Humera,   Tach Armacho.  

Temperature was also significant and negatively related to malaria cases in the 

following 31 wards (Figure 8g): 

 Amuru,   Debra Elias,   Guzamn,  

 Michakel,  Bure,   Wemberama, 

 Dembecha,   Senan,   Jabi  Tehnan,  

 Ankasha,  Guagusa,   Dega Damot,  

 Bibugn,Banja,  Sekela, Quarit,  Gonje,  

 Fagta lakoma,  Yilmana Densa,  Dangila,  

 Pawe,   Anchefer,   Mecha, 

 Bahirdar Zuria,  Dera ,  Jawi,  

 Fogera,   Libo Kemekm,   Takusa , 

 Dera,   Bure,  and Alfa. 

Elevation 2015 estimated coefficient was significant and   positively related to 

malaria cases in the following 18 wards in the country: 

 Gidami,  Jimma Horo,   Dale Wabera,  

 Gawo Kebe,   Babo,   Gudetu Kondole,  

 Maok Omo,   Begi,   Kiltu kara,  

 Mana Sibu,  Bambasi,   Assosa, Menge, 

 Homosha,  Biligidillu,   Sirba Abaya, 

 Kumuruk,  Sherkole  and Guba. 

 Moreover, Elevation 2015 was also significant and negatively related to malaria 

cases in the following 160 wards in the country (Figure 8i): 

 

 Asgede Tsimbila,   Medebay,  Naeder Adet, 

 Kola Temben,  Degua Temben,  Hawzen, 

 Tahtay koraro,    laelay Maychew,  Adwa, 

 Afeshum,   Erop,   Gulomekeda, 

 Ahferom,  Mereb Leka,  laelay Adiyabo, 

 Mirab Armacho,  Tsegede,   Debark,  

 Addi Arekay,   Beyeda,   Tselemt, 

 Welkait,  Alfa,  Fogera,  

 Farta,   Lay Gayint,  Libo Kemkem, 

 Ebenat,  west Belesa,   East Belesa, 

 Takusa,   Chilgam,  Dembia,  

 GonderZuria,  Lay Armachewo,   Wegera,  

 Dabat,  Metema,   Danguara,  

 Pawe,   Dangila,  Mecha, 

 yilmana Densa,   West Esite,   Dera, 

 Bahirdar Zuria,  Debub Anchefer,  Jawi, 

 Limu,  Ababo,  Baso liben,  

 Awabel,   Dejen,   Wara Jarso, 

 Dera,  Wegde,   Debresina, 

 Shebel  Bereta,  Dejen,   Awabel,  

 Aneded,   Baso liben,  Aneded,  
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 Guzamn,   Debre Elias,  Bure,  

 Dembecha,   Michakel,   Senan,  

 Debay,  Telatgen,  Enemay,  

 Enar Enawa,  Jabi Tehnan,   Bure Dembecha,  

 Wemberma,  Guangua,   Ankasha, 

 Dega Damot,  Sekela,   Quarit, 

 Sekela,  Mandura,  Fagta Lakoma, 

 Ameya,   Nono,  Goro,  

 Tocha,  Mareka,  Gena Bosa, 

 Boloso Bombe,  Kacha Bira,  Tibaro,  

 Omo Nada,   Sekoru,  Yem, Gibe,  

 Endiguagn,  Admi Tulu,  Selti, 

 Ezha,  Cheha,  Chora,  

 limu kosa,  Sekoru,   Tiro Afeta,  

 Ameya,  Nono,chora,  Amaro SP, 

 Koochere,  Gedeb,   Kercha,  

 Bule Hora,  Hambela,  Wamena, 

 Borke,   Arba Minch Zuria,  kemba,  
 zala,  Daramalo,   Dita,  

 Chencha,   Abaya,  Dila Zuria,  

 Wenagol,  Bule,  Yirgachefe, 
 Afele Kola,  Bore,  Dara,  

 Hulla,   Bursa,  Dale, 
 Humbo,   Loka Abaya,  Zala, 

 Denibu Gofa,  Kucha,  Boreda, 

 Sodo Zuria,  Damot,  Boricha, 
 Boloso Sore,   Bomb,  Siraro, 

 Awasa Zuria,   Goro,   Arsi Negeli,  
 limu,   Kacha biraa,  loma Bosa,  

 Ofa,  Kindo Dida,  Mareka, 
 Tibaro,  Dune,   Daniboya,  

 Dedo,  Omo Nada,  Goro,  

 Shashemene zuria  And Bure  

 

 

 

In 2015 the estimated NDVI local coefficient was significant and positively related 

to malaria cases in the following 15 wards in the country: 

 Gaz gibla,  Alamata,   Olfa,  

 Sekota,   Endamehoni,  Raya Azebo, 

 Yalo,   Teru,  Alaje,  

 Megale,   Erebti,   Hintalo Wejirat, 

 Saharti Samre,  Ab Ala,  and Enderta. 

 NDVI also significant and negatively related to malaria cases in the following 54 

wards in the country (Figure 8a): 
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 Mereb leke,  Quara,  Takusa, 

 Chilga,  Dembia,  Loma bosa,  

 Kindo dida,  Ofa,   Sodo zuria,  

 Kindo  koysha,  Damot sore,   Damot gale,  

 Damot pulasa,  Mareka,   Tocha, 

 Gena Bosa,  Boloso Bombe,  Boloso sore, 

 Badawacho,  Tibaro,   Kacha Bira, 

 Hadero Tubito,  Dune,Soro,   Doya, 

 Gena,   Daniboya,  Shashogo, 

 Dedo,   Omo Nada,  Yem, 

 Gembora,  LImu,   Analemmo, 

 Sekoru,  Gibe,  Tiro Afeta, 

 sekoru,  Alfa,  Geta,  

 wilbareg,  Yama logi welel,  Jimma Horo,  

 Gawo kebe,  Dale wabera,  Gudetu condole,  

 Babo,  Gumurk,   Homosha, 

 Pawe,  

 and Metema 

 Achefer,  

 Enemorina Eaner 

 Jawi,  

   

In 2015 precipitation estimated local coefficient was significant and positively to 

malaria cases in the following 16 wards in the country: 

 Kurmuk,   Homosha,  Assosa, 

 Bambasi,  Begi,  Maok omo, 

 Guba,shebel berta,   Wegede,  Enarj enawaga, 

 Debresina,  Enbise sar midir,  Mehal sayint, 

 Sayit,   Simada,  Tach gayint  

 and Dawunt   

Precipitation was also significant and negatively related to malaria cases in the 

following 49 wards in the country (Figure 8c): 

 Cheta,   Decha,  Ela, 

 Melekoza,  Geze gofa,  Ayida,  

 Zala,   Darmalo,  Denibu gofa, 

 Esira,Yaso,  Ibantu,   Dibat,  

 Bulen,   Guangua,   Ankasha,  

 Bure,  Wemberma,  Madura,  

 Banja,  Fagta lakoma,   Mecha,  

 Dangila,  Pawe,   Anchefer,  

 Bahirdar Zuria,  Yilana densa,  Dera, Alfa,  

 Jawi,  Takusa,   libo kemekem, 

 Ebenat,  Metema,  Chilga, 

 Dembia,   Gonder zuria,  Belesa,  

 Wegera,  Lay armacho,  Janamora, 

 Dabat,  Armarcho,   Tsegede, 

 Debark,   Addi Arekay,  Welkait, 

 Addi arekay,  Kefta humera,  Dera  

 and Bure.   
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In 2015 relative humidity was significant and positively related to malaria in the 

following 43 wards in the country. 

 Metema,   Chilga,  Lay Armacho,  

 Mirab Armacho,  Tach Armacho,   Tsegede, 

 Dembia,  Gonder Zuria,  West Belesa,  

 Wegera,   Dabat,  Janamora, 

 Debark,  Addi Arekay,   Tselemt, 

 Beyeda,   Welkait,   Kafta  Humera, 

 Asgede Tsimbila,  Kola Temben,   Medebay,  

 Tshtay koraro,   Maychew,   Adwa,  

 Laelay Adiyabo,   Mereb Leke,   Tahtay Adiyabo, 

 Gidami,  Jimma Horo,   Dale Wabera, 

 Yama logi Wele,  Gawo Kebe,  Begi, 

 Gudetu Kondole,  Babo,   Nejo, 

 Mana Sibu,  Kiltu Kara,  Agalometi, 

 Daramalo,  Dita,  Chenech 

 and Mirab Abaya.   

 Relative humidity was also significant and negatively related to malaria Cases          

in the following 32 wards (Figure 8e): 

 Quara,  Guba,   Dangura, 

 Pawe,  Dangila,  Fafata lakoma, 

 Sekela,   Quarit,  Gonje,  

 Yilmana dense,   Mecha,  Anchefer,  

 Bahirdar Zuria,  Dera,   Fogera,  

 Amuru,   Debre Elias,  Guzamn,  

 Michakel,  Senan,   Debay Telatgen,  

 Michakel,   Dembecha,   Bure,  

 Wembera,   Daga damot,  Bibugn, 

 Hulet Ej Enese,   Quarit,   Ankasha, 

 Guangua,   Guagusa   And shiludad. 

In year 2016 NDVI was significant and positive related to malaria cases in the 

following 50 wards in the country: 

 Sahla,  Ziquala,  Saharti Samre, 

 Alaje,  Hintalo Wejirat,  Megale,  

 Erebti,   Afdera,  Beyeda,  

 Tanqua Abergele,   Abala,   Enderta,  

 Degua Temben,  Kola Temben,   Kelete Awelallo,  

 Atsbi Wenberta,  Koneba,   Berahle,  

 Werei leke,  Hawazen,   Sekota,  

 Ganta Afeshum,  Dalul, Berahle,  Lay Gayint,  

 Dawunt,   Wadla,   Delanta,  

 Ambasel,  Habru,   Worebabu, 

 Chifra,  Ewa,   Guba Lafto,  

 Meket,   Bugna,   Lasta,  

 Gidan,   Kobo,  Gulina, 
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 Awra,  Aalmata,   Gaz gibla,  

 Dehana,   Ofla,  Yalo,  

 Teru,  Raya Azebo,  Endamehoni,  

 SaesieTs 

aedaemba 

 and Erob.  

NDVI also significant and negatively related to malaria cases in the Tahtay Adiyabo, 

Laelay Adiyabo and Mereb Leke wards (Figure 8b). 

Precipitation estimated local coefficient showed only negative relationship with 

malaria cases per wards and was significant in the following 58 wards (Figure 8d): 

 Ambasel,  Tach Gayint,  Farta, Lay Gayint, 

 Meket,   Wadla,   Delanta,  

 Worebabu,   Chifa,  Habru,  

 Guba lafto,  Ewa,   Awra,  

 Meket,  Ebenat,  Gugna,  

 Lasta,   Gidan,   Kobo,  

 Gulina,   Alamata,   Ofla,  

 Gaz Gibla,   Dehana,   Belesa,  

 Wegera,   Ziquala,  Sekota,  

 Enamehoni,   Yalo,   Teru,  

 Sahla,   Janamora,   Debat, 

 Tsegede,   Debark,  Addi arekay, 

 Welkait,  keftay Humera,   Tahtay Adiyabo,  

 laelay Adiyabo,  Mereb leke,   Maychew,  

 Adwa,  Kola Temben,   Wereri  leke ,  

 Hawzen,   Ganta Afeshum,  Tselmti, 

 Beyeda,   Tanqua Abergele,  Enderta , 

 Abala ,   Erebti,   Afdera,  

 Berahle,  Koneba,   kelete Awalalo  

 and Berahle.     

Relative humidity was significant and positively related to malaria cases in the 

Tahtay Adiyabo and, Laelay Adiyabo Wards Moreover; it was significant and 

negatively related to malaria cases in the following 52 wards (Figure 8f). 

 Metema,  Tach Armacho,  Lay armacho, 

 Tsegede,  Mirab Armacho,  Kaftay Humura, 

 Tanqua Abergele,   Enderta,  Wegera, 

 Dabat,  Debark,  Janamora,  

 Beyeda,  Sahla,  Ziquala,  

 Endamehoni,   Hintalo Wejirat,  Abala, 

 Erebit,   Worebabu,   Chira, 

 Habru,   Ewa,   Awra,  

 Guba lafto,   Gidan,  kobo,  

 Gulina,   Teru,   Yalo, 

 Alamata,   Gaz gibila,  Dehana,  

 Sekota,  Ofla,   Tselemt,  

 Degua Temben,  Kelete Awelallo,  Atsbi Wenberta,  



34 
 

 Koneba,  Berahle,  Daul,  

 Hawazen,   Werei leke,   Naeder Adet, 

 Ganta afsshum,   Erob,  Dalul, 

  Gulomekede,   Ahferom  

.  Saesis Ts 

sedaemba, 

 and Welkait 

Temperature was significant and positively related to malaria cases in the in the 

following 26 wards in the country. 

 Dawunt,   Ambasel,  Delanta,  

 Wadla,  Guba Lafto,   Maket,  

 Laygayint,  Bugna,  Ebenat,  

 Gidan,Kobo,   Lasta,   Gaz,  

 Gibla,   Dehana,   Belesa,  

 Wegera,   Dabat,  Janamora, 

 Sahla,  Debark,   Addi Arekay, 

 Tselemti,   Asgede tsimbila,   Tahtay Adityabo, 

 Tahtay Koraro   and Erop.   

Temperature also significant and negatively associated with malaria cases in the 

following 17 wards (Figure 8h). 

 Mirab Armacho,  Tsegede,  Kafta Humera, 

 Endameoni,   Alaje,   Teru,  

 Megale,   Erebti,  Abala, 

 Hintalo Wejirat,   Saharti Samre,  Abergele, 

 Tanqua  Abergele,  Degua Temben,   Kola Tamben, 

 kelele Awelalo  ,andAtsbi 

Wenberta. 

 

 Elevation was significant and positively related to malaria cases in the Delanta, 

Ambesal, Habru, Guba lafto, Chifa, Dubti, Ewa, Awara, Gulina, Kobo,  Lasta, Gas 

Gibla, Almata, Ofla, Yalo, Teru, Afdera, Raya azebo, Sekota, Ziquala, Abergele, 

Alaje, Hintalo Wejrat, Megale, Erebti, Saharti Samre, Tanqua Abergele, Enderta, 

Degua Temben, Kola Temben, Werei leke, Hawzen, Atsbi Wenberta, Saesie Ts 

aedaemba, koneba, Berahle,  and Dalul Wards. Moreover, Elevation is significant 

and negatively related with malaria cases  in the Kafta Humera, Tsegede, Welkait, 

Asgede Tsimbila, Tselemti, Tahtay koraro, Tahtay Adiyabo, laelay Adiyabo, East 

Belesa, Ebenat, and Lay Gayint Wards as it depicted in Figure 8j. 

 

The observed malaria cases map in 2015 (Figure 11a) should be compared with 

caution with the estimated map (Figure 11b), as well as the observed cases in 2016 

(Figure 11c) with the estimated cases in 2016 (Figure 11d). According to the above 

discussion, the models’ coefficients are not relevant in a large number of wards, thus 

the predictive power of the models is low in most of the country. However, it is 
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important to point out that the models were not developed for prediction purposes. 

The usefulness and aim of the models is to identify relevant varying relationships 

between malaria cases and environmental variables. 

a

 

 

b 

 

 

c

 

 

d 

 

Figure 11. Observed (a) and GWR estimated (b) malaria incidence in 2015; observed (c) and GWR 

estimated (d) malaria incidence in 2016 

 

Table 8 depicts the comparison of the GWR and OLS models based on several 

indicators. For both years, the sum of the residuals of squares (RSS) was summarized 

to evaluate the model error, and Global Moran’s I of residuals were tested along with 

the associated significance levels. The AICc values showed that the GWR model of 

each year fitted better than the corresponding OLS models. The spatial 

autocorrelation of residuals was not entirely removed in the 2016 GWR model, but 

the Global Moran’s I statistic was closer to zero in GWR than in the OLS models. 
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Table 8 Comparison of goodness-of-fit results and residual analysis of the GWR and OLS models 

Year  AICc     Adjusted R
2
 RSS Global Moran’s I of 

residual (significance-
score) 

 GWR OLS GWR OLS GWR OLS GWR OLS 

2015 7311.88 7683.95 0.515 0.012 715.43 3199364.47 0.007 

(p=0.143, 
Z=1.463) 

0.395 

(p=0.000, 
Z=10.662) 

2016 12349.73 12772.77 0.608 0.182 2250710287 5753288780 -0.104 

(p=0.020, 
Z=-2.319) 

0.316 

(p=0.000, 
Z=23.683) 

 

Global Moran’s I results showed (Table 8) there is significant autocorrelation in the 

residuals of the GWR model in 2016, and authenticates the variables we considered 

in this study were unable to appropriately predict the  malaria cases distribution 

spatially in the entire study area. That was due to the scarce population in some 

wards or missing explanatory variables. In contrast, the Global Moran’s I results of 

spatial autocorrelation of residuals of the 2015 model was not statistically significant 

so that the model was well specified. 

4.5 Semiparametric Geographically Weighted Regression 

Semiparametric Geographically Weighted Regression (s-GWR) models were 

investigated. The GWR model with all local variables (before L -> G selection) was 

compared with s-GWR models (after L -> G selection), where local variables were 

step by step selected to become global variables. The best s-GWR models had an 

AICc of 7273.689 in 2015, and 12304.718 in 2016 (Table 9), thus they performed 

better than the GWR models (Table 8). The s-GWR models were further used to 

explore the local and global relationships of the explanatory variables in connection 

to malaria case. 
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Table 9 Comparison of GWR and s-GWR models performances based on AICc 

Year  Model  AICc Improvement 

2015 GWR model (before L -> G selection) 7311.884 38.194 

S-GWR model (after  L -> G selection) 7273.689 

2016 GWR model (before L -> G selection) 12349.729 45.010 

S-GWR model (after  L -> G selection) 12304.718 

 

Table 10 reviews the result of GWR 4.0 (Nakaya et al., 2005;Nakaya, 2016), where 

contrast of OLS, GWR, and s-GWR in terms of AICc, R
2
, and adjusted R

2
. The OLS 

model explained only 1.2% in 2015 and 18.2% in 2016 of the variability of malaria 

cases, whereas the variability explained by the GWR models increased to 51.5% in 

2015 and 60.9% in 2016, and a little more with the s-GWR models (53.8% in 2015, 

and 62.4% in 2016).  The model fit was significantly improved with the s-GWR 

model, reducing the AICc values from 7684 to 7274 in 2015, and from 12773 

to12305 in 2016. In summary, both s-GWR models performed better than the other 

competing models, thus they are considered the final models for malaria cases in this 

study. 

 
Table 10 Comparison of  OLS, GWR and s-GWR models performances based on goodness-of-fit 

measures 

Year  Fitness measures OLS 
(global model) 

GWR 
(local model) 

s-GWR 
(mixed model) 

2015 AICc 7683.95 7311.88 7273.69 

R2 0.021 0.630 0.642 

Adjusted R2 0.012 0.515 0.538 

2016 AICc 12772.77 12349.73 12304.72 

R2 0.189 0.683 0.685 

Adjusted R2 0.182 0.609 0.624 

 

The outcome of geographic variability test and local to global variable selection 

approach were based on DIFF of Criterion (Table 11 and Table 12) suggesting no 

spatial variability in the negative coefficient of NDVI in 2015, and  negative 

coefficient of elevation and positive coefficient of temperature in 2016 (Nakaya 

2016). Therefore, NDVI is a global explanatory variable, while the other four 

variables have a local varying explanation power in the 2015 model. In 2016, both 

elevation and temperature variables remained as global, while the other three 

independent variables are local. 
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The s-GWR model with NDVI as global predictor and elevation, temperature, 

precipitation, and relative humidity as local predictors corresponds to the final model 

found in 2015. In 2016, s-GWR model with elevation and temperature as global 

predictors and NDVI, precipitation and relative humidity as local predictors is the 

final model. 

 

Table 11 Summary of s-GWR model coefficients in 2015    

Global coefficients 

 
Variable              Estimate Standard Error   t(Estimate/SE)   DIFF of Criterion 

NDVI2015    -3.560280         3.673756        -0.969112   33.827555 

Local Coefficients  

Variable      Minimum Lower quartile Median  Upper quartile  maximum  

Intercept  -191.420 7.910 27.407 69.213 516.043 -132.546712 

Elevation  -254.355 -41.107 -14.286 -4.255 209.723 -26.453838 

TM2015 -171.932 -12.620 1.321 16.662 505.169 -16.845405 

RH2015 -436.018 -13.593 6.545 18.316 745.869 -14.245095 

PR2015 -286.025 -15.893 -1.410 8.455 464.719 -5.695182 

R
2
 = 0.642, Adjusted R

2 
=0.578, AICc= 7273.690    

 

 

Table 12 Summary of s-GWR model coefficients in 2016 

Global coefficients 
 
Variable              Estimate Standard Error   t(Estimate/SE)   DIFF of Criterion 

Intercept    -4.715983       259.525511        -0.018172   3.588635 

Elevation -69.872590       153.268985        -0.455882   17.736322 

TM2016 263.031167       237.138194         1.109189   8.655711 

Local Coefficients  

Variable     Minimum Lower quartile Median  Upper quartile  maximum  

PR2016 -29917.885 -76.106 3.564 57.030 1709.727 -49.857796 

RH2016 -11305.206 86.091 226.052 292.885 7926.942 -16.984620 

NDVI2016 -1485.792 -119.889 -32.930 21.994 13194.320 -55.513555 

R
2
 = 0.685, Adjusted R

2 
=0.624, AICc= 12304.719  

 

 

 

The local estimated coefficients variation and associated t statistics are shown in 

(Figure 12, Figure 13, Figure 14, and Figure 15) below. 
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Figure 12.S-GWR   Pseudo t-values for independent variables in 2015 with significance levels 

a

 

 

b
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c

 

 

 

 

Figure 13.s-GWR   Pseudo t-values for independent variables in 2016 with significance levels 
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Figure 14. s- GWR local coefficients of the 2015 model (a-d) 
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a 

 

b

 

 

c 

 

 

 

Figure 15. s- GWR local coefficients of the 2016 model (a-c) 

 

 

 

In 2015 Precipitation was significant and positively associated with malaria cases         

in the following 19 wards: 

 Kurmuk,  Homosha,  Assosa, 

 Bambasi,  Begi,  Maok omo, 

 Guba,  shebel berta,  Wegede, 

 Enarj enawaga,  Debresina,  Enbise sar midir, 

 Mehal sayint,  Sayit,  Simada, 

 Tach gayaint,  Dawunt,  Hindarta and 

 AndHintalo Wejrat   

Precipitation also significant and negatively related to malaria cases  in the following 

50 wards in the country (Figure 12b): 

 Cheta,  Decha,  Ela, 

 Melekoza,  Geze gofa,  Ayida, 

 Zala,  Darmalo,  Denibu gofa, 

 Esira,  Yaso,  Ibantu, 
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 Dibat,  Bulen,  Guangua, 

 Ankasha,  Bure,  Wemberma, 

 Madura,  Banja,  Fagta lakoma, 

 Mecha,  Dangila,  Pawe, 

 Anchefer,  Bahirdar Zuria,  Yilana densa, 

 Dera,  Alfa,  Jawi, 

 Takusa,  libo kemekem,  Ebenat, 

 Metema,  Chilga,  Dembia, 

 Gonder zuria,  Belesa,  Wegera, 

 Lay armacho,  Janamora,  Dabat, 

 Armarcho,  Tsegede,  Debark, 

 Addi Arekay,  Welkait,  Addi arekay, 

 Kefta humera,  Dera and Bure.   

Elevation was significant and positively associated with malaria cases in the 

following 19 wards: 

 Gidami,  Jimma Horo,  Dale Wabera, 

 Gawo Kebe,  Babo,  Gudetu Kondole, 

 Maok Omo,  Begi,  Kiltu kara, 

 Mana Sibu,  Bambasi,  Assosa, 

 Menge,  Homosha,  Biligidillu, 

 Sirba Abaya,  Kumuruk,  Sherkole, and 

 Guba.   

Elevation also significant and negatively related to malaria cases  in the following 

155 wards (Figure 12a): 

 Asgede Tsimbila,  Medebay,  Naeder Adet, 

 Kola Temben,  Degua Temben,  Hawzen, 

 Tahtay koraro,  laelay Maychew,  Ganta Afeshum, 

 Erob, Gulomekeda,  Ahferom,  Mereb Leka, 

 laelay Adiyabo,  Debark,  Addi Arekay, 

 Beyeda, Tselemt,  Welkait,  Alfa, 

 Fogera,  Farta,  Lay Gayint, 

 Libo Kemkem,  Ebenat,  west Belesa, 

 East Belesa,  Takusa,  Chilgam, 

 Dembia,  GonderZuria,  Lay Armachewo, 

 Wegera,  Dabat,  Metema, 

 Danguara,  Pawe,  Dangila, 

 Mecha,  yilmana Densa,  West Esite, 

 Dera,  Bahirdar Zuria,  Debub Anchefer, 

 Jawi,Limu,  Ababo,  Baso liben, 

 Awabel,  Dejen,  Wara Jarso, 

 Dera,  Wegde,  Debresina, 

 Shebel  Bereta,  Dejen,  Awabel, 

 Aneded,  Baso liben,  Aneded, 

 Guzamn,  Debre Elias,  Bure, 

 Dembecha,  Michakel,  Senan, 

 Debay,  Telatgen,  Enemay, 
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 EnarJ Enawa,  Jabi Tehnan,  Bure Dembecha, 

 Wemberma,  Guangua,  Ankasha, 

 Dega Damot,  Sekela,  Quarit, 

 Sekela,  Mandura,  Fagta Lakoma, 

 Ameya,  Nono,  Goro, 

 Tocha,  Mareka,  Gena Bosa, 

 Boloso Bombe,  Kacha Bira,  Tibaro, 

 Omo Nada,  Sekoru,  Yem, 

 Gibe,  Endiguagn,  Admi Tulu, 

 Selti, Ezha,  Cheha,  Chora, 

 limu kosa,  Sekoru,  Tiro Afeta, 

 Ameya,  Nono,  chora, 

 Amaro SP,  Koochere,  Gedeb, 

 Kercha,  Bule Hora,  Hambela, 

 Wamena,  Borke,  Arba Minch Zuria, 

 kemba,  zala,  Daramalo, 

 Dita,  Chencha,  Abaya, 

 Dila Zuria,  Wenagol,  Bule, 

 Yirgachefe,  Afele Kola,  Bore, 

 Dara,  Hulla,  Bursa, 

 Dale,  Humbo,  Loka Abaya, 

 Zala,  Denibu Gofa,  Kucha, 

 Boreda,  Sodo Zuria,  Damot, 

 Boricha,  Boloso Sore,  Bomb, 

 Siraro,  Awasa Zuria,  Shashemene zuria, 

 Arsi Negeli,  limu,  Kacha biraa, 

 loma Bosa,  Ofa,  Kindo Dida, 

 Mareka,  Tibaro,  Dune, 

 Daniboya,  Dedo,  Omo Nada, 

 Goro,  Bure,   And Adwa. 

Relative humidity was significant and positively related with malaria cases in the 

following 40 wards: 

 Zala,  Daramalo,  Dita, 

 Chencha,  Mirab Abaya,  Boreda, 

 Kucha,  Denibu Gofa,  Ofa, Humbo, 

 Dembia,  Gonder zuria,  West Belesa, 

 Wegera,  Dabat,  Janamora, 

 Debark,  Beyeda,  Addi Arekay, 

 Tselemt,  Chilga,  Metema, 

 Tach Armacho,  Tsegede,  Mirab Armacho, 

 Kafta Humera,  Welkait,  Asgede Tsimbila, 

 Medebay Zana,  Naeder Adet,  Tahtay koraro, 

 Tahtay maychew,  Laelay Mayechew,  Adwa, 

 Mereb leke,  Laelay Adiyabo,  Tahtay Adiyabo, 

 Bilidigilu,  Sirba Abay,  Kiltu kara, 

 and Agalmoeti.   
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Relative humidity also significant and negatively related to malaria cases in the 

following 47 wards (Figure 12d): 

 Kobo,  Alamata,  Ofla, 

 Raya Azebo,  Endamehoni,  Alaje, 

 Hintalo Wejirat,  Dera,  Jarte jardega, 

 Amuru,  Baso Liben,  Aneded, 

 Guzamn,  Debre Elias,  Michakel, 

 Senan,  Dembecha,  Bure, 

 Wemberma,  Debay Telatgen,  Bure, 

 Jabi Tehnan,  Bibugn,  Dega Damot, 

 Ankasha,  Guangua,  Guagusa shikudad, 

 Banja,  Sekela,  Quarit, 

 Gonje,  Hulet EJ enense,  Sekela, 

 Fagta lakoma,  Manduara,  Dangura, 

 Pawe,  Jawi,  Dangila, 

 Achefer,  Mecha,  Bahirdar Zuria, 

 Yilmana densa,  Dera ,  West esite, 

 Guba,  and Fogera.   

Moreover, Temperature was significant and positively associated with malaria cases         

in the following 28 wards: 

 Quara,  Mirab Armacho,  Tsegede, 

 Tach Armacho,  Maok omo,  Bambasi, 

 Mana Sibu,  Babo, Nejo,  Kiltu Kara, 

 Assosa,  Bilidigilu,  Menge, 

 Sirba Abay,  Wenbera,  Kurmuk, 

 Sherkole,  Guba,Anfilo,  YamaLogi welel, 

 Gidami,  Jimma Horo,  Dale Wabera, 

 Ayira Guliso,  Boji Chekorsa,  Gawo kebe, 

 Babo,  Begi,  Gudetu Kondole, 

 and Kafta Humara.   

Temperature also significant and negatively related to malaria cases  in the wards in 

the following 33 wards (Figure 12c): 

 Dera,  Debre Elias,  Guzamn, 

 Senan,  Michakel,  Dembecha, 

 Bure,  Wemberma,  Jabi Tehnan, 

 Dega damot,  Bibugn, Ankasha,  Guagusa, 

 Banja,  Sekela,  Quarit, 

 Gonje,  Hulet Ej enese,  Sekela, 

 Fagata Lakoma,  Dangila,  Takusa, 

 Dangila,  Mecha,  Yilmana densa, 

 Bahirdar Zuria,  Dera,  Anchefer, 

 Pawe,  Jawi,  Alfa, 

 Fogera,  Libo Kemkem  and Bure. 
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In 2016 Relative humidity was significant and positively associated with malaria 

cases in the Medebay Zena, Asgede Tsimbila, Tahtay koraro, and Laelay Adiyabo 

Wards. Relative humidity also significant and negatively related to malaria cases         

in the following 53 wards (Figure 13c): 

 Chilga,  Metema,  Armacho, 

 Tsegede,  Debark,  Dabat, 

 Wegera,  West Belesa,  Gonder Zuria, 

 Ebenat,  East Belesa,  Beyeda, 

 Degua Temben,  Kelete Awelallo,  Atsbi Wenberta, 

 Koneba,  Berahle, Dalul,  Saesieaedaemba, 

 Ganta Afeshum,  Erob,  Worebabu, 

 Ambasel,  Habru,  Chifra, 

 Ewa, Awra,  Teru, Gulina,  Guba lafto,Delanta, 

 Wadla,  Meket,  Lasta, 

 Gidan,  Kobo,  Gulina, 

 Yalo,  Alamata,  Gidan, 

 Gaz Gibla,  Bugna,  Dehana, 

 Ziquala,  Sekota,  Ofla, 

 Raya Azebo,  Yalo,  Endamehoni, 

 Alaje,  Megale,  Erebti, 

 Afdera,  Abala,  Hintalo Wejirat, 

 Enderta,         andTanqua Abergele. 

Precipitation was significant and only negatively related with malaria cases in the 

following 60 wards in the country (Figure 13b): 

 Afdera,  Kafta Humera,  Tseged, 

 Wegera,  Farta,  Ambasel, 

 Tach Gayint,  Farta,  Lay Gayint, 

 Meket,  Wadla,  Delanta, 

 Worebabu,  Chifa,  Habru, 

 Guba lafto,  Ewa,  Awra, 

 Meket,  Ebenat,  Gugna, 

 Lasta,  Gidan,  Kobo, 

 Gulina,  Alamata,  Ofla, 

 Gaz Gibla,  Dehana,  Belesa, 

 Wegera,  Ziquala,  Sekota, 

 Enamehoni,  Yalo,  Teru, 

 Sahla,  Janamora,  Debat, 

 Tsegede,  Debark,  Addi arekay, 

 Welkait,  Tahtay Adiyabo,  laelay Adiyabo, 

 Mereb leke,  Maychew,  Adwa, 

 Kola Temben,  Wereri  leke ,  Hawzen, 

 Ganta Afeshum,  Tselmti, Beyeda,  Tanqua Abergele, 

 Enderta,  Erebti,  Berahle, 

 Koneba,  kelete Awalalo  and Berahle. 
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Finally, NDVI was significant and only positively related with malaria cases in the 

following 52 wards in the country as depicted in Figure 13a): 

 Tach Armacho,  Lay Armacho,  Wegera, 

 East Belesa,  Dehana,  Bugna, 

 Lasta,  Meket,  Gidan, 

 Gaz Gibla,  Ziquala,  Sahla, 

 Dabat,  Janamora,  Debark, 

 Addi Arekay,  Beyeda,  Tanqua Abergele, 

 Abergele,  Guba lafto,  Habru, 

 Ewa,  Chifra,  Awra, 

 Afdera,  Kobo,  Gulina, 

 Yalo,  Teru,  Alamata, 

 Olfa,  Sekota,  Endamehoni, 

 Raya Azebo,  Alaje,  Hintalo Weejirat, 

 Megale,  Erebti,  Abala, 

 Saharti Samre,  Enderta,  Tselemt, 

 Kola Temben,  Degua  Temben,  Kelete Awelallo, 

 Atsbi wenberta,  Koneba,  Berahle, 

 Hawzen,  Dalul,  Ganta Afeshum, 

 Saesies aedaemba,  And Erob.   

 

 

5 DISCUSSION 

In this study, the effects environmental variables on malaria cases were measured by 

OLS, GWR and s-GWR models for each year, 2015 and 2016, across 679 wards in 

Ethiopia. In the study area, the high-risk region for malaria, and spatial clustering 

appeared in the distribution of malaria cases for both years. All three models 

considered the same set of explanatory variables, which were temperature, elevation, 

relative humidity, precipitation, and a predictor variable derived from remote sensing 

data (NDVI). 

The outcome of this research depicted that malaria incidence in Ethiopia 

heterogeneously distributed and spatially clustered at the ward level in the country 

during the study period. The finding of theis research are consistent with research 

results  from past studies conducted in various malaria-endemic regions of the world 

(Delmelle et al., 2016; Wijayanti et al., 2016; Acharya et al., 2018;  Lin and Wen, 

2011). 

This research is the first ward-level malaria study using the s-GWR model in entire 

Ethiopia, which explained the modeling malaria cases associated with environmental 
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risk factors in the country. The result of this research could be helpful for ward-level 

planning, policy making, and implementation of malaria control. 

Our research demonstrated the relevance of the semiparametric geographical 

modeling approach of local-level risk factors analysis by contrasting global (OLS), 

local (GWR), and mixed (s-GWR) model. Our study   exhibited the drawbacks of the 

OLS method to explain the variation of malaria cases in terms of estimation of model 

performance, model correctness and complexities evaluated to the GWR model. We 

showed that model goodness-of-fit could be enhanced through the execution of the s-

GWR model. The  finding of this research work  are concurrent with malaria study in 

Ghana (Ehlkes et al. 2014), and dengue fever in Jhapa district, Nepal (Acharya et al. 

2018). However, when independent variables do not show spatial non-stationarity, 

the ordinary least squares regression model is generally suggested to evade the model 

complexity as an alternative of GWR or s-GWR (Ramezankhani et al. 2017). 

As a rule of thumb, a “serious” difference between GWR and OLS  models generally 

regarded as one where the dissimilarity in AICc values between the models is at least 

3 (Fotheringham, Charlton, and Brunsdon 1998). The s-GWR models had the 

smallest AICc values for 2015 and 2016, so it was the best model. 

 

The Global Moran’s I of the residuals of the final s-GWR model in 2015 was -

0.059589 (z score = -2.653625 and p-value = 0.012), which indicates that in 2015 

there was significant spatial autocorrelation in the residuals of the model, thus it was 

not correctly specified (i.e. key explanatory variables are likely to be missing). In 

2016, the final s-GWR model of the Moran’s I of the residuals was -0.079349 (z 

score = -3.622420 and p-value = 0.053), so the spatial autocorrelation in the residual 

are not statistical significant thus the model was properly well specified. 

 

A significant benefit of the s-GWR model is the ability to visually represent the 

varying strength of association between the response and explanatory variables 

(Buck 2016). The variation in local R
2
 over the wards revealed significant location 

differences in the malaria incidence transmission process in the study area (Figure 

16a-b).The local R
2 

depicted that the s-GWR model had higher performance in 

malaria cluster areas when it compared to the other parts of the study area identical 

with earlier similar studies from Nepal (Acharya et al. 2018), Colombia(Delmelle et 

al. 2016) and South Africa (Manyangadze et al. 2016).  
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Figure 16.Local R2 (a, b), residual distribution (c, d) in the s-GWR-based prediction model of the 

malaria case in 2015 and 2016 

Our final mixed s-GWR models show that the distribution of annual malaria cases          

is heterogeneous (Figure 12 and Figure 13) as observed in other studies (Pinchoff et 

al., 2015;Rulisa et al., 2013; Parker et al., 2015). 

According to researchers in Ethiopia, Brazil and Cambodia (Alemu et al., 2011; De 

Castro et al., 2006; Dysoley et al., 2008; Hasyim et al., 2018) the environmental risk 

factors were significantly correlation with malaria cases that vary strongly at the 

village level. Identifying the malaria hot-spot wards (wards with a high number of 

malaria incidences) is important in implementing malaria planning and control 

strategies at the ward scale in the country. Dissimilarities of malaria pattern exist  

between different regions (Guthmann et al., 2002). Thus in our study also indicated 

that the pattern of malaria incidence distribution is not the same in the study area; it 

changes from year to year in the country. The malaria incidence hot-spot may point 
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to the wards that require prompt notice in terms of planning and execution of the 

disease control strategies. 

The heterogeneity of malaria incidence determined by  ecological, biological, and 

sociological factors (Pinchoff et al. 2015). As distinguished by researcher (Ehlkes et 

al. 2014), nearly all research presume homogeneous effect of independent variables 

(Mushinzimana et al., 2006; Dambach et al., 2012; Stefani et al., 2011) but this may 

not always be most appropriate (Nakaya et al. 2005). In our research, the analysis 

result demonstrated assuming some variables vary at the local level, while others 

have a global effect, significantly make better the model performance. Permitting 

spatial non-stationary in the regression model lets clear interpretation regarding the 

true nature of the possible correlation (Ehlkes et al. 2014). That could be due to the 

Long-lasting insecticidal nets (LLINs) distributed to some of the wards that have 

malaria cases in the country. Long-lasting insecticidal nets (LLINs) are a tool to 

control malaria vector in malaria epidemic areas effectively (Masaninga et al. 2018). 

When evaluating the relationship between environmental risk factors and malaria 

cases, one should think about the pathways in which these variables under research 

lie (Ehlkes et al. 2014). For instance, the environmental variables: temperature, 

NDVI, elevation, relative humidity, and precipitation, which influence the malaria 

cases considered in this research as they determine by the plenty of mosquitos. 

In Ethiopia, malaria control strategies include indoor residual spraying (IRS) and 

LLINs are applied based on the local setting (Loha et al. 2019). Those factors tend to 

reduce the incidence of malaria. The interaction between these vector control  factors 

and malaria cases may bring out unpredicted results. 

In this research, there was an association between elevation and malaria cases. 

Internationally, Anopheline species diversity and density decrease from the lowlands 

to highlands (Hasyim et al. 2018). Therefore, poor inhabitants living in forested 

lowland areas in Papua, Indonesia, were found to be at a higher risk of malaria 

disease than those in the highlands (Hanandita and Tampubolon 2016). 

In contrast, a positive association between elevation and plenty of Anopheles 

mosquitoes has noticed in the highlands of Ethiopia, Colombia, and Ecuador, mainly 

in warmer years (Siraj et al., 2014; Pinault and Hunter, 2011; Alimi et al., 2015). It 

has been accepted that malaria transference possible decreases as the elevation  raises 

(Chikodzi, 2013; Meyrowitsch et al., 2011). In our study, also we noted elevation 

was significant in 2015 and depicted its expected negative correlation with malaria 
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cases in some of the wards in the northern and southern wards, but also depicted a 

positive correlation in some wards to the western part of the country (Figure 12a). 

In Ethiopia, precipitation was significantly correlated with malaria cases  in tropical 

areas (Midekisa et al. 2015). Moreover, in Botswana, precipitation showed 

association with the incidence of clinical malaria cases (Chirebvu et al. 2016). 

Variations in monthly rainfall in rural Tanzania primarily correlated with malaria 

incidence (Thomson et al. 2017). In South Africa, the number of malaria cases was 

significantly positively associated with higher winter precipitation (Kleinschmidt et 

al. 2001). In this study, coefficients of precipitation in 2015 showed the expected 

positive and negative relationship with malaria cases in some wards in the country. 

Precipitation was significant in some rural wards located in the northwestern, 

western, central, and southwestern part of the country as depicted in Figure 12b. In 

Ethiopia, minimum temperatures significantly correlated with malaria cases  in cold 

areas (Midekisa et al. 2015). In this study also local coefficients of temperature in 

2015 showed positive and negative relationship with malaria cases and were 

significant in some wards located in the northwestern and western part of the 

country, as depicted in Figure 12c. 

Precipitation creates oviposition sites for female mosquitoes, whereas relative 

humidity is a crucial parameter for adult mosquito daily survival (Day 2016). 

Anopheline mosquitoes need stagnant water to wind up their larval and pupal 

development. Thus, precipitation and relative humidity affect the transference of 

malaria by given that water to create aquatic habitats. In this study also local 

coefficients of relative humidity in 2015 depicted the expected positive and negative 

relationship with malaria cases, and they were significant in some wards located in 

the northwestern and western part of the country, as depicted in Figure 12d. 

Anopheles (Cellia) leucosphyrus is the type of malaria that can be transmitted in 

forested areas of Sumatra (Elyazar et al. 2013). In 2016, NDVI local coefficients 

showed an only positive relationship with malaria cases in some wards in the 

country. NDVI was significant in some wards located in the northern part of the 

country, as it showed in Figure 13a. In 2016 precipitation local coefficients showed 

an only negative relationship with malaria cases and were significant in some wards 

located in the northern part of the country, as it showed in Figure 13b. In 2016 

relative humidity local coefficients showed a positive and negative relationship with 

malaria cases in some wards in the country. Relative humidity was significant in 
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some wards located in the northern part of the country (Figure 13c). This indicated 

that s-GWR successfully captured the spatial stationary and non-stationary to model 

the factors that influence the spread of malaria incidence. 

The weak positive and weak negative relationships between environmental risk 

factors and malaria occurrences in some of the wards could be due to. Researchers 

(Gwitira et al. 2015)  distinguished that in malaria incidence where there is effective 

malaria control wards, there would be weak association among enviromentl risk 

factors and malaria cases. This was observed in this study in 2015, NDVI was a weak 

association with malaria cases in the country. In 2016 elevation and temperature 

were also weak correlations with malaria cases in the country. 

Temperature, precipitation, and relative humidity are frequently used to predict for 

the spatial, seasonal, and interannual variation for malaria transmission, such as the 

dynamic malaria model forecasting malaria occurrence with seasonal climate 

(Hoshen and Morse 2004). Land use, relative humidity, elevation, and precipitation 

have been identified by GWR to determine the regional vulnerability to malaria cases  

in Purworejo, Indonesia (Hasyim et al. 2018). The GWR model revealed here in our 

study that elevation, temperature, precipitation, relative humidity, and NDVI 

significantly influence malaria cases in some wards in Ethiopia. Similarly, in 2015 

elevation, temperature, precipitation, and relative humidity have been identified by s-

GWR and were significantly influence malaria cases in some of the wards in 

Ethiopia. Similarly, in 2016 precipitation, NDVI, and relative humidity have been 

identified by the s-GWR model and were significantly influence malaria cases          

in some wards in Ethiopia. However, s-GWR model allowing for spatial 

heterogeneity explains better the relationship of malaria cases with environmental 

risk factors in Ethiopia. Similarly, in Venezuela, the GWR model analysis showed 

that ecological relations that act on different scales play a role in malaria transference 

and that modeling increases the understanding of important spatiotemporal 

inconsistency (Hasyim et al. 2018).  
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6 CONCLUSION  

This research analyzed the modeling of malaria cases and its association with 

environmental risk factors in Ethiopia. The finding of this research showed that 

malaria cases distribution in Ethiopia was heterogeneous and highly clustered at the 

ward level. All environmental variables considered (elevation, temperature, relative 

humidity, participation, and NDVI) were the most relevant risk factors accountable 

for the spatial variation of the malaria incidence.  

  

The key task for malaria elimination should be built systems and tools to reduce 

disease burden where malaria transmission is high locally. By comparing GWR and 

s-GWR against the global regression model, in both 2015 and 2016, it becomes 

apparent that GWR and s-GWR models yielded new information about malaria cases 

that varies over space. In our study, the variability of malaria cases  over space was 

due to environmental and geographical local differences (Loha and Lindtjørn 2010). 

The s-GWR models provided better fits when compared with the results of the local 

GWR and global OLS models.  

The result of this research has a direct suggestion for health policy planning and 

decision making. Moreover, this research shows the relevance of a mixed 

geographical regression modeling approach in geostatistics analysis of malaria cases 

influenced by complex environmental factors at the ward or local scale. 

This research inherits some limitations which need to address in the future study. We 

could not include some essential social-economic variables such as Gross Domestic 

Product (GDP) and migration patterns in our analysis due to data unavailability. 

Regardless of these limitations, this is the first spatially explicit malaria cases          

study in Ethiopia to map and explore environmental risk factors in the entire country 

at the ward-level. The methodological framework implemented in this research is 

convertible in other county depending up on spatial data availability. Moreover, this 

study demonstrates the importance of a mixed s-GWR modeling approach in the 

spatial analysis of malaria cases affected by complex environmental risk factors at 

the ward-level. 

This research also revealed the relevance of s-GWR approach to make better the 

knowledge about malaria cases and its determinants, so that this research can be used 

for the malaria control at the ward level.  
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Future studies should consider including more risk factors that may further improve 

the performance of the s-GWR models in determining the local variation of malaria 

cases. 
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7  APPENDICES   

 

7.1 Data cleaning R code  

setwd("C:/Users/Gamu/Desktop") 
 
s<-read.csv("2016datacleaning.csv", TRUE , ",") 
 
library(tidyverse) 
library(psych) 
library(skimr) 
library(broom) 
glimpse(s) 
summary(s) 
describe(s) 
skim(s) 
corr.test(s$MC2016 , s$TM2016) 
cor.test(s$MC2016 , s$TM2016) 
plot(s$MC2016 , s$TM2016) 
reOutlier <- filter(s, WOREDANAME !=  'Diga') 
ct1<-cor.test(s$MC2016 , s$TM2016) 
 
plot(reOutlier$MC2016 , reOutlier$TM2016) 
cor.test(reOutlier$MC2016 , reOutlier$TM2016) 
ct2<-cor.test(reOutlier$MC2016 , reOutlier$TM2016) 
 
ct1_t<-tidy(ct1) 
ct1_tp<-ct1_t$p.value 
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7.2 Scatter plot of log and logit of malaria incidence for all 

explanatory variables in 2015 and 2016 
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Figure 17 scatter plot of log and logit of malaria incidence for all explanatory variables in 2015 and 2016 

 

7.3 R code for exploratory analysis to discover if bivariate 

relationships were linear or not using B-splines 

setwd("C:/Users/Gamu/Desktop/GWR2020/Jorge Mateu/Rcode") 
s<-read.csv("dec_20.csv", TRUE , ",") 
library(tidyverse) 
library(psych) 
library(skimr) 
 
malaria=s[,1] 
january.rh=s[,2] 
january.tm=s[,3] 
january.pr=s[,4] 
january.el=s[,5] 
january.en=s[,6] 
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glimpse(s) 
summary(s) 
describe(s) 
skim(s) 
 
corr.test(s$MC2016,s$TM2016) 
cor.test(s$MC2016,s$TM2016) 
plot(s$MC2016,s$TM2016) 
names(s) 
sc<-filter(s,names != TM2016) # TO Removing the outliers 

 

Explanatory data analysis  

# STEP 1: defining the data set 
 
malaria=s[,1] 
january.pr=s[,4] 
january.tm=s[,5] 
january.rh=s[,6] 
# checking if there is negative values or errore in the data 
summary(data1[,5]) 
sum(data1[,5]<=0) 
 
 
 
 
logit.malaria=logistic(malaria,d=0, a=1,c=0, z=1) 
log.malaria=log(malaria) 
data=cbind(malaria,logit.malaria,log.malaria,january.pr,january.tm,january.rh) 
data1=data[-c(678,679),] #remove two rows that have zeros in the covs  
 
data.ordered.temp=data1[order(data1[,5]),] #order in increasing order from Temp data 
data.ordered.Rh=data1[order(data1[,6]),] #order in increasing order from Rh data 
data.ordered.Pr=data1[order(data1[,4]),] #order in increasing order from Pr data 
 
# STEP 2: some plots for temperature  
 
par(mfrow=c(2,2)) 
plot(data1[,5],data1[,1],xlab="Temperatures",ylab="Malaria cases") 
plot(data1[,5],data1[,2],xlab="Temperatures",ylab="logit.malaria",ylim=c(0,1)) 
plot(data1[,5],data1[,3],xlab="Temperatures",ylab="log.malaria",ylim=c(0,1)) 
 
# STEP 3: loess of "logit of malaria" prevalence against temperature  
# & loess of "malaria cases" prevalence against temperature 
 
# Loess Regression...Loess Regression is the most common method used to smoothen a 
volatile time series. # It is a non-parametric methods where least squares regression is 
performed in localized subsets, which # makes it a suitable candidate for smoothing any 
numerical vector. 
 
# data.ordered.temp[,2] this is "logit of malaria" 
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# data.ordered.temp[,4] this is "temp" 
# data.ordered.temp[,3] this is "Pr" 
# data.ordered.temp[,5] this is "RH" 
# if you are using Rh then use data.ordered.Rh[,5] 
# if you are using Pr then use data.ordered.Pr[,3] 
 
loess.logit.malaria.Temp10=loess(data.ordered.temp[,2] ~ data.ordered.temp[,5], 
span=0.10) # 10% span 
loess.logit.malaria.Temp20=loess(data.ordered.temp[,2] ~ data.ordered.temp[,5], 
span=0.20) # 20% span 
loess.log.malaria.Temp11=loess(data.ordered.temp[,3] ~ data.ordered.temp[,5], 
span=0.10) # 10% span 
loess.log.malaria.Temp21=loess(data.ordered.temp[,3] ~ data.ordered.temp[,5], 
span=0.20) # 20% span 
 
loess.malaria.Temp10=loess(data.ordered.temp[,1] ~ data.ordered.temp[,5], span=0.10)  
loess.malaria.Temp20=loess(data.ordered.temp[,1] ~ data.ordered.temp[,5], span=0.20) 
  
loess.malaria.Temp11=loess(data.ordered.temp[,1] ~ data.ordered.temp[,5], span=0.10)  
loess.malaria.Temp21=loess(data.ordered.temp[,1] ~ data.ordered.temp[,5], span=0.20) 
# STEP 4: get smoothed output 
 
smoothed.logit.malaria.10=predict(loess.logit.malaria.Temp10)  
smoothed.logit.malaria.20=predict(loess.logit.malaria.Temp20)  
smoothed.log.malaria.11=predict(loess.log.malaria.Temp11)  
smoothed.log.malaria.21=predict(loess.log.malaria.Temp21) 
 
smoothed.malaria.10=predict(loess.malaria.Temp10)  
smoothed.malaria.20=predict(loess.malaria.Temp20)  
smoothed.malaria.11=predict(loess.malaria.Temp11)  
smoothed.malaria.21=predict(loess.malaria.Temp21)  
 
# # STEP 5: some plots 
 
par(mfrow=c(1,2)) 
plot(data1[,5],data1[,1],xlab="Temperatures",ylab="Malaria cases") 
plot(data1[,5],data1[,2],xlab="Temperatures",ylab="logit.malaria",ylim=c(0,1)) 
 
par(mfrow=c(1,2)) 
 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,2], main="Loess Smoothing and 
Prediction", xlab="january.Tmp", ylab="logit.malaria") 
lines(data.ordered.temp[,5], smoothed.logit.malaria.10, col="red") 
lines(data.ordered.temp[,5], smoothed.logit.malaria.20, col="blue") 
 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,1], main="Loess Smoothing and 
Prediction", xlab="january.Tmp", ylab="Malaria cases") 
lines(data.ordered.temp[,5], smoothed.malaria.10, col="red") 
lines(data.ordered.temp[,5], smoothed.malaria.20, col="blue") 
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par(mfrow=c(3,2)) 
 
plot(data1[,5],data1[,1],xlab="Elevation        ",ylab="Malaria Incidence") 
 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,1], main="Loess Smoothing and 
Prediction", xlab=" Elevation 2016", ylab="Malaria.Incidence") 
lines(data.ordered.temp[,5], smoothed.malaria.10, col="red") 
lines(data.ordered.temp[,5], smoothed.malaria.20, col="blue") 
 
plot(data1[,5],data1[,2],xlab="Elevation      ",ylab="logit.malaria Incidence",ylim=c(0,1)) 
 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,2], main="Loess Smoothing and 
Prediction", xlab= "Dec Elevation 2016", ylab="logit.malaria.Incidence") 
lines(data.ordered.temp[,5], smoothed.logit.malaria.10, col="red") 
lines(data.ordered.temp[,5], smoothed.logit.malaria.20, col="blue") 
 
aa=cbind(data.ordered.temp[,5],data1[,5]) 
 
 
 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,3] ,xlab="Elevation ",ylab="log.malaria 
Incidence") 
plot(x=data.ordered.temp[,5], y=data.ordered.temp[,3], main="Loess Smoothing and 
Prediction", xlab= "2016", ylab="log.malaria.Incidence") 
lines(data.ordered.temp[,5], smoothed.log.malaria.11, col="blue") 
lines(data.ordered.temp[,5], smoothed.log.malaria.21, col="green") 

 

 

7.4 Results of (temperature, Precipitation, elevation and Relative 

humidity) Variogram models used for interpolation of explanatory 

variables with ordinary kriging  
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