
Master Thesis

Master of Science in Geospatial Technologies

3D flight route optimization for air-taxis in urban areas
with Evolutionary Algorithms

Author
Moritz Hildemann

Supervisors
Jun. Prof. Judith A. Verstegen1
Dr. Carlos Granell2
Assoc. Prof. Mauro Castelli3

Westfälische Wilhelms-Universität Münster (WWU), Institute for Geoinformatics
(ifgi), Münster, Germany1
Universitat Jaume I (UJI), Castellón, Dept. Lenguajes y Sistemas Informaticos
(LSI), Castellón, Spain2
Universidade Nova de Lisboa (UNL), NOVA - Information Management School
(NOVA IMS), Lisboa, Portugal3

February 24, 2020



Declaration of Academic Integrity
I hereby confirm that this thesis “3D flight route optimization for air-taxis in urban
areas with Evolutionary Algorithms” is solely my own work and that I have used no
sources or aids other than the ones stated. All passages in my thesis for which other
sources, including electronic media, have been used, be it direct quotes or content
references, have been acknowledged as such and the sources cited.

Date, Location Signature

I agree to have my thesis checked in order to rule out potential similarities with other
works and to have my thesis stored in a database for this purpose.

Date, Location Signature

ii

24/02/2020, Münster

24/02/2020, Münster



Acknowledgements
I wish to express my sincere appreciation to my supervisors. First of all I want to
thank Professor Judith Verstegen, who has mainly guided me through the thesis.
Her advices helped not only to improve the quality of this work, but also allowed
to improve my own competencies in scientific working. I want to thank my co-
supervisors Carlos Granell and Mauro Castelli, who were so kind to support me
with their advices. Especially the input regarding the optimization techniques and
the reproducibility of this work helped a lot. Furthermore, I wish to acknowledge the
support of my parents during my whole master degree. The master program would
not have been possible without their help. I want to express my gratitude to my family
and friends who supported me in the thesis process. Especially my father and Neele
helped a lot in polishing this thesis. Also, I want to point out my friend Carlos, with
whom I started the air taxi navigation project last year and who contributed many
parts of constructing the restricted airspace.

iii



Contents
Declaration of Academic Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

3D flight route optimization for air-taxis in urban areas with
Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The general idea of Evolutionary Algorithms and the
problem-specific use case . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Case study description, flight path initialization and
implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Flight path optimization with EA and GIS . . . . . . . . . . . . . 9
2.4 Multiple objective evolutionary algorithms for 3D-routing 19
2.5 Visualization and Decision making with non-dominated

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Optimization configurations . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Convergence of the 3D flight route optimization . . . . . . . . 28

4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Discussion of the results derived from the study case . . . . 32
4.2 Discussion of the proposed 3D flight route optimization . 36
4.3 Discussion of the general 3D routing method . . . . . . . . . . 37

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



List of Figures
1 Example illustration of least cost path on cost surface (red) and

shortest 3D path (grey) between two points . . . . . . . . . . . . . . . . . . . . . . 3
2 Flowchart of the used strategy of Evolutionary Computation . . . . . . . . 5
3 Maps of the study area Manhattan, New York . . . . . . . . . . . . . . . . . . . . 7
4 Illustration of repairing points and lines intersecting with geofences . 11
5 Illustration of acceleration in straight segments and deceleration in

turns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6 Illustration sine mutation with a group size of 5 . . . . . . . . . . . . . . . . . . 22
7 Scatterplots and radial visualization for multiple criteria problems.

Created with optimization problems and visualization tools from
pymoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Comparison of objective value improvements over GA iterations
between sine mutation and single point mutation with 4 repetitions.
The line represents the mean and the shaded area represents 95%
confidence intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

9 Results of parameter search with 7 runs, a population size of 10 and
18 generations each. Point representing each run, cross representing
the median result, whiskers representing 1.5 times the interquartile
range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Converging behaviour over the generations of best solutions and
average objective values (normalised). Results for Lilium Jet (left)
and Ehang 184 (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

11 Optimization results for the aircraft Lilium Jet . . . . . . . . . . . . . . . . . . . 30
12 Optimization results for the aircraft Ehang 184 . . . . . . . . . . . . . . . . . . . 31
13 Different hardness of finding the optimum position . . . . . . . . . . . . . . . 34
14 Computation times per population size and generation . . . . . . . . . . . . . 38

v



3D flight route optimization for air-taxis in
urban areas with Evolutionary Algorithms

Moritz Hildemann

Abstract Electric aviation is being developed as a new mode of transportation for
the urban areas of the future. This requires an urban air space management that
considers these aircraft and restricts the vehicles’ flight routes from passing no-
fly areas. Flight routes need to be determined that avoid the no-fly areas and are
also optimally planned in regard to minimize the flight time, energy consumption
and added noise. The no-fly areas and the flight routes can be best modelled as
three-dimensional geographical objects. The problem of finding a good flight route
that suits all three criteria is hard and requires an optimization technique. Yet, no
study exists for optimizing 3D-routes that are represented as geographical objects
while avoiding three-dimensional restricted areas. The research gap is overcome by
optimizing the 3D-routes with the multi-criteria optimization technique called Non-
dominated Sorting Genetic Algorithm (II). We applied the optimization on the study
area of Manhattan (New York City) and for two representatives of different electrical
aircraft, the Lilium Jet and the Ehang 184. Special procedures are proposed in the
optimization process to incorporate the chosen geographical representations. We
included a seeding procedure for initializing the first flight routes, repair methods for
invalid flight routes and a mutation technique that relocates points along a sine curve.
The resulting flight routes are compromise solutions for the criteria flight time, energy
emission and added noise. Compared to a least distance path, the optimized flight
routeswere improved for all three objectives. The lowest observed improvementwas a
noise reduction by 36% for the Ehang 184. The highest improvement was an energy
consumption reduction by 90% for the Lilium Jet. The proposed representation
caused high computation times, which lead to other limitations, e.g. a missing
uncertainty analysis. With the proposed methods, we achieved to optimize 3D-routes
with multiple objectives and constraints. A reproducibility self-assessment1 resulted
in 2, 2, 2, 2, 1 (input data, preprocessing, methods, computational environment,
results).

Moritz Hildemann
ifgi, Heisenbergstraße 2 Münster, e-mail: jhildema@uni-muenster.de

1 https://osf.io/j97zp/
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1 Introduction

The traffic in today’sMegacities is congested and the commuting times in these cities
are high. Therefore, a newgreenmode of transport has been developed during the past
years to relief the transport system: Electrical Vertical Take-Off and Landing vehicles
(eVTOL). Due to the advantages of fast travelling in urban areas, the expected
potential demand in the highly competitive air taxi market [1] only in the United
States is 80.000 passengers per day [2]. A reduced number traffic accidents, traffic
decongestion, decreased pollution and also reduced strain on existing public transport
networks are expected benefits with the market introduction of eVTOL vehicles [2].

However, the integration of the air taxis into the urban air space is not possible
without designing an air traffic management (ATM) which addresses the flight law,
other airspace users and also the city population. The airspace needs to be segmented
into fly and no-fly zones, depending on the location and the time [3]. This air space
division ensures that safety boundaries are protecting permanent locations of special
safety concern like hospitals and also occasional no-fly zones in severe weather
conditions or during public assemblages of the city population.

Having such a framework for airspace segmentation, optimal flight routes are
needed to be computed for the air taxis. But the objectives for the optimal route
differs with the viewer’s perception: for the commuter for example, the commuting
time and price might be the most relevant criteria [4]. For the operator of the air
taxi, the commuting time and the energy cost for the flight route might be the
crucial criteria. Whereas for the city population, the noise pollution and discomfort
produced by the aircraft might be the most important criteria [5]. A method is
demanded which incorporates the search for optimal flight paths in with multiple
constraints and multiple objectives.

Geographical Information Systems (GIS) enable to compute the time and attribute
dependent restricted airspace with dynamic geofences, if the necessary data is avail-
able [6]. Yet, no 3D-routing exists which searches solutions for multiple criteria
in an 3D environment with can be adapted to different temporal conditions. This
adaptability is necessary for incorporating temporal no-fly areas as one example.
One approach in GIS for finding the optimal paths including a height component
involves cost surface planes. The height is included in the cost value at each cell of
the cost surface. With this cost surface, the least cost path can be computed for each
criterion to travel from a starting to the destination point following along each cell of
the cost surface [7]. The outcome is a two-dimensional line with each node extracted
to the height value of the cost at the cell. The drawback of this method is, that some
objects planes, submarines or even space shuttles can move in space without being
bound to a surface. Following the surface therefore limits the possibility of finding a
better solution in the three-dimensional space as indicated in Fig. 1. Therefore, this
method is not appropriate for the given problem.

Another possible GIS tool for 3D navigation is 3D-Routing along 3D-Networks.
This solves the combinatorial problem to travel from a starting to a destination node
of an existing network [8]. On street networks, the possible solutions are limited
by the existing streets. The equivalent to this in the 3D-space is pipe routing [9].
The main problem is finding the optimal pipe routes in order to introduce these
into a 3D-Network. Finding the optimal route is a hard problem to solve, even for



Introduction 3

Fig. 1: Example illustration of least cost path on cost surface (red) and shortest 3D
path (grey) between two points

one criterion. Hence, a continuous optimization is the appropriate method to find a
good solution in a limited time frame [10]. Evolutionary Algorithms (EA), which
include Genetic Programming, Evolutionary Strategies, Evolutionary Programming
and Genetic Algorithms, yield search techniques for continuous optimization [10].
Sandurkar and Chen [9] solved a 3D routing problem in a Computer-aided design
(CAD) environment with the use of Genetic Programming, in order to find the
shortest path while avoiding the created 3D CAD objects. The drawback of using
CAD objects instead if GIS objects is the non-variable environment, that can be
adapted to suite special conditions. One special and time-dependent condition can
for example a bigger distance to primary schools in during the mornings or an
additional no-fly area during a public event. The CAD objects, in this case the 3D
geofences, are not extrudable based on their properties saved in a database, they are
just drawn objects [11]. Therefore they are not useful for solving the problem where
the environment can change temporally. This means that the so called search space
with all possible solutions to solve the problem is not adjustable [12]. Peng et al.
[13] also solved the three-dimensional routing problemwith multiple constraints and
two objectives with Genetic Algorithms, but they also did not consider a adjustable
search space.

This work aims to fill the stated research gap to optimize 3D routes with multiple
constraints and multiple objectives with a variable search space using a hybrid of
GIS and the optimization technique Evolutionary Algorithms. The generalizable
method will be applied in a study case to optimize the flight routes of urban air taxis
in New York City. The routes will be evaluated for three different criteria, which
are specific for the 3D routing in the air taxi transportation: The flight time, the
energy emission and the noise pollution. Therefore, one objective for the study is to
derive objective functions for the three objectives that assesses the quality for each
generated solution. In the case of the flight taxis, it is the computation of the total
flight time in minutes, the total energy consumption in kilowatt per hour and the
additional noise pollution in decibels for every valid solution. A second objective
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is to find appropriate representation for the evolutionary algorithms and to choose
genetic operators whichwill suit best for solving the problem in theGIS environment.
For finding optimal solutions near the true pareto optimal front for all objectives,
the Non-dominated Sorting Genetic Algorithm II is used [14]. The results of the
algorithm are a set of non-dominated solutions forming a pareto front. The decision
maker can select a solution from this pareto front by defining an importance for each
objective.

2 Methods

This section describes the process of bridging the identified research gap. At first, the
general idea of evolutionary algorithms is explained and how the idea can be applied
to optimize 3D routes (Sec. 2.1). Secondly, the study case for optimizing 3D flight
routes as one 3D routing application is laid out (Sec. 2.2). Information about the
required input data, e.g. the restricted air space or theminimal flight height. The study
case was specifically applied for two types of aircraft in the study area of Manhattan,
New York. Thirdly, the representation and evaluation of the flight routes is explained
in detail (Sec. 2.3). It describes, which representation was used for the flight routes
and how invalid flight routes are identified. Furthermore, the evaluation of the valid
flight routes is laid out for all three objectives (Sec. 2.3.3). Fourthly, the multi-
objective optimization with evolutionary algorithms is explained with the used Non-
dominated sorting algorithm and the used evolutionary operators (Sec. 2.4). Lastly,
two selected illustration techniques for depicting the non-dominated solutions are
presented (Sec. 2.5).

For an overview over the whole proposed workflow for the 3D route optimization
is illustrated in Fig. 2. The structure of this section follows the steps of the illustrated
workflow.

2.1 The general idea of Evolutionary Algorithms and the
problem-specific use case

The principle of evolutionary algorithms mimics the biological evolution of cells,
organs, individuals and populations [10]. The Darwinian theory of natural selection
proposes that organisms, that are fitter than other organisms, have a higher probabil-
ity to survive and passing on the genes in reproduction processes. The idea behind
the evolutionary algorithm is to find the individuals, which have the highest fitness,
in other words are the best solution for a given problem. These individuals have a
higher probability of being selected for reproduction. Evolutionary algorithms in-
volve the idea by producing a population consisting of several individuals in a defined
environment [10]. The term "Evolutionary Algorithms" is used as a family name for
search techniques mimicking the biological evolution with selection, crossover and
mutation processes [10]. The selection process consists of selecting parent solutions
based on their fitness for reproduction of children. The crossover process determines,
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Fig. 2: Flowchart of the used strategy of Evolutionary Computation

how the elements of the parents are recombined to produce a child. The mutation
process incorporates characteristics that are not inherited by the parents by randomly
perturbing elements [15]. The process of producing generations goes on until the
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termination criterion is attained. The termination criterion can be, that the maximum
number of produced generations is achieved. Other termination criteria can be, that
the quality of the individuals are sufficiently good or the variety of the population is
low [10].

Each individual of a population is a possible solution for a problem, in our case
the problem of finding a 3D flight route between a starting and an ending point. The
population is therefore an agglomeration of different solutions for a problem. The
idea of computational algorithms is used to produce optimal flight routes for the
objectives shortest flight time, lowest energy consumption and minimal added noise
level.

The single steps of the workflow are described in detail Sec. 2.3 and in Sec. 2.4,
but the structure is laid out shortly in the following and visualized in Fig. 2. One
individual is one 3Dflight route. All individuals together form the current population.
Each individual is validated and evaluated. An individual is invalid, if it violates one
of the defined constraints, in our case a constraint violation can be an interferencewith
a restricted flight area. If the individual is valid and has a higher fitness than the other
individuals, the probability is high that the individual is selected for reproduction
and mutation. The result and crossover and mutation are new solutions, the so-
called children. The process of selection, crossover and mutation is repeated until
there are as many children as parents. If this loop is finished, a new generation is
produced. Depending on the evolutionary computation strategy, the new generated
population can exist only of the children solutions, or the new population also
incorporates solutions of the parent generation. In the selected strategy NSGA II,
the population incorporates solutions of the parent generation [14]. The selected
termination criterion is a maximum number of generations, for a better comparison
of the convergence behaviour with different input parameters to the optimization.

2.2 Case study description, flight path initialization and
implementation

The urban area of NewYork (Fig. 3) is an often used study area for air taxi marketing
[16] and air taxi market studies [2], as the traffic is congested and the city yields one
of the highest market potential [2]. Moreover, most of the air space is probable to be
regulated with barriers. The barriers can be categorized into

• Restricted air space due to flight regulations: Areas around airports with a distance
of 25.000 feet (7620 meters), minimal flight height of 500 feet (152.4 meters) feet
above buildings [17], maximal flight height due to the plane air traffic of 700 feet
(213.36 meters) [18]

• Protected airspace to consider the possible negative side effects to the citizens
[3]. Flying above these specified land uses can lead to annoyance or discomfort:
Examples are schools, graveyards, recreational areas

The restricted and protected areas are modelled as 3D-geofences with Geograph-
ical Information Systems. The vertical and horizontal minimum distance to be main-
tained by aircraft depends on the specific land use, which is retrieved from Open
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Fig. 3: Maps of the study area Manhattan, New York

Street Map [19]. Flight obstacle Maps from the Federal Flight Agency [20] and
rooftop heights from Open Data NY [21] are obtained. The in-detail description and
reasoning for choosing the vertical and horizontal restrictions as depicted in Tab. 1,
as well as special cases, can be obtained from a previous work on modelling the
geofences with GIS2 [6]. The combination of the data sources allow the computation
of a least flight height plane for the 3D routes. The resulting format of this plane is a
georeferenced and interpolated surface derived with the method of Inverse Distance
Weighting interpolation [22]. For improved performance, this surface is converted
in this study case into a raster format called GRID [23] with one cell having the size
30x30 meters.

For a better comparison to flight paths which were obtained by GIS computation
methods without any optimization process,an extract of previously obtained results
are shown in Fig. 3. Furthermore, the existing results are used for the flight route
initialization. The study area with the restricted air space and the path to be optimized
is illustrated in Fig. 3. The blue path is one part of the least cost path calculation

2 https://github.com/mohildemann/Urban-Air-Mobility-Routing
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Table 1: Vertical and horizontal restrictions in meters

Landuse Vertical Restriction Horizontal Restriction

Airport 600 7620
Hospitals 300 300
Universities 200 300
Parks 300 100
Graveyards 300 100
Recreational Areas 300 100
Rooftops 152.4 -

from start to end points on the minimal flight height plane, which was calculated in
the previous work [6]. The cost is the accumulated euclidian distance, the selected
path is ≈19 kilometers long. The path is used to compare the quality of the obtained
flight routes from the optimization. This part of the complete least cost network was
chosen, because the shapes and positions of the restricted flight areas surrounding
the path are complex on one hand, but leaves enough freedom for the optimization
to find different solutions.

The path is also used for a seeding procedure. Seeding is an approach, where
prior knowledge of the problems and its solutions exists and is used for generating
the initial population for an evolutionary algorithm [24]. The existing path is already
a valid solution, as the path does not interfere with the restricted airspace, connects a
start with an end point and even minimizes the euclidian distances. This knowledge
is used for the flight route optimization, as it is a known method for reducing the
number of fitness evaluations by a faster convergence behaviour. The reduced number
of fitness evaluations results in lower computational costs. Seeding is considered
especially useful, if the initialization and evaluation of the solutions are expensive
[24]. The proposed method of using geographical objects as representations for the
optimization is an expensive computation. The trade-off is loosing variety by limiting
the initial population [24], but this trade-off will be made to ensure convergence with
a limited time frame and computation power. The proposed seeding procedure uses
the existing least cost path as a centre of a 3D channel. The channel width is limited
to 700 meters, 350 meters to both directions from the least cost path. The height of
the channel depends on the distance from the minimal height to the maximal height
at each position. Now, points are generated along the existing least cost path, at every
400 meters along the line. These points are then randomly moved to a location within
350 meters on a horizontal plane. Then, the minimum and maximum altitude of the
new position are examined and the altitude is randomly assigned to a value within
this range. If the point is moved to a location within the restricted flight area, the
point is deleted.

The next step after generating valid solutions is the evaluation of each solution for
the defined objectives flight time, energy consumption and noise. To compute these
thee objective values, several data sources are required. The following listed input
data in the same coordinate system3 is needed for the validation and the evaluation
of flight routes.

3 Input data available at https://github.com/mohildemann/3D-Flight-Route-Optimization/ in the
compressed geodatabase OptimizationInputs.gdb.zip
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1. Transportation noise in raster format
2. Minimal height raster
3. 3D geofences in shapefile format
4. 3D line/2D line of an existing flight route

The minimal flight height plane and the restricted areas are sufficient information
for computing the flight time and the energy consumption of a flight path. For
being also able to compute the additional noise, the existing traffic noise is needed
additionally. The data for a weighted, average sound level for the day from aviation
and interstate road noise in the year 2014 is available at the United States Department
of Transportation [5].

Furthermore, the flight characteristics of the aircraft flying the computed flight
paths have an impact on the objectives. Many eVTOL configurations exist with
different thrust types, among of them “Thrust, Lift and Cruise, Wingless, Hover
Bikes and Personal Flying Devices, Electric Helicopters” [25]. In this study case,
the wingless multicoptor eVTOL Ehang 184 [26] is compared to the vectored thrust
eVTOL Lilium Jet [16]. The choice falls on the two categories, as the short-distance
and long-distance performance vary the most in a comparison study between three
eVTOL types [27]. Thewinglessmulticoptor ismore energy efficient in short distance
missions whereas the Lilium Jet is more energy efficient and faster in long-distance
missions. Furthermore, the chosen aircraft are the Lilium Jet and the Ehang 184 as
the necessary aircraft parameters for calculating the energy consumption and speed
were elaborated in that study by Bacchini and Cestino [27].

For this study case, the Python extension libraries of the licensed GIS desktop
application ArcGIS Pro 2.4.14 are used for the data storage and data processing of
the spatial data. The optimization program is developed in Python 3.685. The Python
environment from ArcGIS Pro 2.4.1 was used, which has all the required libraries
for the optimization pre-installed. The whole code, the software dependencies and
the required input data are available on GitHub6. The code for the optimization can
be found in the directory “baselinerouting”.

2.3 Flight path optimization with EA and GIS

2.3.1 Representation and initialization of 3D routes

The representation of the 3D flight routes is a sequence of georeferenced 3D points
(Fig. 2), that result from the seeding procedure. The 3D points are randomly initial-
ized within a 3D-channel with the seeding procedure, but the starting and ending
points have a fixed position. Each point consists of the x and y coordinates and z
as the height in meters above ground. The x, y and z values are randomly created
within the 3D seeding channel. This is done by generating points along the existing
shortest flight path. Every 400 meters along the shortest flight path, a point is ran-

4 https://www.esri.com/de-de/arcgis/products/arcgis-pro/resources
5 https://www.python.org/downloads/release/python-368/
6 https://github.com/mohildemann/3D-Flight-Route-Optimization
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domly moved within a maximal 350 meters range. Then, the z value is generated at
random between the minimum and the maximum possible flight height of the current
position.

In contrary to Genetic Algorithms with fixed-length bit strings, each genome is a
real coded array with the x, and z-coordinates [10]. By definition, algorithms using
fixed length real encoded representations are called Evolutionary Strategies, whereas
Lee and Antonsson called real encoded solutions with variable lengths exG[28]. In
this work, a variable length of genomes in the solutions is considered more useful
than fixed lengths. In the optimization procedure we face the possibility, that the
optimal flight routes are longer for one objective than for others. For example, in our
scenario, flight routes above the street network with its corners are probable to are
better for the objective of the minimal noise addition. On the other hand, following
the street network is most often not the shortest way. Now, if we limited the solutions
to a fixed amount of 3D points, we might also limit the ability to find the optimal
solutions: A flight route might be optimal, considering only the objective of noise,
where the 3D points are positioned above each intersection of the underlying street
network. If the fixed number of points is lower than the number of intersections,
the optimal solution is not attainable. On the other hand, a lower number of points
might favor the other objectives, for example minimizing the flight time or energy
consumption. The optimal solution for this objective might not require many points.
It might even be better to have a lower amount of 3D points to decrease the amount
of direction changes. By using a dynamic length of genomes, we can not favour any
objective by the length of its genomes. Furthermore, we do not discard the possibility
to find an optimal solution for each objective in the same run, as the amount of points
can differ in the end.

Another reason concerns the adaptability of the solutions to the complexity of
finding the optimal flight route. Depending on the density, placements and shapes
of the restricted flight areas, different amounts of 3D points might be necessary to
find the optimal route. If many small restricted areas exist in one neighbourhood of
the city, more points might be needed to find a valid flight route through the more
complex structure of the non-restricted airspace than in a neighbourhood with only
one big restricted area. The strategy of a dynamic length therefore does not limit the
solutions to perform only well in a specific level of complexity. Hence, it increases
the generality of the method compared to a fixed-length approach.

Furthermore, each route solution also consists of a smoothed line which connects
the 3D points (Fig. 2). The line is needed to validate a route, because straight
connections of the points can intersect with the restricted air space, even if the points
are positioned outside of the restricted air space. A polynomial approximation [29]
of the line is necessary to make the solution more realistic, because the moment of
inertia does not allow the eVTOL to fly around corners without stopping.

The array representation, the 3D points and the 3D line are intertwined (Fig. 2). If
one of these three representations of one individual changes, the other two represen-
tations need to be updated accordingly. It is important to notice, that the only object
manipulated with the genetic operators is the array representation. The computation
of the mutation and crossover is done with the values within the array. If any element
is manipulated, the points and lines are updated afterwards. The 3D points and lines
are only manipulated during the validation process in the replacement process. If
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any point or line of a solution is replaced, the changes are transferred to the other
two representations, too.

2.3.2 Validation of 3D-routes

The 3D-routes need to be constructed within the non-restricted airspace to be valid,
as explained in Sec. 2.1. Therefore, the constraints for finding a feasible solution are
respected by creating 3D routes, whose nodes (3D points) and connecting edges (3D
line segments) do not intersect with the restricted regions. For being a valid solution,
the following conditions need to be fulfilled:

• No 3D line segment intersects with the minimal flight height plane.
• No 3D line segment intersects with the 3D geofences.

The usual approach in evolutionary algorithms is the neglection of invalid solu-
tions by assigning them the worst possible fitness value [15]. Nevertheless, in some
scenarios it is appropriate to repair solutions instead of neglecting them [30]. In the
proposed approach, the computation effort for producing a solution is high and the
probability of violating a constraint is high. The covered area of 3D geofences is ≈
41%, and the flight route is ≈19 kilometers long. In the probable event of a constraint
violation at any point of the optimization, a good solution intersecting minimally
with the minimal flight plane or a geofence can be lost. To counteract this, repair
processes are proposed. If the solution is still invalid after a repair trial, the solution
is removed.

Fig. 4: Illustration of repairing points and lines intersecting with geofences
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Two geoprocessing workflows are used for the repairments of the points and lines.
The relocation of points in the restricted air space is illustrated in Fig. 4 (left), the
relocation of lines in Fig. 4 (right). As 3D points are randomly initialized with a z
value within the range of the minimum and maximum flight altitude, this condition
needs to be checked when the x- or y-position of the point changes. If the z value is
lower than the minimal flight height, the z value will be updated to the minimal flight
height at that position. The second repair process needs to be executed if a 3D point
lies within a geofence. For this case, additional reference points are created before the
optimization process begins. The reference points were created in 10 meter distance
from the border lines of the geofences. All 3D points, that are positioned in the
restricted air space, are relocated to the x- and y-coordinate of the nearest reference
point. The altitude of the point does not change. This means, that the altitude for
the relocated points needs to be revalidated to assure, that the altitude for the new
positions are higher than the minimum flight height and lower than the maximum
flight height. The second repair function repairs intersections of 3D lines with the
restricted airspace. Even if the 3D points are not positioned in the 3D geofences
after the point relocation, the connecting line segments might do intersect with the
restricted air space, as can be seen in in Fig. 4 (right).

Algorithm 1 Line repair
1: [RoutePoints] = [Points] . Points of flight route
2: ip1, ip2← Intersect(FlightRoute,Geof ences) . Intersection points
3: bp1, bp2← Near(ip1, PointBoundary) . Two nearest geofence boundary points
4: [way1], [way2] ← [Points] . Initialize empty arrays
5: while ip2 < [way1,way2] do . Stops if the second intersection point is reached
6: np1← Near(bp1)
7: if np1 < [way1,way2] then
8: b1← np1
9: [way1].add(bp1)
10: end if
11: np2← Near(bp2)
12: if np2 < [way1,way2] then
13: b2← np2
14: [way2].add(bp2)
15: end if
16: if [way1].last = ip2 then
17: [Route].add([way1])
18: end if
19: if [way2].last = ip2 then
20: [RoutePoints].add([way2])
21: end if
22: end while
23: [RoutePoints] ← Reorder([RoutePoints])
24: Line← PointsToLine([RoutePoints])
25: return [RoutePoints], Line . Returns flight route with new elements

At first, the intersection points of the 3D line with the 3D shape are computed.
From these intersection points, the nearest two neighbouring points from the geofence
point boundary are added to two arrays. For each point, the nearest neighbour will
be added to the array. Now, for every last point of each array, the nearest neighbour
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point that does not yet exist in any of the two arrays is added. This procedure is
repeated until the second intersection point is added to one of the two arrays. The
points in the the arrays are inserted into the point representation. In this way, the
geofence is surrounded in both directions and the shorter way is used to be inserted
to the point representation. If the 3D point representation is now converted to a line
again by connecting the points, the line is not intersecting with the geofence any
more. The repaired line is illustrated in Fig. 4 (right, Relocated 3D Line). In order
to achieve this point to line conversion without crossings, the points need to be in
the correct order. This is achieved by reordering the all 3D points after all point
and line repairs, from the starting point to the end node. After this, the old 3D line
representation is replaced by the repaired 3D lines. All changes are propagated to all
three representations of the solution.

2.3.3 Evaluation of the 3D-routes

If the 3D points and 3D lines are repaired and all validation requirements are fulfilled,
the next step is the evaluation of the individuals as can be seen in the flowchart in
Fig. 2. For each of the three objectives, an appropriate fitness function is needed in
order to quantify the quality of an individual for each criterion.

The objective functions depend on some variables, as the flight time, the energy
consumption and the added noise do not only depend on the chosen flight route.
They also change with the type and the flight characteristics of the aircraft, which
will follow the flight path. The majority of the flight parameters of the two aircraft
Ehang 184 and the Lilium Jet stem from the eVTOL configuration comparison study
conducted by [27]. Some aircraft characteristics, for example the sound pressure,
needed to be estimated, as these characteristics are not made available yet by the
aircraft producers.

The general approach of computing the three objective functions is laid out
shortly before going into the mathematical details. For computing the flight time of
an aircraft, the maximum possible or allowed velocity and the length of the segment
are needed to compute the velocity at each flight route segment. Corners along the
flight route, maximum gravitational forces in corners for not feeling uncomfortable,
flight speed limitations by the aircraft and lastly flight speed limitations by law are
possible factors that limit the maximum velocity at each position. Furthermore, it
needs to be calculated, whether maximum possible velocity can be reached at all with
the acceleration speed of the aircraft. In order to calculate the energy consumption,
a differentiation needs to be made by the type of aircraft flying the route. The Lilium
Jet for example has fixed wings that produce lift at higher flight speeds, whereas
the multicoptor from Ehang does not have wings. The computation therefore differs
when the cruise speed is reached, which means the aircraft is neither accelerating,
nor hovering nor decelerating. Apart from that, the variables are the same for both
aircraft types. The aircraft and flight route characteristics together influence the
required energy consumption. The last objective function of the additional noise
also requires information from the noise level at ground, because flight routes are
favoured where the noise level is high. The higher the existing background ground
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noise and the further the distance to the ground, the lower is the additional noise
coming from the aircraft.

2.3.3.1 Preparation

Before the objective functions can be computed, some metrics need to be calculated
in order to compute the flight time and the energy consumption. One of these metrics
is the maximum flight speed at any position of the flight path. The maximum flight
speed can be limited by three different factors: The maximum allowed flight speed by
the flight authorities, the maximum possible flight speed by the aircraft and the flight
comfort. The maximum possible cruise speed for the Lilium Jet is 252 km/h, and
for the Ehang 184 it is 100 km/h [27]. We assume, that the flight agencies and city
authorities will not allow air taxis that fly at speeds of 252 km/h in the urban areas, so
in the computationwe limit themaximumvelocity to 100 km/h. Themaximumflight
speed to assure the flight comfort is more complicated.We assume, that similar flight
acceleration forces as in traditional flight transportation are aimed for. To guarantee
the flight comfort, a gravitational force equivalent (gForce) of 1.25 is aimed for,
which is a standard value for turns in passenger flights [31]. If the aircraft need to fly
turns, the passengers are exposed to centripetal forces. As the flight route is no single
circle, the centripetal force changes at each point of the route. In order to compute
the centripetal acceleration at each position, an imaginary circle is computed. This
imaginary circle is constructed at every point with its two neighbour points. The
radius of the imaginary circle is used to compute the centripetal acceleration ac
and the resulting maximal velocity vmax for the maximum gForce of 1.25 [31]. The
formulas for the computation are expressed in Eq. 1, 2 and 3.

ac =
v2

r
(1)

gForce =
ac
gm

(2)

vmax =
√
gForceMax · r · gm (3)

where

ac : Centripetal acceleration in m
s

2

v : Velocity in m
s

r : Circle radius in m
gForce : Gravitational force equivalent
gForceMax : Maximum allowed g-force
gm : Gravitational acceleration of 9.81m

s
2

vmax : Maximum allowed speed at given radius and maximum g-force

The output is the maximal flight speed at each position, which is the minimal
value of the maximal allowed legal flight speed, the maximum speed of the aircraft
and the maximum speed to have a lower gForce than 1.25.
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2.3.3.2 Required flight time

Flying at the maximum flight speed at each position is not possible as the aircraft
need to accelerate to this speed beforehand. An example: Even if the maximum
possible flight velocity was 200 kilometers per hour 50 meters after leaving from
the starting point position, it is not likely to accelerate the aircraft to that velocity
within the acceleration distance. It would only be possible if the aircraft was able to
accelerate with 27.7 meters per square second, which is neither realistic for air taxis
nor comfortable for commuters. For deceleration the same physical laws apply. If the
current speed was 200 kilometers per hour and themaximum speed in the next corner
in 50 meters distance was 0 kilometers per hour, due to a 90 degree turning angle,
the aircraft would not be able to decelerate in that short distance to 0. Therefore, the
acceleration and deceleration speeds are necessary aircraft parameters and need to
be considered.

The total flight time with the specified flight constraints is the added up flight
time of all line segment:

ttotal =
n∑
i=1

di
vi

(4)

where

ttotal : Total flight time
n : Number of line segments
di : Euclidian distance from current point to next point
vi : Flight velocity at current segment

To calculate the flight time of each segment, we use the distances between the
points and actual flight speeds. The aircraft parameters by [27] are needed for
calculating the actual speed at each position. If the aircraft is slower than the allowed
flight speed at the next position, the aircraft accelerates with an acceleration of 2m

s
2.

If the allowed flight speed of the next position is lower than the current flight speed,
the aircraft decelerates with -2m

s
2.

Furthermore, it needs to be assured, that the distance to the next point is sufficiently
big in order to decelerate to the allowed flight speed. If the distance is not big enough,
the flight speeds of the previous points are readjusted. For example, if the required
distance to decelerate with -2m

s
2 from the current velocity to the maximum allowed

speed is 100 meter, all previous point velocities within the 100 meter distance are
updated accordingly.

In Fig. 5 it is illustrated,how the positions of the vertices do not only affect the
length of the flight route, but also have an impact on the flight time. Tight corners
force the aircraft to decelerate to very low flight speeds in order to comply with
the the maximal gForce of 1.25. Flight route structures having these sharp corners
will inevitably have a worse fitness for the objective flight time compared to routes
without sharp turns.
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Fig. 5: Illustration of acceleration in straight segments and deceleration in turns

2.3.3.3 Required energy consumption

For calculating the required energy consumption for the flight, the aircraft type needs
to be taken into consideration. The vectored thrust aircraft can generate more lift
with increasing flight velocity with their wings. On the other hand, the wingless mul-
ticoptor generate less additional lift. This leads to a differentiation for the computing
the energy consumption [32]. In our simulation, the power required for acceleration,
hovering and deceleration does not change for both aircraft types in order to be able
to use the results from Bachhini et al. [27]. The difference lies within the calculation
of the energy at cruise speeds, as aircraft with wings have a better lift/drag ratio
with increasing flight speeds. The flight speed for an optimal lift/drag ratio is 252
km/h for the Lilium Jet, which results in a required energy of 28 kW [27]. For the
flight speed of 100 km/h, the required energy is 34.6 kW . The changing energy
consumption depending on the flight speed explains the x in Tab. 2, which is a place
holder for the unknown required energy for different velocities. The multicoptor on
the other hand has no wings and can only produce lift with its’ rotors. Hence, the
calculation differs by the aircraft type. The computed aircraft performances of the
E-Hang 184 and the Lilium Jet are:

As indicated in Tab. 2, the required energy for landing, hovering, acceleration
and deceleration is constant. The more complicated case is the calculation in cruise
mode, where the generated lift and a reduction in the induced drag reduce the
power consumption [27]. The drag polar for the Lilium Jet in Tab. 2 is crucial for
the calculation of the actual required power in cruise mode. Additional required
parameters are the air density and the gravity. These are set to the standard values
of 1.225 kg

m3 and 9.81m
s

3. Now, with the variables flight velocity and the flight angle,
the required power can be calculated for each flight route segment by following the
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Table 2: Aircraft parameters for calculation of energy consumption from Bachhini
et al. [27]

E-Hang 184 Lilium

eVTOL type Wingless Multicoptor Vectored Thrust
Cruise power in kW 34.6 28 / 36 / x
Hover power in kW 42.7 187
Acceleration energy in kW 42.7 187
Deceleration energy in kW 42.7 187
Acceleration speed in m

s
2 2 2

Deceleration speed in m
s

2 -2 -2
Wing area in m2 0 3.6
Empty weight in kg 168 490
Drag polar - 0.0163 + 0.058C2

L

calculus of Eq. 5-11 [32]. The velocity is derived from the previous step described
in Sec. 2.3.3.2, and the ascending/descending angle is computed for each point to
the next point. Fig. 5 illustrates, that all flight route segments which are not dark red,
require the aircraft to accelerate or decelerate with the corresponding acceleration
or deceleration energy. The required energy in the dark red segments differs with the
ascending/descending angle for each segment. By summing up the required power of
all segments, the desired objective function for getting the total energy consumption
in kWh is complete (Eq. 12).

In the chosen set-up, the Lilium Jet faces disadvantages compared to the E-Hang
184, as the type of aircraft is designed to operate at higher speeds than 100 km/h.
The maximum velocity of 100 km/h was selected, as in the early phases of air taxi
operations it is likely that low flight speeds are established. The maximum legal
speeds for air taxi operations in urban areas have not been defined or at least have
not been published yet by flight authorities. Nevertheless, the optimization can be
run with different parameters of the assumed maximum legal flight velocity.

LC = W ∗ cos(γ) (5)

LCL =
LC

1
2 p2S

(6)

CDC = CD0 + K ∗ C2
L (7)

DC =
1
2

pV2SCDC (8)

TRC = W sin(γ) + DC (9)

TRC = W sin(γ) + DC (10)

PRC =
TRC

1000
(11)
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PRCtot al
=

n∑
i=1

PRCi ∗
di
vi

(12)

where

LC : Required lift
W : Weight of airplane in N
γ : Angle of climb/descent in ◦
LCL : Lift coefficient in climb
S : Wing area of aircraft in m2

V : Flight speed in m
s

p : Min. Air density kg

m3

CDC : Drag coefficient in climb
KC : Drag factor
CD0 : Total zero-lift drag
DC : Drag in climb in N
TRC : Thrust required in N
PRC : Power required in climb in kW
PRCtot al

: Total required power of flight route
n : Number of line segments
di : Euclidian distance from current line segment i
vi : Flight velocity at current segment i

2.3.3.4 Added Noise

The last objective function computes the added noise to the existing background
noise at ground. The Environmental Protection Agency [33] and the World Health
Organization [34] support the approach of planning flight routes above areas where
the noise level is already high. This leads to less added noise in quiet areas. For
computing the last objective function for the criterion least added noise, three steps
need to be processed,which are adopted from and explained in full detail byKinsler et
al. [35]. The proposed approach only calculates the added noise directly underneath
the aircraft, despite the fact that soundwaves move in space as expanding spheres and
therefore affect underlying areas and not only the underlying points.We only compute
the added noise perpendicular from the aircraft to the surface rather than considering
all the areas that the sound waves might reach. In this work, the behaviour of the
noise is simplified in order to keep the objective function simpler and computationally
less expensive. Furthermore, for a better and faster understanding of the following
equations, the sound pressure level is explained shortly. Due to the limited range of
perception of the human ear to experience sound pressures, the unit for sound pressure
decibels (dB) was designed to cover the noticeable range [35]. The logarithmic based
unit does not allow simple comparisons, e.g. adding several noise sources, without
logarithmic rescaling.

The first step is to calculate the sound pressure arriving at the ground. For this
calculation, the noise emission of the aircraft is required. These values are not made
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public from the aircraft manufacturers, therefore the targeted noise level of Uber
Elevate is used as replacement. Uber Elevate is the only available source to mention
the noise level targets [36]. Their goal is a maximum of “62 dB at 500 f t altitude”.
This translates to a noise pressure of 100 dB in a reference distance of one meter.
By filling the variable r in Eq. 13 with the current flight height we get the perceived
noise level at ground from the aircraft.

The next step is to combine the noise emission by the aircraft with the background
noise at the ground. The used data for the background noise is the average daily
sound level from aviation and interstate road noise. The data is from 2014 and made
available by the United States Department of Transportation [5]. By combining
the aircraft and background noise by inserting corresponding the noise levels at
variable LP.i in Eq. 14, the total noise level LP.Tot is computed. At this point, it is
possible to determine how much noise the aircraft added at ground. It is achieved
by subtracting the background noise from the total noise in Eq. 15. In this equation
can be observed, that the noise addition is higher if the background noise is lower.
Therefore, the proposed objective function complies with the idea of preferring areas
with a high background noise.

LP = Lm − 20 log10
r

rm
(13)

LP.Tot = 10 log

(∑
i

100.1LP .i

)
(14)

LP.Source = 10 log
(
100.1LP .Total − 100.1LP .Background

)
(15)

where

LP : Sound pressure at the ground7
r : Distance to ground
rm : Reference distance (1 m from aircraft)
Lm : Sound level at reference distance (100 dB)
LP.i : Each noise from source i measured at ground
LP.Tot : Combined noise pressure from background and aircraft noise
LP.Source : Added noise pressure from aircraft at ground

The average added noise level is calculated by averaging all added noise levels at
each point at the flight route.

2.4 Multiple objective evolutionary algorithms for 3D-routing

In multi-objective optimization, multiple objectives are optimized simultaneously. In
the trade-off situation, solutions that can not be improved for one objective without
discarding the other objectives are called non-dominated solutions. Non-dominated
solutions are all optimal compromises between the objectives [10]. A solution is

7 all sound pressure units are expressed in decibel(dB)
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called non-dominated, if there is no other solution which is better in at least one
objective and which is in the same time not worse in the other objectives [37]. A
solution is dominated by another solution, if the other solution is better in at least
one objective and equally good in all other objectives [37]. These solutions form a
Pareto front. The non-dominated flight routes are derived in every iteration of the
evolutionary algorithm.

2.4.1 Non-dominated sorting algorithm II

For solving the multiple objective optimization problem, the Non-dominated sorting
algorithm II (NSGA II) is chosen. By using this strategy, multiple pareto-optimal
solutions can be found within the population in one simulation run. This is not the
case for all optimization techniques, and is considered as an advantage of NSGA
[10]. The flowchart of the NSGA II is illustrated in Fig. 2 in the second loop. The
details, how the algorithm works in every detail is outlaid by its developers Deb et
al. [14]. The NSGA II is a widely used procedure and therefore not repeated in every
detail. A description of the process can be found in the Appendix. The procedure of
the NSGA II, in short, takes in all solutions from the parent and child generation and
computes the non-dominated solutions which form the Pareto front.

2.4.2 Evolutionary operators

The evolutionary operators determine, how the individuals are selected and manipu-
lated to evolve to better solutions. The selection process is adopted by the Deb et al.
[14]. The crossover operation is a standard approach, while the mutation mechanics
bases on the idea of Peng et al. [13], who applied Genetic Algorithms for 3D routing.

2.4.2.1 Selection

The selection of the individuals for the crossover and mutation operations is done
with the so-called tournament selection [10]. From the population P, a subgroup is
selected, theTournamentGroup. The selection to get into this group is random. From
the TournamentGroup, the individual with the highest fitness wins. All individuals,
even the tournament winner, can be reselected in the following tournaments. In
this case of a multi-objective optimization, the selection bases firstly on the non-
domination rank. In case, more than one solution belongs no the best rank, the
individual with the highest crowding distance wins the tournament. The tournament
winner will proceed to the crossover and mutation. The selection process is repeated
until the population size is reached. The tournament size determines the selection
pressure: the higher the number of individuals in the tournament, the smaller it is for
low-ranked individuals to win the tournament [10].
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2.4.2.2 Crossover

The crossover mimics the biological reproduction. The idea behind this process is
to combine the genes of the parent generation with the potential of getting a better
individual. This bases on the fact, that both parents have had special properties
that improved their probability of being selected for reproduction [10]. The chosen
crossover technique is an adapted version of the n-point crossover [38]. For the
crossover, the genes of two selected tournament winner from the selection process
are combined, who are referred to as parents. The produced offsprings inherit the
combined elements of the parents. At n randomly chosen positions of the first parent,
genes are split. In cases, where the presentations of individuals have a fixed length,
these randomly chosen positions of the second parent correspond to the position of
the first parent. In our approach, the number of points can differ with each solution.
Therefore, the recombination process is slightly adapted.

1. The n randomly chosen positions are chosen in a range between 1 and the length
of the shorter parent -1. The last position and first position are not exchanged as
they are always the starting and ending point of the flight route.

2. For each recombination point n of the first parent, the nearest flight route point
of the second parent is sought for with a GIS Near Point Analysis from ArcGIS
Pro. These points are the beginning points of the point exchanges.

3. With both recombination positions of the parents, the offsprings are produced by
exchanging the parent segments. Up to the first recombination point, children 1
gets the segments of parent 1, and children 2 gets the segments of parent 1. After
the first recombination point children 1 gets the segments of parent 2 and children
2 gets the segments of parent 2. This changes at each recombination point n.

4. The points of the children are reordered. All changes are propagated to the array,
point and line representations.

2.4.2.3 Mutation

Mutation grants the possibility to generate diversity bymanipulating the genes passed
on by the parent generation. This yields the potential of introducing characteristics,
which do not exist in the population but can be helpful to survive in the environment
[10]. The used mutation technique for the optimization of 3D flight routes bases on
the idea of Peng et al. [13], who also used Genetic Algorithms for 3D routing. They
split the mutation process into deletion, insertion and the disturbance of genes, in
our case points. These processes were slightly adapted to increase the probability of
high quality solutions.

The selection of inserting and deleting point is therefore chosen to be not prob-
abilistic, but deterministic. The criterion is the point distance to the neighbours for
selecting the points for deletion and selecting points where a point is inserted in
between. The reason for this approach is the high area of restricted airspace. Higher
distances between the points increase the probability of a line intersecting with the
geofences. Therefore, the distance between the points shall be equalized stepwise
with the insertion and deletion. This objective is achieved by deleting the points with
the smallest average distance to their neighbour points. For the insertion process, the



22 3D flight route optimization for air-taxis in urban areas with Evolutionary Algorithms

points are sought for with the highest distance to the neighbour point. The inserted
points are be positioned between the neighbouring points.

The disturbance described by Peng et al. [13] is a point position change in a
predefined radius. The position change of single points lead to the creation of sharp
turns, which leads to a deceleration (Fig. 5). As this inevitably leads to a decreased
fitness, we propose an adaptation of the point perturbation. Rather than manipulating
a single point, a group of neighbouring points is also manipulated. To manipulate
these points in a way that will not lead to the mentioned negative side effect of sharp
turns, the points are positioned along a transformed sine curve. In Fig. 6, the sine
mutation is illustrated and the pseudo-code for this can be found in Alg. 2.

Fig. 6: Illustration sine mutation with a group size of 5

The sine mutation basically determines the neighbours within the specified group
size and fits all of these to a sine function. The sine function is designed to build
an arc between the starting and end node of the affected points. The maximum
amplitude of this arc is determined by the parameter maximum disturbance distance.
The actual amplitude is defined randomly for each mutation group and can vary
from the maximum disturbance distance to its negative counterpart. Therefore, the
possible mutation space for each mutation group is an ellipse from the starting point
to the ending node. Having Fig. 6 as an example, the randomly chosen mutation
point is marked. The random disturbance distance is illustrated as the perpendicular
line of the connection line from the start to the endpoint. If the random disturbance
distance was negative, the sine curve would be the reflected function. If the random
disturbance distance was 0, the points would be relocated to the connection line from
the start to the endpoint.
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Algorithm 2 Sine Mutation
input[Points] . Flight route points of solution

2: maxdist ← globalparameter . Parameter Max Disturbance Distance
pm← globalparameter . Parameter Mutation Probability

4: for Point in [Points] do
if Random(0, 1) < pm then

6: RandomDisturbance← Random(−maxdist ,maxdist)
StartPoint ← Point − Floor(Groupsize/2)

8: EndPoint ← Point +Ceil(Groupsize/2)
for i = StartPoint +1 : EndPoint -1 do

10: x ← Distance(i, StartPoint)/Distance(i, EndPoint)
y ← RandomDisturbane ∗ (0.5 ∗ sin(2π ∗ (x − 2π)) + 0.5)

12: i.x = i.x + y
i.y = i.y + y

14: end for
end if

16: end for
return [Points] . Returns updated points

2.5 Visualization and Decision making with non-dominated solutions

The visualization and the decision-making of the non-dominated solutions in multi-
objective optimization is a research area of its own [39]. This work focusses on the
proposed algorithm, and not on the decision-making and visualization. Nevertheless,
several components of possible visualization and decision-making techniques are
needed for interpreting the convergence behaviour and for comparing different results
with different optimization configurations.

The first object of interest is a visualization, that illustrates the optimization
convergence towards each objective with each generation. This can be visualized
in line plots, that depict the fitness values of the solutions. Two different metrics
are usually of interest, the fitness value of the best solution and the average fitness
value of the generation [40]. That line plot needs to be computed for every objective.
In order to compare the different convergence behaviour towards all objectives, the
fitness values are normalised and rescaled to a range from 0 to 1. In addition to the
separated line plots for each line plot, a 3D scatter plot complements the visualization
of the convergence behaviour. The fitness values for each objective are plotted on the
three axis, as visualized in the upper right half of Fig. 7. This visualization technique
is able to convey an impression about the shape of the Pareto front, because the
positions of the non-dominated solutions depict the compromise of each solution
[40]. Scatterplots can only be used for two or three objectives.

The information of the position in relation to all considered objectives helps
to get an impression about the trade-off situation for each solution. This can be
plotted with a technique called radial visualization [40]. The relative quality of the
normalised fitness related to each objective is mapped to a position in a circle.
Individuals with approximately equal fitness values for each objective will lie close
to the center, whereas individual which do have one or two fitness values greater than
the others lie closer to the objective position on the outside of the circle. In the case
of an optimization with three objectives, three extreme positions form an equilateral
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Fig. 7: Scatterplots and radial visualization for multiple criteria problems. Created
with optimization problems and visualization tools from pymoo

triangle on the circle, as illustrated in the lower half of Fig. 7 with a number of three
objectives. The extreme positions illustrate solutions that favour only one objective
while neglecting the other objectives. All compromise solutions lie within the built
triangle.

The last visualization is a map of the resulting 3D flight routes. The challenge in
themap visualization is tomaintain the readability of themap. In order tomaintain the
readability and reduce the amount ofmap elements, not all solutions aremapped. The
selection of the flight routes to be mapped belongs to the decision making process.
The difficulty mainly lies within choosing one solution based on three different
criteria. Many decomposition methods exist for doing that selection, for example
reference point direction methods or direction vectors. Some of the most often used
methods are explained in detail in the works of Korhonen and Laakso [41], Deb and
Kumar [39], or Ma et al. [42]. In this work, for reasons of simplicity, the extreme
solutions and the compromise solution with equal importance on all criteria are
selected with the weighted-sum method [43]. This methods sums up the normalised
fitness values for each objective and multiplying every value with a weight between
0 and 1. In this study case of a minimization problem, the selected solutions is
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the solution with the minimum summed up weight. The extreme solutions are the
optimal solutions for the singly objectives, so the solution with the shortest flight
time, the lowest energy consumption and the lowest added noise. The weights for
the selection for these values are therefore 1 for the favoured objective and 0 weight
for the others. The compromise solutions in this case is calculated by summing up
all normalised objective values with the same weight. The solution with the lowest
summed up objective values is the selected compromise solution.

3 Results and Discussion

The produced results with the proposed methodology (Fig. 2) are discussed with
different focuses. At first, the best optimization configurations are sought for getting
the best results. With the best configuration, the optimization is run for both consid-
ered aircraft types, and the results are visualized with the proposed visualizations
(Sec. 2.5).

3.1 Optimization configurations

The possible parameters for the proposed optimization of the example flight route
are versatile. The selection process of the parameters is often a trial and error process
and is problem dependent [15]. For the proposed 3D flight route optimization, the
point group disturbance in a sine curve is compared to the single point disturbance
of the mutation developed by Peng et al. [13]. Subsequently, different optimization
parameter configurations are compared for getting the best parameters for the final
optimization runs.

3.1.1 Comparison of mutation types

The flight route mutation from Peng et al. [13] and the proposed adaptation of it are
compared by their performances. The adapted version with a disturbance along a
sine curve instead of single point disturbances is compared in four different pseudo-
random optimization runs, using the flight characteristics of the Lilium Jet. The
sine mutation group size was set to 4 and the maximum disturbance distance to 120
meters. The results of that runs are composed in Fig. 8. The average fitness of the
best solutions for each objective per generation are shown, including the standard
deviation as the area around the line. The graph shows, that the convergence to the
lowest energy consumption is very similar with both types of mutations. The Pearson
correlation coefficient between the means is 0.95, which underlines the observation.
Also the developments of the shortest flight times correlate stronglywith a coefficient
of 0.93. The fitness is worse in the first 7 iterations of the optimization, but is better
in average by 0.3 seconds after 20 iterations. The most different development is
observed for the lowest added noise. Even if the results of the last iteration are less
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than 0.1 decibels, the sine curve mutations found the best solution already at iteration
10.

Fig. 8: Comparison of objective value improvements over GA iterations between
sine mutation and single point mutation with 4 repetitions. The line represents the

mean and the shaded area represents 95% confidence intervals

The graphs show, that the sine mutation produced better results for two of the
three objectives, but only marginally better. In order to further understand the impact
of a disturbance along a sine curve, the parameters sine mutation group size and the
maximum disturbance distance are configured in the parameter search.

3.1.2 Parameter search for optimization

Due to the computation times, the hyper-parameter search process was kept small
with seven repetitions. Also, the population size was kept constant with 12 individ-
uals. The parameters for the seeding process are constant, too. Every 400 meters
along the initial flight route line a point is randomly moved within a maximal 350
meters range. The flight characteristics of the Lilium Jet were used for the parameter
search (Tab. 2).

The parameter ranges are composed in Tab. 3.Due to the high computational effort
and the resulting low number of possible parameter configuration evaluations, the
results of the parameter search can not be supplemented with a statistical significance
test. We also can not analyse with certainty, how sensitive the optimization really
is to the chosen parameters, because the true optimum is not known for any of the
objectives.

Fig. 9 shows the distribution of the results for each chosen parameter set. Most
results of the best solutions for the objective flight time range from 222 seconds to
227 seconds. Only one run with 242 seconds differed more than 10 seconds from
the average. The range of the results concerning the objective energy consumption
is higher, when it is compared by the range of the results to the reference point of
zero. The results differ from 13.44 to 18.16. Lastly, the biggest differences ranges
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Fig. 9: Results of parameter search with 7 runs, a population size of 10 and 18
generations each. Point representing each run, cross representing the median result,

whiskers representing 1.5 times the interquartile range

from 3.61 to 4.39. An important observation is the fact, that none of the results from
the parameter search was an outlier.

The choice for the best parameter setwas done by choosing a solution,which lies in
the interquartile range for all criteria. The second criterion from the selection was to
identify the solution with the smallest sum of all normalised fitness values. In regard
to these two selection criteria, the best choice from the parameter sets produced a
solution with a flight time of 224 seconds, 13.48 kWh energy consumption and 3.99
dB noise addition. The parameters of the selected parameter set-up are illustrated in
Tab. 3 in the column “Selected parameter set-up”.

Table 3: Parameter Search

Parameter Minimum Maximum Different
values

Selected pa-
rameter set-
up

Selection pressure 25% 33% 2 33%
Number of crossover points 3 5 3 7
Crossover probability 50% 90% 4 90%
Mutation probability 25% 50% 5 50%
Sine mutation max disturbance distance 80m 120m 2 80m
Sine mutation group size 4 6 3 6
Sine mutation insertion and deletion 20% 40% 3 20%
Sine mutation disturbance 20% 60% 3 20%

The best results for of the parameter search were obtained with the maximum
limits of the crossover probability (90%) and mutation probability (50%). The lit-
erature suggests high crossover probabilities [44], hence the result of the highest
crossover probability is not surprising. On the other hand, literature also suggests
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small mutation probabilities, Schaffer et al. [45] even suggested mutation probabil-
ities of less than 0.05%. They argued that higher probabilities add randomness, so
that the optimization resembles a random search and therefore endangers a stable
convergence behaviour. Nevertheless, the parameter choice is problem-dependent
[15] and the used mutation method was adapted to find better solutions in the 3D
flight routing problem. The proposed mutation method does not only add random el-
ements, but even reduces the probability of being invalid by inserting points in parts
of the flight routes where the distance between the points are high. Furthermore, the
point disturbance step in the proposed sine mutation changes the position along a
sine curve. The sine mutation rather supports the search for smoother flight routes
than introducing random flight route points. These characteristics of the mutation are
probably the key factors, why high mutation probabilities lead to better results. The
possibility, that smooth mutations are a factor of generating good solutions is also
expressed by the smaller maximum disturbance distance in the sine mutation with
80 instead of 120 meters. Also, the best sine mutation group size was the maximum
possible group size of 6. A higher group size combined with a smaller maximum
disturbance distance lead to sine curves that have a lower amplitude in relation to
their length. It means, that the mutated flight route segments are less curvy. The last
variable parameters were the sine mutation insertion, deletion and disturbance prob-
ability. The percentage expresses the number of points which are mutated from all
flight route points. In the best parameter configuration, both are the minimum values
of 20%. So all together, the mutation configuration that creates the best solutions are
high mutation rates with small and smooth adaptations to the flight routes.

3.2 Convergence of the 3D flight route optimization

After having found a parameter set-up which produces satisfactory results, the op-
timization is repeated with a bigger population size of 30 for both eVTOL aircraft
types. The higher population size improved the quality of the solutions in all criteria
compared to the parameter search with a population size of 12 for the Lilium Air-
craft. The shortest flight time is 211.45 seconds compared to the shortest flight time
of the parameter search with 220.65 seconds. The same applies for the lowest energy
consumption (10.8 kWh compared to 12.55 kWh) and the lowest added noise (3.51
dB compared to 3.56 dB). The trade-off to the improved results is a 6 times higher
computation time. Fig. 10 shows the optimization convergence behaviour for both
aircraft types. The best solutions for each objective and the average fitness of the
non-dominated solutions of each generation are illustrated. In order to visually com-
pare the convergence behaviour of the three different objectives, the fitness values
were normalised to values between 0 and 1.

The shortest flight time for the Lilium Jet was already found after 4 generations,
whereas the solution with the lowest energy consumption was found after 10 gen-
erations and the lowest added noise after 15 generation. In combination with the
average fitness of all non-dominated solutions, the conclusion can be drawn that the
optimization has converged the most to an optimum for the objective shortest flight
time. The average fitness of all non-dominated solutions does not change any more
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Fig. 10: Converging behaviour over the generations of best solutions and average
objective values (normalised). Results for Lilium Jet (left) and Ehang 184 (right)

after iteration 7. On the other hand, the average quality development of the solutions
for the objective lowest energy consumption decreases steadily until generation 11.
The last objective’s convergence behaviour of the lowest added noise stands in con-
tradiction to the other observed developments. Until generation 7, where the average
fitness of the shortest flight time already stagnates, the average fitness of the lowest
noise decreases. After the seventh generation, the average fitness improves again.
Even in the last generation, the average quality for the objective noise is worse than
in the beginning. The curve trend indicates that the optimization has not converged
yet to an optimum for this objective. The Pearson correlation coefficients r underline
the observation: While the correlation coefficient for the average quality of the non-
dominated solutions for the energy consumption and flight time is very high with
r = 0.97, the correlations to the average added noise is anti-correlating to both the
flight time (r = -0.66) and energy consumption (r = -0.54).

We can observe a similar behaviour for the second eVTOL type Ehang 184.Even
if the developments of the best solutions for each objectives are more similar, the
development of the average fitness regarding all non-dominated solutions show again
a high correlation between flight time and energy consumption (0.95), the quality
improvements for the best solutions in flight time and energy consumption even
occur in the exact same generations 2, 6 and 10. On the other hand, the results of the
objective lowest added noise do not seem to be related at all (rf lighttime,noiseaddition

= 0.1 and renergyconsumption,noiseaddition = -0.05).
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Fig. 11: Optimization results for the aircraft Lilium Jet

The composed results for the Lilium Jet in Fig. 11 and for the Ehang 184 in
Fig. 12 illustrate the optimization process and results in three additional ways: the
convergence behaviour towards the three objectives is illustrated in a 3D scatter plot
over all generations. The relative positions of the non-dominated solutions of the last
generation towards each objective are depicted in a Radial Visualization. Lastly, four
selected solutions of the last generation are presented in a map. The best solution
for each objective is marked, as well as the compromise solution with equal weights
towards each objective. These four solutions are marked in all three visualizations
for better comparability and interpretability. The results in the scatter plot for the
Lilium Jet and the Ehang 184 show, that the quality of the non-dominated solutions
over the generations improves steadily. Furthermore, the number of non-dominated
solutions increases over time, which is the desired outcome of the optimization for a
better decision making. The more non-dominated solutions were produced, the more
compromise options the decision maker has for the subjective selection of a single
solution [46].
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Fig. 12: Optimization results for the aircraft Ehang 184

The compromise solution in the optimization run for the Lilium Jet is located
in almost equal distance to all the extreme points of the objectives, as well in the
radial visualization as in the 3D scatterplot visualization. The radial visualization
for the Ehang 184 reinforces the impression, that the convergence behaviour towards
the objective of minimal noise addition differs more to the two other objectives
than in the optimization with the Lilium Jets’ flight characteristics. The solutions
of the lowest energy and the shortest flight time are neighbour points in the radial
visualization, which corresponds to the observed high correlation coefficients during
the optimization process. The position of the lowest noise stands in high contradiction
to the similarity of the shortest flight time and lowest energy consumption. The
conclusion from the observation is, that the two objectives shortest flight time and
lowest energy consumption are more related to each other than to the objective noise.
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4 Discussion

This section discusses, whether the aim of optimizing geographically represented 3D
flight routes with Evolutionary Algorithms was achieved. The previously described
results are used as a basis for considerations that relate to 3D flight route optimization
in a next step, including implications for the urban air space management. Finally,
the implications for 3D route optimization in general are emphasized.

4.1 Discussion of the results derived from the study case

The first implication of the observed convergence behaviour in the 3D scatterplot
in combination with the previously discussed Fig. 10 is, that the optimization of
geographical objects towards multiple objectives and multiple constraints in 3D
flight route optimization work with the proposed methods. The 3D scatterplots
(Fig.11 and Fig.12, Illustrations “All Generations: Convergence Behaviour”) show,
that for both aircraft the desired region in the lower-right corner with the shortest
flight times, lowest added noises and lowest energy consumptions are populated
by the non-dominated solutions over the generations. Compared to the least cost
distance path, which we aimed to optimize, all objectives were improved by at least
36% for both aircraft types(Tab. 3). The biggest positive impact was the optimization
of the energy consumption with a decrease in energy consumption of more than 70%.
This underlines the positive impact of an optimization process of existing least cost
paths derived with GIS algorithms. The finding is a motivation for further work of
optimizing 3D routes in a GIS environment.

Table 4: Optimization results compared to Least Cost Path

Flight Time Energy Consumption Added Noise

Least Cost Path (Lilium, Ehang) 362 s, 362 s 52 kWh, 13 kWh 5.61 db, 5.61 db
Lilium Jet: Optimal solutions 211 s (-42%) 5.39 kWh (-90%) 3.51 dB (-38%)
Ehang 184: Optimal solutions 214 s (-41%) 3.77 kWh (-71%) 3.62 dB (-36%)

Nevertheless, the convergence behaviour differs for the objectives. The conver-
gence for the objective shortest flight time occurs early, the highest changes of the
best solutions for this objective occur during the first generations and stagnate in the
later generations. This is an indicator for a premature convergence, which can be
caused by low diversity in the population [10]. On the other hand, the convergence of
the objective noise addition does not seem to be converged, especially for the Ehang
184 (Fig.10). Also, the objectives shortest flight time and lowest energy consumption
share similarities in their convergence that the lowest noise addition does not show.

The two observations of the relationships between the objective functions and
the difference convergence behaviours are important to further understand the op-
timization process for 3D routing with multiple objectives. Explanations for these
observations help to further improve the results of 3D route optimization for multi-
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ple objectives with evolutionary algorithms and geographical object representations.
One explanation for the observation of the relationship between the objective func-
tions relates to the components of the three objective functions. The component of
the flight distance appears in the computation of both the flight time and energy
consumption: in general, higher flight distances cause worse fitness values in energy
and flight time together. Whereas the only distance in the objective function of the
least added noise is the distance to the ground, which opposes short flight times and
low energy consumptions because the eVTOL is required to travel a further distance.
This also explains the discussed negative and low correlations during the conver-
gence process. While the objectives for the energy consumption and the flight time
decrease in average, the outcome for the average added noise increases. Furthermore,
the component flight distance in the objective function explains, why the optimal
solutions for the lowest energy and the shortest flight time are neighbour points in
the radial visualization for the aircraft type Ehang 184, but not for the Lilium Jet.
The component of the total flight distance is more important for the computation
for multicoptor eVTOL aircraft, because the component of the flight speed does
not affect the energy consumption in multicoptors. On the other hand, the Lilium
Jet can produce lift in higher flight speeds, which decreases energy consumption.
Therefore, the energy consumption in the hovering, acceleration and deceleration
is much higher than in cruise mode [27]. That can possibly result in cases, where
less energy is consumed in longer flight routes. This does not apply for the the flight
characteristics of multicoptor aircraft. The flight distance is therefore a common key
factor for both aircraft types, but plays a bigger role for multicoptor aircraft.

The second explanations is related to the difficulty to converge to an optimum
for an objective. A different level of difficulty can explain the different convergence
behaviours of the three objectives shortest flight time, lowest energy consumption
and lowest added noise. This relates to the different impacts of changing the genes of
an individual on the fitness values. In our study case, a changing gene is a changing
3D point position. An examplary flight path, where only one point position can be
changed, as illustrated in Fig. 13, shows the different hardness of searching a better
point position. The yellow marked point is the only point that can change position in
that simplified scenario. For a better understanding and easier illustration, we remove
the height dimension from the objective functions and only consider two-dimensional
position changes. For the energy and flight time, at least in this scenario, the positions
that improve the fitness are relatively easy to find. If the point gets moved towards
the green marked area, the fitness improves, because the course of the flight route
straightens. If the point was positioned towards the other direction, the fitness values
decrease. In this simplified scenario and for the objectives flight time and energy
consumption, the optimal positions for the point are on the line between the two
points.

On the other hand, the optimal solution for the minimal added noise, is more
difficult to find. The objective function of the lowest added noise is also simplified
for this example. The altitude is neglected and the goal is to find the point position in,
so that the connecting line lies on noisiest areas. This optimal point position is harder
to find because of two reasons. The first reason is, that the space between the noisy
areas shows no tendency, at what direction the noisy areas are, most of the values are
equal. The second difficulty is, that the closer noisy area, which might be easier to
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Fig. 13: Different hardness of finding the optimum position

find, is not the optimal solution. The best position for the highest noise is the corner at
the bottom right of Fig. 13. The best approach to get to this solution would be a totally
random positioning, so the solution can only be found by chance. The two different
search difficulties of finding a better position in this very simplified scenario resemble
the smooth uni-modal versus a rugged multi-modal fitness landscape described in
optimization literature [47]. The principle of a fitness landscape is to relate the genes
of an individual, in this case the 3D point positions, to its fitness values. An uni-modal
fitness landscape describes an optimization problem, where only one global optimum
exists, and in a multi-modal fitness landscapes multiple optima exist [47]. Problems
with multi-modal fitness landscapes are harder to solve [48]. Even if the problem and
the objective functions are highly simplified in this example, the described search
processes are one included factor in the more complex objective functions of the
3D route optimization. Even in the more complex objective functions, straight parts
of the routes usually lead to a shorter flight time and lower energy consumption.
But finding the solutions for minimal added noise is harder and more repetitions
are needed. The illustrated different difficulties of finding a better solution explain,
why the objective noise converges slower. It converges slower and more erratic
(Fig. 10), because the problem is harder to solve. An adaptation for making the
search easier to find the noisy areas can be done by smoothing the input noise data.
Filtering processes, for example a Gaussian smoothing [49], can cause the raster file
to produce a more continuous search space. The loss in detail, on the other hand,
would produce a less accurate computation of the added noise at ground. A further
examination of preprocessing the noise raster file with filters is part of possible future
work.
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The observed early convergence of the objective shortest flight time also requires
adaptations, as the optimization possibly converged to a local optimum instead of
the global optimum [48]. Premature convergence can be caused by a low diversity
in the population [10]. One diversity metric can be expressed by the diversity in
the objective space with its entropy, that expresses how diverse the fitness values
are across the population. Another measurement of the diversity is the entropy of
the genes. That expresses, how diverse the gene combination of the individuals in
the population are. The illustrated maps in Fig. 11 and Fig. 12 indicate, that many
route segments are shared by the different non-dominated solutions. This indicates
a low diversity in the population’s gene pool in the end of the optimization. The
proposed optimization method NSGA II uses a kind of elitism, which is one cause of
lower diversity [10]. Also the seeding procedure for the initialization and the small
population limit diversity. Especially the initialization with the seeding procedure,
along the least distance cost path, produces solutions, that are already near to the
shortest distance path. This can explain the earlier convergence of the flight speed
and energy consumption, because the component flight distance is one main factor
for these objectives. Therefore, in possible future work the population’s diversity
should be measured [50]. With the known development of the diversity, strategies
like self-adapting mutation and crossover probabilities can be applied. For example
higher mutation rates are forced in phases of the optimization, where the diversity
decreased to a certain level [50]. In order to measure the diversity of the gene pool,
the genotypic diversity, methods are required to be identified to effectively measure
entropy in 3D flight routes with its specific representation [51].

Next steps of the optimization and also the previous step of the parameter search
include an investigation of more runs with other optimization set-ups. The possible
parameter values can be analysed in order to measure the impact on the quality of the
flight routes and to measure the robustness of the optimization. In order to be able to
derive insights about the robustness and the parameter sensitivity, more repetitions
are needed. The discussed results and the withdrawn conclusions are possibly from
results that were produced by chance. More optimization runs can eliminate those
doubts. With additional results, an uncertainty analysis can be done to quantify the
uncertainty of the parameter choice [52]. Also the sensitivity of the results to the
input parameters could be identified[53]. The sensitivity and uncertainty analysis are
part of the possible future work.

Another task for the future is to repeat the optimization for a path in an area where
the route can have more variations. In Fig. 11 and Fig. 12 can be observed, that the
structure of the geofences do not allow much variation. All routes are positioned
equally towards the neighbouring geofences, there is no flight route that surrounds a
geofence on the other site. Therefore, the optimization should be repeated in different
parts of the study area, where many scattered geofences are located between the start
and the ending point. The results from that optimization would be helpful to clarify,
whether more diverse flight routes can be found.
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4.2 Discussion of the proposed 3D flight route optimization

The objective functions are approximations of the real flight time, energy consump-
tion and added noise. For the objective least noise addition, only the added noise
directly underneath the aircraft’s position wasmeasured, instead of additionally mea-
suring the added noise of the neighbouring areas. Furthermore, the impact of wind
was not considered. Depending on the wind direction and wind speed, the wind
conditions can change rapidly in time and can be distributed unevenly in the city
area [54]. High wind speeds from specific directions can even lead to dangerous
areas, which would need to be modelled in temporal geofences for the optimization
[55][3]. Other wind conditions, which are not considered as a hazardous, also have
an impact on the flight time, on the energy consumption or the noise addition. The
wind can decrease or increase the flight speed and energy consumption, and also
refract the sound [56]. The incorporation of the component wind is complex, because
it is dynamically changing the search space. As a first step for possible future work,
the incorporation of extreme wind conditions is therefore proposed.

Another approximation that affects the objective function lowest energy con-
sumptionc is the weight of the loaded aircraft. It is interesting to see in future work,
how sensitive the energy consumption is to the load of the aircraft. Furthermore, it
is not clear how noisy the aircraft are in reality, because the air taxi manufacturers
did not supply any informations about the sound pressures nor about the sound fre-
quencies. This is a limitation that can not be solved without the cooperation of the
manufacturers.

In addition to the considerations regarding the optimization, also aspects of flight
management need to be taken into account. If the flight management was not con-
sidered, the optimization results are not usable. One important aspect for the flight
management is the representation of the flight route and how detailed they are
planned. The result of the optimization is a 3D line with an accuracy of less than
a centimetre. But in reality, the aircraft are not able to follow the line with that
precision, even if the maximum speeds are preserved. Wind gusts or small piloting
errors, just as two examples, can lead to an misallocation of the aircraft from the
flight route. Therefore, the resulting representation for the real planning would rather
be a 3D pipe than a line, by adding three different boundaries around the line, that
can be equivalent to a geofence safety boundary management developed by NASA
[57]:

• Alert and Awareness Boundary
• Advisory Boundary
• Intervention Boundary

These boundaries correspond to different actions that are initiated by traversing a
safety boundary. A crossing of the first boundary initiates a warning, a crossing of
the second boundary initiates an alert with precise instructions and the last crossing
triggers an external reaction to terminate or re-route a flight [3]. The concept proposed
byNASAwas planned for geofence boundaries, but the operatingAir Taxi companies
can use it for an own intervention system, if the flight route lines can not be followed.
The distance between the resulting flight line from the optimization to the safety
boundaries would depend on the maximum allowed flight speed and the distance
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to the surrounding geofences [3]. Further informations by the operators, of how
detailed the flight route planning will be, are not published yet or not available to
the authors. The flight management, including the exact actions while passing the
different safety boundaries is important future work. That work would also need
to include a simulation with many aircraft at the same time. The flights in the
flight route pipes with speed and aircraft size influencing safety distances between
operating aircraft need to be planned and simulated [3]. Otherwise the air traffic will
be prone to congestions.

Another implication from the lowest added noise results is, that the flight routes
can not be static. The goal is, that the yearly average background noise change should
not increase by more than 1 dB [36]. This increase of 1 dB is the smallest change
that can be detected by a person. The noise levels from the flight routes show, that
the added noise is in average ≈4dB. That means, that the flight routes need to be
readjusted during the day. It is even possible, that the level of noise increase by only
1 dB might not be achievable at all, or only with less noisy aircrafts than assumed
in this work. It is also advisable, that the objective noise becomes more important
during night time. One task for future work is also to include the land use, so that
the residential areas can be avoided during night times.

4.3 Discussion of the general 3D routing method

The proposed methodology is a new approach for 3D route optimization, and even
if the solutions do converge to optima, one main limitation exists in this approach.
This limitation is the very high computational effort needed, which is mainly caused
by the chosen representation. The intertwined representations and the necessity of
updating all three representations aftermodifications of one is one part. The represen-
tation modifications are not the only complex computation regarding the run-time.
Reordering the 3D points for example requires a former Near Point Analysis for each
point to all other points. This increases the runtime exponentially with the number of
3D points. After the Near Point Analysis, most of the ordering algorithms’ run times
also increases exponentially with an exponent of 2 and the number of elements as the
basis [58]. The Near Analysis, reordering and the representation updates need to be
done for each crossover and after every mutation. Another computational complex
algorithms are run for the initialization and after every adaptation of 3D flight points.
This computation is the value extraction of the minimum flight height and for the
background noise at every point position. In addition to that, line intersections with
the 3D geofences are necessary operations after every modification of a represen-
tation. The mentioned computations are time-consuming, but the computation time
also increases linearly with every generation, as illustrated in Fig. 14. One reason
can be the variable length of the individual representations, which allows the number
of 3D points to increase and leads to more required computations. Another possible
but unlikely explanation for this unwanted behaviour is possibly the increasing num-
ber of spatial layers stored in the geodatabase, but further information could not be
gathered yet.



38 3D flight route optimization for air-taxis in urban areas with Evolutionary Algorithms

Fig. 14: Computation times per population size and generation

Further and in-depth analysis of each execution step of the run-time and the
memory capacity is required to research, which execution tasks of the optimiza-
tion consume the most time and memory. Also, new research proposes the use of
GPU-accelerated spatial databases. These can improve the performance of spatial
operations, for example intersections, by a factor of more than 3000 [59].

In addition to using a different technology for improving the processing time,
the structure of the algorithm can be altered, too. The concept of co-evolutionary
algorithms can improve the performance, which was already successfully applied to
another 3D routing problem [13]. The concept divides the whole population into sub
populations, which can be distributed in different computation environments and be
executed simultaneously. The sub populations can converge simultaneously and then
the different sub populations are recombined. The observed increasing computation
time in Fig. 14 with increasing population size can be avoided in this way. This
strategy is not only faster, the usage of sub population also increases diversity [10].

Another consideration is to change the optimization strategy and use genetic pro-
gramming. This strategy initializes and optimizes a population of programs [10].
Genetic programming uses programs, usually in tree structures and and these pro-
grams are manipulated with evolutionary strategies. This technique can be used for
programs, that represent mathematical formulas for high order polynomials, as used
byYeun et al. [60] for surface approximations. This technique can be adapted to create
polynomials that represent 3D lines. These lines can then be used for the validation,
if they interfere with geofences. This method would not require any reordering or
Near Analysis and therefore save computation time. Another expected benefit is a
more globally oriented exploration of the search space, because little adaptations in
a polynomial can have a big impact on the flight route course. The implementation
of other search techniques are also work for the future, for example gradient based
trajectory optimization [61] or reinforcement learning [62]. These search techniques
show different search space exploration behaviours. They can be used for bench-
marking or even for improving the existing flight routes from this work with a local
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search approach after the solutions from the evolutionary algorithm converged to an
optimum.

The reproducibility of this work is currently limited by the dependencies of the
GIS software ArcGIS Pro8 including several license subscriptions. Therefore, a
necessary future work is to convert the GIS related functions to Open Source GIS,
for example using the libraries of QGIS9 and the spatial database management from
PostgreSQL10 with the spatial extension PostGIS11.

Lastly, the generality of the proposed methods is discussed. The study case of the
example path in Manhattan in New York was one example of many possible routes
from the existing least cost network for the seeding procedure. Therefore, for any
different path in the same study area, only the input path needs to be changed for
optimizing it. For the application of 3D flight route optimization in a different study
area, the method is general applicable if the data requirements are met. The restricted
flight areas need to exist as well as the surface with the minimal flight height. An
existing explanation [6] andworkflow12 of that calculation are available. The software
ArcGIS Pro is required and the described input data needs to be downloaded. After
computing the required data, the flight path for the seeding process need to be defined
that shall be optimized. If the flight route optimization is intended to be applied for
different aircrafts, the only required adaptation is to alter the aircraft specifications.
Furthermore, the samemethod can be used for other kinds of 3D routing, for example
3D routing for submarines. The restricted 3D areas will need to be defined and the
objective functions need to be adapted to suite the objectives for the specific 3D
routing. For submarines, the travel time and energy consumption will probably be
of interest as well, but the physical laws for underwater travelling and therefore the
objective functions differ substantially.

5 Conclusion

The air taxi industry is in need of routes that are not interfering with restricted flight
areas and are optimized in multiple criteria. In addition to the required flight time
and the energy consumption, the criterion of the least added noise is of importance
and can determine the quality of a flight route. For finding optimal flight routes, the
multi-objective optimization technique NSGA II was used.

The proposed 3D route optimization was applied in Manhattan in New York
for the two different eVTOL Lilium Jet and Ehang 184 as representatives of the
eVTOL types “Vectored Thrust” and “Multicoptor”. They do have different flight
characteristics. The results of the optimization are several non-dominated solutions
forming a Pareto front.

Due to the high probability of flight routes intersecting with the restricted air
space, additional procedures like seeding and repair methods were introduced. The

8 https://www.esri.com/de-de/arcgis/products/arcgis-pro/resources
9 https://www.qgis.org/de/site/
10 https://www.postgresql.org/
11 https://postgis.net/
12 https://github.com/mohildemann/Urban-Air-Mobility-Routing
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initialization of individuals with prior information, called seeding, was used to
generate valid solutions close to an already existing least distance cost path. The repair
methods reposition the 3D points and 3D lines, in case of flight routes intersecting
with the restricted air space. Furthermore, an adaptation of an existing 3D point
mutation was proposed, which repositions 3D points along a sine curve instead of
repositioning single points.

The results proved, that the flight routes represented by geographical point and
line objects can be optimized with Evolutionary Algorithms for multiple criteria.
Furthermore, the results illustrated that the different aircraft types had an impact
on the optimized flight routes. Lastly, the results were used to explain how and
why the convergence behaviours differed for the three objectives. The following
steps include the summarized observations, how the observations were analysed and
interpreted. Compared to the least distance cost path derived with GIS methods
only, the optimization produced significantly better results for all criteria. The lowest
improvement compared to the least cost path was a noise reduction by 36% with
the Ehang jet, the highest improvement was a energy consumption reduction for the
eVTOL Lilium Jet by 90%. This leads on to the different convergence behaviours
for the three objectives. While the solutions converged early to an optimum for the
objective flight time, the convergence towards the objective lowest added noise was
slower. The convergence development of the best and average solution suggested,
that the process of finding an optimum was still ongoing when the optimization
terminated. We supposed that the earlier convergence towards the flight time and
energy consumption had two reasons. The first reason is the shared component of the
flight route distance, which is onemain element influencing both objective functions.
Shorter distances lead generally to shorter flight times and lower energy consumption.
On the other hand, higher flight positions and longer distances following noisy areas
in the city lead subsequently to lower added noises, which is contradictory. The
seeding produced flight routes near to the least distance cost path, which increases
the probability of producing solutions with shorter flight times and lower energy
consumptions, which is not the case for the noise addition. Another reason regards
the hardness of finding the optimum. It is easier to find better solutions for lower
energy consumption and shorter flight times, because less local optima exists and
the fitness landscape is smoother with less local optima. The background noise has
many local highs and multiple large areas with same noise levels, which increases
the search difficulty for better solutions and slows down the convergence. It also
explains the observed more erratic convergence behaviour.

The results showed that the aircraft type with its different flight characteristics
matters for finding optimal flight routes. The biggest differences were observed in
the objective energy consumption between the Ehang 184 and the Lilium Jet, which
is caused by the aircraft type. The Lilim Jets’ wings produce lift in higher flight
speeds, which is not the case for the multicoptor aircraft from Ehang.

The approach of optimizing 3D routes consisting of geographical 3D objects
has one main drawback, which is the computational complexity. High computation
times limited a more intensive parameter search, bigger population sizes and more
generations to further converge to better compromise solutions. The identified main
reasons for the high computation times are the updates after modification of any of
the three intertwined representations and the repair method for invalid solutions. This
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leads to the conclusion, that either the used technology or the evolutionary strategy
needs to be adapted. A different technology like GPU-accelerated spatial databases
or co-evolutionary algorithms could accelerate the computation with the same inter-
twined presentation type. On the other hand, the use of different search techniques
like genetic programming can eliminate the need of the 3D point presentation by its
different exploration technique of the search space.

In summary, the proposed methodology for optimizing 3D flight routes has been
proved to be successful. The proposed representation of individuals and the evolu-
tionary operators are expandable, but allowed to produce valid compromise solutions
for all criteria. The results can be directly used for further considerations for the flight
management. The most important conclusion for the urban air management is the
resulting average noise additions of more than 3 dB, which is considered as an unac-
ceptable long-term annoyance. This implies the need of temporally changing flight
route courses if the noise pressure of the eVTOLs can not be reduced significantly.
The proposed method is also applicable for other urban areas, different aircraft types
and other 3D routing applications. Furthermore, the method can be applied to any
3D routing in an 3D environment with multiple constraints and multiple objectives.



Appendix
NSGA II

The general process of the NSGA II is explained briefly. At first, the individu-
als/solutions of the population need to be evaluated for all criteria. In a next step,
the ranking, all non-dominated solutions are derived. By adding the non-dominated
solutions to the first pareto front with the non-domination rank 1, the step is repeated
for the remaining solutions until all solutions are assigned to a pareto front with the
corresponding rank of each pareto front. The solutions belonging being assigned to
the second rank are the non-dominated solutions if the solutions of the first rank
were ignored. The rank is used for the selection process of the individuals, where the
solutions are compared to each other. If two solutions have the same non-domination
rank, another metric is used to choose the superior solution: The crowding distance.
This metric estimates the density of the region around the solution within the objec-
tive value space. This means, solutions whose objective values are similar to other
solutions, get assigned a lower crowding distance than solutions whose objective
values are more distinct. If the non-domination rank is equal, solutions witha higher
crowding distance are preferred. This selection therefore prefers solutions with a
bigger diversity in their phenotype. After producing and evaluating the offsprings
in every generation, the non-domination rank and the crowding distance are used
again. The standard approach of evolutionary algorithm is the replacement of the
parent generation with the offspring generation. In the NSGA II, the individuals that
shall form the population of the next generation are selected from the parent and
offspring population together. Until the population size is reached, the solution with
the best ranks are selected. In the case, that many solutions have the same rank for
too few open slots, the crowding distance determines the selection. Solutions with
a higher crowding-distance are solutions that have a higher crowding distance [14].
These solutions are preferred.

42
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