

Management School

Mestrado em Estatística e Gestão de Informação

Master Program in Statistics and Information Management

THE OUTSIDER'S METHOD, AN OUTLIER DETECTION SYSTEM AS LAWYER OF QUALITY CONTROL TOOL AT CENTRAL BALANCE SHEET DATA OFFICE

ANTONIO LORENTE SALMERÓN

PROJECT presented as requirement for obtaining the Master's degree in Statistics and Information Management

NOVA Information Management School Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

NOVA Information Management School Instituto Superior de Estatística e Gestão de Informação Universidade Nova de Lisboa

THE OUTSIDER'S METHOD, AN OUTLIER DETECTION SYSTEM AS LAWYER OF QUALITY CONTROL TOOL AT CENTRAL BALANCE SHEET DATA OFFICE

by

ANTONIO LORENTE SALMERÓN

THESIS presented as requirement for obtaining the Master's degree in Statistics and Information Management

Advisor: Professor Jorge Miguel Ventura Bravo

DEDICATION

To my beloved Mother ("Puchum") and Wife (Vicky) and to my amazing sons Antonio, Carlos and Pablo you are the meaning of my life.

ABSTRACT

Handling large amounts of granular data of non-financial corporations' balance sheet and profit and loss statement to fulfil the assigned functions of the Central Balance Sheet Data Office (CBSDO) requires the design and implementation of various layers of quality control that combined with the review of expert analysts to ensure databases with a statistical quality at the expected height of the Statistics Department of an institution such as Banco de España.

Recently, under the umbrella of the quality control systems of the CBSDO, a new outlier detection system has been designed and implemented, the "**Outsider's method**", through which those observations that deviate considerably from the behaviour of companies regarding sector clustering, according to NACE classification, and size, will be eliminated from database and will maintain those that still have a behaviour that is far from standard but consistent with the reality of mentioned Non-financial corporations.

The purpose of this project is to explain the methodology of this new system, obtain results for different extractions periodically established over several years, analyse these results, and finally test the system's validity by comparing it with other detection methods traditionally used by other statistical entities.

KEYWORDS

Non-financial corporations; CBSDO; outlier; quality control, clustering, validate

JEL Classification: C40, C55, C58

INDEX

1.	1. Abstract5									
2.	List of A	bbreviations and Acronyms	9							
3.	Introdu	ction	10							
	3.1. Bac	kground and problem identification	10							
	3.1.1	.Background:	10							
	3.1.2	.Problem Identification	11							
	3.2. Stu	dy Objectives	13							
4.	Study re	elevance and importance	14							
5.	Method	lology	15							
	5.1. Def	inition of Node	15							
	5.2. Var	iables to analyze	16							
6.	"Outsid	er's method" system selected by CBSDO to detect outliers at cbb databa	se18							
	6.1. "ph	i" Function	18							
	6.2. Out	lier definition	19							
	6.3. Ext	ractions	20							
	6.4. SAS	program	21							
	6.5. Res	ults of SAS program.	22							
	6.6. Out	lier key Vs Trace of outlier key.	25							
7.	Analysis	of results obtained by the "outsider's method". The outliers report	27							
8. res	An intro sults obt	oduction to the second part of the thesis, methods to compare and va ained by the "outsider's method"	alidate the 39							
9.	First me	ethod: (p3 – p97)	40							
10	Second	method: interguartile range (IQR)	42							
11	Third n	nethod: lowest and highest observations	46							
12	. Combir	nation of the three validating methods	48							
13	. Metho	d approved as a quality control tool for detecting outliers of CBB's datab	ase50							
14	. Conclu	sions	59							
15	. Bibliog	raphy	61							
16	. Annexe	- <i>,</i> 25	63							
-	16.1.	Benchmark (2.009 – 2.017)	63							
	16.2.	Charts including statistical distributions	68							
		5								

LIST OF ABBREVIATIONS AND ACRONYMS

BdE	Banco de España
ECB	European Central Bank
SSM	Single Supervisory Mechanism
NCBs	National Central Banks
CBSDO	Central Balance Sheet Data Office
CBSDO-Q	Central Balance Sheet Data Office quarterly survey
CBSDO-A	Central Balance Sheet Data Office annual survey
ECCBSO	European Committee of Central Balance Sheet Data Offices
FSA WG	Financial Statements Analysis Working Group
FCDB	Financing Cost Data Base
INE	National Statistical Institute (Instituto Nacional de Estadística de España)
MENF	Multiplicador de Empresas No Financieras – product from Central Balance Sheet Data Office that elevates the sample of non-financial corporations to the total population
BACH	Bank for the Accounts of Companies Harmonised – database that contains aggregated and harmonised information on the annual accounts of the non-financial corporations of selected European countries
RSE	Sectoral database of Rates of non-financial corporations

R+D+i Research, Development and innovation

INTRODUCTION

BACKGROUND AND PROBLEM IDENTIFICATION

1.1.1. Background:

This project report will be carried out in the Banco de España, more specifically in the Central Balance Sheet Data Office (CBSDO) that belongs to the Statistics Department which in turn is part of the General Directorate of Economy, Statistics and Research

Banco de España is the national central bank, within the framework of the Single Supervisory Mechanism (SSM), the supervisor of the Spanish banking system along with the European Central Bank. Its activity is regulated by the Law of Autonomy of the Banco de España.

Banco de España is one of the members of the EUROSYSTEM that is the monetary authority of the euro area and comprises the European Central Bank (ECB) and the national central banks of the Member States whose currency is the euro. Its primary objective is to maintain price stability.

One of the main tasks entrusted to the General Directorate of Economy, Statistics and Research is Compiling, analysing and disseminating the statistics entrusted to the Banco de España.

Banco de España's Central Balance Sheet Data Office is a service that analyses the economic and financial information voluntarily submitted by Spanish non-financial corporations, which improves the knowledge about these corporations, enables financial accounts for the Spanish economy to be drawn up, and which analyses corporate performance and the effects of monetary policy measures on corporate financing and results.

The European Committee of Central Balance-Sheet Data Offices (ECCBSO) is a consultative body created in 1987 by a group of European National Central Banks (NCBs) managing Central Balance Sheet Data Offices (CBSOs). Banco de España's CBSDO is one of its members. The Committee has developed a database named Bank for Accounts of Companies Harmonized (BACH); Is a database containing harmonized annual accounts statistics of European non-financial enterprises. Hence, the database was conceived as a useful tool both for country comparisons and to analyse the structure and performances of the non-financial companies in Europe.

RSE database provides information for the comparative analysis of individual corporations with aggregates of non-financial corporations, enabling the corporation to be positioned in the crossmatching of sector of activity and size in which the corporation fits. The RSE database offers information on 29 significant ratios for economic and financial analysis of the aggregates of non-financial corporations obtained from the cross-matching of three characteristics: activity, size and country.

1.1.2. Problem Identification

To ensure the quality of CBSDO products, that they are constructed from micro data, it is necessary to implement several quality controls, one of them consist of eradicate those observations that that can distort aggregated information due to excessive specific weight in their respective samples and subsamples.

There are many definitions of outlier that can be found through the literature, for example, an outlier is generally considered to be a data point that is far outside the norm for a variable or population (e.g., Jarrell, 1994; Rasmussen, 1988; Stevens, 1984). Hawkins described an outlier as an observation that "deviates so much from other observations as to arouse suspicions that it was generated by a different mechanism" (Hawkins, 1980). Outliers have also been defined as values that are "dubious in the eyes of the researcher" (Dixon, 1950) and contaminants (Wainer, 1976).

As a result, they can potentially skew or bias any analysis performed on the dataset. It is therefore very important to detect and adequately deal with them.

Outliers can arise from several different mechanisms or causes. Anscombe (1960) sorts outliers into two major categories: those arising from errors in the data, the ones that we want to wipe out, and those arising from the inherent variability of the data, the ones that we are very interested in keep because they provide very relevant information about the behaviour of the population and can allow us to explain various phenomena, which without them would not be possible..

Not all outliers are illegitimate contaminants, and not all illegitimate scores show up as outliers (Barnett & Lewis, 1994).

It is therefore important to consider the range of causes that may be responsible for outliers in a given data set:

- Outliers from data errors. Outliers are often caused by human error, such as errors in data collection, recording, or entry.
- Outliers from sampling error. Another cause of outliers is sampling. It is possible that a few members of a sample were inadvertently drawn from a different population than the rest of the sample.
- Outliers from faulty distributional assumptions. Incorrect assumptions about the distribution of the data can also lead to the presence of suspected outliers (e.g., Iglewicz & Hoaglin, 1993)
- Outliers as legitimate cases sampled from the correct population. Finally, it is possible that an outlier can come from the population being sampled legitimately through random chance. It is important to note that sample size plays a role in the probability of outlying values.

Within a normally distributed population, it is more probable that a given data point will be drawn from the most densely concentrated area of the distribution, rather than one of the tails (Evans, 1999; Sachs, 1982). As a researcher casts a wider net and the data set becomes larger, the more the sample resembles the population from which it was drawn, and thus the likelihood of outlying values becomes greater.

The outliers should only be discarded when we are completely sure they were a result of an experimental or transcription error. Otherwise removing outliers may result in underestimated variance.

STUDY OBJECTIVES

John Tukey (1977) introduced several methods for exploratory data analysis, one of them was the Boxplot. The Boxplot is a graphical display where the outliers appear tagged. Two types of outliers are distinguished:

An observation "x" is declared an extreme outlier if lies outside of the interval (Q1-3*IQR, Q3+3*IQR). Notice that the center of the interval is (Q1+Q3)/2 and its radius is 3.5*IQR, where IQR=Q3-Q1, called the Interquartile Range, is a robust estimator of variability.

An observation x is declared a mild outlier is lies outside of the interval (Q1-1.5I*QR, Q3+1.5*IQR). The interval has a center at (Q1+Q3)/2 and its radius is 2*IQR.

The numbers 1.5 and 3 are chosen by comparison with a normal distribution.

Following Tukey's theory, the two methods selected to validate the "outsider's method" are the interquartile range method used by the European Central Bank and EUROSTAT or the exclusion of data below percentile 3 and over percentile 97 as in the Bank for the Accounts of Companies Harmonized – database that contains aggregated and harmonized information on the annual accounts of the non-financial corporations of selected European countries (BACH).

The purposes of this project are:

- 1. To explain the methodology of this new system of detecting outliers, the "outsider's method".
- 2. Obtain results for different extractions periodically established over several years (bases).
- 3. Analyse these results, by a regular report system. And finally,
- 4. Test the system's validity by comparing it with other more traditional detection methods and used by other statistical entities.

STUDY RELEVANCE AND IMPORTANCE

At present day, there are numerous sources of information, databases, press, internet, and they have become a source of inspiration for numerous studies, articles and reports.

Not all this information can be considered reliable, nor should it be used if its methodology is not previously known and its quality contrasted.

Banco de España's CBSDO deals every year with more than eight hundred thousand balance sheets and profit and loss statement and we have complementary information voluntarily contributed by more than ten thousand non-financial companies, we also download from mercantile registrars and from companies' websites annual reports, in order to check or solve doubts regarding their annual accounts. All this information is checked by expert analysts and by in-house developed programs that ensure the coherency and consistency of the data received.

Even with all this, to pursue the purpose of providing the service of the economic and financial information of Spanish non-financial corporations, it is required to implement quality control mechanisms, such us the revision by an expert analyst of certain parameters of the accounting and corporate information provided. But this is not enough, due to this huge amount of interconnected information it is necessary to include another type of quality control based on statistics theory to improve the quality of CBSDO databases.

One of the most cited definitions in the literature regarding what an outlier is, is stated by David Hawkins in his monographs on applied statistics and probability in 1980: "An outlier is an observation that deviates so much from other observations that it arouses the suspicion of having been generated by a different mechanism" (Hawkins, 1980)

Based on statistics theory on outliers, recently it has been developed a new lawyer of quality control named "outsider's method" which it is intended to identify the most anomalous observations and, at the same time, their contribution, with respect to the node composed of the breakdown of sector and size, so that what is involved is to eliminate those observations that are really errors; while on the contrary, those observations will be maintained which, even when they deviate from the normal behaviour of their distribution, do correspond to a real and therefore explanatory behaviour of the reality of this phenomenon.

This outlier detection method, the "outsider's method" is based in sophisticated algorithms.

METHODOLOGY

All the micro data used in this report comes from Banco de España's Central Balance Sheet Data Office (CBSDO). This data is obtained from two databases:

- The CBB database created drawing on the annual accounts filed with the Mercantile Registers; Under the cooperation agreements signed with the Ministry of Justice and the Spanish Association of Property and Mercantile Registrars, Banco de España' s Central Balance Sheet Data Office and the Mercantile Registries have been working together to facilitate the statistical use of the annual accounts that companies are legally required to file with the mercantile registry of the province in which their registered office is located.
- The CBA database which compiles information voluntarily reported by corporations in a purpose-designed questionnaire.

Both databases are aggregated and integrated into a data source which, under the name of CBI, provides for the monitoring of aggregate results, with breakdowns by size and sector of activity of the Spanish non-financial corporations.

The use of this micro-data is strictly confidential and only can be used for statistical use.

DEFINITION OF NODE

In order to classify and group the microdata of the CBA and CBB databases and, therefore, of the CBI aggregate, two sector and size cut variables are established, sector and size:

a) Sector: according to NACE classification, at CBSDO fourteen sectors are identified, namely:
Table 3.1 Selected sectors according to NACE classification

SECTORS ACCORDING TO NACE CLASIFICATION
AGRICULTURE, FORESTRY AND FISHING
EXTRACTIVE INDUSTRIES
MANUFACTURING INDUSTRIES
SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING
WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION
CONSTRUCTION
WHOLESALE AND RETAIL; REPAIR OF MOTOR VEHICLES AND MOTORCYCLES
TRANSPORTATION AND STORAGE
HOSTELRY
INFORMATION AND COMMUNICATIONS
REAL ESTATE ACTIVITIES
PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES
ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES
OTHER SERVICES

- **b)** Size: according to the European recommendation four sizes can be identified:
 - i) Large (including public and dependent),
 - ii) Medium,
 - iii) Small (excluding micro) and
 - iv) Micro-enterprises

Table 3.2	Sizes according	European	recommendation

	SIZE CATEGORY									
VANIADLE	LARGE	MEDIUM	SMALL	MICRO						
NUMBER OF EMPLOYEES	N > 250	50 < N ≤ 250	10 < N ≤ 50	N < 10						
TURN OVER (millions)	TO > 50	10 < TO ≤ 50	2 < TO ≤ 10	TO < 2						
TOTAL ASSETS (millions)	TA > 43	10 < TA ≤ 43	2 < TA ≤ 10	TA < 2						

The node is defined as the crossing between sector and size, therefore for the project a total of 56 nodes will be identified.

VARIABLES TO ANALYZE

RSE is a database that compiles sectoral rates of non-financial corporations and provides information for the comparative analysis of individual corporations with aggregates of non-financial corporations, enabling the corporation to be positioned in the cross-matching of sector of activity and size in which the corporation fits.

The RSE database offers information on 29 significant ratios for economic and financial analysis of the aggregates of non-financial corporations obtained from the cross-matching of three characteristics: activity, size and country.

In this project seventeen ratios have been selected to analyse their distributions, search for anomalous observations try to identify and study them, the observations considered mistakes will be eliminated from database and those that still have a behaviour that is far from standard but consistent with the reality of mentioned will be maintained at database.

In the table 3.3 can be found a small methodological box with the name, abbreviations and content for the seventeen selected ratios (three debt ratios (E1, E2 and E3), four margin ratios (M1, M2, M3 and M4), three profitability (R1, R2 and R3), two of average periods (AVCP and AVPP) and five rates of variation (NA, FC, GOP, ONP and GVA).

Table 3.3RSE selected ratios

RATIOS AND	RATES OF VARIATION ANALYZED TO DETECT OUTLIERS						
	E1 : Interest-bearing borrowing / Net Assets						
DEBT RATIOS	E2 : Interest-bearing borrowing / (Gross operarting profit + financial revenue)						
	E3 : Financial costs / (Gross operarting profit + financial revenue)						
	M1: GVA / Value of Output						
MARGIN RATIOS	M2: GOP / Value of Output						
	M3: GOP / GVA						
	M4: Profit Loss of the year / GVA						
AVERAGE PERIODS	ACCP (Average Customer Collection Period) Average Customer Balance / Turnover ASPP (Average Supplier Payment Period)						
	Average Supplier Balance / Purchases						
	R1 = (ONP + Financial costs) / Net Assets						
RATIOS	R2 = Financial costs / Interest-bearing borrowing						
	R3 = Ordinary Net Profit / Equity						
	NA (Net Assets)						
RATES	FC (Financial Costs)						
of	GOP (Gross Operating Profit)						
VARIATION	ONP (Ordinary Net Profit)						
	GVA (Gross Value Added)						

"OUTSIDER'S METHOD" SYSTEM SELECTED BY CBSDO TO DETECT OUTLIERS AT CBB DATABASE

The method to be applied for the CBB database in the Banco de España's Central Balance Sheet Data Office is going to be named the "Outsider's method" it will be applied to the nodes formed by the crossing between the fourteen sectors according to NACE classification and the four sizes of the European recommendation and for each of the seventeen RSE ratios selected.

"PHI" FUNCTION

The aforementioned method is basically that, for each observation and each ratio, the function ϕ is calculated as the difference between the value of the ratio for the node and its marginal value, that is, the value it would take excluding observation, see Box 4.1.

This magnitude expresses in some way the contribution of each observation to its node implicitly pondering its contribution to the numerator, its contribution to the denominator and the quantile in which it is found. The absolute value expresses its greater or lesser contribution and the sign if its inclusion increases or decreases the ratio

Box 4.1 φ Function

R for Ratio N for Numerator D for Denominator i for each company j for each node

By ordering the distribution in a decreasing way, to the left are the observations that increase the ratio significantly (positive tale), in the center the observations that are no relevant to be analysed, (zone zero) and to the right, those that make the ratio decrease significantly (negative tale), so that, in order to find atypical data, it is sufficient to study the tales to analyse the whole node.

Chart 4.1 The tales, and the zone cero, the φ function areas

OUTLIER

DEFINITION

(Barnett and Lewis, 1994) indicate that an outlying observation, or outlier, is one that appears to deviate markedly from other members of the sample in which it occurs.

(Johnson, 1992) defines an outlier as an observation in a data set which appears to be inconsistent with the remainder of that set of data.

In our project, the problem consists of finding those observations of the tales of the distribution that behave very differently from the observations closest to it, for which the empirical study, twenty observations have been considered sufficient.

First analysis shows the masking effect produced by an extreme outlier in the rest of the measurements and the large differences in level observed between them. To solve the first problem the function ϕ was recalculated for the truncated distributions and for the second one a new function was defined in terms of differences.

For each tail it was compared with its regression line and the distance between the two curves for each observation was measured in order to detect outliers when comparing it with a threshold. It was observed that, although the curves were adjusted to a very low number of schemes, there was a great difference in levels, which would require different thresholds.

Given the difficulty of empirically setting a threshold for each ratio and node, parameterize the threshold by size, ratio, sector was replaced by number of observations of the node, the possibility of comparing each observation not with an external threshold, but with an appropriate statistic was evaluated so that it is the tail itself that determines the threshold.

The fact that what is relevant, is the comparison of the observation with the immediate ones to it, excludes any order statistic, which drive us to use the arithmetic mean. In addition, as several

outliers might be found is also discarded and for the same reason the comparison with the rest of the non-outlier's part.

Fixed the statistic as the average of the tail and defined the outlier as that observation that exceeds more than ten times the average, it remains to solve the problem of excessive weight that may have in the same outlier, for what is proposed to increase the tails to fifty observations.

The results obtained were satisfactory for the tails containing all the observations, but insufficient for those nodes in which they do not have enough observations, these tails can only reach a very low number of elements.

To solve this problems, the arithmetic mean was replaced by the geometric mean and multiplied it by a corrective coefficient for the nodes with not enough observations, which are fixed, so that the initial condition for the most usual case of tails with a single outlier and twenty observations is equivalent to the previous one of ten times the average.

To simplify the calculations, logarithms are taken in the ϕ function and the "Ind" (Ind comes from index) function is defined as:

Box 4.2 "Ind" function

(iv)

Therefore, *those observations in which their "Ind" function are greater than one are defined as outliers*.

EXTRACTIONS

The CBSDO carries out four extractions of information from its CBB database throughout the year (base), subjecting the outlier's detection procedure to hundreds of thousands of companies before preparing their statistical products:

- October of the year n, to obtain the **advance** information used in the Annual Report, and the BACH and RSE databases, for the last available observation (n-1).
- February of the year n + 1, to obtain the aggregates that are used in the product **MENF** (Multiplier of Non-Financial Companies), which are the source of the Financial Accounts of the Spanish Economy, and of the National Accounts of Spain.
- June of the year n + 1, for updating the **BACH and RSE** databases.
- October of the year n + 1, for the definitive (**final**) sample of the data of year n-1 that are presented in the Annual Report.

So, every October we obtain two different extractions:

- 1) the final sample of the previous year base (n-1), and
- 2) The advance sample of current year base (n).

Data collected from 2015 Advance sample to 2017 Advance sample, data of more than seven hundred thousand companies every year (base) distributed as table 4.1 shows:

YEAR	SAMPLE	N° of COMPANIES
2.015	AVANCE	317.116
2.015	MENF	594.130
2.015	BACH_RSE	668.230
2.015	FINAL	737.410
2.016	AVANCE	418.423
2.016	MENF	547.491
2.016	BACH_RSE	659.903
2.016	FINAL	753.458
2.017	AVANCE	564.914

Table 4.1Number of companies in every extraction, from 2015 to 2017

SAS PROGRAM

To deal with this huge amount of data, a statistical tool is required, the program finally selected was SAS. The work flow process can be seen at chart 4.3, and follows the next steps:

Chart 4.3 SAS program for Outsider's Method for outliers detection

- Defining the paths by assigning the process libraries
- Import the data with the accounting information for the calculation of the numerators and denominators of the ratios
- The program that calculates the numerators and denominators of the ratios (program "prepara")
- The query that calculates the ratios for every company. ("ratio1")
- The program that calculate the function φ and calculate the nodes and order the observations in their respective node according to the descending value of φ. ("ratio2")
- The program that calculates the function "Ind" and prepare the final output of the program that includes the companies that has Ind>1 which is the condition to be categorized as outlier.

RESULTS OF SAS PROGRAM.

Once the SAS program is executed it is obtained two excel files as a raw information:

1) "Colas.xls"

Table 4.2"Colas.xls" raw output

RATIO	id	NIF	NOMB	SUBTIPO	NUM	DEN	PHI	COLA	NUMT	DENT	No	loga
E1	2342188			N	0	-53.35075	0.00015593	A1<+	7.44037	-1622.42424	1	-8.76610873
E1	1964830			N	-220.93268	-24.26857	0.03001797	A3<+	751.95362	-7465.71132	1	-3.50595895
E1	184314			N	114145	136420	0.0559543	B1>+	420051.87	1488262	22 1	-2.88321991
E1	74582			R	6174	253124	0.05284311	B1>-	420051.87	1488262	1	-2.94042793
E1	67809			R	10315.1289	16485.8077	0.03199965	B2>+	41157.626	256014.035	1	-3.44203046

In this excel file it can be found:

- a. Ratio in which the program detects an outlier
- b. Id: code to identify the company (used to overtake confidentiality constrictions)
- c. NIF: Fiscal Id of the firm (hidden due to confidentiality reasons)
- d. NOMB: Name of the firm (hidden due to confidentiality reasons)
- e. Any: year of the annual accounts from which the data are obtained
- f. NUM: Numerator of the Ratio
- g. DEN: Denominator of the Ratio
- h. NUMT: Numerator of the ratio for the whole node
- i. DENT: Denominator of the ratio for the whole node
- j. PHI: Value of the ϕ function
- k. COLA: four-digit code that identify: (example: A1<-)
 - i. A: identify the sector: Agriculture, Forestry and Mining...
 - ii. 1: identify the size: Large
 - iii. <-: identify the tale: (left + or right -)
- I. Loga: is the logarithm of the ϕ function

2) "Outlier.xls"

Table 4.3 "Outlier.xls" raw output

RATIO	id	NIF	NOMB	SUBTIPO	NUM	DEN	PHI	COLA	NUMT	DENT	No	loga	INDICE	NODO
E1	2342188)	N	0	-53.35075	0.00015593	A1<+	7.44037	-1622.42424	1	-8.8	2.5	A1
E1	1964830			N	-220.93268	-24.26857	0.03001797	A3<+	751.95362	-7465.71132	1	-3.5	1.1	A3
E1	184314			N	114145	136420	0.0559543	B1>+	420051.87	1488262	1	-2.9	1.2	B1
E1	74582			R	6174	253124	0.05284311	B1>-	420051.87	1488262	1	-2.9	1.2	B1
E1	67809			R	10315.1289	16485.8077	0.03199965	B2>+	41157.626	256014.035	1	-3.4	1.1	B2

In this file it can be found the same information as in previous one, but including also:

a) INDICE: Is the "Ind" function, all observations in which "Ind>1" will be considered outliers.

OUTLIER KEY VS TRACE OF OUTLIER KEY.

The results obtained are subjected to a stability control, to analyse the anomalous values in the different extractions and to study the evolution of the nodes to which they belong in successive bases.

With this objective, two keys have been designed:

- "Outlier" key: that takes value one for those companies in which in at least one of the ratios an anomalous observation was found, and zero, otherwise.
- Key "Trace of Outlier": value that shows the characterization and evolution of the company as an outlier throughout the four extractions of a base.

This trace allows to know if a company has been or is classified as an outlier in any of the extractions of data as well as to follow up on which of them has ceased to be, if it had lost that condition.

This key is relevant to assess the "outsider's method", as the number of observations in each of the four extraction is growing, approximately by one hundred thousand companies by extraction.

According to the design of this outliers detection system the purpose is to find those observations that deviates extraordinarily from the normal behaviour of their node and also contributes to explain the differences on the behaviour, so it is expected that most of the outliers detected in the first extraction (advance) should remain till last extraction (final).

To check the outlier classification according to extraction it is defined the following table of possible values:

DESCRIPTION KEY TRACE OF OUTLIER	VALUE OF THE KEY		MAP OF ES KEY TRAZE (
		ADVANCE	MENF	BACH_RSE	FINAL	2015	2016
NOOUTLIER	0						
ADVANCE	1					903	951
MENF	2					498	355
ADVANCE + MENF	3					331	582
BACH_RSE	4					365	274
ADVANCE + BACH_RSE	5					15	28
MENF + BACH_RSE	6					153	185
ADVANCE + MENF + BACH_RSE	7					123	289
FINAL	8					587	743
ADVANCE + FINAL	9					15	14
MENF + FINAL	10					222	33
BACH_RSE + FINAL	11					271	14
ADVANCE + MENF + FINAL	12					276	672
ADVANCE + BACH_RSE + FINAL	13					523	14
MENF + BACH_RSE + FINAL	15					89	393
ADVANCE + MENF + BACH_RSE + FINAL	16					824	771

Table 4.4Values of key trace of outlier

TOTAL OUTLIERS	5197	5319
% OF OUTLIERS THAT REMAIN AS AOUTLIERS SINCE IT HAS BEEN MARKED WITH THAT CONDITION	34%	36%
% OF OUTLIERS THAT LOSE THAT CONDITION	66%	64%
% OF outliers that lose that condition but at the final extraction remain as outlier	20%	14%

In the "MAP OF EXTRACTIONS" is coloured in blue, when an observation is classified as outlier and in white when it ceases to be.

As it can be deducted from the table, the number of outliers and the percentages of them, that remain as outlier since they have been marked with that condition, and the percentage of outliers that lose that condition seems to be very stable in the two bases.

On the other hand, the % of outliers that lose that condition but at the final extraction remain as outliers diminish by 6% in 2.016 base, the figures related to the observations that are considered outliers at MENF and FINAL extractions decrease from 45 in 2.015 to 7 in 2.016.

At the end the % of observation that at the final extraction are considered as outliers either because since they acquire the condition of outlier they do not lose it until the end or because even if they have lost it in some extraction they end up maintaining it in the final extraction is higher than 50%, as can be expected according to the design of the outsider's outlier detection system.

ANALYSIS OF RESULTS OBTAINED BY THE "OUTSIDER'S METHOD". THE OUTLIERS REPORT.

To analyse the results obtained with the outsider's method, after every extraction it is implemented an outlier regular report, which it is useful to be able to see from a higher perspective the performance of the method.

In this report it can be observed:

- Number of companies labelled as outliers in the extraction, this number always must necessarily match with the "Outlier key" and represent the total number of companies identified as outliers at CBB database.
- Company with the highest "Ind" function, accompanying the identification number of this one it is included the ratio affected and the sector and size to which this firm belongs.
- Selection of companies with more ratios labelled as outliers, more than 6 of the 17 ratios analysed marked as outliers. See table 4.5

id	NODO	N⁰	In	idice E	1	E2	E3	M1	M2	M3	M4	PMC	PMP	R1	R2	R3	TAN	TGF	TREB	TRON	TVAB
39826	B1	1	3	4,14		3,82	4,14	1,43	2,11		2,35	1,65	1,00	2,20	1,21	2,13			2,04	2,29	2,86
3231956	L1	1	3	2,08			1,31		1,31	1,69	1,53	1,72	1,69	1,20	1,24	1,34		1,08	2,08	2,05	2,02
177968	Z1	1	3	2,04	1,18	1,46	1,52	1,23	1,42	1,41	1,51	1,04			2,04	1,20			1,71	1,64	1,50
74582	B1	1	2	1,57	1,22	1,57	1,46	1,29	1,11		1,44	1,40		1,17		1,18			1,42	1,42	1,21
1018483	J2	1	1	4,23		2,63	2,43	1,01	1,11	4,19	4,23			1,13		1,16			2,62	1,98	3,11
153651	F2	1	1	2,81		1,83	1,72		1,13	2,81	1,21					2,45	1,36	1,01	1,68	1,20	1,61
2064009	D1	1	1	2,07	1,01	1,54					1,10			1,67	1,62	1,30	2,07	1,59	2,00	1,55	1,99
2008251	E2	1	0	3,09	1,29	1,33	1,69		1,02				1,18		3,09		1,19	2,03	1,23	1,19	
73608	G1	1	0	2,15	1,21	1,73	1,86			1,49	2,15				1,03	1,58		1,37	1,24	1,17	
72125	B2	1	0	1,81	1,65	1,81	1,21							1,55	1,11	1,81		1,62	1,19	1,33	1,11
167477	J1	:	9	1,91				1,24		1,11	1,22			1,12		1,15	1,36	1,91	1,27	1,19	
175787	B1	:	9	1,67		1,01	1,45	1,04			1,56	1,01	1,12		1,24		1,04			1,67	
53938	L1	1	8	2,72		1,04	1,11			1,36	; 1,32			2,72		2,07			1,06		1,39
98593	L2	1	8	1,98		1,68	1,42			1,09	1,29		1,14						1,59	1,24	1,98
147082	A2		7	3,14		1,60	1,31			3,14	2,97								1,67	1,11	2,93
73538	E2		7	2,78	1,02			1,05						1,12		1,33	1,51			2,78	1,03
2104801	N2		7	2,29	1,05	2,16	2,29								1,57	2,11		1,04		1,51	
180575	J1		7	2,18		1,53	1,68			1,16	; 1,20								1,42	1,25	2,18
184314	B1		7	2,03	1,19	1,68	2,03								1,80		1,23	1,16		1,16	
173669	Z2	I	6	4,40		1,60	1,62			3,25	3,86								1,62		4,40

Table 4.5Companies with more than 6 ratios labelled as outliers

This is a very illustrative panel, as it gives the clue on those companies with many potential mistakes, those companies are checked afterwards by an expert analyst, in order to be sure, and to avoid including them in our CBB database, because they are not effectively representing a correct behaviour of the reality of the firm.

When the expert analyst find a company marked as outlier but its behaviour represents the reality of the firm, the mark of outlier of this company is immediately removed, and therefore it is included again in our CBB database.

Also, we can find a heat map, from beige to red, all the outliers according to the value of the "Ind" function, from lower to higher value.

- Ratio with the highest number of outliers labelled
- Companies with the highest "Ind" in each ratio:

This panel helps to analyse the behaviour of sectors and ratios and their outliers' patterns. As it can be seen in the table 4.6 some of the observations (companies) are repeated in several ratios as the highest value of the "Ind" function. That drive us to go again to the micro data and analyse the company in order to check by an expert analyst if this behaviour comes from a mistake in reporting or other similar reason or on the contrary, it is presenting the right development of the company, in that situation, the key of outlier is immediately removed.

id	SECTOR and SIZE	HIGHEST
		"Ind"
2342188	AGRICULTURE, FORESTRY AND FISHING_LARGE	E1
39826	EXTRACTIVE INDUSTRIES_LARGE	E2
39826	EXTRACTIVE INDUSTRIES_LARGE	EЗ
2129237	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MICRO	M1
39826	EXTRACTIVE INDUSTRIES_LARGE	M2
1018483	INFORMATION AND COMMUNICATIONS_MEDIUM	МЗ
1018483	INFORMATION AND COMMUNICATIONS_MEDIUM	M4
151776	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_SMALL	РМС
183057	REAL ESTATE ACTIVITIES_MEDIUM	РМР
53938	REAL ESTATE ACTIVITIES_LARGE	R1
1558900	INFORMATION AND COMMUNICATIONS_LARGE	R2
153651	CONSTRUCTION_MEDIUM	R3
2066283	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE	TAN
2066283	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE	TGF
1018483	INFORMATION AND COMMUNICATIONS_MEDIUM	TREB
73538	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MEDIUM	TRON
173669	OTHER SERVICES_MEDIUM	туав

Table 4.6 Companies the highest "Ind" in each ratio

Ratios of outliers per extraction and number of companies marked as outliers pre extraction:
Table 4.7 Outliers by extraction and Companies marked as outliers by extraction

BASE	EXTRACTION	Nº OF COMPANIES	№ OF OUTLIERS	RATIO OF OUTLIERS PER EXTRACTION	COMPANIES MARKED AS OUTLIERS	RATIO OF COMPANIES MARKED AS OUTLIERS PER EXTRACTION
2,015	AVANCE	317,116	11,316	3.57%	3,263	1.03%
2,015	MENF	594,130	15,972	2.69%	5,072	0.85%
2,015	BACH_RSE	668,230	16,293	2.44%	5,197	0.78%
2,015	FINAL	737,410	16,403	2.22%	5,197	0.70%
2,016	AVANCE	418,423	15,082	3.60%	4,668	1.12%
2,016	MENF	547,491	15,846	2.89%	4,974	0.91%
2,016	BACH_RSE	659,903	16,265	2.46%	5,184	0.79%
2,016	FINAL	753,458	16,471	2.19%	5,319	0.71%
2,017	AVANCE	564,914	15,747	2.79%	4,994	0.88%

This table shows by base, year of the reported financial statements, and extraction, the number of companies analysed and the results of the SAS program, as it can be seen the ratio of outliers per extraction varies from 3.60% in the advance samples, as it can be expected because of the smaller number of companies analysed by the temporality of the extraction, to 2.22% in the final sample. It is to be highlighted that for 2017 base, the number of companies analysed has grown and is similar to the second extraction (MENF), around 2.70%, and the ratio of outliers per extraction behaves in the same way.

As it is mentioned, when an observation has one of the ratios labelled as an outlier, this one is considered as an outlier, as it can be checked at the ratio of companies marked as outliers per extraction, it is approximately half of the results shown at the column of ratio of outliers per extraction. That bring us to the conclusion that approximately half of the companies marked as outliers has more than one outlier among its ratios.

Evolution of number of outliers by base, extraction and ratio
With the aim of analysing the stability of the number of outliers per ratio and extraction, it is performed the table 4.8 in which it can be observed that in most of the ratios and for all the extractions, the number of outliers found remains very stable despite in every further one of each base, the number of companies grows, around 100,000 by each extraction.

This leads to asses this method that identifies the observations that deviates more from the normal distribution and also contributes more to the variation of their respective node making this method a very efficient lawyer of quality control due to the reduced number of abnormal observations explain the most important part of the variation of the node. This stability of number of outliers per extraction and ratio can be checked graphically at chart 4.4

Table 4.8	Evolution of	f Nº of outl	iers bv base.	extraction	and ratio
10.010 110					

EVOLUTION OF Nº OUTLIERS BY BASE, EXTRACTION AND RATIO									
NODO	AVANCE 2015	MENF 2015	BACH_RSE 2015	FINAL 2015	AVANCE 2016	MENF 2016	BACH_RSE 2016	FINAL 2016	AVANCE 2017
E1	832	1,131	1,303	1,469	784	1,012	1,388	1,357	972
E2	939	1,105	1,173	1,126	1,183	1,070	1,053	1,149	1,222
E3	868	1,291	1,238	1,175	1,260	1,272	1,221	1,149	1,208
M1	416	453	538	473	373	419	412	351	486
M2	440	532	424	392	360	419	427	319	333
M3	535	1,025	1,173	1,224	1,054	1,229	1,205	1,405	1,139
M4	737	1,491	1,564	1,616	1,620	1,822	1,877	1,867	1,764
ACCP	357	413	391	277	219	347	259	287	305
ASPP	416	413	440	343	399	419	366	447	403
R1	654	932	1,010	1,110	707	824	1,099	1,213	653
R2	832	772	1,043	963	759	781	915	1,069	819
R3	606	1,291	1,271	1,306	1,054	1,113	1,190	1,069	1,028
RV NA	927	972	994	1,077	900	1,012	961	1,053	805
RV FC	511	532	424	473	771	665	549	399	569
RV GOP	761	1,118	978	1,012	1,029	940	931	910	1,278
RV ONP	737	958	733	653	913	925	763	622	1,083
RV GVA	749	1,544	1,597	1,714	1,697	1,576	1,648	1,804	1,680
Total	11,316	15,972	16,293	16,403	15,082	15,846	16,265	16,471	15,747

Chart 4.4 Evolution of number of outliers by base, extraction and ratio

Evolution of number of outliers by base, extraction and size
In Table 4.9 is presented the number of outliers obtained by base, extraction and by size, as in other breakdowns it is to be highlighted the stability and similarity's comparing extraction over extraction and size by size.

		EVOLUTION OF № OF OUTLIERS BY BASE, EXTRACTION AND SIZE								
	AVANCE 2015	MENF 2015	BACH RSE 2015	FINAL 2015	AVANCE 2016	MENF 2016	BACH RSE 2016	FINAL 2016	AVANCE 2017	
LARGE	3,142	4,289	4,394	4,444	4,188	4,352	4,405	4,451	4,236	
MEDIUM	2,030	3,433	3,543	3,583	2,706	3,219	3,550	3,674	3,307	
SMALL	2,839	3,853	3,957	3,917	3,784	3,879	3,919	3,953	3,805	
MICRO	3,304	4,397	4,399	4,459	4,404	4,396	4,391	4,393	4,399	
Tota	l 11,316	15,972	16,293	16,403	15,082	15,846	16,265	16,471	15,747	

Table 4.9 Evolution of N° of outliers by base, extraction and size

Chart 4.5 Evolution of number of outliers by base, extraction and size

At chart 4.5 can be checked that in average and for all the extractions, approximately 25 % of the outliers belong to the Large companies, 20% belong to Medium, 25% to Small's and finally about 30% of the outliers belong to Micro's, as can be expected, as at the outsider's method it is measured the

contribution of the observation to its node, and the 30% in which the number of observations are much bigger and the distributions can widen the range of the outlier caliber and the contribution to its node.

Similar figures can be seen regarding the number of companies marked as outlier by base, extraction and size at table 4.10 and chart 4.6:

		size								
	EVOL	EVOLUTION OF № OF COMPANIES MARKED AS OUTLIERS BY BASE, EXTRACTION AND SIZE								
	AVANCE 2015	MENF 2015	BACH_RSE 2015	FINAL 2015	AVANCE 2016	MENF 2016	BACH RSE 2016	FINAL 2016	AVANCE 2017	
LARGE	610	965	1,002	994	873	926	968	1,007	960	
MEDIUM	464	841	872	866	664	780	913	958	811	
SMALL	936	1,388	1,449	1,454	1,339	1,392	1,434	1,470	1,360	
MICRO	1,253	1,878	1,874	1,883	1,792	1,876	1,869	1,884	1,863	
Total general	3,263	5,072	5,197	5,197	4,668	4,974	5,184	5,319	4,994	

Table 4.10Evolution of Nº of companies marked as outliers by base, extraction and
size

In the following two pages we can see the Table 4.11 that represents the evolution of number of outliers detected by size sector and extraction, to the right it can be found charts corresponding to every sector, size and extraction in which it is represented graphically the evolution of the aforementioned labelled outliers.

This allows a quick assessment of the outsider's method through analysing the performance of the outliers founded throughout the extractions by a simple view of the charts.
	№ OUTLIERS BY SECTOR, SIZE and EXTRACTION																	
NODE	SECTOR Y TAMAÑO	ADVANCE 2015	MENF 2015	BACH_RSE 2015	FINAL 2015	ADVANCE 2016	MENF 2016	BACH_RSE 2016	FINAL 2016	ADVANCE 2017	MEAN	STANDARD DEVIATION	GRAPHICAL EVOLUTION					
A1	AGRICULTURE, FORESTRY AND FISHING_LARGE	439	287	387	247	585	308	325	308	239	347.09	102.91	AGRICULTURE, FORESTRY AND FISHING					
A2	AGRICULTURE, FORESTRY AND FISHING_MEDIUM	249	269	581	550	331	441	542	532	283	419.78	128.80						
A3	AGRICULTURE, FORESTRY AND FISHING_SMALL	227	261	258	269	302	267	249	189	274	255.09	30.02	ADVANCE MENF BACH RSE FINAL ADVANCE MENF BACH RSE FINAL ADVANCE 2015 2015 2015 2015 2015 2016 2016 2016 2017					
A4	AGRICULTURE, FORESTRY AND FISHING_MICROS	117	0	65	67	156	215	195	201	18	114.88	76.81						
B1	EXTRACTIVE INDUSTRIES_LARGE	453	593	194	191	604	462	683	1,006	575	528.80	235.69	EXTRACTIVE INDUSTRIES					
B2	EXTRACTIVE INDUSTRIES_MEDIUM	117	404	581	606	156	215	336	331	380	347.39	160.95						
В3	EXTRACTIVE INDUSTRIES_SMALL	124	548	366	381	166	62	141	201	363	261.23	150.45						
В4	EXTRACTIVE INDUSTRIES_MICROS	351	216	387	404	468	308	228	225	248	314.76	86.90	ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 — BRHRACTIVE INDURRHES, LARGE 2015 2016 -2016xtractive RRAGHSTN ES_MERRARM 2017 — EXTRACTIVE INDUSTRIES_SMALL — EXTRACTIVE INDUSTRIES_MICROS					
C1	MANUFACTURING INDUSTRIES_LARGE	51	269	172	180	68	164	130	130	212	152.99	64.01	MANUFACTURING INDUSTRIES					
C2	MANUFACTURING INDUSTRIES_MEDIUM	73	278	140	157	97	154	173	213	345	181.21	81.00						
СЗ	MANUFACTURING INDUSTRIES_SMALL	22	171	140	146	29	21	0	118	212	95.39	73.66	ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2015 2016 2016 2016 2017					
C4	MANUFACTURING INDUSTRIES_MICROS	37	63	0	0	49	62	22	12	44	31.93	23.18	MANUFACTURING INDUSTRIES_LARGE MANUFACTURING INDUSTRIES_MEDIUM MANUFACTURING INDUSTRIES_MALL MANUFACTURING INDUSTRIES_MICROS					

Table 4.11 Evolution of number of outliers by sector size and extraction

 Table 4.11 Evolution of number of outliers by sector size and extraction (cont.)

	Nº OUTLIERS BY SECTOR, SIZE and EXTRACTION																
D1	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE	205	314	409	426	273	441	271	118	195	294.63	106.67	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING				
D2	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MEDIUM	1,001	1,114	699	729	1,335	1,590	1,246	1,065	1,043	1,091.40	264.20	1,500				
D3	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_SMALL	373	674	516	426	497	677	856	603	628	583.35	139.29	ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2015 2016 2016 2016 2016 2017				
D4	SUPPLY OF ELECTRICAL POWER,GAS, STEAM AND AIR CONDITIONING _MICROS	102	225	247	258	136	154	217	189	177	189.49	49.29	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MEDIUM SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_SMALL				
E1	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE	446	620	925	976	594	513	412	615	477	619.82	190.30	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION				
E2	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MEDIUM	132	494	226	236	175	256	325	556	292	299.10	133.08					
E3	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_SMALL	132	225	645	673	175	246	336	414	177	335.89	191.15	ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2016 2016 2016 2016 2016 2017				
E4	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MICROS	102	278	140	146	136	246	347	319	309	224.97	88.57	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION LARGE WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION, MEDIUM WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION, SMALL WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MERG S				
F1		212	180	398	415	283	287	184	343	195	277.37	86.49	CONSTRUCTION				
F2		534	440	366	258	711	451	423	414	336	436.97	121.47					
F3		183	314	398	415	244	462	488	461	301	362.78	101.04	200 100 0 ADVANCE MENE BACH RSE FINAL ADVANCE MENE BACH RSE FINAL				
F4		15	18	11	11	19	10	0	0	9	10.35	6.47	2015 2015 2015 2015 2016 2016 2016 2016 CONSTRUCTION_LARGE CONSTRUCTION_MEDIUM CONSTRUCTION_SMALL CONSTRUCTION_MICROS				
G1	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_LARGE	29	54	32	34	39	51	108	154	53	61.62	39.63	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES				
G2	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MEDIUM	132	135	183	191	175	205	260	189	177	182.96	35.90					
G3	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_SMALL	15	126	43	45	19	21	11	35	115	47.73	40.53	ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2016 2016 2016 2016 2016 2017				
G4	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MICROS	0	9	0	0	0	0	0	0	9	1.98	3.71	WHO LESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MOLO				

	Nº OUTLIERS BY SECTOR, SIZE and EXTRACTION																	
H1	TRANSPORTATION AND STORAGE_LARGE	234	296	312	191	312	103	152	83	327	223.22	89.70	TRANSPORTATION AND STORAGE					
Н2	TRANSPORTATION AND STORAGE_MEDIUM	66	386	505	527	88	246	390	497	371	341.90	163.42						
НЗ	TRANSPORTATION AND STORAGE_SMALL	183	287	301	314	244	174	184	308	283	253.13	54.84	ADVANCE MENF BACH RSE FINAL ADVANCE MENF BACH RSE FINAL ADVANCE 2015 2015 2015 2016 2016 2016 2016 2017 TRANSPORTATION AND STORAGE_IARGE TRANSPORTATION AND STORAGE_SMALL					
Н4	TRANSPORTATION AND STORAGE_MICROS	73	63	0	0	97	103	98	106	62	66.88	39.07						
11	HOSTELRY_LARGE	227	602	269	280	302	338	412	343	566	371.01	124.28	HOSTELERÍA					
12	HOSTELRY_MEDIUM	285	225	323	292	380	513	358	390	265	336.68	80.81						
13	HOSTELRY_SMALL	219	81	118	123	292	185	65	71	88	138.13	73.58	200 100 0 ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE					
14	HOSTELRY_LARGE	15	0	0	0	19	41	0	0	0	8.35	13.54	2015 2015 2015 2015 2016 2016 2016 2016 2016 2017 → HOSTELRY_LARGE → HOSTELRY_MEDIUM → HOSTELRY_SMALL → HOSTELRY_LARGE					
J1	INFORMATION AND COMMUNICATIONS_LARGE	468	27	387	404	624	390	390	284	141	346.08	166.08	I.200					
J2	INFORMATION AND COMMUNICATIONS_MEDIUM	212	710	1,086	1,133	283	892	921	840	831	767.58	303.84						
13	INFORMATION AND COMMUNICATIONS_SMALL	351	386	484	505	468	503	509	509	354	452.00	64.41	200 0 ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2015 2016 2016 2016 2016 2017					
J4	INFORMATION AND COMMUNICATIONS_MICROS	22	135	140	146	29	21	11	12	133	71.93	59.64	INFORMATION AND COMMUNICATIONS_LARGE INFORMATION AND COMMUNICATIONS_MEDIUM INFORMATION AND COMMUNICATIONS_SMALL INFORMATION AND COMMUNICATIONS_MICROS					

 Table 4.11 Evolution of number of outliers by sector size and extraction (cont.)

	Nº OUTLIERS BY SECTOR, SIZE and EXTRACTION																
L1	REAL ESTATE ACTIVITIES_LARGE	366	359	333	348	487	554	553	532	433	440.60	87.17	REAL ESTATE ACTIVITIES				
L2	REAL ESTATE ACTIVITIES_MEDIUM	373	368	635	662	497	544	813	852	566	589.84	160.93					
L3	REAL ESTATE ACTIVITIES_SMALL	212	269	172	180	283	256	282	308	256	246.42	45.00	200 100 0 ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL 2015 2015 2015 2015 2015 2015 2015 2015				
L4	REAL ESTATE ACTIVITIES_MICROS	22	0	0	0	29	31	0	0	18	11.07	12.88	2013 2013 2013 2013 2013 2010 2010 2010				
M1	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_LARGE	212	198	22	22	283	267	282	189	168	182.43	94.18	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES				
M2	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM	344	548	527	550	458	277	477	568	734	497.97	125.31					
М3	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_SMALL	88	611	516	539	117	349	65	47	557	320.93	226.67	200 201 0 ADVANCE MENF BACH_RSE FINAL ADVANCE MENF BACH_RSE FINAL ADVANCE 2015 2015 2015 2016 2016 2016 2016 2016 2017				
M4	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MICROS	0	9	0	0	0	0	0	0	9	1.98	3.71	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_LARGE PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MALL PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MALL				
N1	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_LARGE	256	287	258	269	341	328	303	296	354	299.20	33.64	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES				
N2	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MEDIUM	556	755	505	527	740	800	563	355	663	607.22	135.28					
N3	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_SMALL	197	216	129	135	263	185	455	402	221	244.75	106.56	200 100 0 ADVANCE MENF BACH RSE FINAL ADVANCE MENF BACH RSE FINAL ADVANCE 2015 2015 2015 2015 2016 2016 2017				
N4	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MICROS	58	45	43	45	78	21	11	0	62	40.28	23.91	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_LARGE ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_SMELIUM ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MICROS				
Z1	OTHER SERVICES_LARGE	7	81	97	101	10	62	0	0	177	59.34	57.37	OTHER SERVICES				
Z2	OTHER SERVICES_MEDIUM	270	350	602	651	360	215	303	367	363	386.93	137.02					
Z3	OTHER SERVICES_SMALL	73	99	22	22	97	92	108	118	62	77.13	33.53					
Z4	OTHER SERVICES_MICROS	58	0	0	0	78	72	54	47	0	34.41	31.91	2015 2015 2015 2015 2015 2016 2016 2016 2016 2016 2017				

Table 4.11 Evolution of number of outliers by sector size and extraction (cont.)

AN INTRODUCTION TO THE SECOND PART OF THE THESIS, METHODS TO COMPARE AND VALIDATE THE RESULTS OBTAINED BY THE OUTSIDER'S METHOD.

The results of the Outsider's method seem to be very promising, for two reasons mainly:

- The proportion of outliers detected in relation to the total observations in each sample analysed overtime.
- The stable trends of number of outliers, by size and by sector through all the extractions.

But in order to ensure the quality and effectiveness of this method, and finally to validate its selection as a definitive lawyer of quality control at Banco de España' s CBSDO is mandatory to compare its results with other outlier detection methods with a proven history of use.

The methods, to be selected to do such validation, are frequently used in institutions like ECB, Eurostat, BACH or the Spanish National Statistics Institute; therefore, they will serve as a framework in which we can compare, test and validate the outsider's method.

Those methods will be:

- 1. P3-P97 (1st method)
- 2. IQR (2nd method)
- 3. Highest and Lowest observations (3rd method)

It will be used another statistical tool, the one selected is STATA, the main reason to use a different tool is due to ensure the resilience of CBSDO to risks derived from technological dependence.

The Stata code, it will be run by each of these three methods to each of the nine sample extractions and the results obtained will be subsequently compared with the ones obtained by outsider's method.

Finally, in the chapter of conclusions, the main hypothesis will be to validate the outsider's method as a method of quality control applicable in the CBSDO, and it is desired that this can be contrasted.

FIRST METHOD: (P3 – P97)

This approach will try to find out observations with extreme data and a high contribution to the aggregated data, those companies (observations) are eliminated of the sample, which is exactly the same purpose of the outsider's method.

This method is used in many institutions such EUROSTAT, INE (Spanish National Statistical Institute), etc.; and its results are widely accepted.

It is based in:

- cut-off points (fences),
 - \circ above the percentile 97, and
 - o below the percentile 3
- Contribution of each observation to the whole aggregated data.

Table 4.11 First method to validate outsider's method: P3 – P97

MICRODATA: OUTLIERS FILTERS									
Variables to work with: 12 ratios + 5 annual variation rates Using: STATA Applying Cross sector and cross size criteria For each aggregate: STATA Filters are looking for									
OUTLIERS RELATED TO RATIOS OUTLIERS RELATED TO ANNUAL VARIATION RATES									
Individual data will be excluded if: any ratio \mathbf{C} [percentil 3, Percentil 97], AND (K _N >25*KM _N , or K _D >25*KM _D)	Individual data will be excluded if: any rate \clubsuit [percentil 3, Percentil 97], OR N _{t-1} or N _t =0, and K _N >25*KM _N								
where: N=Numerator D= Denominator $K_N = N / \sum N $ $K_D = D / \sum D $ $KM_N = Simple average(K_N)$ $KM_D = Simple average(K_D)$									

It has been designed an Stata code to be run in each extraction, the results of this P3_P97 method on the different extractions can be seen in the following table 4.12

Table 4.12	Results obtained by P3	P97 method and com	parison with outsider's met	hod
			p	

		EXTRACTIONS											
INTERSECTION P3_P97 Vs OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	AVANCE				
	2017	2016	2016	2016	2016	2015	2015	2015	2015				
NUMBER OF FIRMS	564,914	753,458	659,903	547,491	418,423	753,458	659,903	547,491	418,423				
NUMBER OF FIRMS MARKED AS OUTLIERS													
OUTSIDER'S	4,994	5,319	5,184	4,974	4,668	5,197	5,197	5,072	3,263				
P3_P97	67,078	91,874	80, 342	66,481	50,728	91,874	80,342	66,481	50,728				
% MATCHING BETWEEN P3_P97 & OUTSIDER'S	45%	47%	45%	44%	43%	48%	48%	47%	40%				
NUMBER OF FIRMS MARKED AS OUTLIERS THAT MATCH	2,254	2,524	2,348	2,200	1,998	2,516	2,516	2,390	1,306				
% NO MATCHING BETWEEN P3_P97 & OUTSIDER'S	55%	53%	55%	56%	57%	52 %	52%	53%	60%				
NUMBER OF FIRMS MARKED AS OUTLIERS THAT DON'T MATCH	2,740	2,795	2,836	2,774	2,670	2,681	2,681	2,682	1,957				

The match ratio between the P3_P97 method and the outsider's method it is proved to be fairly constant in all extractions and slips around 45%.

The number of companies marked as outliers by the P3_P97 method is much greater than the results obtained by the outsider's method.

In table 4.13 it can be found that the % of companies marked as outliers by the outsider's method is around 1% over the total companies of the sample while the same figure for the P3_P97 is around 12% in all extractions.

Table 4.13Coverage ratios of firms marked as outliers over the total obtained by P3_P97method and comparison with outsider's method

	EXTRACTIONS												
INTERSECTION P3_P97 Vs OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	AVANCE				
	2017	2016	2016	2016	2016	2015	2015	2015	2015				
% FIRMS MARKED AS OUTLIERS OVER TOTAL													
OUTSIDER'S	0.9%	0.7%	0.8%	0.9%	1.1%	0.7%	0.8%	0.9%	0.8%				
P3_P97	11.9%	12.2%	12.2%	12.1%	12.1%	12.2%	12.2%	12.1%	12.1%				

It is very important for Banco de España, to be accurate in our quality control procedures, in one hand to eliminate those observation that disturb our sample, but in other to lose the less observations possible and in order to have the sample with the widest possible coverage. So, the number of companies expelled from the sample by the P3_P97 method is not acceptable while the number of them by the outsider's method seems to be more reasonable.

SECOND METHOD: INTERQUARTILE RANGE (IQR)

This method for identifying outliers is used at ECB, EUROSTAT¹, BACH and many other institutions, and its results are widely accepted.

The main elements of this method are:

- Lower quartile (Q1),
- Upper quartile (Q3), and
- The caliber, (k)

This method contains cut-off points (fences), k(Q3-Q1), above the upper quartile and below the lower quartile: [Q1 - k(Q3-Q1), Q3 + k(Q3-Q1)]

Observations beyond the fences are considered as potential outliers. In our proposal, k=25, with the aim of excluding only very extreme data, especially, because it must be taken into account that in some of our distributions, the first and third quartiles may have values very close to zero, which would imply that the interquartile range would be very wide and would not have a discriminating character when distinguishing anomalous observations of other normal and representative of the sample reality.

In this method is included, as a variable, the contribution of the observation to the aggregated data. It is considered relevant to analyse with this not homogeneous methodological approach because it can be tested the correlation of the extreme observations founded by the outsider's method with the extreme observations that this method will be found.

Table 4.12Second method to validate outsider's method: IQR

¹Practical guide to data validation in EUROSTAT (2.007): "Among all the different measures and graphs, the boxplot deserves a special reference, because it is particularly good in showing the main characteristics of the data and the existence of outliers. In fact, it was designed to do so. Letting Q1 and Q3 denote the first and the third quartiles respectively and IQR = Q3 –Q1 the interquartile range, the commonly used rule is the following:

• A data value i X is considered a moderate outlier if X< Q1 - 1.5*IQR or if X >Q3+ 1.5*IQR.

• A data value i X is considered a severe outlier if X< Q1 - 3*IQR or if X >Q3+ 3*IQR.

The values Q1 - 3*IQR - and Q3 + 3*IQR are called the lower and upper outer fences respectively and the values Q1 - 1.5*IQR - and Q3 + 1.5*IQR are called the lower and upper and inner fences respectively. The boxplot clearly marks the eventual outliers, often using different symbols for moderate (for example, an asterisk) and for severe (for example, a circle) outliers. Moreover, the value taken for the lower whisker is the lowest observation below Q1 that does not cross the lower inner fence, and the value taken for the upper whisker is the highest observation above Q3 that does not cross the upper inner fence, i.e.:

- Lower whisker = min {X: Q1 -1.5*IQR <= X<= Q1}.
- Upper whisker = max {X: Q3 <= X<= Q3 + 1.5IQR}.

This choice for the whiskers makes outlier detection easier."

These box plots produce graphical representation and allows to usually pinpoint the outlying observations, in the previous x-scale chart values, for the normal data are included within the limits set by the whiskers which, are fixed by the difference of the interquartile range and by the chosen caliber. Box plots make no assumptions about the data distribution model but are reliant on a human to note the extreme points plotted on the box plot.

It has been designed an Stata code to obtain the companies marked as outliers by this method, the results of the IQR method on the different extractions can be seen in the following table 4.13

		EXTRACTIONS											
INTERSECTION IQR25 Vs OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	AVANCE				
	2017	2016	2016	2016	2016	2015	2015	2015	2015				
IUMBER OF FIRMS	564,914	753,458	659,903	547,491	418,423	753,458	659,903	547,491	418,423				
NUMBER OF FIRMS MARKED AS OUTLIERS													
DUTSIDER'S	4,994	5,319	5,184	4,974	4,668	5,197	5,197	5,072	3,263				
QR25	7,974	8,220	8,542	7,914	6,613	8,506	8,502	7,851	4,833				
6 MATCHING BETWEEN IQR25 & OUTSIDER'S	11%	10%	11%	12%	13%	11%	11%	11%	14%				
IUMBER OF FIRMS MARKED AS OUTLIERS THAT MATCH	564	556	587	587	591	561	561	551	456				
6 NO MATCHING BETWEEN IQR25 & OUTSIDER'S	89%	90%	89%	88%	87%	89%	89%	89%	86%				
UMBER OF FIRMS MARKED AS OUTLIERS THAT DON'T MATCH	4,430	4,763	4,597	4,387	4,077	4,636	4,636	4,521	2,807				

 Table 4.13
 Results obtained by IQR method and comparison with outsider's method

The match ratio between the IQR method and the outsider's method proves to be fairly constant in all extractions and slips around 12%.

9

The number of companies marked as outliers by the IQR method is similar to the results obtained by the outsider's method.

In table 4.14 it can be found that the % of companies marked as outliers by the outsider's method is around 1% over the total companies of the sample while the same figure for the P3_P97 is around 12% in all extractions.

Table 4.14Coverage ratios of firms marked as outliers over the total obtained by IQR methodand comparison with outsider's method

	EXTRACTIONS												
INTERSECTION IQR25 Vs OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	AVANCE				
	2017	2016	2016	2016	2016	2015	2015	2015	2015				
% FIRMS MARKED AS OUTLIERS OVER TOTAL													
OUTSIDER'S	0.9%	0.7%	0.8%	0.9%	1.1%	0.7%	0.8%	0.9%	0.8%				
IQR	1.4%	1.1%	1.3%	1.4%	1.6%	1.1%	1.3%	1.4%	1.2%				

The preliminary conclusions of this validating method would consist in:

- Reduced percentage of coincidence between this IQR method and the Outsider's one, the reasons behind this are linked to the distributions of the different nodes, even though the caliber to set up the fences is designed to be extremely wide, seems that the differences of interquartile ranges (Q3 Q1) make the outlier selection even wider, and that is the main reason for the reduced coincidence of both methods.
- The percentage of firms marked as outliers over the total are closer in this two methods and are more acceptable if compared with P3_P97 percentages.

Finally, to compare the results obtained by these two validating methods, the list of companies marked as outliers were merged and the results can be seen in the following table 4.15

Table 4.15Results obtained by IQR method and comparison with P3_P97 method

	EXTRACTIONS											
INTERSECTION IQR25 Vs P3_P97	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	AVANCE			
	2017	2016	2016	2016	2016	2015	2015	2015	2015			
NUMBER OF FIRMS	564,914	753,458	659,903	547,491	418,423	753,458	659,903	547,491	418,423			
NUMBER OF FIRMS MARKED AS OUTLIERS												
P3_P97	67,078	91,874	80, 342	66,481	50,728	91,874	80,342	66,481	50,728			
IQR25	7,974	8,220	8,542	7,914	6,613	8,506	8,502	7,851	4,833			
% MATCHING BETWEEN IQR25 & OUTSIDER'S	91%	90%	85%	91%	93%	93%	95%	92%	90%			
NUMBER OF FIRMS MARKED AS OUTLIERS THAT MATCH	7,240	7,363	7,298	7,196	6,143	7,882	8,103	7,231	4,345			
% NO MATCHING BETWEEN IQR25 & OUTSIDER'S	9%	10%	15%	9%	7%	7%	5%	8%	10%			
NUMBER OF FIRMS MARKED AS OUTLIERS THAT DON'T MATCH	734	857	1,244	718	470	624	399	620	488			

It can be highlighted the high ratio of coincidence of the companies selected by the IQR method compared with the ones selected by the P3_P97 is around 90% in all extractions.

In Both methods, P3_P97 and IQR, the condition to be declared outlier is a combination of

- 1. Being out of the respective cut-off points (fences);
- below percentile 3 and above percentile 97 in the case of the P3_P97 method and

- In the case of IQR, the value of the variable in absolute value is over 25 times the interquartile range measured by the difference between the third quartile and the first one.
- 2. Having a contribution to it respective node over 1%

With this methodology we are comparing two very similar approaches, the two aforementioned validating methods (P3_P97 and IQR) with the outsider's method with its φ function, that includes both conditions, the contribution of the observation to its own node measured by the difference between the value of the node for that observation and the value of that node would have if that observation were not in the sample; and the cut-off points obtained by ordering by node the φ function values obtained for every company in the sample and selecting those that for each node in absolute value belongs to the 20 greatest.

(i)
$$R_i = N_i / D_i$$

(ii) $\varphi = \frac{\sum Nj}{\sum Dj} - \frac{\sum Nj - Ni}{\sum Dj - Di}$
(iii) $\varphi_i \ge \varphi_{i+1}$

R for Ratio N for Numerator D for Denominator i for each company j for each node

And to avoid the masking effect, and to properly define the condition of outlier, declare those observations in which their "Ind function" in Absolut value are greater than one are defined as outliers.

(iv)

$$Ind = \frac{\ln(\varphi) - Mean(\ln(\varphi))}{e^*(1 - \frac{1}{n})}$$

THIRD METHOD: LOWEST AND HIGHEST OBSERVATIONS

This method is the oldest to find extreme observations, it has the problem of the masking effect Bendre & Kale (1985) define the masking effect in cases of tests for outliers and quantified by the loss in power due to the presence of more than the anticipated number of discordant observations in the sample. In other words, it is said that an outlier masks a second one that is close by if the latter can be considered an outlier by itself, but not if it is considered along with the first one.

Despite this problem what we want to be sure it's that the outsider's method doesn't discriminate many extreme observations due to their not significant contribution of the observation to the whole aggregated data.

So, this will be a very simple but effective approach that will consist of obtaining the three highest and lowest observation of every node and for every extraction and correlate those to the respective results obtained with the outsider's method.

Chart 4.6 Third method to validate outsider's method: Highest and Lowest observations

A Stata code has been programmed in order to obtain the three highest and lowest observation for each node, and the results of the confrontation of this method, only based in the extremeness of the observations, with the outsider's method that consider both extremeness and contribution, can be observed in the following table 4.16.:

Table 4.16	Results obtained by Highest-Lowest (HL) method and comparison with the							
outsider's method								

					EXTRACTIONS	;			
INTERSECTION HL Vs OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	MENF
	2017	2016	2016	2016	2016	2015	2015	2015	2015
NUMBER OF FIRMS	564,914	753,458	659,903	547,491	418,423	753,458	659,903	547,491	418,423
NUMBER OF COMPANIES MARKED AS OUTLIERS									
OUTSIDER'S_20	4,994	5,319	5,184	4,974	4,668	5,197	5,197	5,072	4,833
HIGUEST-LOWEST	2,882	2,934	2,900	2,871	2,797	2,938	2,929	2,929	2,929
% MATCHING BETWEEN HL & OUTSIDER'S	8%	6%	7%	8%	9%	7%	7%	8%	8%
NUMBER OF OUTLIERS THAT MATCH	411	331	348	383	413	340	344	394	394
% NO MATCHING BETWEEN HL & OUTSIDER'S	92%	94%	93%	92 %	91%	93 %	93%	92%	97%
NUMBER OF OUTLIERS THAT DON'T MATCH	4,583	4,988	4,836	4,591	4,255	4,857	4,853	4,678	4,678
% OF OUTLIERS PER EXTRACTION MATCHING BETWEEN HL & OUTSIDER'S	0.510%	0.389%	0.439%	0.524%	0.668%	0.390%	0.444%	0.535%	0.700%
% OF OUTLIERS PER EXTRACTION OUTSIDER'S	0.884%	0.706%	0.786%	0.909%	1.116%	0.690%	0.788%	0.926%	1.155%

As can be expected the degree of coincidence is reduced, around 8% in every extraction due to the different methodology of both methods, many of the observations that could be declared as outlier by the HL method, are considered in that condition because they are so extreme but due to their reduced contribution to their respective node, the outsider's method will not declare them as outliers.

COMBINATION OF THE THREE VALIDATING METHODS

In order to continue the process of validating and assessing the outsider's method and to finally implement it as a quality control at Banco de España's CBSDO, it is necessary to combine these three methods, two based in the combination of extremity and contribution and the other one based only in extremity with the outsider's method.

The idea it is simple but effective and consist of constructing the union of the three methods and then compare it results with the outsiders. The schema of this methodology can be observed in the following chart 4.7:

Chart 4.7 Combination of all methods schema

And the results of this combinations can be seen on table 4.17:

	EXTRACTIONS														
INTERSECTION UNION OF THE THREE METHODS VS OUTSIDER'S	AVANCE	FINAL	BACH_RSE	MENF	AVANCE	FINAL	BACH_RSE	MENF	MENF						
	2017	2016	2016	2016	2016	2015	2015	2015	2015						
NUMBER OF FIRMS	564,914	753,458	659,903	547,491	418,423	753,458	659,903	547,491	418,423						
NUMBER OF COMPANIES MARKED AS OUTLIERS															
OUTSIDER'S_20	4,994	5,319	5,184	4,974	4,668	5,197	5,197	5,072	4,833						
UNION	77,934	103,028	91,784	77,266	60,138	103,318	91,773	77,261	58,490						
% MATCHING BETWEEN UNION & OUTSIDER'S	63%	66%	64%	60%	58%	65%	62%	59%	55%						
NUMBER OF OUTLIERS THAT MATCH	3,146	3,511	3,318	2,984	2,707	3,378	3,222	2,992	2,658						
% NO MATCHING BETWEEN UNION & OUTSIDER'S	37%	34%	36%	40%	42%	35%	38%	41%	45%						
NUMBER OF OUTLIERS THAT DON'T MATCH	1,848	1,808	1,866	1,990	1,961	1,819	1,975	2,080	2,175						

After merging the companies marked as outliers by the union of the three validating methods with the ones selected by the outsider's method the results are satisfactory, over 60% of coincidence.

Although satisfactory, these results do not leave us fully satisfied for two reasons mainly:

1. Around 40% of the companies marked as outlier by the outsider's method, are not considered by the combination of the other three methods

The reason behind this behaviour comes after analysing empirically the statistical distributions of the nodes; It seems that the number of the highest 20 absolute values of the ϕ function perhaps it is too wide.

In order to avoid the masking effect, maybe, we were too cautious, and the result of that is that we are wiping out some observations that contribute significantly and that are extreme, but not so extreme to be considered as outliers.

This appreciation is important, because that mean that we are excluding from our sample some observations that that would be very explanatory of the behaviour of each particular node.

This problem is common to all outlying detecting methods, but this is not enough excuse for not trying to continue improving our outlying detecting system.

2. The number of companies marked as outliers by the outsider's method is around five thousand per extraction.

The aim of the CBSDO is to be as accurate as possible, and to exclude the minimum companies of our sample. So, our wish is to reduce that number considerably.

Noticing these two very important aspects, the outsider's method can be considered as good as any of the other conventional methods.

In order to improve this quality control and fine tune its results according to Banco de España's CBSDO requirement, in the next chapter is presented the approved proposal of outlying detection method.

METHOD APPROVED AS A QUALITY CONTROL TOOL FOR DETECTING OUTLIERS OF CBB'S DATABASE

The method selected follow a quite rationale approach, if the problems of the original outsider's method consist of the not enough small number of companies discarded, and that some of them should not be discarded because they are not so extreme; the solution should consist of only reject among the observations selected by the original method, the ones that are the most extreme, so that is the intersection of the original outsider's method with the HL method (the three highest and the three lowest observations of each variable for each node).

From now on I will refer to the approved method as the outsider's method.

Graphically, the methodology of this approach can be seen on the chart 4.7

Chart 4.7 Outsider's method

The results obtained by the outsider's method can be seen at table 4.18

YEAR	EXTRACTION	NUMBER OF COMPANIES	NUMBER OF OUTLIERS	NUMBER OF COMPANIES MARKED AS OUTLIERS	RATIO OF COMPANIES MARKED AS OUTLIER OVER TOTAL
	MENF	594,130	1,778	394	0.07%
2,015	BACH_RSE	668,230	1,515	344	0.05%
	FINAL	737,410	1,462	340	0.05%
	AVANCE	418,423	1,857	413	0.10%
2.016	MENF	547,491	1,710	383	0.07%
2,010	BACH_RSE	659,903	1,501	348	0.05%
	FINAL	753,458	1,392	331	0.04%
2 017	AVANCE	564,914	1,781	411	0.07%
2,017	MENF	630,708	1,791	399	0.06%

Table 4.18 results obtained by the outsider's method

Also, it can be seen graphically at chart 4.8

Chart 4.8 Outsider's methods results: N. of Outliers Vs N. of companies marked as outliers

The number of outliers and the number of companies marked as outliers have a good ratio over the total companies of the sample, around 0.7% of the total of companies of the sample, in this regard, Hubert and Vandervieren (2008) propose a new outlier identification rule for skewed univariate data based on a so-called adjusted boxplot. Their idea was to modify the whiskers of the standard boxplot according to the degree of asymmetry in the data distribution, which can be robustly estimated by the medcouple. The expressions of the whiskers extremities of this adjusted boxplot were found from extensive simulations of a wide range of (moderately) skewed distributions and such that, in absence of contamination by outliers, approximately 0.7% of the observations lie outside the interval delimited by both whiskers (as it is the case for the standard boxplot and Gaussian data).

The aim of the Banco de España's CBSDO is losing the smaller number of companies as possible, in order to get the maximum coverage of our sample to the population of non-financial corporations. That's why we are selecting among the five thousand companies detected as outliers by the original outsider's method, only those that furthermore are among the three highest or the three lowest of their respective nodes.

Also, it can be seen at chart 4.9 and table 4.19 the evolution of number of outliers by year, extraction and ratio

In both, chart and table can be appreciated the stability in all extractions per ratio, especially in those which have similar number of companies and therefore more comparable.

	Evolution of number of outliers by year, extraction and ratio MENF BACH RSE FINAL AVANCE MENF BACH RSE FINAL AVANCE														
NODE	MENF 2015	BACH_RSE 2015	FINAL 2015	AVANCE 2016	MENF 2016	BACH_RSE 2016	FINAL 2016	AVANCE 2017	MENF 2017						
E1	117	97	93	113	106	99	95	102	117						
E2	124	102	99	120	108	109	101	121	126						
E3	127	91	88	127	115	109	98	120	130						
M1	71	60	57	79	67	50	59	75	69						
M2	99	81	77	98	94	77	76	103	101						
M3	91	71	69	88	78	70	60	94	93						
M4	113	100	97	119	98	92	84	118	113						
РМС	84	83	82	91	89	76	75	89	86						
PMP	90	77	73	97	97	72	72	89	91						
R1	124	91	87	127	110	100	82	121	124						
R2	123	107	105	137	139	122	117	124	123						
R3	116	97	93	129	113	95	78	115	117						
TAN	100	85	81	94	88	71	67	103	99						
TGF	87	86	84	117	104	95	84	86	88						
TREB	108	104	102	114	111	90	81	111	108						
TRON	112	107	102	112	104	94	89	115	114						
TVAB	92	76	73	95	89	80	74	95	92						
Total	1,778	1,515	1,462	1,857	1,710	1,501	1,392	1,781	1,791						

Table 4.18Evolution of number of outliers by year, extraction and ratio

Chart 4.9 Evolution of number of outliers by year, extraction and ratio

Regarding the evolution of the number of outliers by year, extraction and size, the results can be seen at table 4.19 and at chart 4.10.

		Evolution of number of outliers by year, extraction and size													
	MENF	BACH_RSE	FINAL	AVANCE	MENF	BACH_RSE	FINAL	AVANCE	MENF						
	2015	2015	2015	2016	2016	2016	2016	2017	2017						
LARGE	464	390	364	493	416	388	372	465	466						
MEDIUM	721	647	630	594	663	658	606	752	742						
SMALL	475	382	372	328	341	346	320	440	473						
MICRO	118	96	96	133	125	109	94	124	110						
Total	1,778	1,515	1,462	1,548	1,545	1,501	1,392	1,781	1,791						

Table 4.19Evolution of number of outliers by year, extraction and size

As can be observed from the chart, around 40% of the outliers belong to Medium sized companies, 25% belong to Large or Small companies and finally the rest, less than 10% belongs to Micro companies. This trend remains stable on each extraction.

These results differ from the results obtained by the original method in which approximately an almost equal distribution of 25% of outliers was obtained for each class.

The rationale behind this variation can respond to various motivations such us as, the niche of medium-sized companies has a lower coverage in our sample with respect to the rest of the other categories in relation to the total population; or such us, that the cut of the three major or minor

observations of the highest-lowest method, free of weighting, affects to a lesser extent to the micro companies and on the contrary much more to the companies of medium size.

This behaviour is repeated when the number of companies declared as outliers is analysed and can be seen in the following table 4.20 and chart 4.11 with the evolution of the number of companies marked as outliers

		Evolution of number of companies marked as outliers by year, extraction and size													
	MENF	BACH_RSE	FINAL	AVANCE	MENF	BACH_RSE	FINAL	AVANCE	MENF						
	2015	2015	2015	2016	2016	2016	2016	2017	2017						
LARGE	93	72	70	105	94	82	79	95	93						
MEDIUM	147	143	142	140	142	141	137	157	151						
SMALL	114	102	101	115	98	89	86	113	116						
MICRO	40	27	27	53	49	36	29	46	39						
Total	394	344	340	413	383	348	331	411	399						

Table 4.20Evolution of number of companies marked as outliers by year, extraction and size

As previously commented the behaviour is very similar to the outlier's one.

Finally, the cut of maximum disaggregation, that is to say, the one that corresponds by year, sector extraction and size, can be observed in the graphical tool module designed and that shows a high stability in the number of outliers identified with such disaggregation and that it is observed in the table 4.12 of the next pages:

	№ OUTLIERS BY SECTOR, SIZE and EXTRACTION													
NODE	SECTOR AND SIZE	MENF 2015	BACH_RSE 2015	FINAL 2015	AVANCE 2016	MENF 2016	BACH_RSE 2016	FINAL 2016	AVANCE 2017	MENF 2017	MEDIA	DESV. TIPICA	GRAPHICAL EVOLUTION	
A1	AGRICULTURE, FORESTRY AND FISHING_LARGE	32	36	22	60	30	30	26	27	31	32.67	10.36	AGRICULTURE FORESTRY AND FISHING	
A2	AGRICULTURE, FORESTRY AND FISHING_MEDIUM	30	54	49	34	43	50	45	32	35	41.33	8.30		
A3	AGRICULTURE, FORESTRY AND FISHING_SMALL	29	24	24	31	26	23	16	31	29	25.89	4.53		
A4	AGRICULTURE, FORESTRY AND FISHING_MICROS	0	6	6	16	21	18	17	2	0	9.56	7.92	1 2 3 4 5 6 7 8 9 10	
B1	EXTRACTIVE INDUSTRIES_LARGE	66	18	17	62	45	63	85	65	67	54.22	21.82	EXTRACTIVE INDUSTRIES	
B2	EXTRACTIVE INDUSTRIES_MEDIUM	45	54	54	16	21	31	28	43	44	37.33	13.08		
B3	EXTRACTIVE INDUSTRIES_SMALL	61	34	34	17	6	13	17	41	57	31.11	18.36		
B4	EXTRACTIVE INDUSTRIES_MICROS	24	36	36	48	30	21	19	28	24	29.56	8.64	1 2 3 4 5 6 7 8 9 10	
C1	MANUFACTURING INDUSTRIES_LARGE	30	16	16	7	16	12	11	24	30	18.00	7.76	MANUFACTURING INDUSTRIES	
C2	MANUFACTURING INDUSTRIES_MEDIUM	31	13	14	10	15	16	18	39	31	20.78	9.59		
C3	MANUFACTURING INDUSTRIES_SMALL	19	13	13	3	2	0	10	24	19	11.44	7.96		
C4	MANUFACTURING INDUSTRIES_MICROS	7	0	0	5	6	2	1	5	7	3.67	2.75	1 2 3 4 5 6 7 8 9 10 → MANUFACTURING INDUSTRIES_LARGE → MANUFACTURING INDUSTRIES_MEDIUM → MANUFACTURING INDUSTRIES_SMALL → MANUFACTURING INDUSTRIES_MICROS	

Chart 4.12 Evolution of number of outliers by year, extraction, sector and size

Chart 4.12 (Cont.) Evolution of number of outliers by year, extraction, sector and size

	Nº OUTLIERS BY SECTOR, SIZE and EXTRACTION														
D1	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE	35	38	38	28	43	25	10	22	34	30.33	9.60	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING		
D2	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MEDIUM	124	65	65	137	155	115	90	118	119	109.78	29.00			
D3	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_SMALL	75	48	38	51	66	79	51	71	72	61.22	13.60			
D4	SUPPLY OF ELECTRICAL POWER,GAS, STEAM AND AIR CONDITIONING _MICROS	25	23	23	14	15	20	16	20	17	19.22	3.71	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING, MEDIUM SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING, MILL SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MICROS		
E1	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE	69	86	87	61	50	38	52	54	80	64.11	16.39	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION,		
E2	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MEDIUM	55	21	21	18	25	30	47	33	54	33.78	13.75			
E3	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_SMALL	25	60	60	18	24	31	35	20	25	33.11	15.16			
E4	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MICROS	31	13	13	14	24	32	27	35	31	24.44	8.38	 WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MEDIUM WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_SANLL WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_SANLL 		
F1		20	37	37	29	28	17	29	22	20	26.56	6.91	CONSTRUCTION		
F2		49	34	23	73	44	39	35	38	49	42.67	13.16			
F3	CONSTRUCTION_SMALL	35	37	37	25	45	45	39	34	36	37.00	5.68			
F4		2	1	1	2	1	0	0	1	2	1.11	0.74	0 1 2 3 4 5 6 7 8 		

Chart 4.12 (Cont.) Evolution of number of outliers by year, extraction, sector and size

	Nº OUTLIERS BY SECTOR, SIZE and EXTRACTION														
G1	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_LARGE	6	3	3 3	4	5	10	13	6	6	6.22	3.12	WHOLESALE AND RETAIL REPEAR OF MOTOR VEHICLES AND MOTORCYCLES		
G2	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MEDIUM	15	17	17	18	20	24	16	20	25	19.11	3.28			
G3	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_SMALL	14	4	4	2	2	1	3	13	14	6.33	5.27	5 0 1 2 3 4 5 6 7 8 9 10		
G4	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MICROS	1	C) 0	0	0	0	0	1	1	0.33	0.47	WHOLESALE AND RETAIL REPAR OF MOTOR VEHICLES AND MOTORCYCLES_LAGGE WHOLESALE AND RETAIL REPAR IG OF MOTOR VEHICLES AND MOTORCYCLES_MEDIUM WHOLESALE AND RETAIL REPAR IG OF MOTOR VEHICLES AND MOTORCYCLES_MALL WHOLESALE AND RETAIL REPAR IG OF MOTOR VEHICLES AND MOTORCYCLES_MALL		
Н1	TRANSPORTATION AND STORAGE_LARGE	33	29	9 17	32	10	14	7	37	33	23.56	10.81	TRANSPORTATION AND STORAGE		
Н2	TRANSPORTATION AND STORAGE_MEDIUM	43	47	47	9	24	36	42	42	43	37.00	11.91			
нз	TRANSPORTATION AND STORAGE_SMALL	32	28	3 28	25	17	17	26	32	32	26.33	5.56			
H4	TRANSPORTATION AND STORAGE_MICROS	7	C	0 0	10	10	9	9	7	7	6.56	3.69	1 2 3 4 5 6 7 8 9 10 TRANSPORTATION AND STORAGE_LARGE TRANSPORTATION AND STORAGE_SMALL TRANSPORTATION AND STORAGE_SMALL		
11	HOSTELRY_LARGE	67	25	5 25	31	33	38	29	64	59	41.22	16.18	HOSTELRY 80 70		
12	HOSTELRY_MEDIUM	25	30	26	39	50	33	33	30	37	33.67	7.21			
13	HOSTELRY_SMALL	9	11	11	30	18	6	6	10	9	12.22	7.11			
14	HOSTELRY_LARGE	0	C	0 0	2	4	0	0	0	0	0.67	1.33	0 1 2 3 4 5 6 7 8 9 10 		
J1	INFORMATION AND COMMUNICATIONS_LARGE	3	36	5 36	64	38	36	24	16	3	28.44	18.25	INFORMACIÓN Y COMUNICACIONES		
J2	INFORMATION AND COMMUNICATIONS_MEDIUM	79	101	101	29	87	85	71	94	79	80.67	20.63			
J3	INFORMATION AND COMMUNICATIONS_SMALL	43	45	5 45	48	49	47	43	40	43	44.78	2.70			
J4	INFORMATION AND COMMUNICATIONS_MICROS	15	13	13	3	2	1	1	15	15	8.67	6.25	1 2 3 4 5 6 7 8 9 10 → INFORMATION AND COMMUNICATIONS_LARGE → INFORMATION AND COMMUNICATIONS_MADE → INFORMATION AND COMMUNICATIONS_MICROS		

					ſ	Nº OUTI	LIERS BY	SECTOR	R, SIZE a	nd EXTF	RACTION	I	
L1	REAL ESTATE ACTIVITIES_LARGE	40	31	31	50	54	51	45	49	40	43.44	8.02	REAL ESTATE ACTIVITIES
L2	REAL ESTATE ACTIVITIES_MEDIUM	41	. 59	59	51	53	75	72	64	41	57.22	11.40	
L3	REAL ESTATE ACTIVITIES_SMALL	30	16	16	29	25	26	26	29	32	25.44	5.46	
L4	REAL ESTATE ACTIVITIES_MICROS	0	0	0	3	3	0	0	2	0	0.89	1.29	1 2 3 4 5 6 7 8
M1	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_LARGE	22	2	2	29	26	5 26	16	19	22	18.22	9.41	PROFESIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES
M2	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM	61	49	49	47	27	44	48	83	62	52.22	14.49	
M3	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_SMALL	68	48	48	12	34	6	4	63	68	39.00	24.69	
M4	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MICROS	1	0	0	o	C	0 0	0	1	1	0.33	0.47	1 2 3 4 5 6 7 8 9 PROFESSIONAL, SCIENTFIC AND TECHNICAL ACTIVITIES LARGE PROFESSIONAL, SCIENTFIC AND TECHNICAL ACTIVITIES MALL PROFESSIONAL, SCIENTFIC AND TECHNICAL ACTIVITIES MALL
N1	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_LARGE	32	24	24	35	32	28	25	40	32	30.22	5.14	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES
N2	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES MEDIUM	84	47	47	76	78	52	30	75	84	63.67	18.67	

Chart 4.12 (Cont.) Evolution of number of outliers by year, extraction, sector and size

24

39

11

1,778

12

56

2

1,515

12

9

58

2

0

1,462

27

37

10

1,548

18

21

c

1,545

42

1

0

28

10

5

1,501

25

20

41

1,781

34

31

10

1,392

26

c

39

11

1,791

24.44

4.00

7.00

38.89

8.00

2.67

1,590

9.19

2.49

5.96

11.39

3.40

3.16

143

1

1

2

2

3

3

4

4

5

5

OTROS SERVICIOS

6

6

-----OTHER SERVICES_LARGE ------OTHER SERVICES_MEDIUM ------OTHER SERVICES_SMALL ------OTHER SERVICES_MICROS

ADMINISTRATIVE ACTIVITIES AND AUXILIARY

ADMINISTRATIVE ACTIVITIES AND AUXILIARY

SERVICES_SMALL

SERVICES_MICROS

OTHER SERVICES_LARGE

OTHER SERVICES_MEDIUM

OTHER SERVICES_SMALL

OTHER SERVICES_MICROS

Total gene TOTAL OUTLIERS

N3

N4

Z1

Z2

Z3

Z4

7

7

8

ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MEDIUM

8

9

9

10

10

10

CONCLUSIONS

To ensure the quality of CBSDO products, that they are constructed by large micro data sets, it has been revealed as necessary to implement several statistical quality controls, to eradicate those observations that that can distort aggregated information due to excessive specific weight in their respective samples and subsamples.

A new outlier detection system has been designed and implemented, the "**Outsider's method**", through which, those observations that deviate considerably from the behaviour of companies regarding sector clustering, according to NACE classification, and size, will be eliminated from database and will be maintained those that still have a behaviour that is far from standard but consistent with the reality of mentioned Non-financial corporations.

In this project it was explained the methodology used to develop this new system, obtained results for different extractions periodically established over several years, analysed these results, and finally tested the system's validity by comparing it with other detection methods traditionally used by other statistical entities.

To validate the "Original Outsider's method", the results were compared with the union of the result of the three traditional methods selected, namely

- P3-P97 (1st method)
- IQR (2nd method)
- Highest and Lowest observations (3rd method)

This comparison revealed:

- 1. That 60% of the results coincided. But Around 40% of the companies marked as outlier by the outsider's method, are not considered by the combination of the other three methods. The reason behind this behaviour comes after analysing empirically the statistical distributions of the nodes and seems that the number of the highest 20 absolute values of the ϕ function were too wide. In order to avoid the masking effect, maybe, we were too cautious, and the result of that is that we are wiping out some observations that contribute significantly and that are extreme, but not so extreme to be considered as outliers.
- 2. The number of companies marked as outliers by the outsider's method is around five thousand per extraction.

In order to improve this quality control and fine tune its results according to Banco de España's CBSDO requirement, it was presented the approved outliers detection method.

The *improved "outsider's method*" consist of only reject among the observations selected by the original method, the ones that are the most extreme, so that is the intersection of the original outsider's method with the HL method (the three highest and the three lowest observations of each variable for each node).

The number of outliers and the number of companies marked as outliers have been reduced up to a very good ratio over the total companies of the sample, around 0.7% of the total, also the stability on

the evolution of the identified outliers, by size, by sector, by extraction, and finally the revision of the firms marked as outliers by specialists, Not all outliers are illegitimate contaminants, and not all illegitimate scores show up as outliers (Barnett & Lewis, 1994), implement that this new figures meet the requirements and needs of such an institution as Banco de España's CBSDO.

To finish with, I would like to emphasize that this method has just been used for the realization of the Spanish part of last benchmark that updated data from all the National Central Banks that provide information to ECB Statistics databases from the base 2008 to the last one in force, that of 2017, and that the results obtained, for the final sample of Each of the bases has followed the same patterns and trends as those analysed in the study of this project, and that can be checked at annexes section.

BIBLIOGRAPHY

XIAODAN, X., HUAWEN, L. and MINGHAY, Y. (2.019) - Recent progress of anomaly detection. Wiley.

AGGARWAL C. (2.017) - Outlier ensembles, ACM SIGKDD, Explorations newsletter, vol 14, nº2

VERADI, V. and VERMANDELE, C. (2.016) – Outlier identification for skewed and/or heavy-tailed unimodal multivariate distributions. Journal de la Societé Française de Statistique.

SHIVANI, P., VINITA, S. and JAY, V. (2.015) – A survey of outlier detection in data mining, International Journal on advance engineering and research development.

KALRA, G.S. and SADAWARTI, K.M. (2.014) – Comparative Analysis of Outlier detection techniques.

AGGARWAL C. (2013) – Outliers Analysis, Springer.

KARANJIT, S. and SHUCHITA, U. (2.012) – Outlier detection: Application and techniques. International Journal of computer sciences.

BACH methodology https://www.bach.banque-france.fr/?lang=en

KRIEGEL, H-P, KROGER P, ZIMEK A. (2010) – Outlier Detection Techniques, SIAM International conference on Data Mining

HUBERT, M and VANDERVIEREN, E. – (2.008) An adjusted boxplot for skewed distributions. Comput. Stat. Data anal.

KRIEGEL H.; SCHUBERT M; ZIMEK A. (2.008), Angle-Based Outlier Detection in High-dimensional. Department of Computer Science & Database Systems Group - Ludwig-Maximillian's-Universität München.

Practical Guide to data validation in EUROSTAT (2.007)

BREUNIG M.; KRIEGEL H.; NG R.; SANDER J. LOF: (2.000) Identifying Density-Based local Outliers ACM SIGMOD Conference 2000. USA.

EVANS, V.P. (1999). Strategies for detecting outliers in regression analysis. B. Thompson,

BARNET V.; LEWIS T. (1.994), Outliers in Statistical Data. John Wiley. Elsevier Inc, USA.

JARRELL, M. G. (1994). A comparison of two procedures, the Mahalanobis Distance and the Andrews-Pregibon Statistic, for identifying multivariate outliers.

IGLEWICZ & HOAGLIN. (1993), How to detect and handle outliers, American Statistical Association

DAVIES, L.; GATHER, U. (1993), the identification of multiple outliers (with discussion). Journal of the American Statistical Association 88. Taylor & Francis Group, USA.

JOHNSON R. (1.992), Applied Multivariate Statistical Analysis. Prentice Hall.

RASMUSSEN, J. L. (1988). Evaluating outlier identification tests: Mahalanobis D Squared and Comrey D. Multivariate Behavioral Research

BENDRE, S.M. and KALE, B.K. (1985), Masking Effect on Tests for Outliers in Exponential Models, Journal of the American Statistical Association.

STEVENS, J. P. (1984). Outliers and influential data points in regression analysis. Psychological Bulletin

SACHS, L. (1982). Applied statistics: A handbook of techniques. New York: Springer-Verlag

COOK, R. D. and WEISBERG S. (1982) - Residuals and influence in Regression. Chapman and Hall

DAVID, H. A. (1981), Order Statistics, Wiley

HAWKINS D. (1980), Identification of Outliers (Monographs on Statistics and Applied Probability) vol 3. Chapman and Hall, London.

TUCKEY, J.W. (1977), Exploratory data analysis, Addison-Wesley Publishing Company

WAINER, H. (1976). Robust statistics: A survey and some prescriptions. Journal of Educational Statistics

ANSCOMBE, F.J. (1960), Rejection of outliers, American Statistical Association

DIXON, W. J. (1950). Analysis of extreme values. Annals of Mathematical Statistics

ANNEXES

BENCHMARK (2.009 - 2.017)

A benchmark review is a regular extraordinary review, coordinated between the countries of the EU, Eurostat and the European Central Bank and coordinated between several statistical domains (BP / IIP and NA). It differs from regular routine reviews in that it affects longer periods (full time series if necessary). They allow us to review long periods and accumulate changes that, if introduced in isolation, could lead to successive contradictory results (effects of different signs on the fundamental aggregates that end up being compensated between the different changes). They are necessary because new sources of information appear or existing ones change, unsatisfactory results are observed that require varying the calculation methods or the elaboration procedures are aligned with certain recommendations of the relevant international forums. The result is better quality statistics, more consistent and more adapted to international standards.

Recently a benchmark review has recently been carried out, which has affected the data provided by the CBSDO and has included a review for said data for the period between 2009 and 2017 (the latest available data).

In this review, an extraction of outliers using the "outsider's method" has been carried out for the CBB database. In the following tables and charts, the homogeneity and stability of the results obtained can be observed over time; and that together with the analysis previously described in the thesis confirm the goodness of this new system of detection of anomalous observations.

Chart A.1 Number of companies and Nº of outliers vs companies marked as outliers

Chart A.2 Evolution of number of outliers by base and ratio.

Chart A.3 Evolution of number of outliers by base and size

Chart A.4 Evolution of number of companies marked as outliers by base and size

NODE	SECTOR AND SIZE	2009	2010	2011	2012	2013	2014	2015	2016	2017	MEAN	STANDARD DEVIATION	GRAPHIC EVOLUTION
A1	AGRICULTURE, FORESTRY AND FISHING_LARGE	65	43	41	50	27	63	25	25	29	40.89	14.90	AGRICULTURA GANADERÍA SILVICULTURA Y PESCA
A2	AGRICULTURE, FORESTRY AND FISHING_MEDIUM	19	19	14	34	21	36	42	42	47	30.44	11.58	
A3	AGRICULTURE, FORESTRY AND FISHING_SMALL	27	19	36	29	12	16	27	27	33	25.11	7.45	
A4	AGRICULTURE, FORESTRY AND FISHING_MICROS	1	0	0	3	0	5	4	4	6	2.56	2.22	AGRICULTURE, FORESTRY AND FISHING_LARGE AGRICULTURE, FORESTRY AND FISHING_SMALL AGRICULTURE, FORESTRY AND FISHING_MICROS
B1	EXTRACTIVE INDUSTRIES_LARGE	80	67	34	69	92	67	52	52	61	63.78	15.91	INDUSTRIAS EXTRACTIVAS
B2	EXTRACTIVE INDUSTRIES_MEDIUM	10	29	45	50	54	74	52	52	59	47.22	17.25	
B3	EXTRACTIVE INDUSTRIES_SMALL	20	12	12	20	12	17	31	31	38	21.44	9.12	
B4	EXTRACTIVE INDUSTRIES_MICROS	37	27	27	20	13	39	24	24	32	27.00	7.69	2009 2010 2011 2012 2013 2014 2015 2014 2015 2016 2017 → EXTRACTIVE INDUSTRIES_IARGE → EXTRACTIVE INDUSTRIES_MICROS
C1	MANUFACTURING INDUSTRIES_LARGE	4	10	14	13	2	9	19	19	26	12.89	7.22	INDUSTRIAS MANUFACTURERAS
C2	MANUFACTURING INDUSTRIES_MEDIUM	5	28	38	17	7	34	14	14	18	19.44	10.85	
C3	MANUFACTURING INDUSTRIES_SMALL	1	4	5	15	4	3	3	3	13	5.67	4.59	10 5 0 2009 2010 2011 2012 2013 2014 2015 2016 2017
C4	MANUFACTURING INDUSTRIES_MICROS	3	0	0	8	2	0	2	2	6	2.56	2.63	→ MANUFACTURING INDUSTRIES_LARGE → MANUFACTURING INDUSTRIES_MEDIUM → MANUFACTURING INDUSTRIES_SMALL → MANUFACTURING INDUSTRIES_MICROS

Chart A.5 Evolution of number of outliers by sector size over time

Chart A.5 Evolution of number of outliers by sector size over time (cont.)

NODE	SECTOR AND SIZE	2009	2010	2011	2012	2013	2014	2015	2016	2017	MEAN	STANDARD DEVIATION	GRAPHIC EVOLUTION
D1	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE	45	19	19	1	0	39	25	25	29	22.44	14.24	SUMINISTRO DE ENERGÍA ELÉCTRICA, GAS, VAPOR
D2	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MEDIUM	151	83	70	74	79	31	45	45	45	69.22	33.69	
D3	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_SMALL	66	59	97	31	60	66	56	56	56	60.78	16.07	2009 2010 2011 2012 2013 2014 2015 2016 2017
D4	SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING _MICROS	9	12	1	7	15	11	23	23	24	13.89	7.59	→ SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_LARGE SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_MEDUM → SUPPLY OF ELECTRICAL POWER, GAS, STEAM AND AIR CONDITIONING_SMALL
E1	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_LARGE	27	57	64	51	85	49	45	45	46	52.11	15.01	SUMINISTRO DE AGUA, ACTIVIDADES DE SANEAMIENTO,
E2	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MEDIUM	27	25	21	19	24	22	26	27	30	24.56	3.24	
E3	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_SMALL	31	19	52	28	33	29	41	41	43	35.22	9.34	20 0 2009 2010 2011 2012 2013 2014 2015 2016 2017
E4	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION_MICROS	14	29	14	23	42	24	14	14	17	21.22	9.00	WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION, LARGE WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION, MEDIUM WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION SMALL WATER SUPPLY, SANITATION ACTIVITIES, WASTE MANAGEMENT AND DECONTAMINATION.
F1		19	3	24	45	20	30	26	26	29	24.67	10.48	CONSTRUCCIÓN
F2		32	35	43	40	36	44	40	40	42	39.11	3.75	
F3		8	1	0	5	18	17	25	25	31	14.44	10.73	
F4		0	0	0	0	0	0	1	1	1	0.33	0.47	0 2009 2010 2011 2012 2013 2014 2015 2016
G1	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_LARGE	5	0	13	3	12	10	12	12	13	8.89	4.63	COMERCIO AL POR MAYOR Y AL POR MENOR; REPARACIÓN DE VEHÍCULOS DE MOTOR Y MOTOCICLETAS
G2	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MEDIUM	9	4	28	38	20	18	22	22	26	20.78	9.47	
G3	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_SMALL	13	2	3	10	3	8	3	3	5	5.56	3.65	0 2009 2010 2011 2012 2013 2014 2015 2016 2017
G4	WHOLESALE AND RETAIL REPAIR OF MOTOR VEHICLES AND MOTORCYCLES_MICROS	0	0	0	0	0	0	0	0	0	0.00	0.00	WHOLESALE ARW RETAIL REPART OF MUTOR VEHICLES AND WOTORCYCLES, MUDIW WHOLESALE AND RETAIL REPART OF MOTOR VEHICLES AND MOTORCYCLES, MIDUW WHOLESALE AND RETAIL REPART OF MOTOR VEHICLES AND MOTORCYCLES, MICROS

NODE	SECTOR AND SIZE	2009	2010	2011	2012	2013	2014	2015	2016	2017	MEAN	STANDARD DEVIATION	GRAPHIC EVOLUTION
H1	TRANSPORTATION AND STORAGE_LARGE	20	20	5	15	30	11	21	21	30	19.22	7.66	TRANSPORTE Y ALMACENAMIENTO
H2	TRANSPORTATION AND STORAGE_MEDIUM	16	24	21	33	21	33	17	17	21	22.56	6.08	
Н3	TRANSPORTATION AND STORAGE_SMALL	18	29	40	28	16	22	19	19	22	23.67	7.10	15 10 2009 2010 2011 2012 2013 2014 2015 2016 2017 TRANSPORTATION AND STORAGE_LARGE TRANSPORTATION AND STORAGE_MICHOS
H4	TRANSPORTATION AND STORAGE_MICROS	4	3	1	1	6	1	8	8	7	4.33	2.83	
11	HOSTELRY_LARGE	42	55	42	23	15	53	32	32	35	36.56	12.30	HOSTELERÍA
12	HOSTELRY_MEDIUM	26	22	22	19	21	17	43	43	49	29.11	11.58	
13	HOSTELRY_SMALL	13	4	14	8	18	2	10	10	12	10.11	4.68	20 10 2009 2010 2011 2012 2013 2014 2015 2016 2017 HOSTELRY_LARGE HOSTELRY_MEDIUM HOSTELRY_SMALL HOSTELRY_LARGE
14	HOSTELRY_LARGE	4	0	4	5	1	4	1	1	2	2.44	1.71	
J1	INFORMATION AND COMMUNICATIONS_LARGE	11	34	19	6	1	14	33	33	37	20.89	12.87	INFORMACIÓN Y COMUNICACIONES
J2	INFORMATION AND COMMUNICATIONS_MEDIUM	33	28	45	34	17	39	89	89	93	51.89	28.13	
13	INFORMATION AND COMMUNICATIONS_SMALL	37	38	20	28	16	65	49	49	63	40.56	16.49	
J4	INFORMATION AND COMMUNICATIONS_MICROS	2	5	7	27	0	5	14	14	25	11.00	9.19	INFORMATION AND COMMUNICATIONS_LARGE INFORMATION AND COMMUNICATIONS_MEDIUM INFORMATION AND COMMUNICATIONS_SMALL INFORMATION AND COMMUNICATIONS_MICROS
L1	REAL ESTATE ACTIVITIES_LARGE	24	8	32	31	14	29	6	6	8	17.56	10.67	ACTIVIDADES INMOBILIARIAS
L2	REAL ESTATE ACTIVITIES_MEDIUM	51	44	41	45	60	61	60	62	53	53.00	7.72	
L3	REAL ESTATE ACTIVITIES_SMALL	8	12	33	28	20	34	37	39	44	28.33	11.73	20 10 2009 2010 2011 2012 2013 2014 2015 2016 2017
L4	REAL ESTATE ACTIVITIES_MICROS	0	0	0	0	2	15	0	0	3	2.22	4.64	REAL ESTATE ACTIVITIES_LABRE REAL ESTATE ACTIVITIES_MOLIUM REAL ESTATE ACTIVITIES_MOLIOS

Chart A.5 Evolution of number of outliers by sector size over time (cont.)

NODE	SECTOR AND SIZE	2009	2010	2011	2012	2013	2014	2015	2016	2017	MEAN	STANDARD DEVIATION	GRAPHIC EVOLUTION
M1	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_LARGE	21	19	0	8	13	1	5	5	7	8.78	7.00	ACTIVIDADES PROFESIONALES, CIENTÍFICAS Y TÉCNICAS
M2	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM	36	30	28	33	38	53	27	31	34	34.44	7.38	
М3	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_SMALL	7	4	30	18	10	16	37	35	39	21.78	12.87	
M4	PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MICROS	4	0	5	5	1	0	4	4	6	3.22	2.15	2009 2010 2011 2012 2013 2014 2015 2016 2017 → PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM → PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM → PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM → PROFESSIONAL, SCIENTIFIC AND TECHNICAL ACTIVITIES_MEDIUM
N1	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_LARGE	27	27	25	27	20	16	15	17	18	21.33	4.83	ACTIVIDADES ADMINSITRATIVAS Y SERVICIOS AUXILIARES
N2	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MEDIUM	27	48	46	54	54	62	25	26	22	40.44	14.48	
N3	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_SMALL	7	30	15	17	18	13	15	14	19	16.44	5.81	
N4	ADMINISTRATIVE ACTIVITIES AND AUXILIARY SERVICES_MICROS	1	1	8	3	4	5	7	9	9	5.22	3.01	2009 2010 2011 2012 2013 2014 2015 2016 2017
Z1	OTHER SERVICES_LARGE	8	2	10	14	2	9	12	15	17	9.89	5.02	0
Z2	OTHER SERVICES_MEDIUM	42	45	11	44	28	56	50	49	41	40.67	12.75	
Z3	OTHER SERVICES_SMALL	8	15	27	39	7	12	7	11	11	15.22	10.21	
Z4	OTHER SERVICES_MICROS	3	6	0	3	4	3	0	2	2	2.56	1.77	0 2009 2010 2011 2012 2013 2014 2015 2016 2017 → OTHER SERVICES_LARGE → OTHER SERVICES_IMEDIUM → OTHER SERVICES_SMALL → OTHER SERVICES_MICROS
Total gene	TOTAL OUTLIERS	7,255	7,189	7,299	7,335	7,189	7,454	7,387	7,409	7,585	7,345	125	

Chart A.5 Evolution of number of outliers by sector size over time (cont.)
CHARTS INCLUDING STATISTICAL DISTRIBUTIONS

In this Annex, a set of charts that serve as a sample and example of the analyses performed for the 17 variables under study have been represented, these graphics range from:

- Histograms that show the underlying frequency distribution of the sets of discrete data.
- Kernel distributions, that can be useful to visualize just the "shape" of some data, as a kind of continuous replacement for the discrete histograms,
- Quantile-Quantile charts, that allows to check how close the distribution of a data set is to some ideal distribution or compare the distribution of two data sets. As we are interested in comparing with the Gaussian distribution, the normal probability chart can be used, in which the data is sorted and plotted the i-th data against the corresponding quantile. Gaussian Hoaglin, Mosteller and Tukey (1993) suggested taking the i-th quantile. If we replace one of the samples with the quantiles of the normal distribution we can compare the empirical percentiles of a data set, with the theoretical percentiles of a normal distribution.
- The box-plots provide a quick way to examine the data. A box-plot is nothing more than a flat representation of some of the most outstanding features of a data set.

These charts allow the inspection of the data and its underlying distribution for example, normality, outliers, skewness, etc. The distribution of observations for each variable should be examined, selecting as possible outliers those cases whose values fall outside the ranges of the distribution. The main issue is the establishment of a threshold for the designation of a possible outlier. This can be done graphically using histograms or box diagrams or numerically, by calculating typified scores. For small samples (of 80 or even fewer observations), the suggested guidelines identify as possible outliers those cases with standard values of 2.5 or higher. When the sample sizes are larger, the guidelines suggest that the threshold value be 3.

The box-plots provide information that is midway between descriptive statistics and a representation of a Histogram, its main advantage is that since it is a flat representation several box-plots can be observed simultaneously in the same graph, which allows the study of the dynamic of the evolution of some important characteristics of the distribution of the variable in question, for example existence, appearance or disappearance of outliers, dispersion or concentration of the data, as well as the symmetry or asymmetry of the distribution. In fact, one of the basic utilities of box-plots is the graphic analysis of outliers.

Kernel density estimation are closely related to histograms, but can be endowed with properties such as smoothing or continuity through the use of a suitable core.

One of the main problems in practical applications is that the necessary probability distribution is generally not available, but rather should be derived from other existing information (for example, sample data). KDEs are similar to histograms in terms of being a non-parametric method, so there are no restrictive assumptions about the shape of the density function, but KDE is much more superior than histograms in terms of accuracy and continuity, therefore, the reason to use KDE, is because we get, in this way, a finite set of values for continuous random variables. The use of a nucleus instead of discrete probabilities, promotes the natural continuity in the underlying random variable.

In summary, all these graphic tools of exploratory analysis are of the utmost utility when it comes to knowing what we are facing and allowed to advance in the analysis, development and validation of the outsider's method, as well as in their improvement.

Attached, only some of the examples used, with several breakdowns, by variables, by sizes, by combinations of variable and size, variable and sector, etc.

Chart 14.2.1 Box-plots and histograms with kernel distributions of the variable rate of variation of Gross Value Added of agriculture, forestry and fishing sector with breakdown by size.

Chart 14.2.2 Box-plots and histograms with kernel distributions of the variable rate of variation of Gross Value Added of large companies breakdown by sector

Chart 14.2.3 Histograms with kernel distributions of sector of Wholesale and retail repair of motor vehicles and motorcycles, size of micro companies with breakdown by variables

Chart 14.2.3 (Cont) Histograms with kernel distributions of sector of Wholesale and retail repair of motor vehicles and motorcycles, size of micro companies with breakdown by variable

Chart 14.2.4 Box-plots, Histograms with kernel distributions and Quantile-quantile charts (Q-Q plots) of the variable rate of variation of Net Assets of small companies breakdown by sector

Chart 14.2.4 (Cont) Box-plots, Histograms with kernel distributions and Quantile-quantile charts (Q-Q plots) of the variable rate of variation of Net Assets of small companies breakdown by sector

Chart 14.2.4 (Cont) Box-plots, Histograms with kernel distributions and Quantile-quantile charts (Q-Q plots) of the variable rate of variation of Net Assets of small companies breakdown by sector.

Chart 14.2.5 Box-plots of the "*\varphi* function" and "Ind function" of the variable rate of variation of Gross Value Added breakdown by sector and size

