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Abstract

Leg fatigue can influence the gait patterns, therefore declining the postural stability

and the motor performance, increasing the risk of falls. In order to improve the earlier

detection of risks and the application of fall prevention strategies, automated solutions

based on gait analysis must be developed. A sector of the population at risk is the work-

force where a majority of workers admits to be fatigued and where falls can lead to serious

workplace injuries or even deaths. In these cases, having the ability to detect if the user

is fatigued in real time by simply using the motion sensors on the smartphone and pro-

cessing it with machine learning can lead to the prevention of falls and the consequences

these bring.

Phones and wearable devices were studied for their ability to be used to extract inertial

sensor’s data to provide enough information for the fatigue detection. Supervised ma-

chine learning algorithms, such as Support Vector Machines (SVM) and Neural Networks,

will be used to process this information for fatigue level classification. Their performance

will then be compared to find the best algorithm for fatigue detection. In addition to this

comparative work, different conditions for the data collection and processing were tested

in an effort to discover the optimal conditions for the implementation of the algorithms.

Keywords: Gait Patterns, Fall risk, Fall prevention, Fatigue, Inertial sensors, Supervised

learning.
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Resumo

Situações de fadiga nas pernas podem influenciar os padrões de marcha e, como tal,

reduzir a estabilidade postural e a performance motora, aumentando assim o risco de

quedas. Um sector da população em risco são os trabalhadores, onde a maioria admite

estar fatigado e onde quedas podem levar a ferimentos graves ou mesmo mortes em

ambiente de trabalho. Nestes casos, a habilidade de detetar se um utilizador se encontra

fatigado em tempo real, usando apenas os sensores inerciais do smartphone e processá-lo

com aprendizagem automática, pode levar à prevenção das quedas e das consequências

que estas trazem.

Telemóveis e dispositivos wearable foram estudados como ferramentas para extrair

dados de sensores inerciais, de forma a providenciar informação suficiente para a deteção

de fadiga. Algoritmos de aprendizagem automática supervisionada, tais como Máquina

de Vetores de Suporte (SVM) e redes neuronais, foram usados para processar esta informa-

ção para classificação da presença de fadiga. A performance destes algoritmos foi então

comparada para descobrir o melhor algoritmo para deteção de fadiga. Em conjunto com

este trabalho comparativo, diferentes condições de recolha e processamento de dados

foram testadas num esforço para descobrir as melhores condições para a implementação

dos algoritmos.

Palavras-chave: Padrões de marcha, Risco de queda, Prevenção de queda, Fadiga, Senso-

res inerciais, Aprendizagem supervisionada.
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1
Introduction

1.1 Motivation

Gait is defined in the dictionary as

a manner of walking or moving on foot

Gait [Def. 1]. (n.d.). Merriam-Webster Online. In Merriam-Webster. Retrieved
March 13, 2019, from https://www.merriam-webster.com/dictionary/gait.

in other words, it is the most basic human locomotion tool. It is easily understandable

how important it is in our everyday lives and the importance of studies done around it

and on the effects of alterations to it.

If we think of a working environment, there are many physically demanding occupa-

tions, in which walking is still a primary activity, such as manufacturing, construction,

agriculture and others. The high physical demands that accompany these occupations

are bound to be the cause of fatigue in its workers. As such, when surveyed, approxi-

mately 45% of US manufacturing workers reported to be fatigued, in consequence of high

amount of walking required in their occupation. The same survey showed, per shift, an

average of 5.7h spent walking in the workforce [14].

Past studies indicate the relation between the presence of fatigue and specific alter-

ation in gait patterns. It’s important to understand these alterations to be able to identify

them on the data that will be collected. In situations of fatigue, previous studies found

an increase in step width, higher than double jerk cost and greater resulting acceleration

[26]. In accordance with these results, other studies [9] found increases in step width

and mediolateral trunk acceleration, paired with an increase in step length variability in

fatigue situations. However, there are also contradictory finds; results have been obtained
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CHAPTER 1. INTRODUCTION

[17] that indicate that step length variability appears less sensitive to fatigue, when com-

pared to step width variability. Even with some minor inconsistencies in the findings,

generally these studies are able to find multiple changes in gait patterns when fatigue

is induced, which is a good basis for monitoring fatigue and creating fatigue detection

platforms [17].

The utilization of machine learning algorithms to assist in the classification of altered

gait patterns has been a topic studied by various authors [4, 9, 26] . Most studies have

found success in identifying the alterations in gait patterns they were searching for, using

said algorithms. One of the classification algorithms used in the area of fatigue detection

is SVM, which was found to hold considerable potential to identify at-risk gait due to

muscle fatigue [26].

1.2 Technology

In the area of gait pattern identification and studying, Optical Motion Capture (OMC)

systems have been widely used for the acquisition of the necessary data, while in recent

years developments in wearable technology propelled an increase in the number of stud-

ies using Inertial Motion Capture (IMC) systems, both as just a means of collecting data

or as the focus of the study, comparing different methods of data gathering. The highest

advantage of IMC systems is the possibility of studies on daily life conditions, without

the burden of being stuck to the space where the equipment is set up. This can lead to

solutions that can be implemented in the area of diagnosis and prevention.

The past studies that utilised OMC methods have resorted to equipment varying from

simple cameras, pointed towards a treadmill [4], to full motion capture systems [13]. In

all cases, this limits the environment where the data can be collected and, also due to

the high costs of the needed equipment, heavily restricts the possibilities of real world

solutions. IMC methods bring portability to the table and even though some of the

more high-end equipment used in some studies, such as the MVN Link [15], still bring

impeditive costs for broad-wide solutions, other studies have been made with a single

wearable [2] or even a smartphone [19] for data collection and still obtaining positive

results.

This widespread availability of wearable technology and usage of smartphones paired

with the development of the technology present inside these devices shows a promising

opening in new possibilities in terms of monitoring and prevention. Bearing this is

mind, the data necessary for this dissertation was acquired from the sensors present in

smartphones and wearables. This decision guarantees the possibility of extending the

usefulness of the work developed on this dissertation to a real world scenario and allows

it to be integrated in already existent solutions as future work.

2



1.3. OBJECTIVES

1.3 Objectives

The main objective of the dissertation is the comparison of the performance of supervised

learning algorithms when applied to the identification of fatigue from gait data. Most

previous works tend to focus on whether the algorithm is capable of identifying fatigued

gait; this work tries to go further by focusing instead on which the best conditions for this

identification are.

Two separate comparative studies were made in an effort to reach the best possible re-

sults. The first, and most important, of the two is the comparative study of the supervised

learning algorithms. For this, two algorithms, Neural Networks and SVM, and three of

SVM’s kernels, were tested. The performance of the algorithms was measured by their

accuracy, sensitivity and specificity.

The second comparative study is on what the best locations to place the sensors are

when only two maximum sensors can be used. For this, multiple sensors will be placed

on various body parts of the participants, allowing for the analysis of which locations

are more sensitive to changes in gait patterns and also for better classification results.

This second comparative study allows to differentiate from previous studies where the

placement of the devices was decided before the data collection and its influence was not

questioned.

1.3.1 Main Contributions

In this dissertation, a comparison study was made on the classification of fatigue in gait

using different machine learning algorithms and kernels, obtaining high results on the

ability to distinguish fatigued and non-fatigued gait data. Good results were achieved

with all algorithms and kernels, with the Radial Basis Function (RBF) kernel of the SVM

classifiers being considered as the best performing algorithm/kernel combination. Along

with the polynomial kernel, both achieved results above 96.5% in all metrics, except in

the test where only the accelerometer data was used in which the performance of the

polynomial kernel dropped to around 90%.

Not only that, but the best conditions to collect and process the data to achieve the

best possible classification were also studied. This permitted to reach conclusions, such as

the possibility to successfully collect the necessary data with just a single device. Another

conclusion taken is on the best window duration to divide the data on. It was found that

a 5 second window for data splitting obtains the best results in avoiding false positives,

an important factor in any possible future use of the work developed in this dissertation.

1.4 Organization of the document

In the next chapters the concepts introduced in this introduction will be further explained

and substantiated, culminating in a presentation of the practical work done, results ob-

tained and conclusions gathered. In this section I want to take the time to briefly explain

3



CHAPTER 1. INTRODUCTION

the points to address in each of the following chapters.

The next chapter is dedicated to the review of the state of the art, particularly an in

depth analysis of four papers, the objectives proposed, the methods used to collect and

process the data and the results obtained.

The third chapter will serve to explore theoretical concepts used through the elabora-

tion of the dissertation. This includes an analysis of the importance of gait patterns and

the expected changes in these patterns with fatigue. Also including a few important defi-

nitions on the field and an explanation of the possible causes and effects of the changes in

gait patterns observed in previous studies and expected in this dissertation. After the in-

troduction of necessary information about gait, the following section will be dedicated to

the technology that was used, containing an explanation of the function of the necessary

sensors on the collection of the data. A brief discussion of the use of the smartphone or

wearable sensors to collect the data will also be present in this section. In the last section

of this chapter there will be an introduction to Machine learning, followed by an in-depth

analysis of the Machine learning algorithms that were used in the dissertation. As the

goal of this dissertation was to compare the results achieved by multiple algorithms, a

good understanding of the algorithms is essential as a basis for the work to follow.

In the fourth chapter, the practical work done in this dissertation is explained in mul-

tiple steps, starting with the elaboration of the experimental protocol and the decisions

that were made during this process. This is followed by the demographic information of

the participants, the steps taken to process the data and ending with a section explaining

approaches attempted during the dissertation that didn’t lead to positive results.

The fifth chapter shows the results obtained with the different tests during this dis-

sertation. It is split into a section with all the variations of the duration of windows into

which the data is split, a section with variations to other variables and finally a discussion

of the results obtained.

In the last chapter some final conclusions are presented followed by a description

of possible future work based on limitations found throughout the elaboration of the

dissertation.

4
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2
State of the art

In this chapter, as the name implies, an analysis of previous studies will be done, in

regards to the instrumentation and methods used and the results obtained.

Four studies were chosen for analysis, three of which used machine learning algo-

rithms to identify fatigue in gait, the first two using SVM, while the fourth paired the

SVM classification with a neural network in its implementation. Although the third study

only targets the effects of fatigue on gait patterns, it was studied nevertheless as it was

considered a relevant study in this area. At the end of the chapter, after a detailed de-

scription of each study, a short summary is presented with the methods used in each one

and the results achieved.

2.1 Multiple inertial sensors and classification with SVM

In this study by Jian Zhang, Thurmon E. Lockhart and Rahul Soangra [26], wearable

sensors, paired with other methods, were used to collect the gait and gait pattern data,

processing it using an SVM classifier, testing different kernels, and obtained an accuracy

of 96%. The objective of this study was to explore the potential of SVM to recognise and

classify gait patterns associated with lower extremity muscular fatigue, using an inertial

measurement unit.

Participants in the study were screened to avoid participants with existing factors

that could influence gait patterns, such as the use of medication, the existence of neuro-

muscular diseases and balance or vision disorders. To collect the data multiple methods

were used. Firstly, the trials were performed on a linear walkway (15.5 x 1.5m) with two

force plates installed in the middle of it. Participants were equipped with 5 reflective

markers, attached on heels and toes of both legs with one more at the sacrum. This was

used to collect three-dimensional movement data using a six-camera ProReflex system

5
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(Qualysis). Lastly, two IMU were attached to the participants, the first in the right shank

with the objective of normalizing the gait data and the second at the sternum level (Figure

2.1). The data for this study was acquired with sampling frequency of 120 Hz, which was

considered sufficient for human movement analysis in daily activities.

Figure 2.1: IMUs attached to participants in this first study

The reflective markers on both feet allowed the detection of the Step Length (SL), step

width, Heel Contact Velocity (HCV) and single stance time, while the function of the one

on the sacrum was to determine walking velocity. SL was calculated in this study using

the points of the heel contacting the floor. Step width refers to the distance between the

rear-end center lines of the heels. While HCV was calculated by using velocities of the

heel in the horizontal direction at the foot dislocation of 1/60 s before and after the heel

contact phase of the gait cycle.

The heel contact and toe-off time events necessary for these calculations were con-

firmed with the ground reaction forces measured using the forceplates afore mentioned.

To guarantee that the measures could be confirmed, participants were asked to redo trials

where the foot placement was not accurate with the center of the forceplates. In this

study five accepted walking trials were required per participant per state (non-fatigued,

fatigued), with 6 to 7 complete gait cycles per trial.

The fatiguing task used in this study was squatting; the participants were asked to

perform squats, while holding a weight equivalent to 5% of their body weight in front of

themselves, repeatedly, at a rhythm of 22 repetitions per minute. This task was divided

in sets of 5 minutes, and after each set three Maximum Voluntary isokinetic Exertions

(MVE) measurements were made. This exercise cycle kept repeating until participants

reached 60% of their baseline MVE, at which point participants were considered to be

fatigued. After this point participants were asked to repeat the walking trials to collect

the fatigued data, in a process equal to its non-fatigued counterpart.

The SVM classifier input used was the data from the IMU located at the sternum, the

Representative Gait Cycle (RGC). RGC was seen as the period between two consecutive

contacts of one foot to the ground, depicting the duration of a stride. This duration was

identified by the angular velocity profiles of the IMU placed in the shank. This way RGC

was considered to start when the right shank angular velocity reached a peak and to end

when a consecutive peak was reached. The IMU signals from the sternum were then cut

between the RGC and normalized, 0% being the start of the RGC and 100% the end.

6
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Classification wise, both data sets, training and testing, included fatigued and non-

fatigued RGC data. As mentioned, each trial consisted of 6-7 gait cycle, of which two

middle RGCs data were extracted from each trial, totalling twenty RGCs extracted (ten

RGCs from five trials of each state). For both intra and inter-subject classifications the

training and testing data split was kept at 70/30(%). For intra-subject classification 7

RGCs of each state (fatigued, non-fatigued) were used for training and 3 of each for

testing. Inter-subject classification used 238 RGCs for training and 102 for testing data

sets.

The features selected for this study can be seen in figure 2.2. The justification behind

this selection was the inclusion of all possible spatial and temporal information from the

signal, all features used were extracted from raw signals.

Figure 2.2: The three feature sets used as inputs to SVM

In this study two steps were taken to preprocess the features before using the SVM

classifier, the input features were normalized and the dimension of the feature space

was reduced. To normalize the feature values, training and testing feature space were

combined and divided by the maximum value of the particular feature. This way, input

data was kept in a range between 0 and 1, 1 being the maximum value of the feature. To

7



CHAPTER 2. STATE OF THE ART

reduce the dimension of the features space Principle Component Analysis (PCA) was used.

To evaluate the ability of the SVM classifier to be generalized five-fold cross-validation

was adopted.

The SVM models were trained using linear, polynomial and RBF kernel, over the

range of the cost parameter C (2−10, 210). To evaluate the performance of the classifier

the criteria used was accuracy, sensitivity and specificity.

The full schematic diagram of the SVM classification algorithm used in this study is

illustrated in Figure 2.3.

Figure 2.3: Schematic diagram of procedure of SVM classification

In this study, there were not found significant changes in SL after the fatiguing task,

yet a wider base of support (12% wider) was observed. Even though walking velocity

showed no statistical difference, HCV was considerably faster (p = 0.01) after the induce-

ment of fatigue.

The results regarding the machine learning classification showed high intra-individual

classification rates across the three kernels, with linear and RBF with similiarly high re-

sults (97 and 96% respectively) with polynomial presenting the lowest accuracy (about

88%).

In inter-subject classification SVM achieved about 90% accuracy with general features

and 88% with selected features from the trunk kinematics.

With these results, especially the ones relating to intra-subject classification, this

study concluded that IMUs can help in the identification of localized muscle fatigue and

body sensors can be used for personalized monitoring to identify risk patterns in gait.

It was also concluded that SVM is applicable to the classification of gait patterns after

fatiguing task, by using features relevant to walking trunk kinematics.

8



2.2. SINGLE INERTIAL SENSOR WITH SVM CLASSIFICATION

2.2 Single inertial sensor with SVM classification

This second paper [2] studied the usage of a single IMU, placed at the right ankle, for

purposes of fatigue symptoms monitoring using a template matching pattern recognition

technique. This paired with the usage of machine learning algorithms for the classifica-

tion of fatigue states. A single IMU at the ankle was used in an effort to keep the data

collection as minimally intrusive and inexpensive as possible for a possible usage in a

workplace environment. With this study two questions were posed: can fatigue induced

changes in gait be detected by a single IMU, located at the right ankle, and can fatigue

and non-fatigued states be distinguished by a computationally efficient classifier, in this

case the $1 Recognizer was used. This classifier is an instance-based nearest-neighbour

classifier with a 2-D Euclidean distance function. This was chosen due to its computation-

ally efficiency and to the fact that it has been developed for motion recognition (finger

gesture).

In this paper the work plan was divided into four steps: gathering of the data, pre-

processing it, classification, and evaluation of the model as seen in figure 2.4.

Figure 2.4: Block diagram of the proposed fatigue classification model

Due to the focus of this study in a healthy worker population, criteria for exclusion of

participants included reported cardiovascular diseases, musculoskeletal disorders, and

an history of injury or pain that could interfere the completion of the experiment.

The experimental procedures involved participants completing a three-hour Manual

Material Handling (MMH) session. In this session participants were asked to continuously

place weighted containers in pallets and transport them. This method was picked for
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representing a physically demanding task that usually is performed in warehouses and

shipping operations. The advised set of tasks to be followed was picking up one of the

eighteen cartons, placing it on the dolly, walking the path while pushing the dolly and,

finally, delivering the carton in a prespecified location to simulate a warehouse. The steps

of this task can be seen in figure 2.5.

The requested task consisted of three sets of these deliveries, the delivery path length

for each box was eighty meters and participants were asked to achieve a rhythm of one

set of eighteen boxes per thirty minutes.

Every ten minutes participants were asked to provide a Rating of Perceived Exertion

(RPE) on a scale of 6 to 20 and, every thirty minutes, a Subjective Fatigue Level (SFL).

For a participant to be included, subjective ratings of RPE and SFL were required to be

higher than ten and five, respectively, at the end of the task.

Figure 2.5: Detailed sequence of the task

The sensor used in this study was a Shimmer3, placed at the right ankle as previously

mentioned, which contains a low-noise analogue accelerometer, a digital wide range

accelerometer, a magnetometer and a digital gyroscope. The data for this study was

recorded at a sampling rate of 51.2 Hz which was found to be enough for the purpose of

the study and avoided having the data sets unnecessary large due to the high duration of

the experiment. Matlab R2015b was the tool selected for post-processing and analysis of

the signals.

To pre-process the data the first step adopted was passing the calibrated data through

a Kalman filter. This was done with the assumption of uncorrelated white Gaussian

process and measurement noises to assess, spatially wise, the orientation of the body

frame in relation to the global frame of reference. The final purpose of this step was the

estimation of the kinematics of motion, in this case, jerk, acceleration, velocity, position

10
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and posture. The next step was the introduction of a robust segmentation algorithm to

allow the identification of the strides, the period between consecutive toe off and heel

strikes. Afterwards, individual kinematics were estimated using different methods in an

attempt to avoid bias.

Out of the initial data a set of 2000 sample point (equivalent to about fourty seconds)

of pure walking were extracted from the first ten minutes, non-fatigued, and the last

ten, fatigued. After the segmentation of these two sets, batches of twenty five strides

from each set were selected as fatigued and non-fatigued sets to obtain the Euclidean

distance-based scores as one feature for the final classification. This by comparing each

testing stride with both training batches in $1 Recognizer.

The testing sets were obtained in equal fashion to the training ones, similarly end-

ing up with two batches of 25 strides, guaranteeing only no overlap between training

and testing sets. The testing batches were then concatenated into an even pool of data.

Afterwards, one stride was randomly selected and passed through the modified $1 Recog-

nizer classifier together with the two fatigued and non-fatigued training batches. In this

classifier, to assign a score the testing stride was compared to each stride in the training

batches based on the point-wise Euclidean distance between the testing segment and one

by one of the fatigued and non-fatigued training segment classes.

After this, the results calculated in $1 Recognizer and the test stride duration, for

each test stride, were used as feature data points for distinguishing between fatigue

and non-fatigued states. The classifier used was a SVM using RBF, which was applied

to the score and step duration feature data points of fifty random test strides. In this

study the kernel parameter was optimised on the training data set and were selected

values that maximize the classification rate. For this step 20% of the feature points were

held as testing data points, using the rest for training. To validate the classifier 5-fold

cross-validation was again used, for each subject data the fifty feature data points were

randomly partitioned into five subgroups of ten each. In addition, a simple ensemble

classification was provided using the majority voting of prediction, as seen in figure 2.4,

such that fatigued was considered more than four votes. As was the case in the last study,

the evaluation of the model was made using the accuracy, sensitivity and specificity.

The highest accuracy was obtained with the combination of all templates (90%) but

only slightly higher than using only the acceleration template (89%). This is explained

due to accurate direct segmentation results and the fact that this information is collected

and not calculated, a process that can be the source of errors. This was followed by

position trajectory and velocity magnitude both equal with an accuracy of (86%).

The authors then conclude that the inducement of fatigue leads to alterations in

temporal and spatial characteristics of gait kinematics and these can be used for fatigue

detection, although not all kinematics performed the same for the prediction of fatigue.

It is also concluded that this work can be extended to real-time fatigue monitoring due

to the simplicity of the template matching technique and the use of a single IMU at the

ankle.
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2.3 Effects of fatigue on gait characteristics

The third paper, of the authorship of Xingda Qu and Joo Chuan Yeo [17], studied the

alterations on gait characteristics, not only under the effect of fatigue, but also while

carrying different loads. Out of the three studies analised in this chapter, this is the one

furthest from the work that is going to be developed in this dissertation. The focus of

this study is purely on the effects on gait patterns and not in its identification, as such

it does not contain a machine learning component, and the method for data collection is

also different, using a motion capture system and a treadmill. Nevertheless, it presents

the results on changes in gait patterns in an understandable way with some explanations

for the events, and in this way it can be a good basis of understanding for the gait pattern

changes that may be found later in this dissertation.

Participants in this study were all young males, between twenty and thirty years

old, with no disorders that could affect gait patterns. The demographic chosen is due

to the study focus on military like conditions. Participants were equipped with twenty

six reflective spherical markers placed in anatomical landmarks, on both sides of the

body, the placement of these markers can be seen in figure 2.6. This, paired with an

eight-camera motion capture system allowed for the collection of whole-body kinematics

in three dimensions at a sampling frequency of 100 Hz. All tests were performed on a

medical treadmill and participants were asked to perform the task under varying levels

of load, 0 kg (no load), 7.5 kg (low load comprised of a 5 kg field-pack and a 2.5 kg light

bullet vest) and 15 kg (high load comprised of a 12.5 kg field-pack and a 2.5 kg light

bullet vest).

12
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Figure 2.6: Placement of the reflective markers

Each participant performed three pre-fatigue walking trials, each with a different

loading condition, with a break of, at least, three minutes between each other. Afterwards,

the participants were subjected to the fatiguing exercise, for this they were instructed to

run on the treadmill at a speed of 8 mph (near 13 km/h). During this exercise, at every

thirty seconds, the participants were asked to rate their fatigue level using the RPE, the

exercise was stopped when participants reported a rating of seventeen or above. After

the fatiguing exercise, three post-fatigue walking trials were performed, each of them

under the three loading conditions. To ensure that fatigue level would be maintained,

the fatiguing exercise was repeated in between trials. The experimental procedure can be

seen in figure 2.7.
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Figure 2.7: Flow of the experimental procedure
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This study found that fatigue influenced step width variability, hip Range of Motion

(ROM) and trunk ROM significantly, specifically all three factors suffered an increase

after the induction of fatigue. Fatigue was also reported to be associated with a larger

knee ROM but not as significantly. Effects caused by the back-carrying load were reported

but as those will not be replicated they will not be discussed. The study also concluded

that, due to the increased joint motions of the hip and trunk caused by fatigue, a higher

energy expenditure is required. This indicates that people can adapt to the effects of

fatigue by coordinating the joint motions as a way to maintain energy equilibrium. Still,

higher muscle tensions can be a consequence of larger ROM, and as such fatigue can lead

to injury, muscle strain, and joint problems during walking.

When compared to previous studies the findings related to step width and step length

variability show an inconsistency. These inconsistencies were attributed to differences in

the fatiguing protocol, as this study used a running test to induce fatigue while the one

with contradictory findings used repeated sit-to-stand tasks. Running tests affect muscles

controlling medial–lateral movements, on the other hand repeated sit-to-stand tasks can

affect muscles responsible for the control of anterior–posterior movements and, as such,

these fatiguing protocols can influence gait in different ways.

2.4 Classification using SVM and self-organizing maps

The fourth paper [10], authorship of Daniel Janssen, Wolfgang I.Schöllhorn, Karl M.Newell,

Jörg M.Jäger, Franz Rost and Katrin Vehof, used both SVM and Self-organising Maps

(SOM) to classify gait patterns before, during and after leg exhaustion. The data was

collected with resource to a force plate. This study managed to obtained a 98.1% fatigue

recognition success rate. Additionally, applied SOM allowed an alternative visualization

of the development of fatigue in the gait patterns over the progressive fatiguing exercise

regimen.

Nine participants were selected for this study, with an average age of 25.9 (± 3.14)

years. All participants selected for this study were males with considerable experience in

sport (in their majority track and field athletes). This selection was justified due to dif-

ferences in the mechanisms of fatigue with age and gender, as such the participants were

chosen to obtain an homogeneous group which would get fatigued with a comparable

amount of exercise.

Participants were explained the experimental setup after which were required to be-

come acquainted with it by simulating the test 3 to 5 times. The participants were asked

to walk barefoot a distance of approximately 7 meters, starting at a point chosen by the

participant in a way where their third foot contact would hit the placed force plate. The

right foot was chosen, for all participants, to allow easier comparisons of the derived

kinetic patterns, based on vertical ground reaction forces. The trial was repeated in the

cases where the force plate was not hit centrally. To register the walking speed of the

trials two pairs of double light-barriers were used.
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The collections were split in multiple parts, firstly, to establish baseline values, partic-

ipants were requested to perform 6 gait cycles. After these first trials started the fatiguing

exercise in which the participants were required to completely exhaust their soleus and

gastrocnemius muscles (both muscles in the back part of the lower leg). This was done by

lifting and raising the rear foot while standing only on their toes, to accelerate the process

participants were equipped with a barbell and additional weights on their shoulders, in

average 44.4 ± 8.8 kg. The actual weight added to each participant was self-chosen, 7

participants chose to add 40 kg in weights while the remaining 2 added 60 kg. The exer-

cise was stopped when the participants were unable to lift their rear foot anymore, the

number of repetitions necessary to reach this point varied from 20 to 60 repetitions per

subject and trial. Straight after the fatiguing exercise 6 trials were recorded, additionally

in the third round, after a 3 minutes break, another 6 trials were recorded without any

exercises.

In total there were recorded 18 gait cycles per participant from the three states, before,

during and after fatigue. A recursive second order Butterworth low pass filter and a cutoff
frequency of 100 Hz were used to filter the vertical ground reaction forces, which were

then normalized in time to 100 sampling points, by means of a mathematical linear

interpolation and by amplitude to the interval [0, 1], covering 0 to 100% of the gait cycle.

This was made in an effort to minimize or remove any possible influence of speed and

body weight to the recognition process, which allowed retracing intra-individual changes

and inter-individual comparisons at the same time.

A traditional linear statistical analysis, by means of time discrete variables, was con-

ducted first, to verify if the participants’ gait patterns were affected by the introduction of

fatigue, which allowed the comparison with the performance of nonlinear analysis meth-

ods. There were computed and analyzed statistically six commonly used time-discrete

parameter, from the vertical ground reaction forces, which described the typical charac-

teristics of the M-shaped curve. These include the forces and elapsed gait cycle time for

both the first and second peaks and the valley in-between.

A nonlinear SVM with an RBF-kernel was chosen to test if the gait patterns contained

information on the participant a pattern belongs to and the possibility of recognising the

state of fatigue, both for just the states before fatigue and during fatigue and for all the

fatigue states. To achieve this goal k-fold cross validation was used, with the training set

being divided into k subsets, then trained with k-1 and tested with the remaining one.

This was chosen with the purpose of guaranteeing the finding of optimal parameter for

the SVM, avoiding over-fitting and delivering more reliable recognition rates. All 162

available gait patterns were considered in the classification process.

For inter-individual person recognition and recognition of fatigue only the kinetic data

of the states before and during fatigue were used. A multiclass SVM with the “one-against-

one” algorithm was used for person recognition, while for inter-individual recognition of

fatigue a single SVM was chosen. In the latter, the data samples were allocated to the two

classes before fatigue (+1) and during fatigue (-1) and presented to the algorithm. Two
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custom-developed data-preparation methods were utilised for both person recognition

and recognition of fatigue:

In the first method, the time course of all gait patterns was used as time continuous

input data. This approach was named the signal approach.

The second method, the deviations approach, involved calculating a synthetic model

gait pattern for each participant. This was done by averaging all 18 of the participants’

gait patterns data points. This synthetic model gait pattern was then subtracted from all

participants’ gait patterns to allow the exclusive extraction of intra-individual differences.

In other words, to exclusively obtain the deviations from the average gait of the partici-

pant. Deviations were then used for further processing. The following figure (Figure 2.8)

depicts the deviations approach under a schematic form. In it (a) represents the synthetic

average model gait pattern calculated for each participant, in (b) the model gait pattern

was subtracted from all participant’s gait patterns, which is exemplified for one pattern,

finally (c) shows the deviation from the ‘average gait’ of the participant which is used for

further processing.

Figure 2.8: Schematic depiction of the deviations approach.
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To check if fatigue would alter a participant’s gait patters so much that individual char-

acteristics would be affected, an additional test was implemented, which checks influence

of fatigue on said characteristics. This could lead to a decrease of person recognition rates

for the during fatigue condition, with a returning increase in the after fatigue condition

due to regeneration.

For the intra-individual testings was of interest the investigation of similarities and

changes in individual gait patterns for the three states of fatigue. To this end PCA was

used for dimension reduction in combination with classification done by pre-trained SOM,

which offered a visualization of the similarities in the gait patterns in a two-dimensional

space. The dataset acquired was not sufficiently large for this step and, as such, the SOM

was pre-trained with a conjugation of data from the study and similar gait data from

previous studies.

This study did not find significant alteration to walking speed under the experimental

conditions, as such data analysis focused on the structure of the movement patterns and

the alterations of the kinetic properties of the gait patterns caused by fatigue. In five of

the six variables a statically significant difference between the before and during fatigue

conditions was revealed by the linear statistical analysis of the time-discrete parameters.

From the conditions before and during fatigue the nonlinear person recognition, based

of vertical ground reaction forces, achieved a rate of 100% with the SVM using the pre-

viously mentioned signal approach. In comparison, when using the deviations approach

the rate dropped to 65.7%. Still on an inter-individual level, the recognition of fatigue in

gait patterns achieved a rate of 96.3% using the signal approach and 98.1% when using

the deviations approach.

When testing the person recognition for all participants with all three fatigue con-

ditions separately, the rate of recognition of the SVM was of 100% for before fatigue,

decreasing to 96.3% during fatigue and raising to 98.1% after fatigue.

The achieved rate of 100% for person recognition, using SVM with the signal approach,

emphasizes the high individuality of properties in human movement. This findings were

consistent with previous studies with similar rates of success. The person recognition

rate using the deviations approach was expected to be much lower, which was attributed

to different preconditions with the differences in the calculations to build the reference

pattern. Even so, the contrasting with previous studies, in which the deviation approach

improved person recognition rates, can open questions on the common strategy of data

filtering.

The most surprising results were the recognition rates of fatigued gait patterns, in-

cluding inter-individual recognition. The achieved rates of 96.3% (signal approach) and

98.1% (deviations approach) lead to the conclusion that the SVM was capable of distin-

guishing gait patterns, both before and during fatigue, by kinetic information over all

participants. For this situation the deviations approach has the advantage of a more

obvious extraction of intra-individual differences.
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2.5 Summary

The studies analysed in this state of the art chapter were selected in an attempt to analyse

at least one study related to each part of this study. As such, the first, second and fourth

studies use SVM on their implementation, with different methods of data collection,

sensor placements and fatiguing exercises between them. The last study also uses a

neural network as part of its implementation. Differing from the previous, the third

study was selected only due to its finds in alterations to gait characteristics and does not

include any machine learning element. With this in mind, any comparison of results

related to machine learning algorithms can never include the third study.

The first study collected data using two IMUs, one at the sternum level and one on

the right shank, in partnership with other methods, with squatting being the fatiguing

exercise chosen. Different gait related features were used and the classification was done

using a SVM classifier with the linear, polynomial and RBF kernels being tested. This

study achieved an accuracy of 97% with the linear kernel, 96% with the RBF and a lower

88% with the polynomial kernel. There were still inter-subject classification, in which

were achieved 90% accuracy with general features and 88% with selected features.

The second study also includes SVM classification, although its pre-processing of data

and steps taken to reach the classification are different. In this study data was collected

with a single IMU, placed at the right ankle, contrary to last study the fatiguing exercise

was a part of the collection itself with the participants being asked to push a dolly with

weighted packages in between points. The highest accuracy achieved by this study was of

90%, when using a combination of all templates calculated, followed by 89% using only

the accelerations template. Finally, both the position trajectory template and velocity

magnitude obtained an accuracy of 86%.

As previously mentioned, the third study does not include any machine learning

segment, focusing only on the alterations induced by fatigue on the gait patterns. Data

was collected using both motion capture methods and a treadmill, with the fatiguing

exercise chosen involving asking the participants to run on said treadmill. This study

found a significant increase of step width variability, hip ROM and trunk ROM, when

under the effects of fatigue, with an increase in knee ROM also being reported but not

as significantly. The study also raises awareness to inconsistencies between its finds and

the finds of previous studies, especially related to step width and step length variability.

These inconsistencies were attributed to differences in the fatiguing protocol.

The last study used both SVM and a SOM to classify gait patterns. The data was

collected using a force plate and the fatiguing exercise chosen asked the participants to

lift and raise the rear foot while standing on their toes, carrying a barbell with weights

on their shoulders. In this study the highest rate of fatigue recognition achieved was

98.1%, with the deviations approach, and 96.3%, with the signal approach. For person

recognition a rate of 100% before fatigue was achieved, along with a rate of 96.3% during

fatigue and 98.1% after fatigue.
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3
Theoretical work

3.1 Gait and fatigue

This chapter is dedicated to a more in-depth explanation of gait, the gait cycle, gait

patterns, and the effects of fatigue on said gait patterns. There will be a review of previous

findings in an attempt to predict the alterations expected to be found with testing.

3.1.1 Gait

As previously explained in the motivation section of chapter 1, gait refers to human

locomotion on foot, a movement which has specific characteristics known as gait patterns

or gait kinematics. These patterns are influenced by fatigue levels; as this factor increases,

there is a decrease in postural stability and motor performance. This leads to an increase

in the risk of falls and accidents. Fatigue is a major issue in a working environment, in

the US workforce the estimations for fatigue prevalence is of 37.9% [21]. Fatigue in this

context can lead to accidents where, depending on the industry, the outcome might be

workplace injuries or even deaths.

To understand the way other studies identified changes in gait patterns it is important

to understand the different parts of the gait cycle. The gait cycle is split into two main

phases, the stance phase and the swing phase, where the stance phase attends for 60%

of the cycle with the swing phase occupying the remaining 40% [12]. More detailed

classifications vary in the way they split the gait cycle varying between 6 or 8 phases [12,

16]. The possible classifications are:
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6 phase classification (as seen in figure 3.1):

1. Heel Strike

2. Foot Flat

3. Mid-Stance

4. Heel-Off

5. Toe-Off

6. Mid-Swing

Figure 3.1: 6 phase gait cycle [6]
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8 phase classification (as seen in figure 3.2):

1. Initial Contact

2. Loading Response

3. Midstance

4. Terminal Stance

5. Pre swing

6. Initial Swing

7. Mid Swing

8. Late Swing

Figure 3.2: 8 phase gait cycle [20]

3.1.2 Fatigue influence on gait patterns

After understanding the fundamental parts of the gait cycle, this can be used to under-

stand the findings of previous studies and their testing methods. Even with discrepancies

in some of the findings, it is reported in several studies that fatigue affects the human

gait kinematics and, as such, it is a factor in destabilizing the normal gait. The discrep-

ancies in the finding can be attributed to the fatiguing protocols used and how these can

affect different muscles [2], as an example running protocols may affect more medial-

lateral muscles where anterior-posterior muscles may respond more to sit-to-stand tasks.

These differences can lead to different motor responses, which can explain inconsistencies

between findings [17].

It is important to mention that previous studies searched and found relations between

fatigue and increases in knee ROM, hip ROM, and larger trunk ROM. Findings like these,

although significant and deserving of mention, will not be discussed further due to the

requirement of different methods of acquiring data, such as full body tracking [17].
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Previous studies found increases in step width [26] and step width variability [17],

with a reason for this increase hypothesised as a strategy to compensate for the results of

fatigue and increase gait stability. There have been reports of decreased step length [3],

meanwhile step length variability is one of the characteristics on which there were found

contradictory results; sit-to-stand tasks led to an increase in step length variability [9],

while running fatiguing methods did not influence this characteristic [17].

Jerk cost was reported to greatly increase, more than 2-fold, with fatigue, paired

with a higher result acceleration [26], while significant increases to mediolateral trunk

acceleration and trunk acceleration variability in the vertical direction, in between strides

occur[9]. Another of the characteristics where the effects of fatigue are contradictory was

gait speed as procedures that allowed participants to choose a comfortable walking speed

found different results. Some studies reported no significant differences before and after

the fatiguing procedure [9], whereas others found a decrease in stride speed, which was

attributed to an anticipatory strategy to guarantee dynamic stability during obstacle

crossing [3].

The results reported by previous studies indicate that the effects of fatigue on gait

parameters can serve as a basis for continuous monitoring for fatigue detection [2]. Also

being reported that these effects, even though some are too subtle to be identified by the

human eye, can still provide information for an SVM classifier to predict a situation of

fatigue [26].

3.2 Technology and sensors

This chapter is dedicated to exploring the possibilities available when it comes to obtain-

ing the necessary data. For that, first there will be an explanation of the most useful for

this study, sensors that exist inside most devices, such as accelerometers and gyroscopes,

followed by a brief exploration of technology available in the market, mostly in the wear-

able department, finishing with an analysis and comparison of the use of smartphones

and wearables to collect the data.

3.2.1 Inertial sensors

3.2.1.1 Accelerometer

An accelerometer, as the name implies, is a device used to measure acceleration forces.

Despite having the appearance of a simple circuit, consists of multiple parts and can work

in different ways. Two of these different ways of operating are the piezoelectric effect and

the capacitance sensor. Out of these two, the most common form of accelerometer is

the piezoelectric effect. This method utilises microscopic crystal structures that, when

subject to the influence of accelerative forces, become stressed and create a voltage. The

accelerometer uses this voltage to calculate the velocity and orientation.
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The other form, the capacitance accelerometer, uses micro-structures placed next to

the device to detect differences in electric capacity, capacitance. The influence of an

accelerative force displaces one of the structures, causing the capacitance to be altered

which the accelerometer will translate into voltage, so it can be interpreted.

Accelerometers can be made up of multiple axes, depending on the type of movement

to be analysed. Smartphones usually utilise a three-axis model, allowing it to detect

positioning in three dimensions (as seen in figure 3.3), while, for example, cars only

use a 2D model when determining the moment of an impact. Regardless, these devices

are very sensitive, due to the requirement of registering minimal shifts in acceleration.

For this reason, smartphone accelerometers opt for having a lower value range, so they

can achieve a higher precision (iPhone 4 range: ±2g, precision 0.018g). Even though

different smartphones achieve different precisions, as there are no regulations imposed

on the manufacturers in this area, higher-end smartphones usually have better results,

but nowadays all smartphones have good precision.

Figure 3.3: An accelerometer and a gyroscope and the forces these measure

3.2.1.2 Gyroscope

The gyroscope can act as a support to the accelerometer in a sense that it can help in

situations where the accelerometer alone would fail. Situations like running can cause a

similar acceleration to a fall but the use of the gyroscope can differentiate the two. This

happens because the gyroscope allows the addition of the data related to the angle at

which something happens, allowing for better accuracy rates, when compared to the use

of only the accelerometer [18].

A gyroscope reads angular velocity. The gyroscopes found in smartphones and wear-

ables measure the Coriolis force, this force is proportional to the angular rate of rotation

in a rotating reference frame. To obtain the angular rate, micromachined gyroscopes then

integrate the gyroscopic signal with the detected linear motion from the Coriolis effort.

Other types of gyroscopes do exist, based on different principles, ranging from electronic

gyroscopes, fiber optic gyroscopes, to extremely sensitive quantum gyroscope. In the

analysis of human gait, gyroscopes can be used to determine the angular velocity, angle
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of feet or legs, depending on the placement of the sensor, and this can be used to identify

the different gait phases [24].

3.2.2 Available Technology

In recent years there have been major developments in the availability of sensors in our

every day lives, from the sensors contained in the smartphones we carry to small wearable

devices that show up more and more on the market.

While current smartphones have all the necessary sensors included, wearables found

in the market tend to be more specific with their function. Market-wise most wearables

that contain the necessary accelerometer and gyroscope seem to fall into two separate

categories. The first are small circuits or modules that are meant to be used for building

your own device, such as the WitMotion BWT61 (figure 3.4) or the Adafruit wearable

section, these can be very cheap but require the acquiring of the necessary parts and the

construction of the full device, making them not viable on a future solution.

Figure 3.4: WitMotion BWT61

On the other hand, there are fully built solutions such as the Xsens MVN Awinda

or the Shimmer3, this last one was used on a previous study with positive results [2],

which can be seen in figure 3.5. These solutions are built for research purposes or high

performance training. As such, these are quite expensive solutions, some even requiring

pricing request, and their availability is very limited, this again limits the possibilities of

future implementations on real world scenarios.

The outliers to these two categories are smart bands, which are increasing in popu-

larity. Although not all bands have the required sensors, newer ones such as the Huawei
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Figure 3.5: Shimmer3 sensor used on a previous study [2]

Band 3e are starting to add them, and still maintain a very affordable price. This tech-

nology shows the most promise, outside of smartphones, in possible solutions for future

integrations.

3.2.3 Outlook

Both types of devices explored in this chapter fit the requirement of adaptability to real

world (out of the lab) conditions, which guarantees a chance to expand the work devel-

oped on this dissertation to complement existing solutions, in case of positive results.

That said, the greatest advantage of using only the inbuilt sensors of smartphones is the

widespread availability and popularity of them, nowadays a large part of the population

owns a smartphone and the tendency is for the number to increase. This way, there is no

need to acquire devices which limits real world applications.

Previous studies found that phones can achieve a high level of precision, enough for

gait analysis, with results comparable with other methods of data collection [23], and

as such can be viable data collection tools for a real world solution. The two major

foreseeable disadvantages of using a smartphone to collect the data is the fact that the

smartphone does not have a static placement, that is while in a testing environment we

can guarantee that the smartphone is always in the front pocket, in the real world people

carry their phones in different places, anywhere from back pockets or shirt pockets to

hand bags or backpacks. This difference can cause a distinction between the test results

and a real life application. The second disadvantage is the fact that people may not fully

understand what the collection of data entails and mistrust the use of their smartphone

for it. In this case, there is an argument to be made that a small wearable device, to be

attached to the ankle for example, with a single purpose and that can be removed when

not needed, could be preferable.

Even though wearable devices have the advantage of having a fixed placement and can

create less complications, they are not without disadvantages either. As previously men-

tioned, wearable devices always require the acquisition of the device itself and, depending

on the sensor used, the cost might be considerably high. That said, the availability of
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these devices has been increasing in the last years and, with it, it is expected to see a

decrease in prices. Another pertinent question is how intrusive these devices are; the

development of the technology allows the devices to be extremely small and lightweight

but they may still cause a felling of being monitored, as their presence is more noticeable

and foreign than the everyday tool of the smartphone.

Due to the availability of both smartphones and wearable sensors at the facilities

where the dissertation will be developed, both were used to collect data, allowing a

comparison of both methods of collection based on results, instead of only foreseeable

advantages and disadvantages.

3.3 Machine Learning

Machine learning is the study of algorithms that computers use to perform a task without

requiring explicit instructions, using instead patterns and inference. It is a subset of

artificial intelligence. Machine learning algorithms create a mathematical model from an

initial sample data to make predictions or decisions without being explicitly programmed

to perform the task.

There are four basic types of machine learning problems, supervised, unsupervised,

semi-supervised and reinforced. Supervised machine learning require the data to be

labelled and uses it to come up with a rule to predict the output of future inputs; these

problems can be divided into regression problems for continuous values or classification

problems for discrete classes. In unsupervised machine learning the data is not labelled

with the objective usually being to find some structure in the data; this can be used as a

first step in broader learning task, as a preprocessing step, for example. Semi-structured

learning mixes the two previous approaches and in it some data is labelled but most is

not. Lastly, reinforced learning is best one when we want to optimize some output but

don’t have direct feedback in every case; a good example is playing a game, every move

has a cost and a benefit but only at the end of the game it is visible the final result, the

conjugation of all the moves.

3.3.1 Support Vector Machines

SVM is a classification algorithm that is specialized in solving binary classification prob-

lems. SVMs define the learning problem as a quadratic optimization problem, whose

error surface is free of local minima and has global optimum, originating from the statis-

tical learning theory proposed by Vapnik [25]. For binary classification problems, such

as the distinction between fatigue and non-fatigued gait patterns, the objective is to dis-

cover an OSH between the two data sets, as can be seen in figure 3.6. To quickly define

an hyperplane, assuming an Euclidean space with n dimension, an hyperplane is an n-1

dimensional subset of the space which divides it into two detached parts. To find the
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OSH the SVM tries to maximize the margin between data points of both classes. By maxi-

mizing this margin there is a better chance future data points will be correctly classified.

To do this SVM first utilizes a kernel function to transform the input data into a higher

dimensional space. In this transformed larger version of the feature space, it creates an

OSH that linearly divides the two classes, the nearest data vectors to the constructed

line, in the transformed space, are named support vectors and hold useful information

regarding the OSH [4][8].

Figure 3.6: Example of a two-class problem showing OSH that SVM uses to divide the
data and associated Support Vectors

The problem of pattern recognition may be stated as follows: Given a Θ training data

set, having input features (xi) and classification output (di), with the following form

Θ = {(x1,d1), (x2,d2), . . . , (xN ,dN )}

where: xi ∈<m

di ∈ {+1,−1}

N is the number of samples

(3.1)

In this dissertation , di can be considered +1 for fatigued and −1 for non-fatigued gait.

We assume g(x) is some unknown function to classify the feature vector x

g(x) :<m→ {+1,−1}

where m is dimension of the f eature vector.
(3.2)

As previously mentioned, SVM method wants to find a hyperplane in m dimensional

space that linearly separate the two classes +1,−1. The equation of the hyperplane is then

wT x+ b = 0 (3.3)
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with w being the adjustable weight vector and b the bias of the hyperplane. The

linearly separable case can be represented mathematically as

wT x+ b ≤ 0 f or di = −1

wT x+ b > 0 f or di = +1.
(3.4)

When implementing the SVM classifier, there are two tuning parameters that need

to be discussed. The first, usually represented by C, controls the trade off between a

smother decision boundary and the correct classification of points. While a higher value

of C leads to more points being classified correctly, due to the fact that any algorithm

should be trained with only a portion of the data, a larger value for C can lead to problems

of over-fitting and lead to worse results when testing the algorithm with new data. The

second parameter, usually called gamma, regulates reach of the influence of each point.

Low values of gamma lead to a bigger reach for every point and vice-versa. In other words,

an higher value for gamma give points close to the decision boundary a bigger influence

to over it, even ignoring points that are far away from it. This results in a line that curves

when necessary to adapt to the points close by. On the other hand, lower gamma values

give more weight to far away points and lead to a more linear curve.

The majority of real life problems, the problem discussed in this dissertation included,

are not linearly separable. To be able to solve this issue it is possible to apply nonlinear

transformation on the data. While this is easy for modest values of m it is easy to see

how it can become unmanageable with higher values of m. A way to surpass this is

using a kernel trick, basically using basis expansions such as polynomials or splines to

map the data from the input space into an enlarged feature space. Linear boundaries in

this substantially higher dimension space obtain better separation between classes, and

translate back into the original feature space as nonlinear boundaries[8]. This allows to

avoid the curse of dimensionality by hiding the potentially high dimension of that feature

space. The kernel function K(x,y) is related to the nonlinear feature mapping function

ϕ(x) by

K(x,y) = ϕ(x)Tϕ(y)

where: x ∈<m

ϕ(x) ∈<h.

(3.5)

3.3.1.1 Kernels

A kernel is a function that grabs a given input data and transforms it into an high-

dimensional space where the classification of such data is possible. As previously men-

tioned, a better separation between classes is obtained by the linear boundaries in this

higher dimension space, which translate back as nonlinear boundaries on the original
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feature space. Kernel function can fall into one of two categories, linear or nonlinear. Se-

lecting the adequate kernel for the problem directly influences the accuracy of the SVM

classification; a well selected kernel may minimize generalization error, and increase

classification accuracy. Overall the choice of a kernel/regularisation parameters can be

automated by cross-validation, a method used in past studies[4] and chosen as adequate

for this study.

The simplest kernel function is the linear kernel; this is suitable when there is a high

number of features in the training data. This kernel can also be called dot-product, it is

given by the inner product plus an optional constant c: K(x,xi) = xT .xi + c.

Polynomial kernels (of degree “d”: K(x,xi) = ((x.xi) + c)d) are non-stationary kernels

and work well for normalized training data. The optimization parameters for this kernel

are the slope, alpha, the degree of the polynomial, d, and the constant, c, which controls

the trade off in influence of higher and lower order terms.

RBF kernel (with width “g”: K(x,xi) = exp{−|x−xi |2/g2}.) is normally a reasonable first

choice due to its ability to non-linearly map the data into a higher dimensional space.

[26] The RBF kernel creates a non-linear combination of features to transform the data to

an high-dimensional feature space.

To briefly explain the Radial Basis Function, in it as the data point x moves away from

the center xi the RBF function decreases in a swift and monotonic way. The rate at which

the Gaussian RBF decreases is controlled by the width g as the higher the value of g the

slower the rate of decline.

3.3.2 Neural Networks

Out of the multiple types of neural networks, the multilayer feed-forward neural network,

also called multilayer perceptron or back-propagation network, has been standard in a

wide range of applications, including gait analysis [10][11]. As such, part of this explana-

tion will focus on this type, although it is still applicable to other types of networks.

Artificial Neural Network (ANN) are simply nonlinear statistical models, an ANN is

a two-stage regression or classification model, usually represented by a network diagram

of inputs and outputs, with the middle being occupied by a processing section also called

hidden layer/s.[8] Statistically wise, the tradition is the inputs being the independent

variable with the outputs being dependent. The hidden layers receive their name due to

them not being directly observed, and there can be more than one hidden layer.

ANN can be compared to a flexible mathematical function with multiple configurable

internal parameters. To be able to accurately represent the intricate relationships between

gait kinematics, the internal parameters need to be optimized. In supervised learning,

examples of inputs and desired outputs are presented to the network, in an effort to

accurately represent as many examples as it can, the network iteratively self-adjusts to

the presented data. This learning process is considered to be complete after a chosen
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criterion falls bellow a preselected threshold. After the ANN finishes training it is able to

receive new, previously unseen, inputs and attempt to accurately predict the output.

There is one assumption when deploying a multilayer feedforward neural network

(with one hidden layer), in that the input and output data are related by a continuous

functional relationship, although this is rarely mentioned due to it being so general and

nonrestrictive [11].

3.3.3 Performance assessment

To follow the steps of previous studies[26][2], a possibility when assessing the perfor-

mance obtained by the classifiers is using the accuracy, sensitivity and specificity ob-

tained. These three metrics have been used as means to classify the quality of predictions

in multiple studies and articles, from areas such as gait analysis[26][2] to general medical

diagnostics [27]

In the setting of this study, sensitivity represents the ability to correctly identify

fatigued gait from only the fatigued data present in the overall data, in other words, it

portrays the ability of the classifier to find the presence of fatigue. A classifier with high

sensitivity scores is able to identify all situations where a user is fatigued without missing.

Sensitivity =
T P

T P +FN
x100%

Meanwhile, specificity indicates the ability of the classifier to avert situation of false

detection, showing its ability to correctly classify situation without fatigue. The higher

the specificity, the more non-fatigued data is classified as such, and the better the classifier

is at avoiding classifying a situation without fatigue as fatigued. It is possible to obtain

highly specific results but not very sensitive or vice versa. A good prediction is one

that achieves high results for both sensitivity and specificity, although depending on the

requirements asked from the prediction one might be more important than the other.

Specif icity =
TN

TN +FP
x100%

Accuracy indicates the overall correct predictions, in other words, the ability of the

algorithm to correctly identify both fatigued and non-fatigued gait. Since accuracy re-

quires correct prediction, both positive and negative, it is possible to see how this metric

is much related to the results of sensitivity and specificity.

Accuracy =
T P + TN

T P +FP + TN +FN
x100%

On the formulas of these metrics multiple acronyms were used; in this scenario,

TP represents the number of true positives, a situation where the classifier identified

a fatigued gait that was labelled as fatigued; TN being the number of true negatives, a
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situation where the the classifier identified a non-fatigued gait that was labelled as non-

fatigued; FP and FN are the number of false positives and negatives or the number of

cases incorrectly classified as fatigued and non-fatigued, respectively.

It is important to mention that for the conditions required for this study an high

relevance will be given to the specificity results. Overall, all metrics are important and

should ideally achieve high results but any future use of the work developed during this

dissertation would require a high capability to avoid false positives.
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4
Experimental study

In this chapter the different steps taken during the experimental part of this study are

explained, starting with the experimental protocol and data collection process. This is

followed by a brief insight into the participants’ demographics that volunteered to be a

part of this study. Afterwards, the methods implemented to process the data collected

and train the classifiers are explained and, lastly, a few alternative approaches that were

attempted during development are presented.

4.1 Experimental protocol

An experimental protocol was written to regulate the collection of data, necessary to this

study. This section explains the steps present in this protocol and followed for the data

collection process.

Before starting the collection, all participants were asked to fill-in a form with a few

personal questions for statistical analysis and preferences related to the collection. This

form also served to obtain the consent of the participants for the collection and utilization

of their data. This form will be included as an annex (Annex I) but the information

collected from it will be presented in the Demographic information section.

After filling-in the form, the participants were informed of the process necessary to

the collection of data. First, the participants were equipped with 4 Internet of things in

Package (IoTiP) devices placed in specific locations, one in the dominant side ankle, two

at belt height, one of them at the center of the back and the other facing forward above

the pocket area, and finally one centered at the top of the chest. These IoTiP devices were

developed in-house, at Fraunhofer, and include both accelerometer and gyroscope sensor

used during this collection, among others.
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Figure 4.1: IoTIP device used to collect data

In addition, the smartphone used to connect the sensors was also collecting data itself

and participants were asked to keep it on their right pocket during the data collection.

These placements were chosen according to previous studies, that obtained good results,

and also due to the diversity in the placements, as an attempt to facilitate the observa-

tion of the influence that the placement of said devices has on the performance of the

supervised learning algorithms.

After a few moments to acclimatise to the wearing of the sensors, the participants are

given the smartphone and are requested to put it in their pockets in order start the first

collection.

The first collection is considered the non-fatigued collection; each participants is re-

quested to walk five minutes on a treadmill, at a self-selected comfortable pace. The

treadmill’s display is covered as not to influence the participant’s speed selection, espe-

cially important for the second collection.

After this first collection, it is necessary to induce a state of physical fatigue on the

participant. For this goal one of two exercises were used, the participants were asked to

either squat repeatedly or briskly walk up and down a flight of stairs. The exercise was

chosen by the participant in the previously mentioned form and, in both cases, ending

the exercise was dependent on the feedback provided by the participant. The fatiguing

exercise was considered complete when the participant reported a rate of perceived exer-

tion superior to 15 and a fatigue level superior to 5. The participants were informed of

the scales used to measure these values before starting the exercise.

The scales used to assess the stopping point of the exercise were as follows:
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How you might Borg rating Examples
describe your exertion of your exertion (for most adults <65 years old)

None 6 Reading a book,
watching television

Very, very light 7 to 8 Tying shoes
Very light 9 to 10 Chores like folding clothes

that seem to take little effort
Fairly light 11 to 12 Walking through the grocery

store or other activities that
require some effort but not enough

to speed up your breathing
Somewhat hard 13 to 14 Brisk walking or other activities

that require moderate effort and speed
your heart rate and breathing but

don’t make you out of breath
Hard 15 to 16 Bicycling, swimming, or other

activities that take vigorous effort
and get the heart pounding

and make breathing very fast
Very hard 17 to 18 The highest level of

activity you can sustain
Very, very hard 19 to 20 A finishing kick in a race

or other burst of activity that
you can’t maintain for long

Table 4.1: Borg scale of perceived exertion[5]

37



CHAPTER 4. EXPERIMENTAL STUDY

0 Nothing at all
0.3
0.5 Extremely weak Just noticeable
0.7
1 Very weak

1.5
2 Weak Light

2.5
3 Moderate
4
5 Strong Heavy
6
7 Very strong
8
9

10 Extremely strong "Maximum"
11∫
• Absolute maximum Highest possible

Table 4.2: Borg CR10 Scale used to measure the perception of intensity of any experi-
ence[7]

After the participants reported the level of exertion and fatigue required, the fatiguing

exercise is considered finished and the second and final collection of data can be initiated.

The placement of the sensors is quickly checked to guarantee that there were no shifts

during the exercise and the participants are requested to once again walk on the treadmill

for another five minutes. As previously, the participant could regulate the speed of the

treadmill, without being able to see its display, which is particularly important in this

collection to avoid visual influence when deciding the speed of the treadmill.

After this second collection, the overall trial is considered to be finished and the

sensors are removed from the participant.

The existence of two possible fatiguing exercises was considered due to previous

studies that found contradictory alterations in gait patterns after fatigue. In these studies,

the explanation given for the contradictions found was the use of different exercises to

fatigue the participants. These different exercises would fatigue different muscles and

lead to different alteration in the gait patterns.

4.2 Demographic information

In total 12 participants volunteered to be a part of this study, 9 male and 3 female. The

average age of the participants was 26.25 (±4.80) years. The age of the participants that

volunteered to participate influenced the direction of this study, moving away from any

conclusions possible about an, originally planned, older population. The participants
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average height was 174.50 (±6.70) cm, while the average weight was 70.92 (±13.14) kg.

In regards to the fatiguing exercise, the majority of participants (8 participants, 67%)

chose the squatting exercise, while only 4 participants (33%) chose to walk up and down

stairs. Those who chose squatting took in average 3 minutes and 38 seconds to report

the previously mentioned stopping levels of fatigue and exertion, while participants that

chose the stairs exercise took, a slightly lower, 3 minutes and 6 seconds in average.

Looking back at the experimental protocol, the display of the treadmill was covered

during both collections in an attempt to discover if the participants would prefer an

higher or lower pace while fatigued. While in average after the fatiguing exercise the

walking velocity of the participants increased, from 4.06 to 4.22, this did not occur in

every instance, as such it can not be concluded that the introduction of fatigue leads to

an increase in walking velocity

Only one of the participants reported their left foot as their dominant one and only two

reported health problems related to fatigue or gait but neither were considered impeditive

enough that their data couldn’t be used.

4.3 Data processing

In total, the collections generated 120 files of data, each of these files contained the data

for both the accelerometer and gyroscope of one sensor and amounts to five minutes of

gait.

To process the data the first step taken was the reading and parsing of the files. In an

attempt to reduce writing errors from the devices, the first 40 seconds of each collection

were skipped, as during this starting period the smartphone was prone to have problems

communicating with the devices leading to larger gaps in between lines in the file and

significantly lower frequencies of data. After that, the following two minutes of the

collection are used. Only two minutes were used for two reasons, the first to avoid

possible delays in between the stopping of the participant and the moment the collection

is stopped on the smartphone. The second reason behind the two minutes was an attempt

at averting a possible cooling down of the participants on the post-fatigue trial, hiding

the effects of the fatigue caused by the exercise.

The necessary features for the learning algorithms are calculated using the (Time

Series Feature Extraction Library (TSFEL)) which automates this process, aiding on ex-

ploratory feature extraction tasks on time series. TSFEL is optimized for time series and

automatically extracts over 50 different features on the statistical, temporal and spectral

domains. TSFEL calculates 50 features for each dimension of each sensor, as this study

uses both the accelerometer and gyroscope sensors, each writing in three dimensions (Ax,

Ay, Az, Gx, Gy, Gz), the total number of features returned is 300. A list of the 50 features

calculated for each of the dimensions is included in annex (Annex II).

Afterwards, it is necessary to identify from which type of collection (fatigued or non-

fatigued) each line of the resulting dataframe came from; to this effect an extra column
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is added identifying with a 1 if it is from a fatigued collection and a 0 otherwise. The

resulting dataframe is split into 10 folds to allow for cross validation. At a time, one of

the folds is saved for testing, while the other nine are used in training. The data is passed

through PCA to reduce the number of features that do not add relevant information to

the dataframe, reducing the number of features to under 100, the exact value depends on

which device positioning is being used. For this process the training data was used to fit

the PCA, which is then used to transform the test data. Before passing through PCA, it is

necessary to standardize the data.

PCA is widely used to reduce the dimensionality of the features by condensing the

information into a smaller group of composite dimension, all while retaining as much

information as possible. The PCA analyses a data set and identifies the features with

the highest variance using these to create a smaller data set with minimal losses to the

original data set descriptive power. A smaller data set has the advantages of requiring

less processing power and can have less noise in the data. This process does however

transform the original data set, the principal components calculated by the PCA are influ-

enced by the original features but are not a copy of any of them, with a linear combination

of features being used to keep the descriptive power of the original data set. It is possible

to know the contribution of a feature to a principal component but it is not correct to say

that features are kept.[1]

After this processing section,the training data is used to optimise the necessary param-

eters of the different learning algorithms. For this optimisation process the training data

is divided further into 5 folds, cross-validating the results using the possible parameters.

Lastly, the processed data is passed to the learning algorithms. Due to the require-

ments and to save time, the processed data was given to all the algorithms to be tested one

by one. During this step the tested algorithm is trained with the training data and then

given the testing data to identify. The results are stored and the next algorithm is given

the already processed data saving processing time. Although 10 fold cross validation was

used to validate the results of the algorithms, the splitting of the data only in the tem-

poral field can bring problems on the way of over-fitting of the data. This problem will

be further explained in the following section when explaining an alternative approach

attempted during development.

4.4 Previous approaches

During development different approaches were attempted; the first, and most important,

to mention is related to the way the features are calculated. Although in the end it was

opted to maintain the automatic approach, during development there was an attempt at

a different way to calculate features. This second attempt involved identifying individual

steps from the gait data and calculate the necessary gait patterns. To this effect, the first

step taken was to implement a step detection algorithm. This was done by analysing

the temporal distribution of a collection; firstly the three axis of the acceleration were
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joined into the total acceleration on that moment[26]. On this total acceleration, steps

were identified by three consecutive positive zero crossings, after an initial peak (to try

to eliminate possible initial errors).[22]

After dividing all the data by steps, the next stage was calculating the wanted fea-

tures; the first, jerk cost, was calculated from the total acceleration of the step using the

following formula[22]:

SL = K 4
√
amax − amin

The second feature calculated in this manner was the step length. Similarly to the

previous feature, the formula is based on the total acceleration (where R represents the

total acceleration)[26]:

J =
dR
dt

Although these two features were calculated successfully, after that the problems with

this development path out-weighted its value. The first problem showed itself even

before these features were finalised, calculating features one by one was taking too long

to implement; for every feature a formula to calculate it would have to be researched,

implemented and tested, with the assumption that all these steps would succeed. The

second and major issue is the fact that not all necessary features could be calculated due

to limitations in the data. When the experimental protocol was written, in an attempt to

limit battery usage, it was planned to only use the accelerometer and gyroscope of the

devices. Unfortunately, at the time the real necessity of the usage of magnetometer was

overlooked. The magnetometer is used to convert the data from the coordinates of the

device to earth’s coordinates. This transformation is necessary to use a lot of the formulas

found for more features, such as step width. Although not completely impeditive, the

high time investment necessary to continue this path caused the whole idea to be left for

future work.

Another approach that unfortunately didn’t lead to a successful state dealt with the

way the results are validated. In an attempt to obtain better results for future uses of

the trained algorithms, an alternative way of validating the results was tested. This

alternative involved using a Leave One Group Out (LOGO) cross-validation, where each

group contained all the windows of data from collections of one participant. This way,

when the classifier tested with the data of one participant, it was guaranteed that no

data windows from that participant were used during the training of the algorithm. This

approach lowered significantly the results, possibly due to the low amount of participants

in the study. As such this approach would only be revisited in the case of a new collection

of data, with an increased number of participants.
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5
Results

Due to the comparative nature of this study, multiple tests were made while changing dif-

ferent conditions of the implementation. This variations included dividing the collection

in different time windows, using different device placements or using only the accelerom-

eter data. The conditions of each individual test will be explained before presenting its

results. All results will be presented under the metrics mentioned in the theoretical work,

as such three tables will be presented, one for each of the metrics. Each of these tables

represent one of the metrics for one testing condition, on them, each column represents

one of the learning algorithms and each line which sensor placement.

5.1 Window duration variations

These are the most basic variations of tests; in these only the duration of the windows

in which the data is split is changed. For this study finding a balanced window size is

important to allow us to achieve good results while maintaining a short processing time.

While a longer window duration allows for faster processing time, some of the details

from single steps can be lost leading to worse performances. Dividing the same data into

smaller windows should lead to better performances but also takes longer to process.

5.1.1 5 second windows

In this first variation the duration chosen was 5 seconds. For all tests under this section

data from both accelerometer and gyroscope was used, using only two minutes of each

collection to skip both the start and end of the collections.
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Accuracy:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 86.40 96.51 97.38 92.13

Chest 82.68 93.00 92.83 92.00

Belt back 85.00 95.24 97.07 93.77

Belt forward 85.58 97.26 93.98 88.49

Phone 81.66 94.27 94.82 92.02

All 66.32 92.51 92.18 89.23

In this first table the algorithm that obtained the best accuracy was the SVM with the

RBF kernel, which means it was the best algorithm, and kernel, in correctly identifying

both fatigued and non-fatigued data. Both the RBF and polynomial kernels obtained very

high results, followed by the neural network and finally the SVM classifier with the linear

kernel. The data from the ankle device obtained the best result for all the SVM kernels,

while only the Neural Network obtained a better result using the data from the belt back

device.

Sensitivity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 87.62 98.58 96.88 90.67

Chest 85.06 93.75 94.82 92.28

Belt back 83.37 94.78 95.75 90.64

Belt forward 86.44 98.40 95.70 82.70

Phone 84.33 95.90 95.71 92.77

All 65.53 93.79 92.24 89.53

The algorithm that obtained the best result identifying true positives was the SVM

with the polynomial kernel. In this setting this means the algorithm that was better able

to identify windows with fatigued data out of all windows with fatigued data. Again,

both the RBF and polynomial kernels obtained very high results, followed by the neural

network and finally the SVM classifier with the linear kernel. Similar to the accuracy

table, all the SVM kernels obtained their best result with the ankle placement with the

only difference coming from the Neural Network obtaining its best result from the phone

data.
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Specificity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 84.48 94.61 97.92 93.42

Chest 80.69 92.41 91.01 91.67

Belt back 86.54 95.47 98.24 96.76

Belt forward 84.81 96.18 92.07 94.24

Phone 79.17 92.56 93.94 91.22

All 67.10 91.22 92.10 88.94

In the identification of true negatives, which equals to correctly identifying windows

of non-fatigued data, the algorithm which obtained the best result was the SVM with

the RBF kernel. As previously, both the RBF and polynomial kernels obtained very high

results, followed by the neural network and finally the SVM classifier with the linear

kernel. This third metric is the one where most differences where found in terms of the

device placement, where the belt region was superior. In this case, the best result for all

algorithms was found with belt back placement, with the exception of the polynomial

kernel where the belt forward obtained a better result.

Looking at the overview for these testing conditions, in both the accuracy and the

specificity metrics the RBF kernel obtained the highest result of each of the tables, while

the highest sensitivity was obtained with the Polynomial kernel. As previously, the first

two performance assessment metrics obtained their best result for the same device place-

ment (ankle), while the specificity obtained its best results with the devices at the belt

level, mostly with the belt back device. The only outlier result observed was the lowest

performance of the SVM algorithm with the linear kernel when processing the data from

all device placements. In this situation performance in all metrics decreases significantly.

5.1.2 3 second windows

The duration chosen for the second variation was 3 seconds, and as explained previously

the remaining variables are kept with the same values.

Accuracy:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 86.60 97.22 97.63 94.12

Chest 84.41 92.17 94.00 92.16

Belt back 87.00 96.21 97.51 95.35

Belt forward 88.38 95.93 97.96 94.60

Phone 74.79 89.53 93.06 89.69

All 65.38 91.66 92.31 87.48

As with the previous variation, the algorithm that obtained the best accuracy was the

SVM with the RBF kernel. Again, the RBF kernel was accompanied by the polynomial
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kernel on obtaining the best results, followed by the neural network and finally the linear

kernel of the SVM classifier. In this variation there was not a single placement that

obtained most of the best results, with the belt forward being the best placement for both

the linear and RBF kernel, while the polynomial kernel achieved its best result with the

ankle placement and the Neural Network with the belt back one.

When comparing the results of this variation with those of the previous one, the 3

second window obtained the higher best result, although this did not happen for every

algorithm, nor for every device placement. In the first four device placements (ankle,

chest, belt back and belt forward) the 3 second window obtained better accuracies in 14

out of a possible 16 combinations, while for the last two placements (phone and all) this

variation only obtained a better result once in 8 combinations. Still, the accuracy results

achieved with both these conditions are similar, with most combinations obtaining under

5% difference between variations.

Sensitivity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 87.60 97.55 97.65 94.71

Chest 84.12 92.23 93.94 93.22

Belt back 85.73 97.34 96.98 95.03

Belt forward 88.22 98.08 98.40 93.11

Phone 75.77 93.02 93.84 89.57

All 65.55 92.69 92.70 88.00

In terms of the best percentage of true positives, the algorithm that obtained the best

results was the SVM classifier with RBF kernel. As with previous cases, the best results

were obtained with the RBF and polynomial kernels, followed by the neural network and

the linear kernel of the SVM classifier. In this metric the best placement for all the SVM

kernels was the belt forward, while the Neural Network achieved a better result with the

belt back placement.

Contrary to the previous metric, the best sensitivity was obtained with the 5 second

window, but similarly the results were not constantly better with one of the variations,

with the 3 second window having an higher sensitivity in 11 out of the 24 total combina-

tions. While in most combinations the sensitivity achieved between the two variations

is close for the linear kernel, with the phone data the 3 second window only achieves a

75.77%, which is significantly lower than the 84.33% from the 5 second variation.
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Specificity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 85.51 96.84 97.42 93.45

Chest 84.14 91.89 93.88 91.17

Belt back 88.44 95.46 97.91 95.45

Belt forward 88.36 93.60 97.49 96.17

Phone 73.80 85.97 92.27 89.84

All 65.27 90.64 91.93 86.95

In this variation the best result, in terms of true negatives, was obtained by the SVM

with the RBF kernel. Continuing the trend, both the RBF and polynomial kernels obtained

very high results, followed by the neural network and finally the SVM classifier with the

linear kernel. Placement wise the results are again mixed, while with the linear and RBF

kernels obtaining better results with the belt back placement, the polynomial performed

better with the data from the ankle device, and the Neural Network got its best result

from the belt forward device.

This last metric follows the sensitivity, with the highest better specificity coming from

the 5 second window. This variation only obtained better specificities in 9 of the 24

combination, with the 5 second window being superior for two device placements (phone

and all). Overall results between these 2 variations were once again close with the biggest

difference coming from the polynomial kernel, using the phone data, where the 3 second

variation obtained a worse specificity by over 6%.

Recapping, for the 3 second window variation, all three metrics obtained their best

result using the RBF kernel, with the first two (accuracy and sensitivity) obtaining it using

the data from the belt forward device placement, while the specificity best result came

from the belt back one. This variation obtained results close to the ones from the 5 second

window, with neither variation obtaining consistently better results.

5.1.3 10 second windows

In this third variation the duration chosen was 10 seconds. As with the previous cases,

this was the only variable changed in this tests, all others were kept with the same value.

Accuracy:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 82.97 96.79 94.69 87.04

Chest 83.92 92.45 93.10 91.42

Belt back 81.77 96.28 96.30 93.69

Belt forward 80.87 94.74 81.33 89.61

Phone 83.57 95.91 95.99 91.59

All 67.35 84.76 93.41 86.16
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The algorithm that obtained the best accuracy, in this third variation, was the SVM

with the polynomial kernel. Both it and the RBF kernel obtained high results which

were followed by the neural network and with lower results the linear kernel of the SVM

classifier. Looking at the best accuracies from the device placement perspective reveals

a diverse origin for the results, with the linear kernel achieving its best result with the

chest placement, while the polynomial achieved it with the ankle device, and both the

RBF kernel and Neural Network achieved it with the data from the belt back placement.

Comparing these results to those of the previous variations, the maximum accuracy

achieved under these conditions is slightly inferior. Even though the 10 second windows

achieve better results in 9 combinations, when compared to each previous variations,

there are combinations where the result obtained is considerably lower. For example,

the accuracy achieved with the RBF kernel, and the data from the belt forward device

was only 81.33%, which is considerably inferior to the 93.98% obtained using 5 second

windows and pales to the 97.96% from the 3 second variation.

Sensitivity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 81.13 96.75 95.17 85.82

Chest 85.94 91.61 94.70 91.80

Belt back 83.95 95.61 96.50 94.39

Belt forward 77.79 95.36 87.77 88.70

Phone 85.28 96.54 96.79 91.09

All 71.56 81.12 94.12 83.88

In this variation, the best sensitivity was obtained by the SVM classifier with the RBF

kernel. It was once again accompanied by the polynomial kernel in its high results with

the neural network and the linear kernel of the SVM classifier obtaining slightly lower

results. Device placement-wise the results are again varied, with each algorithm, and

kernel, obtaining its best sensitivity from a different placement; chest, ankle, phone and

belt back were the best placements for the linear kernel, polynomial kernel, RBF kernel

and Neural Network, respectively.

As was the case with the accuracy, the maximum sensitivity achieved was slightly

inferior to those of previous variations. Still, the 10 second windows managed to obtain

better results in 11 out of the 24 combinations when compared to the 5 second windows,

with that number dropping to 8 when compared to the 3 second variation. The results

also show a bigger difference at points, with linear kernel having a worse performance,

using the belt forward device, by around 10% but then an increase, when using the data

from all devices, by over 5%.
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Specificity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 83.83 97.00 94.54 90.42

Chest 81.70 92.39 91.85 90.92

Belt back 80.06 97.67 96.42 93.25

Belt forward 82.49 94.61 77.86 91.43

Phone 81.93 95.37 95.24 92.09

All 63.29 88.44 92.57 88.25

Finally, in terms of specificity the best result was obtained by the SVM with the poly-

nomial kernel. As with the previous variation, it was accompanied by the RBF kernel in

its high results, followed by the neural network and the linear kernel of the SVM classifier.

Only the linear kernel performed better with the ankle device placement, with the rest of

the algorithms, and kernels, finding their best specificity when using the data from the

belt back device.

Looking at the maximum specificity, for this variation, it is slightly inferior to the

previous variations best results, as was the case with the other metrics. This variation

can, however, outperform the previous two in 9 and 10 of the 24 possible combinations,

respectively. There is a visible lower performance of the RBF kernel, with the belt forward

device, that causes a massive difference to previous variations.

The 10 second windows brought a bigger variation of results. While some algorithms

still achieved good results under these conditions, the best result achieved was always

inferior to previous variations. On this variation both the accuracy and specificity found

their best results with the polynomial kernel, while the best specificity was achieved

with the RBF kernel. Each metric got their best result from a different device placement,

respectively, ankle, phone and belt back for accuracy, sensitivity and specificity.

5.2 Other variations

5.2.1 Accelerometer data only

This test was performed with only the accelerometer data, the window duration chosen

was 5 seconds, which is explained in the discussion of results, and only 2 minutes of data

per collection. The reasoning behind this test was to discover if similarly positive results

could be achieved while only using the accelerometer sensor of the devices. If such results

could be achieved, it would open the possibility of saving battery on the used devices, or

even using smaller, cheaper devices, possibly less intrusive for a potential user.
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Accuracy:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 74.79 79.60 91.47 82.25

Chest 79.82 89.43 91.03 89.90

Belt back 78.77 84.61 97.46 93.46

Belt forward 72.74 90.47 93.20 93.87

Phone 71.11 88.16 90.57 81.90

All 60.45 85.54 87.48 81.96

In this test the previous trend was somewhat maintained, with the RBF kernel of the

SVM classifier obtaining the best accuracy. Differing from previous results, however, the

polynomial kernel dropped behind the neural network in accuracy with the lowest results

still being obtained by the linear kernel of the SVM. The best placement was once again

not unanimous, with the belt forward leading to the best performance for the polynomial

kernel and Neural Network, while the linear kernel got its best result using the data from

the chest device and the RBF kernel from the belt back placement.

Since 5 second windows were used to split the data, the comparisons will be made

against the 5 second window variation in an attempt to isolate the effects of the use of

only accelerometer data. The best accuracy was achieved by this variation but overall

the results achieved were inferior, with this variation only outperforming the 5 second

window variation on 2 combinations out of 24 possible. To worsen the situation, in

multiple combinations this variation is outperformed, by the 5 second window variation,

by over 10%.

Sensitivity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 74.55 93.94 91.82 80.44

Chest 81.28 93.06 93.97 90.68

Belt back 74.56 73.54 96.88 91.25

Belt forward 76.04 90.34 96.21 94.48

Phone 71.98 87.27 90.57 84.72

All 61.22 85.74 87.98 82.03

For sensitivity the RBF kernel obtained the best result once again. Both the polynomial

kernel and the neural network followed with slightly lower results and once again the

linear kernel obtained the lowest results. In this variation, each algorithm obtained its

best sensitivity with a different device placement. The linear kernel achieved it using

the chest device, while the polynomial kernel best performance was when using the data

from the ankle device, the belt back was the best device for the RBF kernel and, finally,

the Neural Network performed better with the belt forward device.

The best sensitivity ended up being slightly inferior to the 5 second window variation.

There is an increase from the last metric as this variation obtained a better sensitivity in
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3 combinations, one more than for the accuracy. Even still, the overall results are still

inferior, with situations where the difference between the sensitivity of the two variations

is larger than 15%.

Specificity:

SVM Linear SVM Polynomial SVM RBF NN

Ankle 75.47 66.15 91.49 83.57

Chest 78.70 86.46 87.96 89.03

Belt back 82.23 95.03 97.99 94.91

Belt forward 69.66 91.59 90.38 93.33

Phone 70.39 89.06 90.51 78.62

All 59.70 85.35 86.96 81.89

In terms of specificity the trend continued with the RBF kernel of the SVM obtaining

the best result. In results, it was followed by the neural network, with polynomial kernel

of the SVM coming after, and finally the linear kernel. For these conditions, the device

placement for the best specificity ended up being the belt back device for all algorithms.

Equally to the previous metric, the best specificity is slightly inferior to the 5 sec-

ond variation counterpart but, unlike previously, for the specificity this variation never

outperforms the 5 second window. In certain combinations, the difference between the

performance of the two variations is once again substantial, reaching extremes of over

15% apart.

Overall, the best performing algorithm for this variation was the SVM algorithm,

with the RBF kernel, achieving the best result in all metrics. The best placement was

also the same for all metrics, with belt back device outperforming the other placements.

This variation ended up with overall inferior results and when compared with the 5

second window variation, which used the same windows size to divide the data, these

inferior results can be attributed to the main difference of this variation, the use of only

accelerometer data.
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5.3 Discussion

Summary of results:

Best accuracy:

Variations SVM Linear SVM Polynomial SVM RBF NN

5 sec window 86,40 97,26 97,38 93,77

(Ankle) (Belt for.) (Ankle) (Belt back)

3 sec window 88,38 97,22 97,96 95,35

(Belt for.) (Ankle) (Belt for.) (Belt back)

10 sec window 83,92 96,79 96,30 93,69

(Chest) (Ankle) (Belt back) (Belt back)

Accelerometer only 79,82 90,47 97,46 93,87

(Chest) (Belt for.) (Belt back) (Belt for.)

Best sensitivity:

Variations SVM Linear SVM Polynomial SVM RBF NN

5 sec window 87.62 98.58 96.88 92.77

(Ankle) (Ankle) (Ankle) (Phone)

3 sec window 88,22 98,08 98,40 95,03

(Belt for.) (Belt for.) (Belt for.) (Belt back)

10 sec window 85.94 96,75 96,79 94,39

(Chest) (Ankle) (Phone) (Belt back)

Accelerometer only 81,28 93,94 96,88 94,48

(Chest) (Ankle) (Belt back) (Belt for.)

Best specificity:

Variations SVM Linear SVM Polynomial SVM RBF NN

5 sec window 86,54 96,18 98,24 96,76

(Belt back) (Belt for.) (Belt back) (Belt back)

3 sec window 88,44 96,84 97,91 96,17

(Belt back) (Ankle) (Belt back) (Belt for.)

10 sec window 83,83 97,67 96,42 93,25

(Ankle) (Belt back) (Belt back) (Belt back)

Accelerometer only 82,23 95,03 97,99 94,91

(Belt back) (Belt back) (Belt back) (Belt back)

The previous tables present the best results in each of the metrics chosen, sorted by

algorithm used and test variation. Each square identifies which sensor placement was

used to obtain that result (the belt forward location was shortened to belt for. for ease of

read) and the best result of each algorithm, column, is highlighted in bold.

52



5.3. DISCUSSION

According to the objectives of this dissertation, the first goal was the realization of

a comparative study of learning algorithms for the given problematic. Looking at the

results of the first section of tests, all algorithms had a positive performance on the

conditions tested with a few minor exceptions. Comparing the results, the linear kernel

ended up performing the worst out of the tested algorithms, and kernels, which was

visible by the continuous trend of being the classifier with the worst results in all tables.

The neural network achieved high results but slightly lower than the other two kernels

of the SVM classifier in almost all tables. The two highest performing classifier/kernel

combination were the polynomial and RBF kernels of the SVM classifier. Both achieved

the highest results in all tables, with the RBF kernel usually achieving the highest result

of all. Also to mention the reduction in performance of the polynomial classifier when

only the accelerometer data was used to train and test the classifiers.

To reach a conclusion about the best result achieved, a discussion on the impact of each

one of the metrics in a future application is necessary. Looking back at the section about

these metrics, in the theoretical work chapter, each of their functions is clarified. For the

problem studied in this dissertation, achieving a good accuracy was always an objective

but due to any possible future uses of this work, it was decided that a very important

factor would be avoiding false positives. In the event of a version of this work being

integrated into a larger fall prevention algorithm, getting caught in false positives could

influence the algorithm into taking wrong conclusions. To reach this goal of avoiding false

positives the most important metric is the specificity, which measures the percentage of

negative cases, for this dissertation this means, windows of data without fatigue that were

successfully identified. The higher the specificity, the fewer the cases where a negative

situation was classified as positive, i.e.false positives. With this in mind, the combination

of conditions and algorithms that achieved the highest specificity was the SVM classifier

with the RBF classifier, when using a window duration of 5 seconds and the data from

the device placed on the back of the waist region, with a specificity of 98,24%.

In terms of device placement, all single device locations had similar results, although

both the ankle and the belt back (device placed in the waist region on the back) achieved

the best performances. Considering what was previously stated about the importance of

the specificity results, due to the necessities of this study, there is a noticeable trend of the

best specificity being obtained with the device at the back of the belt, which happened

in 8 of the 12 results. It is also noticeable that the conjugation of all devices wielded

lower performances, paired with the higher processing time necessary for these tests. It

was concluded that a simpler approach with a single device could suffice in this fatigue

detection problem.

The tested variations of duration of the window in which the data is divided did not

seem to have a big impact on the overall performance. Considering that the 3 seconds test

took the longest processing time and, as such, 5 seconds was chosen as an appropriate

duration for the other tests.

Using only the data from the accelerometers, the results achieved were noticeably
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worse, especially when using the SVM classifier with the polynomial kernel, which apart

from this test was one of the classifiers and kernels with the highest results. Even so,

acceptable performances were still achieved, mainly with the RBF kernel, which was able

to somewhat maintain the good performances achieved on the other tests.
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6
Conclusions

Overall, the learning algorithms obtained good performances when trying to identify

fatigued gait, obtaining a maximum of 97.96% accuracy (overall performance), 98.58%

sensitivity (identification of fatigued data) and 98.24% specificity (identification of non-

fatigued data). Looking back at the studies presented on the "State of the Art"chapter,

these results are on a par to those achieved in them, which achieved maximum accuracies

of 97%, 90% and 98.1% (in the order they were presented).

With the current conditions, it was found that a single device can suffice for the

collection of data allowing for a less intrusive data collection. As previously explained,

the considered best device positioning for this classification ended up being the lumbar

region, represented as belt back in this study, although most device placements obtained

satisfactory results. Looking at the three tables of the best results for each metric out of

the 48 combinations of variations and algorithms the result was obtained with the belt

back position in 20 of those combinations. In comparison the ankle and belt forward

placements were the best in 11 combination each, with the chest placement trailing

behind in only 4 combinations and finally the phone placement was the best in 2 of those

combinations.

For the processing of said data, the SVM classifier, with both the RBF kernel and

the polynomial kernel, obtained the best results in most situations. Not only the best

result for each metric was obtained by one of these kernels, accuracy and specificity

by the RBF and sensitivity by the polynomial, these kernels also achieved results above

96% in all metrics (except for the test conditions using only accelerometer data, where the

polynomial kernel had a loss in performance). In comparison, the best results achieved by

the neural network varied between 92% and 97% in all metrics, while the SVM classifier

with the linear kernel only achieved results between 79% and 89%.

Different tests were done in an attempt to discover the best conditions to collect and
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process gait data. When trying to analyse the best conditions for each algorithm, an

emphasis was given to the specificity metric. As such, the best conditions were consid-

ered to be the ones with the best specificity except in situations where there would be a

significantly negative impact the other metrics. This way, it was observed that the best

conditions for the linear kernel, of the SVM algorithm, were the 3 second window times

with data from the belt forward device, obtaining an accuracy of 88,38%, sensitivity of

88,22% and specificity of 88,36%. For the polynomial kernel, the 10 second window was

deemed the best, when using data from the belt back device. This combinations achieved

an accuracy of 96,28%, sensitivity of 95,61% and specificity of 97,67%. The RBF kernel

attained its best results when using data from the belt back device, splitting it into 5

second windows. This way, it achieved an accuracy of 97,07%, sensitivity of 95,75% and

specificity of 98,24%. Finally, the best results for the Neural Network came from the belt

forward device, with 3 second windows, achieving an accuracy of 94,60%, sensitivity of

93,11% and specificity of 96,17%.

Out of all the previously presented combinations of algorithm, collection and process-

ing conditions, the best combination for the requirements of this study was considered to

be the window duration of 5 seconds, while using data from the belt back device position

and processing it with the SVM algorithm and RBF kernel.

6.1 Future work

During the development of the dissertation there were some paths that either posed

some problems during implementation or simply did not lead to successful results at the

current time. As such, these approaches were abandoned and left to explore as future

work.

The most important issue to discuss in this section is the sample size of the data. Any

possible follow up to this work would require a new data collection with an increased

number of participants to be able to draw conclusions. Another possible development

path still in the data collection realm is targeting a more specific demographic, such as

the elderly. This way, the conclusions reached can be of more use for a demographic

heavily affected by gait and mobility issues. A re-planned data collection could also allow

the calculation of new features, specifically counteracting the problems faced due to the

lack of magnetometer data.

Another point to add while talking about new features is the implementation of the

necessary formulas to calculate the features themselves. Along with the previous men-

tioned extra information, that requires a new data collection, all the extra necessary work

to implement new features would have to be done. As mentioned during the "Previous

approaches"section (4.4) in chapter 4, every new feature would have to be researched,

implemented and tested one by one.

Lastly, also possibly due to lack of data, the necessary steps to successfully implement,
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and use, a LOGO, cross-validation, scheme are encouraged to be taken. While the used 10-

fold cross-validation is valid, the previously mentioned LOGO guarantees better results

for future implementations of the algorithms.
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I
Participation Form

This annex contains the form filled by the participants of the study before the data collec-

tion process. More information on this process is available in the experimental protocol

section of the fourth chapter.
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Personal Data 

 

Sex:  M □  F □  

 

Age: _____________ 

 

Height (cm): ___________ 

 

Weight (kg): ___________ 

 

Dominant foot:  Right □ Left □ 

 

Shoe size (EUR): __________  

 

Health problems (that may affect gait): __________________________________________________ 

__________________________________________________________________________________

__________________________________________________________________________________ 

 

Medication (that may affect gait):  Yes □ No □ 

 

Preferred fatiguing exercise: Squatting □     Walk up and down stairs □ 

  

 

□   I accept that this data may be used as statistics for this study 

 

 

____________________________________________________ ________________________ 

Participant’s Signature       Date 

 

ANNEX I. PARTICIPATION FORM
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II
Features calculated

This annex contains a table with name of the features returned by the TSFEL tool. For

the sake of legibility and in an effort for the table to fit in a single page the Histogram

features were truncated as the full table would include an entry for each from 0 to 9. This

table only includes one sixth of the number of features as there is one for each dimension

and sensor combination (Ax, Ay, Az, Gx, Gy, Gz). This is explained in the data processing

section of the fourth chapter.
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ANNEX II. FEATURES CALCULATED

Autocorrelation
Centroid

Fundamental frequency
Histogram 0
Histogram 9

Index of highest fft
Interquartile range

Kurtosis
Linear regression

Max
Max power spectrum
Maximum frequency

Maximum peaks
Mean

Mean absolute deviation
Mean absolute diff

Mean diff
Median

Median absolute deviation
Median absolute diff

Median diff
Median frequency

Min
Minimum peaks

Root mean square
Signal distance

Skewness
Spectral centroid
Spectral decrease
Spectral kurtosis

Spectral maximum peaks
Spectral roll-off
Spectral roll-on

Spectral skewness
Spectral slope

Spectral spread
Spectral variation

Standard Deviation
Sum absolute diff

Total energy
Variance

Zero crossing rate

Table II.1: Name of features calculated by the TSFEL tool
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