

Machine Learning Techniques for Predicting the

Stock Market Using Daily Market Variables

Nicole Oliveira Rita

Dissertação apresentada como requisito parcial para

obtenção do grau de Mestre em Gestão de Informação

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/288869617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

MACHINE LEARNING TECHNIQUES FOR PREDICTING THE STOCK MARKET USING

DAILY MARKET VARIABLES

por

Nicole Oliveira Rita

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Gestão de

Informação, Especialização em Business Intelligence e Gestão do Conhecimento

Orientador/Coorientador: Prof. Mauro Castelli

 Dezembro 2019

ii

 ACKNOWLEDGMENTS

This dissertation is a very important milestone for me. However, this is not an individual journey,

it is the cumulative work of many people who have contributed to my life and to my master’s adventure. I

am truly grateful to all who have become a part of this incredible journey.

I am very grateful to my supervisor Professor Mauro Castelli who has always shown availability and

immediate support to all my questions and doubts along this project. It was very important since it allowed

me to continue all the work and to achieve my goals towards the end of this academic path.

Since this has been a long journey, my family and friends have also a crucial importance. I want to

express my thanks to my parents, Paulo and Cristina, who have taught me about determination and

persistence. Also, my sister Melissa had an important role during this phase since she had always been here

reminding me that her dissertation was almost done and mine should be in the end too so that we could

celebrate it together.

A special thanks to Marta and David who have been present all the way since the beginning. All

their patience, encouragement and friendship were very important to me.

I cannot emphasize enough my deep gratitude for their role and support over this last year.

Thank you all. I did it!

iii

ABSTRACT

Predicting the stock market was never seen as an easy task. The complexity of the financial systems

makes it extremely difficult for anything or anyone to predict what the future of prices holds, let it be a day,

a week, a month or even a year. Many variables influence the market’s volatility and some of these may even

be the gut feeling of an investor on a specific day. Several machine learning techniques were already applied

to forecast multiple stock market indexes, some presenting good values of accuracy when it comes to predict

whether the prices will go up or down, and low values of error when dealing with regression data. This work

aims to apply some state-of-the-art algorithms and compare their performance with Long Short-term

Memory (LSTM) as well as between each other. The variables used to this empirical work were the prices

of the Dow Jones Industrial Average (DJIA) registered for every business day, from January 1st of 2006 to

January 1st of 2018, for 29 companies. Some changes and adjustments were made to the original variables

to present different data types to the algorithms. To ensure good quality and certainty when evaluating the

flexibility and stability of each model, the error measure used was the Root Mean Squared Error and the

Mann-Whitney U test was also applied to assess statistical significance of the results obtained.

KEYWORDS

LSTM; Machine Learning; Prediction; Stock Market; Time Series; Forecasting; Algorithms; Regression

iv

RESUMO

Prever a bolsa nunca foi considerado ser uma tarefa fácil. A complexidade dos sistemas financeiros

torna extremamente difícil que um ser humano ou uma máquina consigam prever o que o futuro dos preços

reserva, seja para um dia, uma semana, um mês ou um ano. Muitas variáveis influenciam a volatilidade do

mercado e algumas podem até ser a confiança de um investidor em apostar em determinada empresa,

naquele dia específico. Várias técnicas de aprendizagem automática foram aplicadas ao longo do tempo para

prever vários índices de bolsas, algumas apresentando bons valores de precisão quando se tratou de prever

se os preços subiam ou desciam e outras, baixos valores de erro ao lidar com dados de regressão. Este

trabalho tem como objetivo aplicar alguns dos mais conhecidos algoritmos e comparar os seus desempenhos

com o Long Short-Term Memory (LSTM), e entre si. As variáveis utilizadas para a elaboração deste trabalho

empírico foram os preços da Dow Jones Industrial Average (DJIA) registados para todos os dias úteis, de 1 de

Janeiro de 2006 a 1 de Janeiro de 2018, para 29 empresas. Algumas alterações e ajustes foram efetuados

sobre as variáveis originais de forma a construír diferentes tipos de dados para posteriormente dar aos

algoritmos. Para garantir boa qualidade e veracidade ao avaliar a flexibilidade e estabilidade de cada modelo,

a medida de erro utilizada foi o erro médio quadrático da raíz e, de seguida, o teste U de Mann-Whitney foi

aplicado para avaliar a significância estatística dos resultados obtidos.

PALAVRAS-CHAVE

LSTM; Bolsa; Prever; Aprendizagem Automática; Algoritmos; Regressão

v

CONTENTS

Chapter 1 ... - 1 -

1.1 Introduction ... - 1 -

1.2 Forecasting Problem .. - 2 -

1.3 Research Objectives ... - 2 -

1.4 Document Structure ... - 3 -

Chapter 2 ... - 4 -

2.1 Literature Review .. - 4 -

Chapter 3 ... - 7 -

3.1 Machine Learning ... - 7 -

3.2 Time Series and Neural Networks ... - 8 -

3.2.1 Time Series .. - 8 -

3.2.2 From Perceptron to Feed-Forward Neural Networks - 8 -

3.2.3 Recurrent Neural Networks ... - 9 -

3.2.4 Long-Short Term Memory ... - 11 -

3.3 Other Machine Learning Techniques .. - 13 -

3.3.1 Linear Regression ... - 13 -

3.3.2 Support Vector Machine - Regression .. - 14 -

3.3.3 K-Nearest Neighbours .. - 15 -

3.3.4 Decision Tree Regressor ... - 15 -

3.3.5 Ensembles ... - 16 -

Chapter 4 ... - 20 -

4.1 Methodology ... - 20 -

4.2 ML Algorithms.. - 20 -

4.3 Data Description .. - 22 -

4.3.2 Data Transformation ... - 23 -

4.4 Experimental Settings .. - 24 -

Chapter 5 ... - 26 -

5.1 Results and Discussion .. - 26 -

5.1.2 Statistical Validation ... - 30 -

Chapter 6 ... - 35 -

Conclusion ... - 35 -

Limitations and Future Work .. - 36 -

Bibliography .. - 37 -

Appendix ... - 42 -

vi

LIST OF FIGURES

Figure 1 – Perceptron Architecture .. - 8 -

Figure 2 – Multi-layer Perceptron ... - 9 -

Figure 3 - Recurrent Neural Network .. - 10 -

Figure 4 - Amazon's trend using Simple Rolling Mean and Exponential Rolling Mean - 10 -

Figure 5 - The Module of a LSTM ... - 12 -

Figure 6 - Linear Regression Representation .. - 13 -

Figure 7 - Support Vector Regression Representation .. - 14 -

Figure 8 - K-Nearest Neighbours Representation ... - 15 -

Figure 9 - Decision Tree Regressor .. - 16 -

Figure 10 - Bagging Representation.. - 17 -

Figure 11 - AdaBoost Representation .. - 18 -

Figure 12 - Random Forest Representation ... - 19 -

Figure 13 - Time Series Split for Cross-Validation... - 21 -

Figure 14 - Open Price ... - 22 -

Figure 15 - Low Price ... - 22 -

Figure 16 - High Price .. - 23 -

Figure 17 - Volume ... - 23 -

Figure 18 - Close Price ... - 23 -

Figure 19 - RMSE distribution (Adaboost NN) .. - 30 -

Figure 20 - RMSE Distribution (LSTM) .. - 30 -

file:///C:/Users/Nicole%20Rita/Desktop/Thesis_Format_v2.docx%23_Toc27255153
file:///C:/Users/Nicole%20Rita/Desktop/Thesis_Format_v2.docx%23_Toc27255154

vii

LIST OF TABLES

Table 1 - Original Variables and Original + Daily Change Closing Price data models......................... - 26 -

Table 2 - Original and Differenced Variables and Differenced Variables data models - 27 -

Table 3 - Mean and Median RMSE’s of each algorithm for each data model – Testing datasets- 28

-

Table 4 - Top five rank for each data model ... - 29 -

Table 5 - Originals' Medians .. - 31 -

Table 6 - Originals + Daily Change Close Medians ... - 32 -

Table 7 - Originals and Differenced Medians ... - 33 -

Table 8 - Differenced Medians .. - 34 -

Table 9 - Original Variables .. 43

Table 10 - Original + Daily Change Close Variables .. 44

Table 11 - Original and Differenced Variables .. 45

Table 12 - Differenced Variables ... 46

- 1 -

CHAPTER 1

1.1 INTRODUCTION

A stock market system presents a high volatility in terms of the value of the closing price of the

companies for each business day. As technology is getting more powerful and advanced, the possibility to

get better insights that help the investor to decide betting on companies that promise its return is best

accomplished since it can give the investor more accurate information about it. This way, predicting the

market value can be very benefic in order to maximize the profit of stock option purchase while maintaining

a low risk.

Although forecasting the financial market can bring value to investors, predicting such highly fluctuating

and irregular data is usually subject to large errors. Developing more realistic models for predicting financial

time series data to extract meaningful statistics from it, more effectively and accurately is a great interest of

research in financial data mining (Rout, A. K. et al, 2015). At the beginning of the use of traditional statistical

models to forecast the stock market, researchers found out that these types of models were very simple and

suffered from several shortcomings due to the nonlinearity of data. This contributed to the development of

more precise and efficient soft computing methods for financial forecasting. Various Artificial Neural

Network (ANN) based methods like, for example, Multi-Layer Perceptron (MLP) Network and Recurrent

Neural Network (RNN) are extensively used for stock market prediction due to their inherent capabilities

to identify complex nonlinear relationships present in the time series data based on historical data and to

approximate any non-linear function to a lower degree of error and thus, a high degree of accuracy.

From the RNN, there is a special network called Long Short-Term Memory (LSTM) that was first

proposed and developed by Hochreiter, S. and Schmidhuber, J. (1997) to deal with the exploding and

vanishing gradient problems that could be encountered when training traditional RNNs by introducing

Constant Error Carousel (CEC) units and including cells, input and output gates. In 1999, Felix Gers

introduced the forget gate into the LSTM architecture, enabling it to reset its own state and in 2000, Felix

Gers and Jurgen Schmidhuber added connections from the cell to the gates.

This made the LSTM to be known as being very powerful in sequence prediction problems since this

kind of network was able to store past information and when learning from it, it could predict the future

with higher efficiency.

The objective of this project is the application of a long short-term memory network to predict the next

day price of each company of Dow Jones Industrial Average stock market index and compare its

performance with other machine learning (ML) techniques.

- 2 -

1.2 FORECASTING PROBLEM

Forecasting involves taking models fit on historical data and using them to predict future

observations.

Several machine learning algorithms have already been applied successfully in predicting stock

market prices. LSTM is one of those and it can be useful in financial forecasting, financial modelling

and trading strategies optimization.

The focus of this project is to use a machine learning approach to forecast stock prices time series

in a short-term period such as the next day price. The following formula explains how this problem will

be solved:

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑥𝑡−1… , 𝑥𝑡−𝑛)

where 𝑥𝑡+1 is the price of the next day, and 𝑓 is the forecast function that contains the previous

stock prices up to 𝑑𝑎𝑦𝑡 as the input variables.

By identifying hidden patterns and correlations between variables, ML algorithms are able to find

the best forecast function 𝑓, either by variable selection or parameter optimization.

1.3 RESEARCH OBJECTIVES

The goal of this work project is to apply different machine learning techniques, compare them

between each other and with the Long-Short Term Memory (LSTM) variant of a Recurrent Neural

Network (RNN) in order to identify which brings the best results to predict future prices in the stock

market. People working in the financial sector can benefit with these ML-based systems to plan and

monitor their financial investments more precisely and therefore, accomplishing higher returns.

To reach this objective, there are specific steps that need to be followed:

1) Describe all the ML techniques used with a special emphasis in the LSTM and its application

in the financial field.

2) Select a stock market time series to develop the empirical work.

3) Describe the data and the methodology used.

4) Compare and evaluate the different models’ performance.

- 3 -

1.4 DOCUMENT STRUCTURE

Hereinafter, the document is divided in the following chapters:

 Chapter 2: Presents and summarizes the past work done in the financial sector. The main topic

addressed is the LSTM and how machine learning approaches have been used to forecast the stock

market.

 Chapter 3: Describes how machine learning has been performing in the financial filed, what is time

series, an overview from the first neural network to the development of the LSTM as well as a

description of other ML techniques used in this work.

 Chapter 4: Specifies the approach implemented to the development of this project to design a

forecast system based on a ML algorithm, the dataset and the preparation and pre-processing of the

data.

Chapter 5: Focuses in describing the different models’ outcomes and interpreting their results.

Chapter 6: Sums up the empirical results, what were the limitations of the developed study and

proposes future research and developments.

- 4 -

CHAPTER 2

In this chapter, a review of all relevant literature and previous activities related to this work project

is presented. The literature review is discussed according to the most relevant topics that were considered

for the preparation of this work project, namely artificial neural networks and its variations, as well as other

machine learning techniques.

2.1 LITERATURE REVIEW

Nowadays, stock market price prediction is an important concern for both, researchers and

investors, because accurate price prediction plays a key role when it comes to investment decision making

(Kamley et al. 2016). Generally, stock market is seen as having a high volatility, but this is due to the fact

that it has been influenced by several economical and external environmental factors. This is why it has

increased the interest of researchers in applying good models to measure and forecast stock return

volatilities. Currently, there are various techniques that have been applied to evaluate share performance.

Share market analyses have been using some approaches for predicting share prices. Machine learning is

one of the core areas which has been widely used to analyze share performance and its main goal is to

automatically learn and identify patterns from large amounts of data (Rajasekaran, S. & Pai, G. A., 2008).

Over the past three decades, there have been many applications of ML techniques to stock indices returns

(Chen, C.H., 1994, Burges, C.J.C., 1998, Huang, J.J. et al., 2005b, Majhi, R. & Panda, G., 2008).

There are two types of analysis done by investors to invest in a stock with greater certainty. First,

there is a fundamental analysis which consists in looking at intrinsic value of stocks, economy, political

environment, performance of the industry, and others to decide whether to invest or not. On the other

hand, technical analysis is also taken into consideration where investors appraise the stocks by means of

studying the evolution of the market activity, such as past prices and volumes. In this type of analysis, stock

charts are generated to identify patterns and trends that may guide how a stock will behave in the future.

Efficient market hypothesis by Fama, E. F. (1970) states that prices are informationally efficient which

means that it is possible to envision stock prices based on the trading data. Therefore, if the retrieved

information of stock prices is accurately pre-processed and suitable algorithms are applied then stock price

index may be predicted.

Since years, several techniques have been developed to predict stock trends. Traditional statistical

models including moving average, exponential smoothing, and ARIMA are linear in their predictions of

forthcoming values (Bollerslev, 1986, Hsieh, 1991, Rao & Gabr, 1984). Far-reaching research resulted in

- 5 -

multiple prediction applications using Artificial Neural Networks (ANN), fuzzy logic, Genetic Algorithms

(GA) as well as other techniques (Hadavandi, E. et al., 2010b, Lee & Tong, 2011, Zarandi, M. H. et al.,

2012). Artificial Neural Networks (ANN) and Support Vector Regression (SVR) are two machine learning

algorithms which have been most widely used for predicting stock price and stock market index values.

Each algorithm has its own way of learning patterns.

An Artificial Neural Network (ANN) is a technique that is developed by simulating the biological

nervous system, such as the human brain. It has an excellent capability to forecast from large databases

(Chen, Leung, & Daouk, 2003). In general, ANN used to forecast stock market is based on the back-

propagation algorithm.

The earliest stock market prediction model based on ANNs was implemented by White, H. (1988).

He used Feed Forward Neural Networks (FFNNs) to decode previously unknown regularities in the asset

price movement such as variations of common stock prices and demonstrated how to look for such

regularities using FFNNs. Since the initiative attempt by White, other researchers have cooperate in

developing an accurate stock market prediction model. Garliauskas, A. (1999) investigated stock market

prediction applying ANNs with kernel function approach and the recursive prediction error method. He

verified that in predicting financial time series, ANNs demonstrate a better performance than classical

statistical methods. Zhang, Y. & Wu, L. (2009) combined the backpropagation neural network with an

Improved Bacterial Chemotaxis Optimization (IBCO). They showed the ability of their proposed approach

in predicting stock index for both short term (t+1 day) and long term (t+15 days). Simulation results

presented that the proposed approach had the best performance. Wang, J. H. & Leu, J. Y. (1996) developed

a prediction system valuable in forecasting mid-term price trend in Taiwan stock market. Their system was

based on a recurrent neural network (RNN) trained by using features derived from ARIMA analyses.

Experimental results demonstrated that the networks trained with 4-year weekly data were capable of

forecasting up to six weeks market trend with acceptable accuracy. In Kara, Y. et al. (2011), a comparison

between performance of ANN and SVM was built. Ten technical indicators were passed to these two

classifiers in order to forecast directional movement of the Istanbul Stock Exchange National 100 Index.

Authors found that ANNs ability in prediction is significantly better than SVM. Bernal, A. et al. (2012) used

echo state networks (ESN), a subclass of recurrent neural networks, to predict stock prices of the S&P 500

index and came up with the conclusion that this kind of networks outperform the Kalman filter, predicting

more of the higher frequency fluctuations in stock price. In overall, various studies have shown that ANNs

have the ability to predict stock markets more precisely than other methods (Kim, J. W., et al., 1993, Patuwo,

E. et al., 1993, Subramanian, V. et al., 1993, Yoon & Swales, 1991).

Deep learning methods are capable of identifying structure and patterns of data such as non-

linearity and complexity in time series forecasting. In particular, LSTM (Long Short-Term Memory) has

been widely used in many application domains such as natural language processing (Tarwani, K. M. & Edem,

S., 2017), handwriting recognition (Graves, A. et al., 2009), speech recognition (Robinson, T. et. al., 2002,

- 6 -

Eyben, F. et al., 2009, Graves, A. et al., 2013, Sak, H. et al. 2014), time-series prediction (Hochreiter &

Schmidhuber, 1997, Gers, 2000, Yim, J., 2002, Zhang, P. G. & Qi, M., 2005, Graves, A. et al., 2009,2013,

Schmidhuber, J., 2015, Brownlee, J., 2016, Gamboa, J. C., 2017, Roondiwala, 2017) as well as its applications

in economics and finance data such as predicting the volatility of the S&P 500 index (Kohzadi, N. et al.,

1996, Huck, N., 2009, Xiong, R. et al., 2015) and measuring the impact of incorporating news for selected

companies (Siah, K. W. & Myers, P. L., 2015, Joshi, K. et al., 2013, Ding, X. et al. 2015).

Recently, new techniques in deep learning have been developed to tackle the challenges associated

to forecasting models. LSTM is a special case of Recurrent Neural Network (RNN) method that was

introduced by Hochreiter and Schimdhuber (1997). Even though it is a relatively new approach to address

forecasting problems, deep learning-based approaches have acquired popularity among researchers. Krauss,

C., Do, X. and Huck, N. (2017) used numerous forms of prediction models such as deep learning, gradient-

boosted trees, and random forests to model S&P 500 index. Surprisingly, they reported that deep learning-

based algorithms underperformed gradient-boosted trees and random forests. Additionally, they referred

that training neural networks and consequently deep learning-based algorithms is very difficult. Ding, X. et

al. (2015) applied a deep convolutional neural network (CNN) to model both short-term and long-term

influences of events on stock price movements. Empirical results show that their model can achieve

approximately 6% of improvements on the S&P 500 index prediction and individual stock prediction,

respectively, compared to state-of-the-art baseline methods. Lee & Yoo (2017) introduced an RNN-based

approach to predict stock returns. The idea was to build portfolios by regulating the threshold levels of

return by internal layers of the RNN built. Azzouni & Pujolle (2017) propose and validate that a LSTM

RNN framework for predicting Traffic Matrix in large networks on real-world data from GÉANT network,

converges quickly and outperforms traditional linear methods and feed forward neural networks by many

orders of magnitude. Moreover, Nelson, D. et al. (2017) compared LSTM with other machine learning

models and observed that LSTM has displayed considerable gains in terms of accuracy as well as minimum

losses, concluding that it offers less risks when compared to the other strategies. Roondiwala, M. et al. (2017)

used LSTM to model and predict the stock returns of NIFTY 50 resorting from five years of historical data.

They finished their work concluding that RNNs with LSTM units are able to help any person interested in

investing in the stock market by providing them a good knowledge of the future situation of the stock

market. Chen, K. et al. (2015) tested the same LSTM configuration with different methods and when

comparing all of them, they verified and confirmed the power that LSTM has when it comes to sequence

learning for stock market prediction in China.

- 7 -

CHAPTER 3

3.1 MACHINE LEARNING

Machine learning is making significant inroads in the finance services industry. The more data is

fed to the ML models, the more accurate are the results. Coincidentally, enormous datasets are very common

in the financial industry and thus, this represents a perfect fit for machine learning (Didur, K., 2018).

ML involves feeding data samples, usually acquired from historical prices. The data samples consist

of features called predictors, as well as a dependent variable, which is the expected outcome. The algorithm

learns to use the predictor variables to finally, be able to predict the target variable (Sigmoidal, 2017).

As the technology evolves and the best algorithms are open-sourced, it is hard to imagine the future

of the financial services without machine learning. Additionally, established financial services companies

have substantial funds that they can afford to spend on state-of-the-art computing hardware or to develop

their own intelligent algorithms that can capture the hidden patterns inherent to stock markets, bringing the

possibility to predict more efficiently the behavior of the stock market movements. As an example, leading

banks and financial services companies are deploying machine learning to streamline their processes,

optimize portfolios and decrease risk among other things (Cheung, K. C., 2019).

There are various machine learning use cases in finance, but here the focus is on algorithmic trading.

In this use case, ML helps to make better trading decisions, as it can analyze thousands of data sources

simultaneously and detect patterns that can force stock prices to go up or down. Due to the size and

complexity of these data sets, machine learning can help unlock value from all this data in a way that humans

cannot (Murphy, A., 2019). This helps traders squeeze a slim advantage over the market average, and given

the vast volumes of trading operations, that small advantage often translates into significant profits.

In the next few topics, some of the most commonly used algorithms to forecast the stock market

direction are explained in detail, as well as what is time series and its relationship, giving a special emphasis

on the Long-Short Term Memory network (LSTM).

- 8 -

3.2 TIME SERIES AND NEURAL NETWORKS

3.2.1 TIME SERIES

Time series forecasting is difficult. It is the use of a model, based on the idea that past behavior and

price patterns can be used to predict future price performance.

 Unlike the simpler problems of classification and regression, time series problems add the

complexity of order and temporal dependence between observations, being an ordered sequence of

collected data at a constant interval in time (Brownlee, J., 2017). Therefore, they are discrete time data and

can be analyzed to determine a historical trend or to predict the behavior of this trend in a short or long-

term future. It also allows to check the occurrence of seasonal trends, that is, variations in the specific data

of a given time window, and this may help improvement on the model’s performance.

3.2.2 FROM PERCEPTRON TO FEED-FORWARD NEURAL NETWORKS

Perceptron is the simplest and oldest model of a neuron and it was proposed by Rosenblatt, F.

(1958). It is usually used to classify the data into two parts. Hence, it is also known as a Linear Binary

Classifier. This network is composed by multiple inputs; a summing engine; a single output and an activation

function. Given the inputs, its weights are multiplied by each proper input and then summed up. This result

is fed to an activation function and passed to output.

Figure 1 – Perceptron Architecture

Because the perceptron architecture could not solve the XOR problem (non-linearly separable

data), feed-forward neural network or multi-layer perceptron (MLP) was born. This class of network

consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. There can be

multiple hidden layers of computational units, usually interconnected in a feed-forward way, whereas each

- 9 -

neuron in one layer has directed connections to the neurons of the subsequent layer. Except for the input

nodes, each node is a neuron that uses a non-linear activation function. Rumelhart, D.E et al. (1986)

improved this kind of network with a back-propagation learning technique. This new technique introduced

the possibility of sending back the error from the output to the inputs allowing the adjustment of the weights

of each connection in order to reduce the value of the error function by some small amount.

Figure 2 – Multi-layer Perceptron

This kind of neural networks that use a standard sigmoidal activation function do not tend to

perform well at analyzing and forecasting a time series data problem (Roondiwala, M. et al., 2017) due to

the fact that these networks only use one data input to the model and the model generates a prediction with

the given input.

3.2.3 RECURRENT NEURAL NETWORKS

Further, a recurrent neural network (RNN) is able to deal with sequence problems because their

connections form a directed cycle.

In Recurrent Neural Networks (RNNs) as Bernal, A. et al. (2012) state, “signals passing through

recurrent connections constitute an effective memory for the network, which can then use information in

memory to better predict future time series values” that is, use the information from previous lags to predict

the future instances. Thus, the output of the model is now fed back to the model as a new input. However,

a simple RNN works well only for short-term memory.

- 10 -

Figure 3 - Recurrent Neural Network

In the simplest scenario, in a univariate case, only two weights are involved.

Yt = tanh(wYt-1 + uxt)

The weight u that is multiplied by the current input xt, and the weight w which is multiplied by the

output yt-1. This formula is like the exponential weighted moving average (EWMA) which passes the values

of the output with the current values of the input. Besides EWMA, there is also the rolling mean, which is

a calculation that comes to confirm the tendency of various data points by creating a series of averages of

different subsets of the full dataset. The difference between both these calculations is that EWMA assigns

a greater weight to the most recent values.

As an example, in figure 4 it is possible to observe a slight difference in the trend of the Amazon’s

historical value across time (X-axis represents the number of days since 01/01/2006), when using each

method.

Figure 4 - Amazon's trend using Simple Rolling Mean and Exponential Rolling Mean

- 11 -

3.2.4 LONG-SHORT TERM MEMORY

Long Short-Term Memory (LSTM) was introduced by Hochreiter, S. & Schmidhuber, J. (1997) to

overcome the error back-flow problems that other conventional RNNs were having. It is considered to be

the most successful recurrent neural network architecture to make long-term predictions using time series,

and it learns much faster than the other RNNs. Remembering information for long periods of time is

practically their default behavior, not something they struggle to learn as RNNs do.

The difference in terms of architecture, between a standard RNN and a LSTM is the structure of

the repeating module. Instead of just having one neural network layer, there are four layers, interacting in a

very special way: 1) a memory cell, 2) an input gate, 3) an output gate and 4) a forget gate.

The first one, the memory cell, remembers values over arbitrary time intervals and the others

regulate the flow of information into and out of the cell. In other words, the input gate decides when to

keep or override information in the memory cell, it is like a save vector; the forget gate controls the extent

to which a value remains in the cell; and the output gate controls the error flow from the unit output

connections, deciding which information should be going to the next hidden state. Thus, the cell state is

modified by the forget gate placed below the cell state and, also adjusted by the input modulation gate. From

the equation generated by the layer, the previous cell state forgets by being multiplied with the forget gate

and is added new information through the output of the input gates.

The activation function of these gates is often the sigmoid function, presenting values between 0

and 1, and it is applied to the weighted input and previous hidden state. If the output of the forget gate is

1, the information is kept in the cell state, if 0, the information is totally forgotten. There are connections

into and out of the LSTM gates, a few of which are recurrent. The weights of these connections, which

need to be learned during training, determine how the gates operate.

When it comes to the input gate, there is a special detail to take into consideration. Because the

equation of the cell state is a summation between the previous cell state, logistic function (or sigmoid

function) will only add memory and not be able to remove it. The reason behind this issue is that this

activation function only gives a float number in a range of [0,1], and so that number will never be zero, so

it would never be turned-off/forgotten. Therefore, the cell has an input modulation gate which has a

hyperbolic activation function (or tanh function). Tanh has a range of [-1,1] and this way it allows the cell

state to forget memory.

Finally, the hidden state decides what information should be taken to the next sequence.

Summing up, first there is the sigmoid activation function that is, the forget gate, where the

information from the previous cell state to be forgotten is chosen. Second, there is another sigmoid function

- 12 -

and a first tanh activation function which are referred to be the input gates and determine which information

should be saved to the cell state and which should be removed. Lastly, there is a third sigmoid that is called

as the output gate and highlights what information is going to the next hidden state.

Figure 5 - The Module of a LSTM, retrieved from https://colah.github.io/posts/2015-08-Understanding-

LSTMs/

- 13 -

3.3 OTHER MACHINE LEARNING TECHNIQUES

3.3.1 LINEAR REGRESSION

The aim of Liner Regression is to study the effect of one or more factors (quantitative or qualitative

variables) on a quantitative variable target (dependent variable). Thus, this approach is often used to predict

the value of an outcome variable Y based on the input predictor variables X. In order to model the

relationship between the scaler response and the independent variables, unknown model parameters are

estimated from the data by using linear predictor functions.

Given a data set, a linear regression model assumes that the relationship between the target variable

and the p-vector is linear. To model this relationship there is an error variable 𝜀 that adds “noise” to the

linear relationship between the dependent variable and the regressors.

The theoretical model is the following:

𝑦𝑙̇ =∑𝑥𝑖𝛽𝑖

𝑝

𝑖=1

+ 𝜀𝑖

Where 𝑥𝑖 represents the independent variables observed for the individual ⅈ; 𝛽𝑖 (where ⅈ = 1, 2,

3…𝑝) is the parameter associated with the predictor variable that needs to be estimated; 𝜀𝑖 is the error for

individual ⅈ and 𝑦𝑖 is the target variable observed for individual ⅈ.

Figure 6 - Linear Regression Representation

- 14 -

3.3.2 SUPPORT VECTOR MACHINE - REGRESSION

A support vector machine constructs a hyperplane or a set of hyperplanes in a high dimensional

space, which can be used for classification or regression problems. Intuitively, a good separation is achieved

by the hyperplane that maximizes the distance between the nearest data point of either class. Ideally, SVM

pursues the largest distance to the nearest training-data points of any class (functional margin), since in

general the larger the margin the lower the generalization error of the classifier.

Support Vector Machine as a regression method, uses the same principles as the SVM for

classification, with only a few minor differences. Still, it contains all the main features that characterize

maximum margin algorithm: a non-linear function is leaned by linear learning machine mapping into high

dimensional kernel induced feature space.

As an example, the inputs 𝑥 are first mapped into a n-dimensional feature space using some non-

linear relation, and then a linear model is constructed in this feature space. The linear model is the following:

𝑓(𝑥, 𝜙) =∑(𝜙𝑖 ∗ 𝑔𝑖(𝑥))

𝑛

𝑖=1

+ 𝑏

Where 𝑔𝑖(𝑥), ⅈ = 1,… , 𝑛 is the function that represents the non-linear transformations and 𝑏 is

the bias term.

Figure 7 - Support Vector Regression Representation

- 15 -

3.3.3 K-NEAREST NEIGHBOURS

 The K-NN regression algorithm is a method for predicting real numbers. It computes the distance

between the testing data points and every training point and, instead of taking a majority vote as it is done

in the K-NN for classification problems, it just takes the average of the numerical target of the

corresponding K nearest neighbors. To make these predictions a metric for measuring the distance between

the query point and cases from the examples needs to be set. One of the most popular choices to measure

this distance is known as Euclidean. Other measures include Euclidean squared, City-block and Chebyshev.

𝐷(𝑥, 𝑃) =

{

 √(𝑥 − 𝑝)2 𝐸𝑢𝑐𝑙ⅈ𝑑𝑒𝑎𝑛

[𝑥 − 𝑃]2 𝐸𝑢𝑐𝑙ⅈ𝑑𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑

𝐴𝑏𝑠(𝑥 − 𝑃) 𝐶ⅈ𝑡𝑦𝑏𝑙𝑜𝑐𝑘

𝑚𝑎𝑥(|𝑥 − 𝜌|) 𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣}

Depending on the K chosen, the algorithm’s performance will be different. Bellow, there is an

illustration showing how different the prediction could be.

Figure 8 - K-Nearest Neighbours Representation

3.3.4 DECISION TREE REGRESSOR

A decision tree is a supervised machine learning model used to predict a target variable by learning

decision rules from independent features. The decision tree regressor builds regression models in the form

of a tree structure as it breaks down a dataset into smaller subsets while at the same time an associated

decision tree is incrementally developed. Thus, it is constructed by recursive partitioning starting from the

root node, which is known as the first parent and the best predictor and, resulting in various decision nodes

- 16 -

created along the decisions made. A decision node has two or more branches, each representing results

from the attribute tested and the nodes have either condition - decision nodes - or a result - terminal nodes.

The tree growing and training, stops when some stopping criteria is reached. For example, it can

be when the maximum depth set is achieved; or all samples for a given node belong to the same class; or

there are no remaining attributes for further partitioning or there are no samples left.

Figure 9 - Decision Tree Regressor

Attribute selection measure is a heuristic for selecting the splitting criterion providing a rank to each

feature by explaining the given dataset. Hence, this type of algorithm is pointed out to be a greedy algorithm

as it can not go back once a decision is made. This means that it always tries to find a global optimum

solution but, in many problems a greedy strategy does not usually achieve an optimal solution. Nonetheless,

it may yield locally optimal solutions that get close to a global optimal solution in a reasonable amount of

time.

3.3.5 ENSEMBLES

Ensemble methods are meta-algorithms that combine several machine learning techniques or

models into one predictive model in order to decrease variance (bagging), bias (boosting), or improve

predictions (stacking). Ensembles can be shown to have more flexibility in the functions they can represent.

In theory, this flexibility may enable them to over-fit the training data more than a single model would, but

in practice, some ensemble techniques tend to reduce problems related to over-fitting of the training set.

- 17 -

3.3.5.1 BOOTSTRAP AGGREGATING (BAGGING)

One way to reduce the variance of an estimate is to average together multiple estimates. Bootstrap

aggregating or Bagging is an ensemble method that consists in building m models with the same learning

algorithm. When constructing each of the models, bagging uses bootstrap sampling which extracts 𝑛′ data

observations from the training set containing 𝑛 instances, and all 𝑛 points have the same probability of

being picked and the possibility of replacement, i.e. the same training example may be selected more than

once for the same model. From these models, bagging then aggregates the outputs of the base learners and

uses averaging for regression predictions as shown in figure 10.

The formula associated with this type of ensemble is the following:

𝑓(𝑥) =
1

𝑚
∑𝑓𝑖(𝑥)

𝑚

𝑖=1

Figure 10 - Bagging Representation

3.3.5.2 ADAPTIVE BOOSTING (ADABOOST)

Boosting is a fairly simple variation of bagging that strives to improve the learners by focusing on areas

where the system is not performing well: turning a weak learning algorithm, that performs just slightly better

than random guessing, into a stronger learner.

The idea is to build the first “bag” of data by selecting randomly data points from the training data.

Then, AdaBoost calls a given weak or base learning algorithm repeatedly in a series of t rounds (t = 1,…, T)

After training the model, all training data is used to test the model in order to discover the points that were

not well predicted. Initially, all weights are set equally, but on each round, the weights of correctly classified

examples decrease and the weights of incorrectly classified examples are increased so that the weak learner

- 18 -

is forced to focus on the hard examples in the training set and thus, is more likely to pick those data points

to train the model in the next round.

The final hypothesis H is a combination of all model’s outputs into a weighted sum, so that the error is

measured across all the data.

Figure 11 - AdaBoost Representation

3.3.5.3 RANDOM FOREST

Random forests are broadly believed to be the finest classifiers for high-dimensional data (Breiman,

L., 2001). It adds an additional layer of randomness to bagging. In addition to constructing each tree using

a different bootstrap sample of data, random forests change how the classification or regression trees are

constructed.

Random forests are a mixture of tree predictors such that each tree depends on the values of a

random vector sampled autonomously and with the same distribution for all trees in the forest. In standard

trees, each node is split using the best split among all variables, whereas in a random forest, each node is

split using the best among a subset of predictors randomly chosen at that node. Thus, a different subset of

the training set is selected, with replacement, to train each tree and the remaining training data is used to

estimate the error and variable importance. Instead of using all the features, a random subset of features is

selected, further randomizing the tree. The generalization error of a forest of tree classifiers depends on the

strength of individual trees in the forest and the association between them. For regression, the average of

the results of all trees is used.

- 19 -

As a result, the bias of the forest increases slightly, but due to the averaging of less correlated trees,

its variance decreases, resulting in an overall better model.

Figure 12 - Random Forest Representation

- 20 -

CHAPTER 4

4.1 METHODOLOGY

Predicting the stock market is not an easy task since it is important to take into account that it is an

unstable system when considering the daily changes in the stock prices. Thus, it is critical to understand

which features represent the data as best as possible, so the machine learning algorithms are fed with the

right information. Hence, when looking at the variables given by the raw dataset, it is crucial to know which

will be useful for the ML systems and if there is the need to create or transform features derived from the

existing ones.

 The methodology followed was the application of different machine learning techniques, with a

special emphasis on the long short-term memory (LSTM) recurrent neural network. The objective is to

compare the different algorithms’ performance between each other and with the LSTM in order to check

which demonstrates to be the most stable and yet, to have the best and smallest error value.

Unlike regression predictive modelling, time series also adds the complexity of sequence

dependence among the input variables. A powerful type of neural network designed to deal with sequence

dependence is called recurrent neural networks (Brownlee, J., 2016) and, LSTM is a type of RNN used in

deep learning because very large architectures like stock market, can be successfully trained avoiding the

long-term dependency problem that other networks cannot, remembering information for long periods of

time (Olah, C., 2015). Thus, the experimental work focuses in applying the LSTM as well as comparing it

to other techniques, to forecast the Dow Jones Industrial Average (DJIA) using historical data from the 1st

of January of 2006 to the 1st of January of 2018 and, considering one day ahead forecasting. DJIA is a stock

market index that indicates the value of thirty large, publicly owned companies based in the United States,

and how they have traded in the stock market during various periods of time.

4.2 ML ALGORITHMS

Considering the chosen time series (DJIA), a supervised learning approach was used in order to

predict the next day closing price for each of the twenty-nine companies, excluding the Visa Inc. company

since it did not have the whole 12 years’ data. All records given its company, are labelled with a time stamp

t and present a value for each of the remaining variables. To train an algorithm, one must choose which

features will be given as the input so that the algorithm returns an output as well as a training dataset.

- 21 -

Since the problem at hand has data as time series, the splitting process between training and testing

data was based in a proper cross-validation technique which is called as Time Series Split from Scikit-Learn

library (figure 13).

Figure 13 - Time Series Split for Cross-Validation

The idea for time series splits is to divide the training set into two folds at each iteration with the

condition that the validation set is always ahead of the training split. In this project the number of splits was

set to ten. This way, for the total of 93612 records, it will do ten splits always selecting the training data to

be 80% and the testing set to be 20% of each split. At the first iteration, one trains the candidate model on

the closing prices from the oldest historical data, that is 1st of January of 2006 to the 6th of February of 2007

(being 80% of the first split) and validates on the 7th of February of 2007 to the 11th of March of 2008 (being

20% of this first split), and for the next iteration, trains on dates from the 1st of January of 2006 to 11th of

March of 2008, and validates on 12th of March of 2008 until a next date that will be 12th of April of 2009

(20% of the second split), and so on to the end of the training set. This way dependence is respected. It

should be noted that the data does not contain records for the weekend days, since stock market is closed

by those days. All forecasts on the test dataset will be collected and an error score calculated to summarize

the skill of the model. The root mean squared error (RMSE) will be used as it punishes large errors.

When applying the LSTM, the environment used was Spyder and visual studio code (IDEs)

recurring to the Python Deep Learning library – Keras. To run the other algorithms, Weka software was

first used, which brought a much faster running, but after obtaining the results, there was a problem in

getting the 10 fold’s errors for both training and testing data. Hence, the comparing algorithms were also

written in python using the scikit-learn ML library.

- 22 -

4.3 DATA DESCRIPTION

As stated before, the dataset used for this experiment is the Dow Jones Industrial Average Index

with approximately 3020 observations per company, making a total of 93.612 samples, from January 1, 2006

to January 1, 2018. This data was extracted from Kaggle. From the historical and original information, the

original variables were Date, Open, Low, High and Close prices as well as Volume, per weekday and per

company.

Variable Name Description

Date Date of the corresponding day in yyyy-mm-dd format

Open Price of the stock at market opening

Low Lowest price reached in the day

High Highest price reached in the day

Close Price of the stock at market closing

Volume Number of shares traded in the day

The original distribution of each variable along the years for all companies is presented in the figures

below thus, representing the DJIA Index’s evolution as one. The Y axis represents the unit related to the

respective variable, being in Dollars ($) all prices and the Volume is presented in a range [0.0, 1.0] since the

volumes for each business unit have its own volume evolution.

Figure 14 - Open Price

Figure 15 - Low Price

- 23 -

Figure 16 - High Price

Figure 17 - Volume

Figure 18 - Close Price

4.3.2 DATA TRANSFORMATION

Besides the original variables’ model, three other models were created so that the algorithms could

be trained and tested with other types of variables added in order to afterwards, compare all four models

and understand which algorithms are best to which kind of data.

One of the three new models consisted in using the original variables - Open, Low, High, Close - and

add a fifth variable -‘DailyChange – that would bring the possibility to know if the close price between

consecutive days had gone up or down. This variable was calculated with the following expression:

𝐷𝑎ⅈ𝑙𝑦𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑃𝑖 − 𝑃𝑖−1

which represents the daily change in price of the time series data.

The second thought model was to join to the original variables - Open, Low, High, Close and Volume

- its differenced values and the percentage of the closing price change between consecutive days. Each value

of the differenced data was calculated by subtracting the respective price of the day d with its day d-1 price,

using the same type of calculation as previously shown.

The value representing the percentage of the closing price change was calculated as the following

expression:

- 24 -

𝑝𝑒𝑟𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑙𝑜𝑠𝑒 = [𝑃𝑐𝑙𝑜𝑠𝑒𝑖 ∗
100

𝑃𝑐𝑙𝑜𝑠𝑒𝑖−1
] − 100

The third new model of input data consisted in using only the differenced data that was previously

calculated, that is, the change between consecutive days for Close, Open, High and Low prices, as well as using

the percentage of change of the Closing price.

Differenced variables can also be called as lagged variables which are actually delayed features. This

kind of data is useful to measure autocorrelation. It can be understood as a fact that a value of X at a certain

moment of time will have influence on its future values. For instance, if a value in time t will cause also high

values in t+1 or t+2.

4.4 EXPERIMENTAL SETTINGS

Each algorithm has its own parameters that vary the performance when it comes to train and predict

the dependent variable. Before reaching the final parameter values, several criteria were tested and compared

so that the final set would be the best possible fit to the datasets.

 All supervised learning algorithms were implemented based on the scikit-learn machine learning

package while LSTM was implemented based on the Keras Deep Learning library as stated in 4.2.

 The final set of criterions for all algorithms used is next presented.

Linear Regression: fit_intercept = ‘False’, normalize = True, copy_X = False;

SVR: kernel = 'rbf', gamma='auto', C=1.0, epsilon=1.0, shrinking = True;

K-Nearest Neighbors: n_neighbors=8, weights = 'distance', algorithm = 'auto', leaf_size = 100;

Decision Tree: random_state=0, max_depth = 1;

Multi-layer Perceptron: alpha = 4, hidden_layer_sizes = (100,);

Bagging – K-NN: n_neighbors=8, weights = 'distance', algorithm = 'auto'), max_samples=0.5,

max_features=0.5, bootstrap = False, bootstrap_features = True;

Bagging – Decision Tree: random_state=0, max_depth = 1), max_samples=0.5,

max_features=0.5, bootstrap = False, bootstrap_features = True;

Adaboost – Decision Tree: base_estimator = DecisionTreeRegressor(random_state=0,

max_depth = 1), random_state=0, n_estimators=20;

- 25 -

Adaboost – MLP: base_estimator = MLPRegressor(alpha = 1e-5, hidden_layer_sizes = (5,)),

random_state=0, n_estimators=10;

Random Forest: max_depth = 1, random_state=7, max_features = 'auto', n_estimators=10,

bootstrap = True, warm_start = True;

LSTM: lstm layer(units = 5, return_sequences = True), dropout = 0.5, dense layer(1 unit,

kernel_initializer='uniform',activation='linear', kernel_regularizer=regularizers.l2(0.01)).

- 26 -

CHAPTER 5

5.1 RESULTS AND DISCUSSION

In this section, the following tables present figures showing the performance of the eleven

implemented algorithms along the 10-fold cross validation. These results were obtained taking into

consideration the methodology described in the previous chapter 4. To support the discussion and

explanation of the empirical results, table 3 shows the values concerning the testing datasets which accurately

evidence the respective average and median of the error outcomes (RMSE) for each algorithm and data

model.

Table 1 - Original Variables and Original + Daily Change Closing Price data models

Original Variables

Training Set Testing Set

Original + Daily Change Close

- 27 -

Table 2 - Original and Differenced Variables and Differenced Variables data models

Original and Differenced Variables

Differenced Variables

Observing both tables, it is evident that the error scale in the training data is always lower than in

the testing data but not substantially. This is supported by the fact that the given training sample

(independent and dependent variables) was big enough and covered enough examples which gave the

algorithm the ability to respond to different scenarios when it came to test its performance on the testing

data.

It is also noticeable that in both training and testing datasets, the worst error results came from the

model that was composed by only lagged observations while the other three data models showed a similar

performance between each respective algorithm.

- 28 -

Table 3 - Mean and Median RMSE’s of each algorithm for each data model – Testing datasets

Models Original Variables
Original + Daily

Change Close
Original and
Differenced

Differenced Variables

Algorithms Mean Median Mean Median Mean Median Mean Median

Adaboost –
DT 0.081284 0.084533 0.081257 0.084127 0.081620 0.085940 0.114903 0.114182

Adaboost –
NN 0.006267 0.006869 0.007648 0.006625 0.006532 0.006687 0.111045 0.112907

Bagging –
DT 0.099064 0.094325 0.099467 0.095172 0.098204 0.093033 0.101243 0.104468

Bagging –
KNN 0.015609 0.015346 0.019154 0.017583 0.028757 0.025728 0.106045 0.105297

Decision
Tree 0.098029 0.094187 0.098369 0.095736 0.098417 0.095893 0.138027 0.127020

K-NN 0.007062 0.005964 0.014273 0.010968 0.021644 0.021294 0.155991 0.120447

Linear
Regression 0.004057 0.003294 0.004822 0.003814 0.007506 0.007975 0.126362 0.129070

LSTM 0.070199 0.058950 0.071223 0.064187 0.071371 0.062527 0.103350 0.104035

Neural
Network 0.132321 0.126495 0.128418 0.120253 0.118243 0.111078 0.109715 0.108180

Random
Forest 0.097578 0.093447 0.097117 0.093447 0.097278 0.093447 0.104027 0.108441

SVR 0.106177 0.104218 0.106370 0.105180 0.121023 0.120133 0.211123 0.178080

Looking at the information provided by the table 3, and observing each data model column, it is

possible to verify a pattern of errors. Also, in the first three models containing original features, there is some

similarity in terms of how each algorithm performs when dealing with this kind of variables.

- 29 -

The top five rank of the best RMSE results for each data model is presented in table 4.

Table 4 - Top five rank for each data model

Original Variables
Original + Daily

Change Close
Original and
Differenced

Differenced Variables

1 – Linear Regression 1 – Linear Regression 1 - Adaboost - NN 1 - LSTM

2 – KNN 2 – Adaboost – NN 2 - Linear Regression 2 – Bagging – DT

3 – Adaboost - NN 3 – KNN 3 - KNN 3 – Bagging – KNN

4 – Bagging – KNN 4 - Bagging - KNN 4 - Bagging - KNN 4 – Neural Network

5 - LSTM 5 - LSTM 5 - LSTM 5 – Random Forest

This rank refers to the best medians and not to the means because of its higher robustness to

outliers.

In Original Variables, Original + Daily Change Close and Original and Differenced models, the rankings

brought up exactly the same algorithms, some of them changing their position depending on the comparison

of the errors. There is an interesting detail in these three rankings, Bagging – KNN shows up below KNN

when it would seem to make more sense to appear on top of KNN. Breiman, L. (1996) explains that unstable

learners are likely to give different predictions for modified datasets and likely to benefit from bagging. On

the other hand, stable learners (take to the extreme a constant), will give quite similar predictions anyway so

bagging will not help. This is also noted in Witten, I. H. et al (2016) where it is stated that it is pointless to

bag nearest neighbor classifiers because their output changes very little if the training data changes very little.

Linear Regression becomes worse as the presence of differenced variables becomes stronger,

whereas Adaboost with Neural Network base learner becomes best with the presence of these lagged

variables, but always maintaining the original ones.

Although LSTM ranks fifth in the first three scenarios, it rises to the top, outperforming the other

algorithms when it comes to learning the lagged variable pattern. With LSTM, Bagging with K-Nearest

Neighbors also remains in the top five ranking, rising one position higher.

This Differenced Variables data model shows that the errors from all algorithms increased, giving the

idea that this is not the best model. On the other hand, lagging variables enable bringing forward information

from the past to the present giving the ability to algorithms without native capacity, to evaluate the present

based on historical information. Additionally, in spite of LSTM appearing in fifth position in the three first

models, it is the first demonstrating a more acceptable error, since the above ones present very low values,

leading to the idea that they were overfitted.

- 30 -

It should also be noted that the error fluctuation in this latter data model is much smaller among

the various algorithms, reinforcing the usefulness of using differenced variables from day to day, which

facilitates the learning of all types of ML techniques used without bringing the problem of overfitting.

Even though top performing algorithms considered in the first three data model scenarios present

very low errors, these fail to keep their place on top of the ranking when dealing with differenced variables,

except LSTM. Several parametrization tests were executed for each ML technique in order to reach the final

algorithm set and yet, only LSTM continues succeeding when handling the fourth type of variables. This

indicates that perhaps the other algorithms are not the best choice for extensive future time series forecasting

with stock market data and that LSTM drives a more reliable margin of error.

5.1.2 STATISTICAL VALIDATION

In statistics, the Mann-Whitney U Test is a nonparametric test meaning that, once the assumption

of normality that the dependent variable is not normally distributed for each level of the independent

variable, the dealing problem will present free data distribution. This means that this test will evaluate the

null hypothesis stating that it is equally likely that a randomly selected value from one sample will be less

than or greater than a randomly selected value from a second sample. It is assumed that all the observations

from both groups are independent of each other and the responses are ordinal i.e., one can at least say, of

any two observations, which is the greater.

This test was applied to compare the RMSE values obtained between every two algorithms with

the purpose of understanding if there is a significant or non-significant difference between them, for each

of the four models. Thus, the error sample of each algorithm was independently generated by the means of

running each ML technique independently.

As an example, the following figures show the different error distributions between the Adaboost

– NN and the LSTM.

Figure 19 - RMSE distribution (Adaboost NN) Figure 20 - RMSE Distribution (LSTM)

- 31 -

The hypothesis test starts by defining the null and alternative hypotheses and setting an alpha

level. In this project, the alpha was set to 0.05 and the considered hypothesis were:

- 𝐻0: The difference between the errors is not significant;

- 𝐻1: The difference between the errors is significant.

If the alternative hypothesis is verified that means that the p-value obtained has a value minor to the

alpha’s (p-value < 0.05) and the sample presenting the lower median RMSE value evidences the best ML

technique that should be chosen when it comes to predict stock market with the data model in question.

Forward, tables with the medians obtained for each algorithm within each data model, are presented

in support to the analysis of the p-value outcomes to aid in the conclusion about if there are techniques that

stand out from the others. The p-values’ table 9 is in the appendix.

Table 5 - Originals' Medians

Originals

Adaboost - Dec Tree 0.088301662

Adaboost - Neural Network 0.066115527

Bagging - Dec Tree 0.070252644

Bagging - K-NN 0.067322167

Decision Tree 0.070181619

K-Nearest Neighbors 0.066623701

Linear Regression 0.069947462

LSTM 0.060956996

Neural Network 0.093241975

Random Forest 0.070181310

Support Vector Regression 0.066072947

Looking at the Mann-Whitney U Test table output for the Original variables data model, it is

outstanding that both Neural Network and Adaboost – Dec Tree present the higher median errors.

Starting with Adaboost – Dec Tree, all p-values returned from the test reject the null hypothesis as

all these values present to be smaller than the alpha = 0.05. Naturally, this algorithm is only chosen as the

best one when comparing it with Neural Network and all the others excel at Adaboost – Decision Tree. On

the other hand, neural network is never chosen as the best performance ML technique working with this

kind of data.

Observing the Bagging – Dec Tree column in table 9 (appendix), all p-values reject the null

hypothesis as well whereas, this technique only looms best when compared with the worst median error –

neural network.

LSTM is with no doubt, the best algorithm against all the others as it gets highlighted in all

comparisons with its peers in this statistical test. It should also be noted that there are six records showing

- 32 -

that the test fails to reject the null hypothesis, these are when it comes to compare 1) Adaboost – Neural

Network with: a) Bagging – KNN, b) K-NN and c) Linear Regression; 2) Bagging – K-NN with: a) K-NN

and b) Linear Regression; and finally, 3) K-NN with a) Linear Regression. This indicates that these algorithm

pairs feature 50% of probability that a random selected value from one algorithm sample will be less than

or greater than a randomly selected value from the second algorithm sample.

Table 6 - Originals + Daily Change Close Medians

Originals + Daily Change Close

Adaboost - Dec Tree 0.088301662

Adaboost - Neural Network 0.061127126

Bagging - Dec Tree 0.062109735

Bagging - K-NN 0.070188104

Decision Tree 0.070181619

K-Nearest Neighbors 0.060785484

Linear Regression 0.060827539

LSTM 0.062360169

Neural Network 0.076224645

Random Forest 0.070181310

Support Vector Regression 0.097579613

By analysing the medians’ table 6, it is noticeable that if there are any p-values under the alpha =

0.05 and thus, rejecting the null hypotheses, Support Vector Regression will never be chosen over the others

since its median RMSE happens to be the higher. In a similar path, Adaboost – Dec Tree in conjunction

with every other technique always outcomes a p-value inferior to 0.05 but only gets chosen when tested

with the SVR.

It is interesting to verify that Adaboost – Neural Network is the third one in the ranking of medians

but when considering p-values’ table 10, this algorithm is always considered to be the best against all the

others for every p-value that aids to reject the null hypothesis except, when evaluated versus K-NN and

Linear Regression that it fails to reject 𝐻0. By the same token, Bagging – Dec Tree is touted as the best

choice for all tests except, when contrasted to K-NN and Linear Regression.

K-NN with Linear Regression test pointed out that their probability value fails to reject the null

hypothesis whereas Linear Regression and K-NN win the tests with every other compared technique.

As for Random Forest, it stood out when tested with Adaboost – Dec Tree, Bagging – K-NN,

Decision Tree, Neural Network and SVR. It is curious to note that this ensemble learning method shows

better performance than Adaboost with Decision tree learner and Decision Tree by itself, but on the other

hand, does not excel at Bagging with Decision Tree learner. This event may be explained by the fact that in

Random Forests, only a subset of features are selected as random out of the total and the best split feature

from the subset is used to split each node in a tree, unlike bagging, where all variables are considered for

splitting a node.

- 33 -

LSTM imposes itself before Adaboost – Dec Tree, Bagging – K-NN, Decision Tree, Neural

Network, Random Forest and Support Vector Regression making six gains out of ten possible.

Nevertheless, LSTM presents the median value very similar to those of Adaboost – NN and Bagging –

Decision Tree, and for a slight difference its error value did not stand out from these two.

Table 7 - Originals and Differenced Medians

Originals and Differenced

Adaboost - Dec Tree 0.088301662

Adaboost - Neural Network 0.061275407

Bagging - Dec Tree 0.071415189

Bagging - K-NN 0.060875345

Decision Tree 0.070181619

K-Nearest Neighbors 0.060785484

Linear Regression 0.060791705

LSTM 0.062096936

Neural Network 0.089052154

Random Forest 0.070181310

Support Vector Regression 0.185761063

Support Vector Regression shows a very high median RMSE which tells that in every pair test it

will never be the selected one. After SVR, Neural Network and Adaboost – Decision Tree are the next ones

presenting a high median error too, that is why they get chosen as the best performing techniques only one

and two times, respectively.

Continuing the descending order of the median values, then we have Bagging – Decision Tree

standing out before the three algorithms mentioned previously and Decision Tree being pointed as the best

one to choose versus the four already referred techniques. Random Forest comes in sixth as winning against

all higher error median algorithms.

According to table 11 in the appendix, LSTM in conjunction with all other ML techniques always

reject the null hypothesis and it is selected as the best algorithm in six comparisons, being these the ones

performed with the above referred ones.

Adaboost trained with Neural Networks appears to be selected over all other options, except when

tested versus Bagging – K-NN; K-NN and Linear Regression, which results in failure to reject the null

hypothesis. The other ML techniques that appear with the best error medians share the same fact, with

Bagging – K-NN failing to reject 𝐻0 when compared to K-NN and Linear Regression and K-Nearest

Neighbours failing to reject 𝐻0 as well when tested against Linear Regression.

- 34 -

Table 8 - Differenced Medians

Differenced

Adaboost - Dec Tree 0.108683086

Adaboost - Neural Network 0.096809401

Bagging - Dec Tree 0.075254150

Bagging - K-NN 0.075905322

Decision Tree 0.075798129

K-Nearest Neighbors 0.060785484

Linear Regression 0.073502459

LSTM 0.061671351

Neural Network 0.081823422

Random Forest 0.076062176

Support Vector Regression 0.465930919

In this forth part of analysis, it is clear that the median error of Support Vector Regression is the

highest, reaching almost 50% of RMSE. This indicates that this algorithm does not perform well when

dealing with this kind of data and problem.

Adaboost with Decision Trees and Adaboost with Neural Networks’ medians are very similar but

because the second one presents lower error, it gets picked as the best one over SVR and Adaboost -

Decision Tree, while the first one gets chosen only over SVR.

The pattern is always the same as when looking at the algorithms ranked by their median errors

from highest to lowest, the number of times the algorithm is chosen as the best, when the p-value shows a

value lower than the alpha = 0.05, grows in the opposite direction as it increases when the RMSE decreases.

Thus, Neural Networks with RMSE median approximately 0.082 are highlighted three times; Random

Forest with ≈ 0.076 is highlighted four times; Bagging - K-NN with ≈ 0.076, five times, Decision Trees, six

times; Bagging – Decision Trees, seven times; Linear Regression, eight; LSTM, nine and finally, K-NN,

stands out ten times.

It is noticeable that in this data model, all tests reject the null hypothesis meaning that the

distribution of error values for each ML technique is very distinct from each other.

- 35 -

CHAPTER 6

CONCLUSION

Stock market prediction is very hard and sometimes even impossible to achieve, due to the high

volatility of the value of the closing prices. Companies are under the unavoidable influence of market forces

such as the fluctuating price of materials, changes in production technology, and the shifting costs of labour.

Investors may be worried about changes in leadership, bad publicity, or larger factors like new laws and

trade policies. In addition, plenty of investors are simply ready to sell valuable stock and pursue their

personal interests. All these variables cause day-to-day noise in the market, which can make companies

appear more, or less successful.

Human confidence in the market has the power to trigger everything from economic booms to

financial crises and, this difficult-to-track variable is why most professionals promote reliable long term

investing over trying to make quick cash. However, experts are constantly building tools in efforts to

increase their chances of success in this highly unpredictable system. These tools are often referred as

Predictive Models and Machine Learning.

The aim of this dissertation was to apply Deep Learning and other Machine Learning techniques

to work out the financial market close prices. Long Short-Term Memory recurrent neural network was

studied to examine its suitability in forecasting the stock market and, in order to verify its quality, other

state-of-the-art Machine Learning techniques were also implemented to compare their performance with

the LSTM’s. An extensive empirical analysis was conducted recurring to Dow Jones Industrial Average

Stock Market Index. Three other different data models were generated based on the original one so that all

used algorithms could be trained and tested in four different scenarios, allowing the comparison between

them and understanding which ones behave the best.

For the Mann Whitney U Test analysis it was interesting to observe that LSTM and K-Nearest

Neighbours were both the more stable algorithms in terms of its position in the ranking of RMSE median

for each data model, being that LSTM appeared in fifth place for the Originals + Daily Change Closing Price

and Originals and Differenced, in second place for the Differenced model and in first place for the Originals data

set and K-NN appeared in fourth place for the Originals model and remained in first place for the other

three data sets. All the other ML techniques showed instability for their median errors in all four different

scenarios.

On the other hand, for the 10-fold cross validation analysis, LSTM still remained in top five for all

four data models, this time appearing in fifth place for the Originals; Originals + Daily Change Close and Original

- 36 -

and Differenced and in first place in Differenced dataset, whereas K-NN appeared in top five only for the first

three scenarios, excluding the Differenced data model and surpassing this algorithm, Bagging – K-NN showed

to be more stable, showing up in all models top five.

Empirical results in this project revealed that LSTM is more than adequate to produce suitable

results when comparing with other techniques and in some situations is able to outperform them.

LIMITATIONS AND FUTURE WORK

The limitation of this project was that other types of data influencing stock market prices were not

considered. Emphasizing, the stock market is a very volatile system that changes final prices extremely

rapidly and relies more than just in historical prices. It depends on multiple variables such as investor’s

sentiments, attitudes, and expectations, thus, on the demand, in economic and political aspects, in

environmental events, in the release of new products or services, among others. Hence, studying and training

the ML techniques with data related to various other types of events would bring a deeper analysis and

knowledge to the algorithms, since they would be better prepared to predict stock market prices.

Regarding future work, it would be good to deepen the knowledge of the algorithms by adding

more variables that represent the various types of events that have an impact on stock market movement.

It would be also interesting to create clusters of companies belonging to the same industrial area and analyse

their historical behaviour comparing all clusters.

There are many machine learning algorithms that achieved excellent results with other kind of data.

In this work, a small subset was implemented and only one of them was even a deep learning algorithm. A

very interesting analysis would be to apply all kinds of existing neural networks and compare them to see if

there are better ones. Such networks could be: from the Perceptron, to Feed Forward, Radial Basis Network,

Deep Feed Forward, Recurrent Neural Network, Gated Recurrent Unit, Auto Encodes, Variational AE,

Denoising AE, Sparse AE, Markov Chain, Hopfield Network, Boltzmann Machine, Restricted BM, Deep

Belief Network, Deep Convolutional Network, Deconvolutional Network, Deep Convolutional Inverse

Graphics Network, Generative Adversial Network, Liquid State Machine, Extreme Learning Machine, Echo

State Network, Deep Residual Network, Kohonen Network and Neural Turing Machine. This suggested

study and research could be a state-of-the-art in the stock market forecasting field.

- 37 -

BIBLIOGRAPHY

Azzouni, A., & Pujolle, G. (2017). A Long Short-Term Memory Recurrent Neural Network Framework for Network

Traffic Matrix Prediction. Paris, France: LIP6/UPMC.

Bernal, A., Fok, S., & Pidaparthi, R. (2012). Financial Market Time Series Prediction with Recurrent Neural

Networks.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics,

31(3), 307-327. doi:https://doi.org/10.1016/0304-4076(86)90063-1

Breiman, L. (1996). Bagging Predictors. Machine Learning, 24(2), 123-140.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32. doi:https://doi.org/10.1023/A:101093

Brownlee, J. (2016, July). Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras.

Retrieved from Machine Learning Mastery: https://machinelearningmastery.com/time-series-

prediction-lstm-recurrent-neural-networks-python-keras/

Brownlee, J. (2019, Aug). The Promise of Recurrent Neural Networks for Time Series Forecasting. Retrieved from

Machine Learning Mastery: https://machinelearningmastery.com/promise-recurrent-neural-

networks-time-series-forecasting/

Burges, C. J. (1998). Data Mining and Knowledge Discovery. 2(2), 121-167.

doi:https://doi.org/10.1023/A:1009715923555

Chen, A. S., Leung, M. T., & Daouk, H. (2003). Application of neural networks to an emerging financial

market: forecasting and trading the Taiwan Stock Index. 30(6), pp. 901-923.

doi:https://doi.org/10.1016/S0305-0548(02)00037-0

Chen, C. H. (1994). Neural Networks for Financial Market Prediction. IEEE World Congress on

Computational Intelligence (pp. 1199-1202). Orlando: IEEE.

Chen, K., Zhou, Y., & Dai, F. (2015). A LSTM-based method for stock returns prediction: A case study

of China stock market. IEEE International Conference on Big Data (Big Data) Proceedings (pp. 2823-

2824). IEEE.

Cheung, K. C. (2019, Oct). 10 Applications of Machine Learning in Finance. Retrieved from Algorithm-XLab:

https://algorithmxlab.com/blog/applications-machine-learning-finance/

Didur, K. (2018). Machine Learning in finance: Why, what & how. Retrieved from Towards Data Science:

https://towardsdatascience.com/machine-learning-in-finance-why-what-how-d524a2357b56

- 38 -

Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep Learning for Event-Driven Stock Prediction.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence.

Eyben, F., Wollmer, M., Schuller, B., & Graves, A. (2009). From Speech to Letters - using a novel

network architecture for grapheme based ASR. ASRU 2009 - IEEE Workshop on Automatic Speech

Recognition & Understanding (pp. 376-380). IEEE.

Fama, E. F. (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of

Finance, 25(2), 383-417. doi:10.2307/2325486

Gamboa, J. C. (2017). Deep Learning for Time-Series Analysis.

Garliauskas, A. (1999). Neural network chaos and computational algorithms of forecast in finance. IEEE

International Conference on Systems, Man, and Cybernetics. 2, pp. 638-643. Tokyo: IEEE SMC '99.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time and count. Proc. IJCNN'2000 Int. Joint Conf.

Neural Networks.

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Applying LSTM to Time Series Predictable through Time-Window

Approaches. Artificial Neural Networks - ICANN 2001. doi:10.1007/3-540-44668-0_93

Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual Prediction with LSTM.

In Neural Comput. (Vol. 12, pp. 2451-2471). Massachusetts Institute of Technology Press.

Graves, A., Jaitly, N., & Mohamed, A. (2013). Hybrid Speech Recognition with Deep Bidirectional LSTM.

IEEE Workshop on In Automatic Speech Recognition and Understanding (ASRU) (pp. 273-278). IEEE.

Graves, A., Liwicki, M., Férnandez, S., Bertolami, R., Bunke, H., & Schmidhuber, J. (2009). A Novel

Connectionist System for Unconstrained Handwritting Recognition. IEEE Trans. Pattern Anal.

Mach. Intell., 31(5), 855-868.

Hadavandi, E., Shavandi, H., & Ghanbari, A. (2010). Integration of genetic fuzzy systems and artificial

neural networks for stock price forecasting. 23(8).

doi:https://doi.org/10.1016/j.knosys.2010.05.004

Hochreiter, S., & Schimdhuber, J. (1997). Long Short-term Memory. Neural Computation.

Hsieh, D. A. (1991). Chaos and Nonlinear Dynamics: Application to Financial Markets. The Journal of

Finance, 46(5). doi:https://doi.org/10.1111/j.1540-6261.1991.tb04646.x

Huang, J. J., Ong, C. S., & Tzeng, G. H. (2005b). Building credit scoring models using genetic

programming. Expert Systems with Applications, 29(1), 41-47.

- 39 -

Huck, N. (2009). Pairs Selection and Outranking: An Application to the S&P 100 index. European Journal of

Operational Research, 196(2), 819-825. doi:https://doi.org/10.1016/j.ejor.2008.03.025

Joshi, K., Bharanthi, H. N., & Rao, J. (2016). Stock Trend Prediction Using News Sentiment Analysis.

doi:10.5121/ijcsit.2016.8306

Kamley, S., Jaloree, S., & Thakur, R. (2016). Performance Forecasting of Share Market using Machine

Learning Techniques: A Review. International Journal of Electrical and Computer Engeneering, 3196-

3204. doi:10.11591/ijece.v6i6.13323

Kara, Y., Boyacioglu, M. A., & Baykan, O. K. (2011). Predicting direction of stock price index movement

using artificial neural networks and support vector machines: The sample of the Istanbul Stock

Exchange. Expert Systems with Applications, 38(5), 5311-5319.

doi:https://doi.org/10.1016/j.eswa.2010.10.027

Kim, J. W., Weistroffer, R., & Redmond, R. T. (1993). Expert systems for bond rating: a comparative

analysis of statistical, rule-based and neural network systems. 10, 167-171.

Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A Comparison of Artificial Neural

Network and Time Series Models for Forecasting Commodity Prices. Neurocomputing, 10(2), 169-

181.

Krauss, C., Do, X. A., & Huck, N. (2017). Deep Neural Networks, Gradient-Boosted Trees, Random

Forests: Statistical Arbitrage on the S&P 500. European Journal of Operational Research, 259(2), 689-

702.

Lee, S. I., & Yoo, S. J. (2017). A Deep Efficient Frontier Method for Optimal Investments. Sejong University,

Department of Computer Engeneering, Seoul.

Lee, Y. S., & Tong, L. I. (2011). Forecasting time series using a methodology based on autoregressive

integrated moving average and genetic programming. 66-72.

doi:https://doi.org/10.1016/j.knosys.2010.07.006

Majhi, R., & Panda, G. (2008). Prediction of S&P 500 and DJIA stock indices using particle swarm

optimization technique. IEEE World Congress on Computational Intelligence (pp. 1276-1282). Hong

Kong: IEEE.

Murphy, A. (2019, Oct). How AI and Machine Learning Can Improve Business Decision-Making. Retrieved from

K2: https://www.k2.com/blog/machine-learning-business-decision-making

Nelson, D., Pereira, A., & Oliveira, R. (2017). Stock Market's Price Movement Prediction With LSTM

Neural Networks. International Joint Conference on Neural Networks (IJCNN), (pp. 1419-1426).

- 40 -

Olah, C. (2015, Aug). Understanding LSTM Networks. Retrieved from Colah's Blog:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Patuwo, E., Hu, M. Y., & Hung, M. S. (1993). Two-Group Classification Using Neural Networks. In

Decision Sciences (Vol. 24, pp. 825-845). doi:https://doi.org/10.1111/j.1540-5915.1993.tb00491.x

Rajasekaran, S., & Pai, G. A. (2008). Neural Networks, Fuzzy Logic, and Genetic Algorithms: Synthesis and

Applications. Prentice-Hall of India.

Rao, T. S., & Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models.

Springer-Verlag Berlin Heidlberg.

Robinson, T., Cook, G. D., Elis, D. P., Lussier, E. F., Renals, S. J., & Wiliams, D. A. (2002). Connectionist

Speech Recognition of Broadcast News. 37(1-2), 27-45. doi:10.1016/S0167-6393(01)00058-9

Roondiwala, M., Patel, H., & Varma, S. (2017). Predicting Stock Prices Using LSTM. International Journal of

Science and Research. doi:10.21275/ART20172755

Rosenblatt, F. (1958). The Perceptron: A Probabilistic Model for Information Storage and Organization in

The Brain. Psychological Review.

Rout, A. K., Dash, P. K., Dash, R., & Bisoi, R. (2015). Forecasting financial time series using a low

complexity recurrent neural network and evolutionary learning approach. Journal of King Saud

University - Computer and Information Sciences. doi:http://dx.doi.org/10.1016/j.jksuci.2015.06.002

Rumelhart, D. E., Hinton, G. E., & Wiliams, R. J. (1986). Learning Internal Representations by Error

Propagation.

Sak, H., Senior, A., & Beaufays, F. (2014). Long Short-Term Memory Based Recurrent Neural Network

Architectures for Large Vocabulary Speech Recognition. Google. doi:arXiv:1402.1128v1

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. 61, 85-117.

doi:https://doi.org/10.1016/j.neunet.2014.09.003

Siah, K. W., & Myers, P. L. (2015). Stock Market Prediction through Technical and Public Sentiment

Analysis.

Sigmoidal. (2017, Nov). Machine Learning for Trading - Topic Overview. Retrieved from

https://sigmoidal.io/machine-learning-for-trading/

Subramanian, V., Hung, M. S., & Hu, M. Y. (1993). An Experimental Evaluation of Neural Networks for

Classification. Computers & Operations Research, 20(7), pp. 769-782.

doi:https://doi.org/10.1016/0305-0548(93)90063-O

- 41 -

Tarwani, K. M., & Edem, S. (2017). Survey on Recurrent Neural Network in Natural Language

Processing. International Journal of Engeneering Trends and Technology, 48(6), 301-304.

doi:10.14445/22315381/IJETT-V48P253

Wang, J. H., & Leu, J. Y. (1996). Stock market trend prediction using ARIMA-based neural networks.

Proceedings of IEEE International Conference on Neural Networks (pp. 2160-2165). IEEE.

White, H. (1988). Economic prediction using neural netwroks: a case of IBM daily stock returns.

International Conference on Neural Networks. 2, pp. 988-99. IEEE.

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data Mining, Fourth Edition: Practical Machine

Learning Tools and Techniques (4th ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers.

Xiong, R., Nichols, E. P., & Shen, Y. (2015). Deep Learning Stock Volatilities with Google Domestic

Trends.

Yim, J. (2002). A Comparison of Neural Networks with Time Series Models for Forecasting Returns on a

Stock Market Index. 15th International Conference on Industrial and Engeneering. Cairns: IEA/AIE

2002.

Yoon, Y., & Swales, G. (1991). Predicting Stock Price Performance: A Neural Networks Approach.

Proceedings of the IEEE Twenty-Fourth Annual Hawaii International Conference on System Sciences, 4, pp.

156-162.

Zarandi, M. H., Hadavandi, E., & Turksen, I. B. (2012). A hybrid fuzzy intelligent agent-based system for

stock price prediction. International Journal of Intelligent Systems, 27(11).

Zhang, P. G., & Qi, M. (2005). Neural Network Forecasting for Seasonal and Trend Time Series. Journal of

Operational Research, 501-514.

Zhang, Y., & Wu, L. (2009). Stock market prediction of S&P 500 via combination of improved BCO

approah and BP neural network. Expert Systems with Applications, 36(5), 8849-8854.

doi:https://doi.org/10.1016/j.eswa.2008.11.028

- 42 -

APPENDIX

43

Table 9 - Original Variables

Adaboost-
Dec. Tree

Adaboost-
NN

Bagging-
Dec. Tree

Bagging-
KNN

Decision
Tree

KNN
Linear

Regression
LSTM

Neural
Network

Random
Forest

SVR

Adaboost-
Dec. Tree

Adaboost-
NN

< 0.001

Bagging-
Dec. Tree

< 0.001 < 0.001

Bagging-
KNN

< 0.001 0.465 < 0.001

Decision
Tree

< 0.001 < 0.001 < 0.001 < 0.001

KNN < 0.001 0.462 < 0.001 0.497 < 0.001

Linear
Regression

< 0.001 0.165 < 0.001 0.186 < 0.001 0.189

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Neural
Network

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Random
Forest

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

44

Table 10 - Original + Daily Change Close Variables

Adaboost-
Dec. Tree

Adaboost-
NN

Bagging-
Dec. Tree

Bagging-
KNN

Decision
Tree

KNN
Linear

Regression
LSTM

Neural
Network

Random
Forest

SVR

Adaboost-
Dec. Tree

Adaboost-
NN

< 0.001

Bagging-
Dec. Tree

< 0.001 < 0.001

Bagging-
KNN

< 0.001 < 0.001 < 0.001

Decision
Tree

< 0.001 < 0.001 < 0.001 < 0.001

KNN < 0.001 0.020 < 0.001 < 0.001 < 0.001

Linear
Regression

< 0.001 0.049 < 0.001 < 0.001 < 0.001 0.351

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Neural
Network

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Random
Forest

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

45

Table 11 - Original and Differenced Variables

Adaboost-
Dec. Tree

Adaboost-
NN

Bagging-
Dec. Tree

Bagging-
KNN

Decision
Tree

KNN
Linear

Regression
LSTM

Neural
Network

Random
Forest

SVR

Adaboost-
Dec. Tree

Adaboost-
NN

< 0.001

Bagging-
Dec. Tree

< 0.001 < 0.001

Bagging-
KNN

< 0.001 0.262 < 0.001

Decision
Tree

< 0.001 < 0.001 < 0.001 < 0.001

KNN < 0.001 0.054 < 0.001 0.164 < 0.001

Linear
Regression

< 0.001 0.059 < 0.001 0.177 < 0.001 0.479

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Neural
Network

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Random
Forest

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

46

Table 12 - Differenced Variables

Adaboost-
Dec. Tree

Adaboost-
NN

Bagging-
Dec. Tree

Bagging-
KNN

Decision
Tree

KNN
Linear

Regression
LSTM

Neural
Network

Random
Forest

SVR

Adaboost-
Dec. Tree

Adaboost-
NN

< 0.001

Bagging-
Dec. Tree

< 0.001 < 0.001

Bagging-
KNN

< 0.001 < 0.001 < 0.001

Decision
Tree

< 0.001 < 0.001 < 0.001 < 0.001

KNN < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Linear
Regression

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Neural
Network

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Random
Forest

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

47

