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ABSTRACT 

Predicting the stock market was never seen as an easy task. The complexity of the financial systems 

makes it extremely difficult for anything or anyone to predict what the future of prices holds, let it be a day, 

a week, a month or even a year. Many variables influence the market’s volatility and some of these may even 

be the gut feeling of an investor on a specific day. Several machine learning techniques were already applied 

to forecast multiple stock market indexes, some presenting good values of accuracy when it comes to predict 

whether the prices will go up or down, and low values of error when dealing with regression data. This work 

aims to apply some state-of-the-art algorithms and compare their performance with Long Short-term 

Memory (LSTM) as well as between each other. The variables used to this empirical work were the prices 

of the Dow Jones Industrial Average (DJIA) registered for every business day, from January 1st of 2006 to 

January 1st of 2018, for 29 companies. Some changes and adjustments were made to the original variables 

to present different data types to the algorithms. To ensure good quality and certainty when evaluating the 

flexibility and stability of each model, the error measure used was the Root Mean Squared Error and the 

Mann-Whitney U test was also applied to assess statistical significance of the results obtained. 
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RESUMO 

Prever a bolsa nunca foi considerado ser uma tarefa fácil. A complexidade dos sistemas financeiros 

torna extremamente difícil que um ser humano ou uma máquina consigam prever o que o futuro dos preços 

reserva, seja para um dia, uma semana, um mês ou um ano. Muitas variáveis influenciam a volatilidade do 

mercado e algumas podem até ser a confiança de um investidor em apostar em determinada empresa, 

naquele dia específico. Várias técnicas de aprendizagem automática foram aplicadas ao longo do tempo para 

prever vários índices de bolsas, algumas apresentando bons valores de precisão quando se tratou de prever 

se os preços subiam ou desciam e outras, baixos valores de erro ao lidar com dados de regressão. Este 

trabalho tem como objetivo aplicar alguns dos mais conhecidos algoritmos e comparar os seus desempenhos 

com o Long Short-Term Memory (LSTM), e entre si. As variáveis utilizadas para a elaboração deste trabalho 

empírico foram os preços da Dow Jones Industrial Average (DJIA) registados para todos os dias úteis, de 1 de 

Janeiro de 2006 a 1 de Janeiro de 2018, para 29 empresas. Algumas alterações e ajustes foram efetuados 

sobre as variáveis originais de forma a construír diferentes tipos de dados para posteriormente dar aos 

algoritmos. Para garantir boa qualidade e veracidade ao avaliar a flexibilidade e estabilidade de cada modelo, 

a medida de erro utilizada foi o erro médio quadrático da raíz e, de seguida, o teste U de Mann-Whitney foi 

aplicado para avaliar a significância estatística dos resultados obtidos. 
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CHAPTER 1 

 

1.1 INTRODUCTION 

 

A stock market system presents a high volatility in terms of the value of the closing price of the 

companies for each business day. As technology is getting more powerful and advanced, the possibility to 

get better insights that help the investor to decide betting on companies that promise its return is best 

accomplished since it can give the investor more accurate information about it. This way, predicting the 

market value can be very benefic in order to maximize the profit of stock option purchase while maintaining 

a low risk.  

Although forecasting the financial market can bring value to investors, predicting such highly fluctuating 

and irregular data is usually subject to large errors. Developing more realistic models for predicting financial 

time series data to extract meaningful statistics from it, more effectively and accurately is a great interest of 

research in financial data mining (Rout, A. K. et al, 2015). At the beginning of the use of traditional statistical 

models to forecast the stock market, researchers found out that these types of models were very simple and 

suffered from several shortcomings due to the nonlinearity of data. This contributed to the development of 

more precise and efficient soft computing methods for financial forecasting. Various Artificial Neural 

Network (ANN) based methods like, for example, Multi-Layer Perceptron (MLP) Network and Recurrent 

Neural Network (RNN) are extensively used for stock market prediction due to their inherent capabilities 

to identify complex nonlinear relationships present in the time series data based on historical data and to 

approximate any non-linear function to a lower degree of error and thus, a high degree of accuracy.  

From the RNN, there is a special network called Long Short-Term Memory (LSTM) that was first 

proposed and developed by Hochreiter, S. and Schmidhuber, J. (1997) to deal with the exploding and 

vanishing gradient problems that could be encountered when training traditional RNNs by introducing 

Constant Error Carousel (CEC) units and including cells, input and output gates. In 1999, Felix Gers 

introduced the forget gate into the LSTM architecture, enabling it to reset its own state and in 2000, Felix 

Gers and Jurgen Schmidhuber added connections from the cell to the gates. 

This made the LSTM to be known as being very powerful in sequence prediction problems since this 

kind of network was able to store past information and when learning from it, it could predict the future 

with higher efficiency. 

The objective of this project is the application of a long short-term memory network to predict the next 

day price of each company of Dow Jones Industrial Average stock market index and compare its 

performance with other machine learning (ML) techniques. 
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1.2 FORECASTING PROBLEM 

 

Forecasting involves taking models fit on historical data and using them to predict future 

observations.  

Several machine learning algorithms have already been applied successfully in predicting stock 

market prices. LSTM is one of those and it can be useful in financial forecasting, financial modelling 

and trading strategies optimization.  

The focus of this project is to use a machine learning approach to forecast stock prices time series 

in a short-term period such as the next day price. The following formula explains how this problem will 

be solved: 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑥𝑡−1… , 𝑥𝑡−𝑛) 

 

where 𝑥𝑡+1 is the price of the next day, and 𝑓 is the forecast function that contains the previous 

stock prices up to 𝑑𝑎𝑦𝑡 as the input variables. 

By identifying hidden patterns and correlations between variables, ML algorithms are able to find 

the best forecast function 𝑓, either by variable selection or parameter optimization. 

 

1.3 RESEARCH OBJECTIVES 

 

The goal of this work project is to apply different machine learning techniques, compare them 

between each other and with the Long-Short Term Memory (LSTM) variant of a Recurrent Neural 

Network (RNN) in order to identify which brings the best results to predict future prices in the stock 

market. People working in the financial sector can benefit with these ML-based systems to plan and 

monitor their financial investments more precisely and therefore, accomplishing higher returns. 

To reach this objective, there are specific steps that need to be followed: 

1) Describe all the ML techniques used with a special emphasis in the LSTM and its application 

in the financial field. 

2) Select a stock market time series to develop the empirical work. 

3) Describe the data and the methodology used. 

4) Compare and evaluate the different models’ performance. 
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1.4 DOCUMENT STRUCTURE 

 

Hereinafter, the document is divided in the following chapters: 

 

 Chapter 2: Presents and summarizes the past work done in the financial sector. The main topic 

addressed is the LSTM and how machine learning approaches have been used to forecast the stock 

market. 

 Chapter 3: Describes how machine learning has been performing in the financial filed, what is time 

series, an overview from the first neural network to the development of the LSTM as well as a 

description of other ML techniques used in this work. 

 Chapter 4: Specifies the approach implemented to the development of this project to design a 

forecast system based on a ML algorithm, the dataset and the preparation and pre-processing of the 

data. 

Chapter 5: Focuses in describing the different models’ outcomes and interpreting their results. 

Chapter 6: Sums up the empirical results, what were the limitations of the developed study and 

proposes future research and developments. 
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CHAPTER 2 

 

In this chapter, a review of all relevant literature and previous activities related to this work project 

is presented. The literature review is discussed according to the most relevant topics that were considered 

for the preparation of this work project, namely artificial neural networks and its variations, as well as other 

machine learning techniques. 

 

2.1 LITERATURE REVIEW 

 

Nowadays, stock market price prediction is an important concern for both, researchers and 

investors, because accurate price prediction plays a key role when it comes to investment decision making 

(Kamley et al. 2016). Generally, stock market is seen as having a high volatility, but this is due to the fact 

that it has been influenced by several economical and external environmental factors. This is why it has 

increased the interest of researchers in applying good models to measure and forecast stock return 

volatilities. Currently, there are various techniques that have been applied to evaluate share performance.  

Share market analyses have been using some approaches for predicting share prices. Machine learning is 

one of the core areas which has been widely used to analyze share performance and its main goal is to 

automatically learn and identify patterns from large amounts of data (Rajasekaran, S. & Pai, G. A., 2008). 

Over the past three decades, there have been many applications of ML techniques to stock indices returns 

(Chen, C.H., 1994, Burges, C.J.C., 1998, Huang, J.J. et al., 2005b, Majhi, R. & Panda, G., 2008). 

There are two types of analysis done by investors to invest in a stock with greater certainty. First, 

there is a fundamental analysis which consists in looking at intrinsic value of stocks, economy, political 

environment, performance of the industry, and others to decide whether to invest or not. On the other 

hand, technical analysis is also taken into consideration where investors appraise the stocks by means of 

studying the evolution of the market activity, such as past prices and volumes. In this type of analysis, stock 

charts are generated to identify patterns and trends that may guide how a stock will behave in the future. 

Efficient market hypothesis by Fama, E. F. (1970) states that prices are informationally efficient which 

means that it is possible to envision stock prices based on the trading data. Therefore, if the retrieved 

information of stock prices is accurately pre-processed and suitable algorithms are applied then stock price 

index may be predicted. 

Since years, several techniques have been developed to predict stock trends. Traditional statistical 

models including moving average, exponential smoothing, and ARIMA are linear in their predictions of 

forthcoming values (Bollerslev, 1986, Hsieh, 1991, Rao & Gabr, 1984). Far-reaching research resulted in 
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multiple prediction applications using Artificial Neural Networks (ANN), fuzzy logic, Genetic Algorithms 

(GA) as well as other techniques (Hadavandi, E. et al., 2010b, Lee & Tong, 2011, Zarandi, M. H. et al., 

2012). Artificial Neural Networks (ANN) and Support Vector Regression (SVR) are two machine learning 

algorithms which have been most widely used for predicting stock price and stock market index values. 

Each algorithm has its own way of learning patterns. 

An Artificial Neural Network (ANN) is a technique that is developed by simulating the biological 

nervous system, such as the human brain. It has an excellent capability to forecast from large databases 

(Chen, Leung, & Daouk, 2003). In general, ANN used to forecast stock market is based on the back-

propagation algorithm.  

The earliest stock market prediction model based on ANNs was implemented by White, H. (1988). 

He used Feed Forward Neural Networks (FFNNs) to decode previously unknown regularities in the asset 

price movement such as variations of common stock prices and demonstrated how to look for such 

regularities using FFNNs. Since the initiative attempt by White, other researchers have cooperate in 

developing an accurate stock market prediction model. Garliauskas, A. (1999) investigated stock market 

prediction applying ANNs with kernel function approach and the recursive prediction error method. He 

verified that in predicting financial time series, ANNs demonstrate a better performance than classical 

statistical methods. Zhang, Y. & Wu, L. (2009) combined the backpropagation neural network with an 

Improved Bacterial Chemotaxis Optimization (IBCO). They showed the ability of their proposed approach 

in predicting stock index for both short term (t+1 day) and long term (t+15 days). Simulation results 

presented that the proposed approach had the best performance. Wang, J. H. & Leu, J. Y. (1996) developed 

a prediction system valuable in forecasting mid-term price trend in Taiwan stock market. Their system was 

based on a recurrent neural network (RNN) trained by using features derived from ARIMA analyses. 

Experimental results demonstrated that the networks trained with 4-year weekly data were capable of 

forecasting up to six weeks market trend with acceptable accuracy. In Kara, Y. et al. (2011), a comparison 

between performance of ANN and SVM was built. Ten technical indicators were passed to these two 

classifiers in order to forecast directional movement of the Istanbul Stock Exchange National 100 Index. 

Authors found that ANNs ability in prediction is significantly better than SVM. Bernal, A. et al. (2012) used 

echo state networks (ESN), a subclass of recurrent neural networks, to predict stock prices of the S&P 500 

index and came up with the conclusion that this kind of networks outperform the Kalman filter, predicting 

more of the higher frequency fluctuations in stock price. In overall, various studies have shown that ANNs 

have the ability to predict stock markets more precisely than other methods (Kim, J. W., et al., 1993, Patuwo, 

E. et al., 1993, Subramanian, V. et al., 1993, Yoon & Swales, 1991). 

Deep learning methods are capable of identifying structure and patterns of data such as non-

linearity and complexity in time series forecasting. In particular, LSTM (Long Short-Term Memory) has 

been widely used in many application domains such as natural language processing (Tarwani, K. M. & Edem, 

S., 2017), handwriting recognition (Graves, A. et al., 2009), speech recognition (Robinson, T. et. al., 2002, 



- 6 - 
 

Eyben, F. et al., 2009, Graves, A. et al., 2013, Sak, H. et al. 2014), time-series prediction (Hochreiter & 

Schmidhuber, 1997, Gers, 2000, Yim, J., 2002, Zhang, P. G. & Qi, M., 2005, Graves, A. et al., 2009,2013, 

Schmidhuber, J., 2015, Brownlee, J., 2016, Gamboa, J. C., 2017, Roondiwala, 2017) as well as its applications 

in economics and finance data such as predicting the volatility of the S&P 500 index (Kohzadi, N. et al., 

1996, Huck, N., 2009, Xiong, R. et al.,  2015) and measuring the impact of incorporating news for selected 

companies (Siah, K. W. & Myers, P. L., 2015, Joshi, K. et al., 2013, Ding, X. et al. 2015). 

Recently, new techniques in deep learning have been developed to tackle the challenges associated 

to forecasting models. LSTM is a special case of Recurrent Neural Network (RNN) method that was 

introduced by Hochreiter and Schimdhuber (1997). Even though it is a relatively new approach to address 

forecasting problems, deep learning-based approaches have acquired popularity among researchers. Krauss, 

C., Do, X. and Huck, N. (2017) used numerous forms of prediction models such as deep learning, gradient-

boosted trees, and random forests to model S&P 500 index. Surprisingly, they reported that deep learning-

based algorithms underperformed gradient-boosted trees and random forests. Additionally, they referred 

that training neural networks and consequently deep learning-based algorithms is very difficult. Ding, X. et 

al. (2015) applied a deep convolutional neural network (CNN) to model both short-term and long-term 

influences of events on stock price movements. Empirical results show that their model can achieve 

approximately 6% of improvements on the S&P 500 index prediction and individual stock prediction, 

respectively, compared to state-of-the-art baseline methods. Lee & Yoo (2017) introduced an RNN-based 

approach to predict stock returns. The idea was to build portfolios by regulating the threshold levels of 

return by internal layers of the RNN built. Azzouni & Pujolle (2017) propose and validate that a LSTM 

RNN framework for predicting Traffic Matrix in large networks on real-world data from GÉANT network, 

converges quickly and outperforms traditional linear methods and feed forward neural networks by many 

orders of magnitude. Moreover, Nelson, D. et al. (2017) compared LSTM with other machine learning 

models and observed that LSTM has displayed considerable gains in terms of accuracy as well as minimum 

losses, concluding that it offers less risks when compared to the other strategies. Roondiwala, M. et al. (2017) 

used LSTM to model and predict the stock returns of NIFTY 50 resorting from five years of historical data. 

They finished their work concluding that RNNs with LSTM units are able to help any person interested in 

investing in the stock market by providing them a good knowledge of the future situation of the stock 

market. Chen, K. et al. (2015) tested the same LSTM configuration with different methods and when 

comparing all of them, they verified and confirmed the power that LSTM has when it comes to sequence 

learning for stock market prediction in China.  
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CHAPTER 3 

 

3.1 MACHINE LEARNING 

 

Machine learning is making significant inroads in the finance services industry. The more data is 

fed to the ML models, the more accurate are the results. Coincidentally, enormous datasets are very common 

in the financial industry and thus, this represents a perfect fit for machine learning (Didur, K., 2018).  

ML involves feeding data samples, usually acquired from historical prices. The data samples consist 

of features called predictors, as well as a dependent variable, which is the expected outcome. The algorithm 

learns to use the predictor variables to finally, be able to predict the target variable (Sigmoidal, 2017). 

As the technology evolves and the best algorithms are open-sourced, it is hard to imagine the future 

of the financial services without machine learning. Additionally, established financial services companies 

have substantial funds that they can afford to spend on state-of-the-art computing hardware or to develop 

their own intelligent algorithms that can capture the hidden patterns inherent to stock markets, bringing the 

possibility to predict more efficiently the behavior of the stock market movements. As an example, leading 

banks and financial services companies are deploying machine learning to streamline their processes, 

optimize portfolios and decrease risk among other things (Cheung, K. C., 2019). 

There are various machine learning use cases in finance, but here the focus is on algorithmic trading. 

In this use case, ML helps to make better trading decisions, as it can analyze thousands of data sources 

simultaneously and detect patterns that can force stock prices to go up or down. Due to the size and 

complexity of these data sets, machine learning can help unlock value from all this data in a way that humans 

cannot (Murphy, A., 2019). This helps traders squeeze a slim advantage over the market average, and given 

the vast volumes of trading operations, that small advantage often translates into significant profits. 

In the next few topics, some of the most commonly used algorithms to forecast the stock market 

direction are explained in detail, as well as what is time series and its relationship, giving a special emphasis 

on the Long-Short Term Memory network (LSTM). 
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3.2 TIME SERIES AND NEURAL NETWORKS 

 

3.2.1 TIME SERIES 

 

Time series forecasting is difficult. It is the use of a model, based on the idea that past behavior and 

price patterns can be used to predict future price performance. 

  Unlike the simpler problems of classification and regression, time series problems add the 

complexity of order and temporal dependence between observations, being an ordered sequence of 

collected data at a constant interval in time (Brownlee, J., 2017). Therefore, they are discrete time data and 

can be analyzed to determine a historical trend or to predict the behavior of this trend in a short or long-

term future. It also allows to check the occurrence of seasonal trends, that is, variations in the specific data 

of a given time window, and this may help improvement on the model’s performance. 

 

3.2.2 FROM PERCEPTRON TO FEED-FORWARD NEURAL NETWORKS 

 

Perceptron is the simplest and oldest model of a neuron and it was proposed by Rosenblatt, F. 

(1958). It is usually used to classify the data into two parts. Hence, it is also known as a Linear Binary 

Classifier. This network is composed by multiple inputs; a summing engine; a single output and an activation 

function. Given the inputs, its weights are multiplied by each proper input and then summed up. This result 

is fed to an activation function and passed to output. 

 

Figure 1 – Perceptron Architecture 

Because the perceptron architecture could not solve the XOR problem (non-linearly separable 

data), feed-forward neural network or multi-layer perceptron (MLP) was born. This class of network 

consists of at least three layers of nodes: an input layer, a hidden layer and an output layer. There can be 

multiple hidden layers of computational units, usually interconnected in a feed-forward way, whereas each 
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neuron in one layer has directed connections to the neurons of the subsequent layer. Except for the input 

nodes, each node is a neuron that uses a non-linear activation function. Rumelhart, D.E et al. (1986) 

improved this kind of network with a back-propagation learning technique. This new technique introduced 

the possibility of sending back the error from the output to the inputs allowing the adjustment of the weights 

of each connection in order to reduce the value of the error function by some small amount. 

 

Figure 2 – Multi-layer Perceptron 

This kind of neural networks that use a standard sigmoidal activation function do not tend to 

perform well at analyzing and forecasting a time series data problem (Roondiwala, M. et al., 2017) due to 

the fact that these networks only use one data input to the model and the model generates a prediction with 

the given input. 

 

3.2.3 RECURRENT NEURAL NETWORKS 

 

Further, a recurrent neural network (RNN) is able to deal with sequence problems because their 

connections form a directed cycle. 

In Recurrent Neural Networks (RNNs) as Bernal, A. et al. (2012) state, “signals passing through 

recurrent connections constitute an effective memory for the network, which can then use information in 

memory to better predict future time series values” that is, use the information from previous lags to predict 

the future instances. Thus, the output of the model is now fed back to the model as a new input. However, 

a simple RNN works well only for short-term memory. 
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Figure 3 - Recurrent Neural Network 

In the simplest scenario, in a univariate case, only two weights are involved. 

Yt = tanh(wYt-1 + uxt) 

The weight u that is multiplied by the current input xt, and the weight w which is multiplied by the 

output yt-1. This formula is like the exponential weighted moving average (EWMA) which passes the values 

of the output with the current values of the input. Besides EWMA, there is also the rolling mean, which is 

a calculation that comes to confirm the tendency of various data points by creating a series of averages of 

different subsets of the full dataset. The difference between both these calculations is that EWMA assigns 

a greater weight to the most recent values. 

As an example, in figure 4 it is possible to observe a slight difference in the trend of the Amazon’s 

historical value across time (X-axis represents the number of days since 01/01/2006), when using each 

method. 

 

Figure 4 - Amazon's trend using Simple Rolling Mean and Exponential Rolling Mean 
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3.2.4 LONG-SHORT TERM MEMORY  

 

Long Short-Term Memory (LSTM) was introduced by Hochreiter, S. & Schmidhuber, J. (1997) to 

overcome the error back-flow problems that other conventional RNNs were having. It is considered to be 

the most successful recurrent neural network architecture to make long-term predictions using time series, 

and it learns much faster than the other RNNs. Remembering information for long periods of time is 

practically their default behavior, not something they struggle to learn as RNNs do. 

The difference in terms of architecture, between a standard RNN and a LSTM is the structure of 

the repeating module. Instead of just having one neural network layer, there are four layers, interacting in a 

very special way: 1) a memory cell, 2) an input gate, 3) an output gate and 4) a forget gate. 

The first one, the memory cell, remembers values over arbitrary time intervals and the others 

regulate the flow of information into and out of the cell. In other words, the input gate decides when to 

keep or override information in the memory cell, it is like a save vector; the forget gate controls the extent 

to which a value remains in the cell; and the output gate controls the error flow from the unit output 

connections, deciding which information should be going to the next hidden state. Thus, the cell state is 

modified by the forget gate placed below the cell state and, also adjusted by the input modulation gate. From 

the equation generated by the layer, the previous cell state forgets by being multiplied with the forget gate 

and is added new information through the output of the input gates. 

The activation function of these gates is often the sigmoid function, presenting values between 0 

and 1, and it is applied to the weighted input and previous hidden state. If the output of the forget gate is 

1, the information is kept in the cell state, if 0, the information is totally forgotten. There are connections 

into and out of the LSTM gates, a few of which are recurrent. The weights of these connections, which 

need to be learned during training, determine how the gates operate.  

When it comes to the input gate, there is a special detail to take into consideration. Because the 

equation of the cell state is a summation between the previous cell state, logistic function (or sigmoid 

function) will only add memory and not be able to remove it. The reason behind this issue is that this 

activation function only gives a float number in a range of [0,1], and so that number will never be zero, so 

it would never be turned-off/forgotten. Therefore, the cell has an input modulation gate which has a 

hyperbolic activation function (or tanh function). Tanh has a range of [-1,1] and this way it allows the cell 

state to forget memory. 

Finally, the hidden state decides what information should be taken to the next sequence. 

Summing up, first there is the sigmoid activation function that is, the forget gate, where the 

information from the previous cell state to be forgotten is chosen. Second, there is another sigmoid function 
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and a first tanh activation function which are referred to be the input gates and determine which information 

should be saved to the cell state and which should be removed. Lastly, there is a third sigmoid that is called 

as the output gate and highlights what information is going to the next hidden state. 

 

Figure 5 - The Module of a LSTM, retrieved from https://colah.github.io/posts/2015-08-Understanding-

LSTMs/ 
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3.3 OTHER MACHINE LEARNING TECHNIQUES 

 

3.3.1 LINEAR REGRESSION 

 

The aim of Liner Regression is to study the effect of one or more factors (quantitative or qualitative 

variables) on a quantitative variable target (dependent variable). Thus, this approach is often used to predict 

the value of an outcome variable Y based on the input predictor variables X. In order to model the 

relationship between the scaler response and the independent variables, unknown model parameters are 

estimated from the data by using linear predictor functions. 

Given a data set, a linear regression model assumes that the relationship between the target variable 

and the p-vector is linear. To model this relationship there is an error variable 𝜀 that adds “noise” to the 

linear relationship between the dependent variable and the regressors. 

The theoretical model is the following: 

𝑦𝑙̇ =∑𝑥𝑖𝛽𝑖

𝑝

𝑖=1

+ 𝜀𝑖 

Where 𝑥𝑖 represents the independent variables observed for the individual ⅈ; 𝛽𝑖 (where ⅈ = 1, 2, 

3…𝑝) is the parameter associated with the predictor variable that needs to be estimated; 𝜀𝑖 is the error for 

individual ⅈ and 𝑦𝑖 is the target variable observed for individual ⅈ. 

 

Figure 6 - Linear Regression Representation 
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3.3.2 SUPPORT VECTOR MACHINE - REGRESSION 

 

A support vector machine constructs a hyperplane or a set of hyperplanes in a high dimensional 

space, which can be used for classification or regression problems. Intuitively, a good separation is achieved 

by the hyperplane that maximizes the distance between the nearest data point of either class. Ideally, SVM 

pursues the largest distance to the nearest training-data points of any class (functional margin), since in 

general the larger the margin the lower the generalization error of the classifier. 

Support Vector Machine as a regression method, uses the same principles as the SVM for 

classification, with only a few minor differences. Still, it contains all the main features that characterize 

maximum margin algorithm: a non-linear function is leaned by linear learning machine mapping into high 

dimensional kernel induced feature space. 

As an example, the inputs 𝑥 are first mapped into a n-dimensional feature space using some non-

linear relation, and then a linear model is constructed in this feature space. The linear model is the following: 

𝑓(𝑥, 𝜙) =∑(𝜙𝑖 ∗ 𝑔𝑖(𝑥))

𝑛

𝑖=1

+ 𝑏 

Where 𝑔𝑖(𝑥), ⅈ = 1,… , 𝑛 is the function that represents the non-linear transformations and 𝑏 is 

the bias term.  

 

Figure 7 - Support Vector Regression Representation 
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3.3.3 K-NEAREST NEIGHBOURS 

 

 The K-NN regression algorithm is a method for predicting real numbers. It computes the distance 

between the testing data points and every training point and, instead of taking a majority vote as it is done 

in the K-NN for classification problems, it just takes the average of the numerical target of the 

corresponding K nearest neighbors. To make these predictions a metric for measuring the distance between 

the query point and cases from the examples needs to be set. One of the most popular choices to measure 

this distance is known as Euclidean. Other measures include Euclidean squared, City-block and Chebyshev. 

𝐷(𝑥, 𝑃) =

{
 
 

 
 √(𝑥 − 𝑝)2              𝐸𝑢𝑐𝑙ⅈ𝑑𝑒𝑎𝑛

[𝑥 − 𝑃]2 𝐸𝑢𝑐𝑙ⅈ𝑑𝑒𝑎𝑛 𝑠𝑞𝑢𝑎𝑟𝑒𝑑

𝐴𝑏𝑠(𝑥 − 𝑃)             𝐶ⅈ𝑡𝑦𝑏𝑙𝑜𝑐𝑘

𝑚𝑎𝑥(|𝑥 − 𝜌|)       𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣}
 
 

 
 

 

Depending on the K chosen, the algorithm’s performance will be different. Bellow, there is an 

illustration showing how different the prediction could be. 

 

Figure 8 - K-Nearest Neighbours Representation 

 

3.3.4 DECISION TREE REGRESSOR 

 

A decision tree is a supervised machine learning model used to predict a target variable by learning 

decision rules from independent features. The decision tree regressor builds regression models in the form 

of a tree structure as it breaks down a dataset into smaller subsets while at the same time an associated 

decision tree is incrementally developed. Thus, it is constructed by recursive partitioning starting from the 

root node, which is known as the first parent and the best predictor and, resulting in various decision nodes 
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created along the decisions made. A decision node has two or more branches, each representing results 

from the attribute tested and the nodes have either condition - decision nodes - or a result - terminal nodes. 

The tree growing and training, stops when some stopping criteria is reached. For example, it can 

be when the maximum depth set is achieved; or all samples for a given node belong to the same class; or 

there are no remaining attributes for further partitioning or there are no samples left. 

 

Figure 9 - Decision Tree Regressor 

Attribute selection measure is a heuristic for selecting the splitting criterion providing a rank to each 

feature by explaining the given dataset. Hence, this type of algorithm is pointed out to be a greedy algorithm 

as it can not go back once a decision is made. This means that it always tries to find a global optimum 

solution but, in many problems a greedy strategy does not usually achieve an optimal solution. Nonetheless, 

it may yield locally optimal solutions that get close to a global optimal solution in a reasonable amount of 

time. 

 

3.3.5 ENSEMBLES 

 

Ensemble methods are meta-algorithms that combine several machine learning techniques or 

models into one predictive model in order to decrease variance (bagging), bias (boosting), or improve 

predictions (stacking). Ensembles can be shown to have more flexibility in the functions they can represent. 

In theory, this flexibility may enable them to over-fit the training data more than a single model would, but 

in practice, some ensemble techniques tend to reduce problems related to over-fitting of the training set. 
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3.3.5.1 BOOTSTRAP AGGREGATING (BAGGING) 

 

One way to reduce the variance of an estimate is to average together multiple estimates. Bootstrap 

aggregating or Bagging is an ensemble method that consists in building m models with the same learning 

algorithm. When constructing each of the models, bagging uses bootstrap sampling which extracts 𝑛′ data 

observations from the training set containing 𝑛 instances, and all 𝑛 points have the same probability of 

being picked and the possibility of replacement, i.e. the same training example may be selected more than 

once for the same model. From these models, bagging then aggregates the outputs of the base learners and 

uses averaging for regression predictions as shown in figure 10.  

The formula associated with this type of ensemble is the following: 

𝑓(𝑥) =
1

𝑚
∑𝑓𝑖(𝑥)

𝑚

𝑖=1

 

 

Figure 10 - Bagging Representation 

 

3.3.5.2 ADAPTIVE BOOSTING (ADABOOST) 

 

Boosting is a fairly simple variation of bagging that strives to improve the learners by focusing on areas 

where the system is not performing well: turning a weak learning algorithm, that performs just slightly better 

than random guessing, into a stronger learner. 

The idea is to build the first “bag” of data by selecting randomly data points from the training data. 

Then, AdaBoost calls a given weak or base learning algorithm repeatedly in a series of t rounds (t = 1,…, T) 

After training the model, all training data is used to test the model in order to discover the points that were 

not well predicted. Initially, all weights are set equally, but on each round, the weights of correctly classified 

examples decrease and the weights of incorrectly classified examples are increased so that the weak learner 
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is forced to focus on the hard examples in the training set and thus, is more likely to pick those data points 

to train the model in the next round.  

The final hypothesis H is a combination of all model’s outputs into a weighted sum, so that the error is 

measured across all the data. 

 

Figure 11 - AdaBoost Representation 

 

3.3.5.3 RANDOM FOREST 

 

Random forests are broadly believed to be the finest classifiers for high-dimensional data (Breiman, 

L., 2001). It adds an additional layer of randomness to bagging. In addition to constructing each tree using 

a different bootstrap sample of data, random forests change how the classification or regression trees are 

constructed.  

Random forests are a mixture of tree predictors such that each tree depends on the values of a 

random vector sampled autonomously and with the same distribution for all trees in the forest. In standard 

trees, each node is split using the best split among all variables, whereas in a random forest, each node is 

split using the best among a subset of predictors randomly chosen at that node. Thus, a different subset of 

the training set is selected, with replacement, to train each tree and the remaining training data is used to 

estimate the error and variable importance. Instead of using all the features, a random subset of features is 

selected, further randomizing the tree. The generalization error of a forest of tree classifiers depends on the 

strength of individual trees in the forest and the association between them. For regression, the average of 

the results of all trees is used. 
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As a result, the bias of the forest increases slightly, but due to the averaging of less correlated trees, 

its variance decreases, resulting in an overall better model. 

 

Figure 12  - Random Forest Representation 
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CHAPTER 4 

 

4.1 METHODOLOGY 

  

Predicting the stock market is not an easy task since it is important to take into account that it is an 

unstable system when considering the daily changes in the stock prices. Thus, it is critical to understand 

which features represent the data as best as possible, so the machine learning algorithms are fed with the 

right information. Hence, when looking at the variables given by the raw dataset, it is crucial to know which 

will be useful for the ML systems and if there is the need to create or transform features derived from the 

existing ones. 

 The methodology followed was the application of different machine learning techniques, with a 

special emphasis on the long short-term memory (LSTM) recurrent neural network. The objective is to 

compare the different algorithms’ performance between each other and with the LSTM in order to check 

which demonstrates to be the most stable and yet, to have the best and smallest error value.  

Unlike regression predictive modelling, time series also adds the complexity of sequence 

dependence among the input variables. A powerful type of neural network designed to deal with sequence 

dependence is called recurrent neural networks (Brownlee, J., 2016) and, LSTM is a type of RNN used in 

deep learning because very large architectures like stock market, can be successfully trained avoiding the 

long-term dependency problem that other networks cannot, remembering information for long periods of 

time (Olah, C., 2015). Thus, the experimental work focuses in applying the LSTM as well as comparing it 

to other techniques, to forecast the Dow Jones Industrial Average (DJIA) using historical data from the 1st 

of January of 2006 to the 1st of January of 2018 and, considering one day ahead forecasting. DJIA is a stock 

market index that indicates the value of thirty large, publicly owned companies based in the United States, 

and how they have traded in the stock market during various periods of time.  

 

4.2 ML ALGORITHMS 

 

Considering the chosen time series (DJIA), a supervised learning approach was used in order to 

predict the next day closing price for each of the twenty-nine companies, excluding the Visa Inc. company 

since it did not have the whole 12 years’ data. All records given its company, are labelled with a time stamp 

t and present a value for each of the remaining variables. To train an algorithm, one must choose which 

features will be given as the input so that the algorithm returns an output as well as a training dataset.  
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Since the problem at hand has data as time series, the splitting process between training and testing 

data was based in a proper cross-validation technique which is called as Time Series Split from Scikit-Learn 

library (figure 13). 

 

Figure 13 - Time Series Split for Cross-Validation 

The idea for time series splits is to divide the training set into two folds at each iteration with the 

condition that the validation set is always ahead of the training split. In this project the number of splits was 

set to ten. This way, for the total of 93612 records, it will do ten splits always selecting the training data to 

be 80% and the testing set to be 20% of each split.  At the first iteration, one trains the candidate model on 

the closing prices from the oldest historical data, that is 1st of January of 2006 to the 6th of February of 2007 

(being 80% of the first split) and validates on the 7th of February of 2007 to the 11th of March of 2008 (being 

20% of this first split), and for the next iteration, trains on dates from the 1st of January of 2006 to 11th of 

March of 2008, and validates on 12th of March of 2008 until a next date that will be 12th of April of 2009 

(20% of the second split), and so on to the end of the training set.  This way dependence is respected. It 

should be noted that the data does not contain records for the weekend days, since stock market is closed 

by those days. All forecasts on the test dataset will be collected and an error score calculated to summarize 

the skill of the model. The root mean squared error (RMSE) will be used as it punishes large errors. 

When applying the LSTM, the environment used was Spyder and visual studio code (IDEs) 

recurring to the Python Deep Learning library – Keras. To run the other algorithms, Weka software was 

first used, which brought a much faster running, but after obtaining the results, there was a problem in 

getting the 10 fold’s errors for both training and testing data. Hence, the comparing algorithms were also 

written in python using the scikit-learn ML library. 
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4.3 DATA DESCRIPTION 

 

As stated before, the dataset used for this experiment is the Dow Jones Industrial Average Index 

with approximately 3020 observations per company, making a total of 93.612 samples, from January 1, 2006 

to January 1, 2018. This data was extracted from Kaggle. From the historical and original information, the 

original variables were Date, Open, Low, High and Close prices as well as Volume, per weekday and per 

company. 

Variable Name Description 

Date Date of the corresponding day in yyyy-mm-dd format 

Open Price of the stock at market opening 

Low Lowest price reached in the day 

High Highest price reached in the day 

Close Price of the stock at market closing 

Volume Number of shares traded in the day 

 

The original distribution of each variable along the years for all companies is presented in the figures 

below thus, representing the DJIA Index’s evolution as one. The Y axis represents the unit related to the 

respective variable, being in Dollars ($) all prices and the Volume is presented in a range [0.0, 1.0] since the 

volumes for each business unit have its own volume evolution. 

 

 

Figure 14 - Open Price 

 

Figure 15 - Low Price 
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Figure 16 - High Price 

 

Figure 17 - Volume 

 

Figure 18 - Close Price 

 

4.3.2 DATA TRANSFORMATION 

 

Besides the original variables’ model, three other models were created so that the algorithms could 

be trained and tested with other types of variables added in order to afterwards, compare all four models 

and understand which algorithms are best to which kind of data. 

One of the three new models consisted in using the original variables - Open, Low, High, Close - and 

add a fifth variable -‘DailyChange – that would bring the possibility to know if the close price between 

consecutive days had gone up or down. This variable was calculated with the following expression: 

𝐷𝑎ⅈ𝑙𝑦𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑃𝑖 − 𝑃𝑖−1 

which represents the daily change in price of the time series data. 

The second thought model was to join to the original variables - Open, Low, High, Close and Volume 

- its differenced values and the percentage of the closing price change between consecutive days. Each value 

of the differenced data was calculated by subtracting the respective price of the day d with its day d-1 price, 

using the same type of calculation as previously shown. 

The value representing the percentage of the closing price change was calculated as the following 

expression: 
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𝑝𝑒𝑟𝑐_𝑐ℎ𝑎𝑛𝑔𝑒_𝑐𝑙𝑜𝑠𝑒 = [𝑃𝑐𝑙𝑜𝑠𝑒𝑖 ∗
100

𝑃𝑐𝑙𝑜𝑠𝑒𝑖−1
] − 100 

The third new model of input data consisted in using only the differenced data that was previously 

calculated, that is, the change between consecutive days for Close, Open, High and Low prices, as well as using 

the percentage of change of the Closing price. 

Differenced variables can also be called as lagged variables which are actually delayed features. This 

kind of data is useful to measure autocorrelation. It can be understood as a fact that a value of X at a certain 

moment of time will have influence on its future values. For instance, if a value in time t will cause also high 

values in t+1 or t+2. 

 

4.4 EXPERIMENTAL SETTINGS 

 

Each algorithm has its own parameters that vary the performance when it comes to train and predict 

the dependent variable. Before reaching the final parameter values, several criteria were tested and compared 

so that the final set would be the best possible fit to the datasets. 

 All supervised learning algorithms were implemented based on the scikit-learn machine learning 

package while LSTM was implemented based on the Keras Deep Learning library as stated in 4.2. 

 The final set of criterions for all algorithms used is next presented. 

Linear Regression: fit_intercept = ‘False’, normalize = True, copy_X = False; 

SVR: kernel = 'rbf', gamma='auto', C=1.0, epsilon=1.0, shrinking = True; 

K-Nearest Neighbors: n_neighbors=8, weights = 'distance', algorithm = 'auto', leaf_size = 100; 

Decision Tree: random_state=0, max_depth = 1; 

Multi-layer Perceptron: alpha = 4, hidden_layer_sizes = (100,); 

Bagging – K-NN: n_neighbors=8, weights = 'distance', algorithm = 'auto'), max_samples=0.5, 

max_features=0.5, bootstrap = False, bootstrap_features = True; 

Bagging – Decision Tree: random_state=0, max_depth = 1), max_samples=0.5, 

max_features=0.5, bootstrap = False, bootstrap_features = True; 

Adaboost – Decision Tree: base_estimator = DecisionTreeRegressor(random_state=0, 

max_depth = 1 ), random_state=0, n_estimators=20; 
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Adaboost – MLP: base_estimator = MLPRegressor(alpha = 1e-5, hidden_layer_sizes = (5,)), 

random_state=0, n_estimators=10; 

Random Forest: max_depth = 1, random_state=7, max_features = 'auto', n_estimators=10, 

bootstrap = True, warm_start = True; 

LSTM: lstm layer(units = 5, return_sequences = True), dropout = 0.5, dense layer( 1 unit, 

kernel_initializer='uniform',activation='linear',  kernel_regularizer=regularizers.l2(0.01)). 
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CHAPTER 5 

 

5.1 RESULTS AND DISCUSSION 

 

In this section, the following tables present figures showing the performance of the eleven 

implemented algorithms along the 10-fold cross validation. These results were obtained taking into 

consideration the methodology described in the previous chapter 4. To support the discussion and 

explanation of the empirical results, table 3 shows the values concerning the testing datasets which accurately 

evidence the respective average and median of the error outcomes (RMSE) for each algorithm and data 

model. 

 

Table 1 - Original Variables and Original + Daily Change Closing Price data models 

Original Variables 

Training Set Testing Set 

  

Original + Daily Change Close 
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Table 2 - Original and Differenced Variables and Differenced Variables data models 

Original and Differenced Variables 

  

Differenced Variables 

  

 

Observing both tables, it is evident that the error scale in the training data is always lower than in 

the testing data but not substantially. This is supported by the fact that the given training sample 

(independent and dependent variables) was big enough and covered enough examples which gave the 

algorithm the ability to respond to different scenarios when it came to test its performance on the testing 

data. 

It is also noticeable that in both training and testing datasets, the worst error results came from the 

model that was composed by only lagged observations while the other three data models showed a similar 

performance between each respective algorithm. 
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Table 3 - Mean and Median RMSE’s of each algorithm for each data model – Testing datasets 

Models Original Variables 
Original + Daily 

Change Close 
Original and 
Differenced 

Differenced Variables 

Algorithms Mean Median Mean Median Mean Median Mean Median 

Adaboost – 
DT 0.081284 0.084533 0.081257 0.084127 0.081620 0.085940 0.114903 0.114182 

Adaboost – 
NN 0.006267 0.006869 0.007648 0.006625 0.006532 0.006687 0.111045 0.112907 

Bagging – 
DT 0.099064 0.094325 0.099467 0.095172 0.098204 0.093033 0.101243 0.104468 

Bagging – 
KNN 0.015609 0.015346 0.019154 0.017583 0.028757 0.025728 0.106045 0.105297 

Decision 
Tree 0.098029 0.094187 0.098369 0.095736 0.098417 0.095893 0.138027 0.127020 

K-NN 0.007062 0.005964 0.014273 0.010968 0.021644 0.021294 0.155991 0.120447 

Linear 
Regression 0.004057 0.003294 0.004822 0.003814 0.007506 0.007975 0.126362 0.129070 

LSTM 0.070199 0.058950 0.071223 0.064187 0.071371 0.062527 0.103350 0.104035 

Neural 
Network 0.132321 0.126495 0.128418 0.120253 0.118243 0.111078 0.109715 0.108180 

Random 
Forest 0.097578 0.093447 0.097117 0.093447 0.097278 0.093447 0.104027 0.108441 

SVR 0.106177 0.104218 0.106370 0.105180 0.121023 0.120133 0.211123 0.178080 

 

Looking at the information provided by the table 3, and observing each data model column, it is 

possible to verify a pattern of errors. Also, in the first three models containing original features, there is some 

similarity in terms of how each algorithm performs when dealing with this kind of variables. 
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The top five rank of the best RMSE results for each data model is presented in table 4. 

Table 4 - Top five rank for each data model 

Original Variables 
Original + Daily 

Change Close 
Original and 
Differenced 

Differenced Variables 

1 – Linear Regression  1 – Linear Regression 1 - Adaboost - NN 1 - LSTM 

2 – KNN 2 – Adaboost – NN 2 - Linear Regression 2 – Bagging – DT 

3 – Adaboost - NN 3 – KNN 3 - KNN 3 – Bagging – KNN 

4 – Bagging – KNN 4 - Bagging - KNN 4 - Bagging - KNN 4 – Neural Network 

5 - LSTM 5 - LSTM 5 - LSTM 5 – Random Forest 

 

This rank refers to the best medians and not to the means because of its higher robustness to 

outliers.  

In Original Variables, Original + Daily Change Close and Original and Differenced models, the rankings 

brought up exactly the same algorithms, some of them changing their position depending on the comparison 

of the errors. There is an interesting detail in these three rankings, Bagging – KNN shows up below KNN 

when it would seem to make more sense to appear on top of KNN. Breiman, L. (1996) explains that unstable 

learners are likely to give different predictions for modified datasets and likely to benefit from bagging. On 

the other hand, stable learners (take to the extreme a constant), will give quite similar predictions anyway so 

bagging will not help. This is also noted in Witten, I. H. et al (2016) where it is stated that it is pointless to 

bag nearest neighbor classifiers because their output changes very little if the training data changes very little. 

Linear Regression becomes worse as the presence of differenced variables becomes stronger, 

whereas Adaboost with Neural Network base learner becomes best with the presence of these lagged 

variables, but always maintaining the original ones.  

Although LSTM ranks fifth in the first three scenarios, it rises to the top, outperforming the other 

algorithms when it comes to learning the lagged variable pattern. With LSTM, Bagging with K-Nearest 

Neighbors also remains in the top five ranking, rising one position higher.  

This Differenced Variables data model shows that the errors from all algorithms increased, giving the 

idea that this is not the best model. On the other hand, lagging variables enable bringing forward information 

from the past to the present giving the ability to algorithms without native capacity, to evaluate the present 

based on historical information. Additionally, in spite of LSTM appearing in fifth position in the three first 

models, it is the first demonstrating a more acceptable error, since the above ones present very low values, 

leading to the idea that they were overfitted.  
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It should also be noted that the error fluctuation in this latter data model is much smaller among 

the various algorithms, reinforcing the usefulness of using differenced variables from day to day, which 

facilitates the learning of all types of ML techniques used without bringing the problem of overfitting. 

Even though top performing algorithms considered in the first three data model scenarios present 

very low errors, these fail to keep their place on top of the ranking when dealing with differenced variables, 

except LSTM. Several parametrization tests were executed for each ML technique in order to reach the final 

algorithm set and yet, only LSTM continues succeeding when handling the fourth type of variables. This 

indicates that perhaps the other algorithms are not the best choice for extensive future time series forecasting 

with stock market data and that LSTM drives a more reliable margin of error. 

 

5.1.2 STATISTICAL VALIDATION 

 

In statistics, the Mann-Whitney U Test is a nonparametric test meaning that, once the assumption 

of normality that the dependent variable is not normally distributed for each level of the independent 

variable, the dealing problem will present free data distribution. This means that this test will evaluate the 

null hypothesis stating that it is equally likely that a randomly selected value from one sample will be less 

than or greater than a randomly selected value from a second sample. It is assumed that all the observations 

from both groups are independent of each other and the responses are ordinal i.e., one can at least say, of 

any two observations, which is the greater. 

This test was applied to compare the RMSE values obtained between every two algorithms with 

the purpose of understanding if there is a significant or non-significant difference between them, for each 

of the four models. Thus, the error sample of each algorithm was independently generated by the means of 

running each ML technique independently. 

As an example, the following figures show the different error distributions between the Adaboost 

– NN and the LSTM. 

  

 

Figure 19  - RMSE distribution (Adaboost NN) Figure 20 - RMSE Distribution (LSTM) 
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The hypothesis test starts by defining the null and alternative hypotheses and setting an alpha 

level. In this project, the alpha was set to 0.05 and the considered hypothesis were: 

- 𝐻0: The difference between the errors is not significant; 

- 𝐻1: The difference between the errors is significant. 

If the alternative hypothesis is verified that means that the p-value obtained has a value minor to the 

alpha’s (p-value < 0.05) and the sample presenting the lower median RMSE value evidences the best ML 

technique that should be chosen when it comes to predict stock market with the data model in question. 

Forward, tables with the medians obtained for each algorithm within each data model, are presented 

in support to the analysis of the p-value outcomes to aid in the conclusion about if there are techniques that 

stand out from the others. The p-values’ table 9 is in the appendix. 

Table 5 - Originals' Medians 

Originals 

Adaboost - Dec Tree 0.088301662 

Adaboost - Neural Network 0.066115527 

Bagging - Dec Tree 0.070252644 

Bagging - K-NN 0.067322167 

Decision Tree 0.070181619 

K-Nearest Neighbors 0.066623701 

Linear Regression 0.069947462 

LSTM 0.060956996 

Neural Network 0.093241975 

Random Forest 0.070181310 

Support Vector Regression 0.066072947 

 

Looking at the Mann-Whitney U Test table output for the Original variables data model, it is 

outstanding that both Neural Network and Adaboost – Dec Tree present the higher median errors.  

Starting with Adaboost – Dec Tree, all p-values returned from the test reject the null hypothesis as 

all these values present to be smaller than the alpha = 0.05. Naturally, this algorithm is only chosen as the 

best one when comparing it with Neural Network and all the others excel at Adaboost – Decision Tree. On 

the other hand, neural network is never chosen as the best performance ML technique working with this 

kind of data. 

Observing the Bagging – Dec Tree column in table 9 (appendix), all p-values reject the null 

hypothesis as well whereas, this technique only looms best when compared with the worst median error – 

neural network.  

LSTM is with no doubt, the best algorithm against all the others as it gets highlighted in all 

comparisons with its peers in this statistical test. It should also be noted that there are six records showing 
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that the test fails to reject the null hypothesis, these are when it comes to compare 1) Adaboost – Neural 

Network with: a) Bagging – KNN, b) K-NN and c) Linear Regression; 2) Bagging – K-NN with: a) K-NN 

and b) Linear Regression; and finally, 3) K-NN with a) Linear Regression. This indicates that these algorithm 

pairs feature 50% of probability that a random selected value from one algorithm sample will be less than 

or greater than a randomly selected value from the second algorithm sample. 

Table 6 - Originals + Daily Change Close Medians 

Originals + Daily Change Close 

Adaboost - Dec Tree 0.088301662 

Adaboost - Neural Network 0.061127126 

Bagging - Dec Tree 0.062109735 

Bagging - K-NN 0.070188104 

Decision Tree 0.070181619 

K-Nearest Neighbors 0.060785484 

Linear Regression 0.060827539 

LSTM 0.062360169 

Neural Network 0.076224645 

Random Forest 0.070181310 

Support Vector Regression 0.097579613 

 

By analysing the medians’ table 6, it is noticeable that if there are any p-values under the alpha = 

0.05 and thus, rejecting the null hypotheses, Support Vector Regression will never be chosen over the others 

since its median RMSE happens to be the higher. In a similar path, Adaboost – Dec Tree in conjunction 

with every other technique always outcomes a p-value inferior to 0.05 but only gets chosen when tested 

with the SVR.  

It is interesting to verify that Adaboost – Neural Network is the third one in the ranking of medians 

but when considering p-values’ table 10, this algorithm is always considered to be the best against all the 

others for every p-value that aids to reject the null hypothesis except, when evaluated versus K-NN and 

Linear Regression that it fails to reject 𝐻0. By the same token, Bagging – Dec Tree is touted as the best 

choice for all tests except, when contrasted to K-NN and Linear Regression. 

K-NN with Linear Regression test pointed out that their probability value fails to reject the null 

hypothesis whereas Linear Regression and K-NN win the tests with every other compared technique. 

As for Random Forest, it stood out when tested with Adaboost – Dec Tree, Bagging – K-NN, 

Decision Tree, Neural Network and SVR. It is curious to note that this ensemble learning method shows 

better performance than Adaboost with Decision tree learner and Decision Tree by itself, but on the other 

hand, does not excel at Bagging with Decision Tree learner. This event may be explained by the fact that in 

Random Forests, only a subset of features are selected as random out of the total and the best split feature 

from the subset is used to split each node in a tree, unlike bagging, where all variables are considered for 

splitting a node. 
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LSTM imposes itself before Adaboost – Dec Tree, Bagging – K-NN, Decision Tree, Neural 

Network, Random Forest and Support Vector Regression making six gains out of ten possible. 

Nevertheless, LSTM presents the median value very similar to those of Adaboost – NN and Bagging – 

Decision Tree, and for a slight difference its error value did not stand out from these two. 

 

Table 7 - Originals and Differenced Medians 

Originals and Differenced 

Adaboost - Dec Tree 0.088301662 

Adaboost - Neural Network 0.061275407 

Bagging - Dec Tree 0.071415189 

Bagging - K-NN 0.060875345 

Decision Tree 0.070181619 

K-Nearest Neighbors 0.060785484 

Linear Regression 0.060791705 

LSTM 0.062096936 

Neural Network 0.089052154 

Random Forest 0.070181310 

Support Vector Regression 0.185761063 

 

Support Vector Regression shows a very high median RMSE which tells that in every pair test it 

will never be the selected one. After SVR, Neural Network and Adaboost – Decision Tree are the next ones 

presenting a high median error too, that is why they get chosen as the best performing techniques only one 

and two times, respectively.  

Continuing the descending order of the median values, then we have Bagging – Decision Tree 

standing out before the three algorithms mentioned previously and Decision Tree being pointed as the best 

one to choose versus the four already referred techniques. Random Forest comes in sixth as winning against 

all higher error median algorithms.  

According to table 11 in the appendix, LSTM in conjunction with all other ML techniques always 

reject the null hypothesis and it is selected as the best algorithm in six comparisons, being these the ones 

performed with the above referred ones. 

Adaboost trained with Neural Networks appears to be selected over all other options, except when 

tested versus Bagging – K-NN; K-NN and Linear Regression, which results in failure to reject the null 

hypothesis. The other ML techniques that appear with the best error medians share the same fact, with 

Bagging – K-NN failing to reject 𝐻0 when compared to K-NN and Linear Regression and K-Nearest 

Neighbours failing to reject 𝐻0 as well when tested against Linear Regression. 
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Table 8 - Differenced Medians 

Differenced 

Adaboost - Dec Tree 0.108683086 

Adaboost - Neural Network 0.096809401 

Bagging - Dec Tree 0.075254150 

Bagging - K-NN 0.075905322 

Decision Tree 0.075798129 

K-Nearest Neighbors 0.060785484 

Linear Regression 0.073502459 

LSTM 0.061671351 

Neural Network 0.081823422 

Random Forest 0.076062176 

Support Vector Regression 0.465930919 

 

In this forth part of analysis, it is clear that the median error of Support Vector Regression is the 

highest, reaching almost 50% of RMSE. This indicates that this algorithm does not perform well when 

dealing with this kind of data and problem.  

Adaboost with Decision Trees and Adaboost with Neural Networks’ medians are very similar but 

because the second one presents lower error, it gets picked as the best one over SVR and Adaboost - 

Decision Tree, while the first one gets chosen only over SVR. 

The pattern is always the same as when looking at the algorithms ranked by their median errors 

from highest to lowest, the number of times the algorithm is chosen as the best, when the p-value shows a 

value lower than the alpha = 0.05, grows in the opposite direction as it increases when the RMSE decreases. 

Thus, Neural Networks with RMSE median approximately 0.082 are highlighted three times; Random 

Forest with ≈ 0.076 is highlighted four times; Bagging - K-NN with ≈ 0.076, five times, Decision Trees, six 

times; Bagging – Decision Trees, seven times; Linear Regression, eight; LSTM, nine and finally, K-NN, 

stands out ten times. 

It is noticeable that in this data model, all tests reject the null hypothesis meaning that the 

distribution of error values for each ML technique is very distinct from each other. 
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CHAPTER 6 

 

CONCLUSION 

 

Stock market prediction is very hard and sometimes even impossible to achieve, due to the high 

volatility of the value of the closing prices. Companies are under the unavoidable influence of market forces 

such as the fluctuating price of materials, changes in production technology, and the shifting costs of labour. 

Investors may be worried about changes in leadership, bad publicity, or larger factors like new laws and 

trade policies. In addition, plenty of investors are simply ready to sell valuable stock and pursue their 

personal interests. All these variables cause day-to-day noise in the market, which can make companies 

appear more, or less successful.  

Human confidence in the market has the power to trigger everything from economic booms to 

financial crises and, this difficult-to-track variable is why most professionals promote reliable long term 

investing over trying to make quick cash. However, experts are constantly building tools in efforts to 

increase their chances of success in this highly unpredictable system. These tools are often referred as 

Predictive Models and Machine Learning. 

The aim of this dissertation was to apply Deep Learning and other Machine Learning techniques 

to work out the financial market close prices. Long Short-Term Memory recurrent neural network was 

studied to examine its suitability in forecasting the stock market and, in order to verify its quality, other 

state-of-the-art Machine Learning techniques were also implemented to compare their performance with 

the LSTM’s. An extensive empirical analysis was conducted recurring to Dow Jones Industrial Average 

Stock Market Index. Three other different data models were generated based on the original one so that all 

used algorithms could be trained and tested in four different scenarios, allowing the comparison between 

them and understanding which ones behave the best. 

For the Mann Whitney U Test analysis it was interesting to observe that LSTM and K-Nearest 

Neighbours were both the more stable algorithms in terms of its position in the ranking of RMSE median 

for each data model, being that LSTM appeared in fifth place for the Originals + Daily Change Closing Price 

and Originals and Differenced, in second place for the Differenced model and in first place for the Originals data 

set and K-NN appeared in fourth place for the Originals model and remained in first place for the other 

three data sets. All the other ML techniques showed instability for their median errors in all four different 

scenarios. 

On the other hand, for the 10-fold cross validation analysis, LSTM still remained in top five for all 

four data models, this time appearing in fifth place for the Originals; Originals + Daily Change Close and Original 
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and Differenced and in first place in Differenced dataset, whereas K-NN appeared in top five only for the first 

three scenarios, excluding the Differenced data model and surpassing this algorithm, Bagging – K-NN showed 

to be more stable, showing up in all models top five. 

Empirical results in this project revealed that LSTM is more than adequate to produce suitable 

results when comparing with other techniques and in some situations is able to outperform them. 

 

LIMITATIONS AND FUTURE WORK 

 

The limitation of this project was that other types of data influencing stock market prices were not 

considered. Emphasizing, the stock market is a very volatile system that changes final prices extremely 

rapidly and relies more than just in historical prices. It depends on multiple variables such as investor’s 

sentiments, attitudes, and expectations, thus, on the demand, in economic and political aspects, in 

environmental events, in the release of new products or services, among others. Hence, studying and training 

the ML techniques with data related to various other types of events would bring a deeper analysis and 

knowledge to the algorithms, since they would be better prepared to predict stock market prices. 

Regarding future work, it would be good to deepen the knowledge of the algorithms by adding 

more variables that represent the various types of events that have an impact on stock market movement. 

It would be also interesting to create clusters of companies belonging to the same industrial area and analyse 

their historical behaviour comparing all clusters. 

There are many machine learning algorithms that achieved excellent results with other kind of data. 

In this work, a small subset was implemented and only one of them was even a deep learning algorithm. A 

very interesting analysis would be to apply all kinds of existing neural networks and compare them to see if 

there are better ones. Such networks could be: from the Perceptron, to Feed Forward, Radial Basis Network, 

Deep Feed Forward, Recurrent Neural Network, Gated Recurrent Unit, Auto Encodes, Variational AE, 

Denoising AE, Sparse AE, Markov Chain, Hopfield Network, Boltzmann Machine, Restricted BM, Deep 

Belief Network, Deep Convolutional Network, Deconvolutional Network, Deep Convolutional Inverse 

Graphics Network, Generative Adversial Network, Liquid State Machine, Extreme Learning Machine, Echo 

State Network, Deep Residual Network, Kohonen Network and Neural Turing Machine. This suggested 

study and research could be a state-of-the-art in the stock market forecasting field. 
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Table 9 - Original Variables 

 
Adaboost-
Dec. Tree 

Adaboost-
NN 

Bagging-
Dec. Tree 

Bagging-
KNN 

Decision 
Tree 

KNN 
Linear 

Regression 
LSTM 

Neural 
Network 

Random 
Forest 

SVR 

Adaboost-
Dec. Tree 

 
          

Adaboost-
NN 

< 0.001           

Bagging-
Dec. Tree 

< 0.001 < 0.001          

Bagging-
KNN 

< 0.001 0.465 < 0.001         

Decision 
Tree 

< 0.001 < 0.001 < 0.001 < 0.001        

KNN < 0.001 0.462 < 0.001 0.497 < 0.001       

Linear 
Regression 

< 0.001 0.165 < 0.001 0.186 < 0.001 0.189      

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001     

Neural 
Network 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001    

Random 
Forest 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001  
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Table 10 - Original + Daily Change Close Variables 

 
Adaboost-
Dec. Tree 

Adaboost-
NN 

Bagging-
Dec. Tree 

Bagging-
KNN 

Decision 
Tree 

KNN 
Linear 

Regression 
LSTM 

Neural 
Network 

Random 
Forest 

SVR 

Adaboost-
Dec. Tree 

 
          

Adaboost-
NN 

< 0.001           

Bagging-
Dec. Tree 

< 0.001 < 0.001          

Bagging-
KNN 

< 0.001 < 0.001 < 0.001         

Decision 
Tree 

< 0.001 < 0.001 < 0.001 < 0.001        

KNN < 0.001 0.020 < 0.001 < 0.001 < 0.001       

Linear 
Regression 

< 0.001 0.049 < 0.001 < 0.001 < 0.001 0.351      

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001     

Neural 
Network 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001    

Random 
Forest 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001  
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Table 11 - Original and Differenced Variables 

 
Adaboost-
Dec. Tree 

Adaboost-
NN 

Bagging-
Dec. Tree 

Bagging-
KNN 

Decision 
Tree 

KNN 
Linear 

Regression 
LSTM 

Neural 
Network 

Random 
Forest 

SVR 

Adaboost-
Dec. Tree 

           

Adaboost-
NN 

< 0.001           

Bagging-
Dec. Tree 

< 0.001 < 0.001          

Bagging-
KNN 

< 0.001 0.262 < 0.001         

Decision 
Tree 

< 0.001 < 0.001 < 0.001 < 0.001        

KNN < 0.001 0.054 < 0.001 0.164 < 0.001       

Linear 
Regression 

< 0.001 0.059 < 0.001 0.177 < 0.001 0.479      

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001     

Neural 
Network 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001    

Random 
Forest 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001  
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Table 12 - Differenced Variables 

 
Adaboost-
Dec. Tree 

Adaboost-
NN 

Bagging-
Dec. Tree 

Bagging-
KNN 

Decision 
Tree 

KNN 
Linear 

Regression 
LSTM 

Neural 
Network 

Random 
Forest 

SVR 

Adaboost-
Dec. Tree 

 
          

Adaboost-
NN 

< 0.001          
 

Bagging-
Dec. Tree 

< 0.001 < 0.001         
 

Bagging-
KNN 

< 0.001 < 0.001 < 0.001        
 

Decision 
Tree 

< 0.001 < 0.001 < 0.001 < 0.001       
 

KNN < 0.001 < 0.001 < 0.001 < 0.001 < 0.001       

Linear 
Regression 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001     
 

LSTM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001     

Neural 
Network 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001   
 

Random 
Forest 

< 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001  
 

SVR < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001  
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