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ABSTRACT

The validation of an already developed nonlinear finite element analysis
program, PROAES NL, was made. To this end, four examples found in the
literature were solved using the program and the results were compared with the
values presented in published papers and also with the results obtained using
the finite element software ANSYS. The relative error between results obtained
using PROAES NL and the two other sources were found to be relatively small
and the program was considered validated.

The theory for sizing design sensitivity for geometrically nonlinear analysis
developed by Santos [1] was studied, interpreted and translated into the
physical domain. The resulting equations were then numerically implemented in
Octave within PROAES NL using only finite element post-processing data. To
validate the sizing design sensitivity analysis expressions applied five examples
were solved. The results obtained were compared with the values obtained
using finite difference method and with results presented by Santos [1]. The
relative error between PROAES NL and the previously mentioned sources was
small, and the sensitivity expressions were considered validated. Also, it is
demonstrated that a difference between calculating linear and nonlinear design
sensitivity analysis exists.

Design sensitivities were then used to perform nonlinear topology
optimizations. The goal was to verify if any difference would arise between
performing a linear and nonlinear topology optimization. Although some of the
articles studied showed a difference between optimum designs considering
linear and nonlinear optimization, using PROAES NL the difference only
appeared in one of the two examples. During the final phase of this work,
limitations in the convergence of the nonlinear analysis resulted in restrictions
in the selection of the optimization parameters.
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RESUMO

Foi realizada a validagdo de um programa de analise de elementos finitos ndo lineares ja
desenvolvido, PROAES NL. Para tal, quatro exemplos encontrados na literatura foram
resolvidos utilizando o programa e os resultados foram comparados com os valores
apresentados em artigos publicados e também com os resultados obtidos com o software
de elementos finitos ANSYS. O erro relativo entre os resultados obtidos utilizando o
PROAES NL e as duas outras fontes mencionadas anteriormente foi relativamente
pequeno e o programa foi considerado validado.

A teoria de calculo de sensibilidades em estruturas com comportamento ndo linear
desenvolvida por Santos [1] foi estudada, interpretada e traduzida para o dominio fisico.
As equacdes resultantes foram implementadas numericamente em linguagem Octave
completando o codigo PROAES NL usando apenas dados de pos-processamento de
elementos finitos. Para validar as expressdes de analise de sensibilidade utilizadas foram
resolvidos cinco exemplos. Os resultados obtidos foram comparados com os valores
obtidos pelo método das diferencas finitas e com os resultados apresentados por Santos
[1]. O erro relativo entre o programa PROAES NL e as fontes mencionadas
anteriommente foi pequeno e as expressdes de sensibilidade foram consideradas
validadas. Além disso, ¢ demonstrado que existe uma diferenga entre o calculo da
analise de sensibilidades numa analise linear e numa analise nao linear.

As expressdoes de sensibilidades implementadas foram depois usadas para executar
otimizac¢des de topologia. O objetivo era verificar se haveria alguma diferenca entre
executar uma otimizacdo de topologia utilizando analises lineares e nao lineares.
Embora alguns dos artigos estudados mostrem diferengas entre a configuragdo Otima
obtida com analise linear e analise ndo linear, usando o programa PROAES NL, a
diferenca foi visivel em apenas um dos dois exemplos estudados. Durante a fase final
deste trabalho, limitagdes na convergéncia da analise ndo linear resultaram em restrigdes
na seleg¢do dos parametros de otimizacgao.
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CHAPTER 1
INTRODUCTION

1.1 LITERATURE REVIEW

Structural optimization has become an integrant part of the design process since it
delivers efficient designs promptly when compared with the traditional method of trial
and error. Two types of structural optimization exist: size/shape optimization where, for
a given topology, geometry and material properties are optimized and topology
optimization where the distribution of the material in a pre-determined space is

optimized. The focus of this thesis remains within the last type of structural
optimization.

Topology optimization had as its pioneer Maxwell (1880) [2], and it’s a structural
optimization technique that within an admissible region with boundary conditions and
applied loads allows one to obtain the most structurally efficient design. Given the high
complexity of the structures that are generally obtained through this type of technique,
topology optimization was, for many years, left in the research and development field.
The development of additive manufacturing, commonly known as 3D printing,
continuously evolving to bigger production sizes and new materials, is disrupting the
limitations in size and complexity of the components that are producible [3]. This
technology breakthrough has shed new light and interest in topology optimization,
making its applicability a reality.

Similarly to structural optimization, topology optimization can be divided into two
types: continuum density-based optimization wherein for a specific region the
distribution of material is varied from solid to void and optimization based on an initial

ground structure where the area of the elements is modified. For this thesis, the last type
of topology optimization mentioned above is used.

Topology optimization using initial ground structures was first proposed by Dorn et al.
in 1964 [4]. The quality of the obtained solution using the ground structure method is
highly dependent on the location of the nodes, and the element connectivity’s that are
considered at the beginning of the optimization process. Thus, the ground structure must
be sufficiently dense to allow the obtention of the optimum configuration since the
initial formulation for this method considered only the possibility of removal of
elements. To move past this limitation, many altemative ways have arisen throughout
the years. Hajela and Lee (1994) [5] proposed the incorporation of the genetic algorithm
to allow for the addition or removal of elements throughout the optimization process.
Similarly, Hagishita and Ohsaki (2008) [6] proposed a growing ground structure
method based on five growing strategies developed, taking into consideration the
mechanical properties of the structure. It’s stated [6] that these strategies deliver
satisfactory results for small dimension problems but that for more complex structures,
further developments need to be made.



Chapter 1- Introduction

The final solutions obtained using the ground structure method have frequently a high
number of elements with minimal cross-sectional areas which increases the artificial
stiffness of the structure and that leads to an invalid structural system[7]. To avoid this
problem, Zhang, Ramos, and Paulino (2017) [7] proposed a filter that removes the
elements with a reduced area and the nodes associated with them. This way, in each
iteration, the calculations are made considering only the essential elements. The results

obtained have shown a significant improvement regarding computational time, and the
usage of this filter also eliminates the need to post-process the solution.

Since its introduction, topology optimization has been highly developed considering the
analysis of structures with a linear elastic response. Few papers have emerged
considering the study of structures with a geometrical nonlinear behavior. It is of the
author's knowledge of an early article dealing with geometrical nonlinearities by Bruns
and Tortorelli (1998) [8]. Since then, some papers have emerged, showing that a slight
difference may exist in design when geometrically nonlinear structural behavior is taken
into consideration. It is the example of Gea and Luo (2000) [9], Buhl, Pedersen, and
Sigmund (2000) [10] and Kang and Luo (2009) [11]. In the articles mentioned before
the optimization problem is studied considering density-based optimization methods. To
the author's knowledge, an even smaller amount of papers exist taking on the nonlinear
optimization problem using the ground structure method. An example is a paper by
Changizi and Jalalpour (2018) [12] were the authors present methodologies to
incorporate overall and individual member buckling prevention in the structural
topology optimization of steel structures using minimum compliance and stress-based
design.

An extensive literature focusing on linear structural response exists because structures
have been designed considering that throughout their work-life, their structural response
will remain within the elastic and small-displacement limit. This assumption is valid for
a large class of problems [9]. However, the increasing attention for structures to survive
extreme conditions [13], the demand for more economical structural systems resulting
in increasingly slender and thin structural components [14], the design of space
antennas, the design of compliant mechanisms and MicroElectroMechanical systems
make the usage of nonlinear finite element analysis methods essential. Otherwise, the
occurrence of nonlinearities, such as buckling could lead to the loss of the structural
integrity of the structure.

When undergoing large displacements and rotations, a linear structural response can no
longer be considered since the point of application of the extemal forces varies during
the deformation when comparing to their initial position.

This nonlinearity between the applied force and the resulting displacement is known as
nonlinear geometrical behavior [15]. It is highlighted the fact that in this type of
nonlinear analysis, only small deformations with large rotations and displacements are
considered. Therefore, the material is always within its elastic behavior zone limits.

To obtain an optimal design process considering nonlinear behavior, the development of
design sensitivity analysis methods for nonlinear response is necessary [13]. These
2
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formulations allow for the determination of the response variation of a system
conceming perturbations of the design variables [16]. Several authors have studied the
development of design sensitivity analysis methods for nonlinear problems. Ryu et all
(1985) [13] address the issue, analyzing different analytical and numerical methods. The
Newton-Raphson, a modified Newton-Raphson method, and the BFGS method are
studied for nonlinear structural analysis. It is mentioned that the Newton-Raphson
method shows excellent convergence properties allied with a higher computational cost
when compared with the modified Newton-Raphson method. For the analysis of design
sensitivities, both secant and tangent stiffness approaches are studied. It is concluded
that the tangent stiffness approach is more suitable for design sensitivity analysis since
the matrix at the final load step can be directly used. Park and Choi (1989) [14] present
a continuum approach for analytical expressions of design sensitivity of the critical load
factor. Santos and Choi (1988) [17] present a thorough analytical formulation for the
adjoint variable method of design sensitivity analysis and provide the analytical integral
equations for the variations of the energy and load forms. In addition, they present the
design sensitivity expressions for displacement and stress functionals for truss and beam
components. The results presented for the beam component in this paper have served as
a starting point for the development of this thesis.

1.2 OBJECTIVES

The main objective of this work is to implement a structural design sensitivity analysis
theory for sizing design variables using an already existing nonlinear finite element
code for bidimensional beam components, PROAES NL. Geometric nonlinearities are
considered. GNU Octave is used for numerical implementation. The accuracy of the
design sensitivity analysis code developed is proved using examples from published
papers and through comparison of results.

The nonlinear finite element code, PROAES NL, was developed by Professor Jodo
Cardoso from the Faculty of Science and Technology of Universidade Nova de Lisboa.
Because the accuracy of PROAEN NL hadn’t been yet proved the first part of this
thesis corresponds to the test of the program with numerical examples from published
papers to compare the results obtained. Results are also compared with ANSYS.

In the final part of this work, the nonlinear design sensitivity analysis is used to perform
topological optimization using the ground structure method. The results obtained are
once again compared with published papers and with linear topology optimization
optimum designs.

1.3 SCOPE

In Chapter 2, the methodology implemented in PROAES NL is explained. The finite
element method for bidimensional Euler-Bemoulli beam elements uses an interative-
incremental Newton-Rapshon method combined with load control using the cylindrical
arc-length technique to follow the evolution of the structure even in case of snap-
through instability phenomenon. For the cinematic analysis of elements, a corotational

formulation was used. Numerical examples are shown to prove the accuracy of the
method.



Chapter 1- Introduction

In Chapter 3, the theoretical formulation used for sizing design sensitivity is described.
The adjoint variable method is used to obtain first variations of performance functionals
explicitly in terms of changes of design variables and the design sensitivity expressions
for beam components. The formulation explained and applied to numerically implement
design sensitivity analysis was, as mentioned before, developed by Santos [1].
Numerical examples are shown to prove the accuracy of the method and the Octave
code created.

In Chapter 4, the nonlinear design sensitivity analysis implemented and tested in
Chapter 3 is used to perform topological optimizations using the ground structure
method. Topology optimization for a minimum compliance with a volume constraint is
carried. Two structures are studied, the results obtained for optimum designs are
compared with the results presented in published papers and with linear topological
optimization.

Finally, conclusions drawn from this work and recommendations for future research are
presented in Chapter 5.

CHAPTER 2
NONLINEAR ANALYSIS

2.1 THEORY DESCRIPTION

A key aspect in the development of a nonlinear finite element analysis program is the
proper selection of the algorithm used to find the solution of the problem [18]. The
nonlinear analysis of structures encompasses the resolution of problems where the
stiffness matrix has a dependence on the displacement [15]. In the situation of an
external static load the problem can be formulated as:

[K w{u} = {f} (2.1)
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Where K (u) expresses the existing dependence of the stiffness matrix is respect to the
displacement vector u.

In the scope of this thesis, only geometrical nonlinear problems are to be considered. A
geometrical nonlinearity exists when the structure is subjected to finite displacements
and rotations, in which case, the point of application of the external loads varies with
respect to their initial position. A consequence of this situation is that the effect thata
certain extemal load has upon the structure changes throughout the deformation of the
given structure making it necessary to write the equilibrium equations in the deformed
configuration [15].

To analyze the cinematic of the elements, the corotational method was employed.

COROTATIONAL METHOD

The corotational method relies on the separation of the displacements to which a finite
element is subjected into three different categories: rigid body translation, rigid body
rotation and deformation [15]. Both an element local coordinate system and a global
coordinate system are used. The large displacements and rotations effects are treated
through the transformations of displacement and force components between the global
and local coordinate system while the deformations, assumed infinitesimal, can be
treated in the local coordinate system using the formulations commonly used within the
elastic behavior domain.

The corotational or convective approach into finite element analysis has been studied
throughout the years for different applications. The works of Wempner (1969) [19],
Belytschko and Hsieh (1973) [20] and Rankin and Brogan (1986) [21] are highlighted
having contributed to the extension of existing formulations for linearly elastic finite
elements to problems involving finite rotations and buckling by using corotational
formulations, also known as Element Independent Corotational (EICR) formulation.

When using linear finite element formulations, if the element only has rigid body
translation, the stresses and deformations will not be affected. However, if rigid body
rotation exists, there will be deformations and internal energy related to it [15].
Corotational formulation solves this problem since it separates the displacement field
into a rigid body translation and rotation component, u”, and a component that causes
strain, u?:

u=u"+ u? (2.2)

The calculations of the intemal energy for each element are made using only the strain
component of the displacement, u¢, making its calculation a critical step.

Consider a body undergoing a motion from its initial configuration to the current one,
see Figure 2.1. Three coordinate systems are used: a global coordinate system (X,Y) a
local coordinate system (xg,yo) and a nodal coordinate system attached to node 1 and
to the last node i of the element. The global coordinate system (X,Y) and the local
coordinate system (X, Yo) can be seen in Figure 2.1.
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n
>

X

FIGURE 2.1. SCHEMATICS OF THE BODY MOVEMENTFROM THE INITIAL CONFIGURATION TO THE LAST CONFIGURATION

The current position of the i node in global coordinates is given by:

The translational component of the deformational displacement in global coordinates
can be computed from the displacement field through the following expression [22]:

ud =R, (X +u) — X (2.4)

Where X denotes the vector with the position of the nodes in global coordinates in the
initial configuration and u the vector with the nodal displacements in global
coordinates. R, is the orthogonal rotation matrix of the local coordinate system with
respect to the initial local coordinate system.

Additionally, at iteration n , the rotational components of the deformational
displacement, %, must be computed. This can be done by eliminating from the total
nodal rotation, a, the element rotation, § , see Figure 2.2 [22].
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v

FIGURE 2.2. NODE ROTATION AND ELEMENT ROTATION

The rotational components of the deformational displacement, %, can then be
computed with the following expression [15]:
al=a-p (2.5)

It’s now possible to write the complete vector for the deformational displacements, u®:

W = @l uf, af ug, ug, ad} (2.6)

The axial and shear force and bending moment in each element are calculated in
accordance with the equations presented by Menin [23] with the nodal rotations
presented in Figure 2.3.

FIGURE 2.3. CONVENTION FOR AXIAL, SHEAR FORCE AND BENDING MOMENT

EA
v = Fho 2.7)
Lo
6EI
V="o(+6) (2.8)
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2EI 2.9
M1 :L_O(Zel +02) ( )
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NEWTON-RAPSHON METHOD WITH CYLINDRICAL ARC LENGTH LOAD
CONTROL

The study of the elastic stability of a structure is influenced by singularities that may
occur along the path of its deformation. These singularities are also known as critical
points which are connected to the physical phenomena of snapping and buckling [24],
see Figure 2.4. Snap-through and buckling phenomena are some of the most challenging
problems in the nonlinear structural analysis [25].

A A
I . . .
| _Limjt pomt - \Bifurcation point
= < -
J oF—————
— \./ —
Displacement Displacement

(A) (B)

FIGURE 2.4. EXAMPLE OF SNAP-THROUGH (A) AND BUCKLING CRITICAL POINTS (B)

The geometric nonlinearity implies that both the effect of the extemal load and the
stiffness matrix must be recalculated for each deformed configuration. Therefore, the
solution of equation 2.1 can only be found through the usage of iterative techniques. In
the development of PROAES NL the incremental-iterative Newton-Raphson method
was used in order to be able to trace the complete load/deflection response of the
structure. However, the Newton-Raphson method can only solve problems where the
load increases monotonously (positive derivative). Meaning that the derivative of the
equilibrium load/deflection path must be positive. If nonlinear phenomena occur and the
displacement increases with the decrease of the load, such as the case of snap-through,
the derivative of the equilibrium path will be negative, and the algorithm will not be
able to follow it.

To solve this problem, a load control method was employed, the cylindrical arc-length
method.

The equilibrium equation is now written as:

K W) {u} = A{f} (2.11)
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The load control variable, A, varies between zero and one and can decrease or increase
throughout the computation process. This will enable the algoritim to follow the
equilibrum path even if the derivative is negative. The load control parameter is
dependent on another variable called the arc length, AL [15]. The arc length also
determines the amplitude of the incremental displacement, see Figure 2.5.

A

F
s
Af F----5 2 ,
| (K ()] = I <o
ou

Y

u
FIGURE 2.5. AMPLITUDE OF THE INCREMENTAL DISPLACEMENT GIVEN THROUGH THE ARC LENGTH. SOURCE: [14]

The system of nonlinear equations that describes static problems with geometric
nonlinearities in a general i iteration can be written as [15]:

[Kui){Auy1} = Aisa{f} — {3} (2.12)

Where both Au;,; and 4; 1 are unknown, see Figure 2.6

FIGURE 2.6, ITERATIVE PROCESS. SOURCE: [14]
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The purpose of the iterative process is to converge to A;,q and u;,1. Which can be
calculated by the following expressions:

{uiv1} = {ui} + {Auyiq} (2.13)
{Au;iq} = {Aud + {6uyiq} (2.14)
li+1 = ﬂ’i + 611 (215)

If expression 2.15 is inserted in equation 2.12, the resulting equation that has to be
computed for each iteration is:

[K udl{8uira} = e {f} + 6A4f3 — {fi} (2.16)

Which can be divided into two equations. A first with the displacements corresponding
to the load control method, SuX,,, a second with the displacements corresponding with
the totality of the externally applied forces, Su7, ;.

[K w)loui,} = 4if} + {fi} (2.17)
[K up)l{dui,q} = {f} (2.18)

The increment Au;, 4 can be calculated by adding the contributions of both previously
calculated displacements.

{6uiy1} = (6ul 3+ 62 {6ul,} (2.19)

The supplementary equation that is necessary to calculate the value of §4 is called the
Arc Length Equation:

{Aui 13T {Aup 1} = AL (2.20)

By replacing equation 2.19 in 2.14 and the result in the Arc Length Equation, a
quadratic equation appears. This equation allows for the determination of 64 :

a1(51)2+a2(6ﬂ,)+a3= 0 (221)
Where,
ay = {Suf, 3" {6uf,} (2.22)
az = 2{6uf, ). ({Bud + (6ufi ) (2.23)
as = ({Aud+ {5uf DT ({Au} + {5uf ) — AL? (2.24)

10
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Having calculated 8ul, ;, Suf,, and 64 it’s now possible to determine 4;, and u; 1.

ARC LENGTH

For the first iteration of the first step Cardoso [15] proposed the following expression
for the determination of the arc length, AL.

ALy = 2y {Aug) (2.25)

In the remaining load increments, the following expression proposed by Crisfield [26]
was used.

(2.26)

l_

Where N, is the optimum number of iterations considered for each step, AL;_, is the

value of the arc length from the previous iteration and N;_4 is the number of iterations
that took to reach convergence in the previous increment.

SIGNAL OF THE LOAD FACTOR INCREMENT

For the first iteration of each step, the signal of the load factor increment is estimated
through the result of the following expression:

Auj_;* (+D)ul > Auj_; * (—DuT (2.27)

Being the signal positive if the expression is validated and negative if the expression is
violated.

The flow chart for the computational implementation is presented on the next page as
Figure 2.7. The following space is left intentionally empty.

11
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COMPUTATIONAL IMPLEMENTATION

Initialization of variables

lambda, lambda_max, max_inc,n_iter optimo, max,
tolerancia, sinal, inc, iter,n_iter o,u_T,u R

Storage of external loads

Initial loads

Incremental process

[terative process

Computation of the
stiffness matrix

Computation of equation 1

[K)lfsul..} = {f}

Estimation of arc lenght
and load control parameters

If first increment:

ALy = Aq/{duy JT{Auy}

delta lambda=lambda

Computation of
equation 2

(K u)l{suf } = 2:(f)
+{f}

Computation of quadratic
equation to find d_lambda

a, (6A)? + a,(6A) + as

After first increment:

delta_lambda = sinal——
JuT’uT
sinal given by:

Au_; * (+1)u”
> Aul_, + (—Du”

Computation of
displacement and
load control
parameters

Update of global
translations, rotations
and nodal coordinates

{Buiq) = {6ul, }+ 62 (8ull,)

Aiv1 = A4+ 64

Uiy = U+ 0U
Apyq = & +0UL,

X:iva =Xi+Uirn

Convergency check

erro=dufl,, * Su;,. <tolerance

12

FIGURE 2.7. COMPUTATIONAL IMPLEMENTATION OF ARC-LENGTH NEWTON RAPHSON METHOD




2.2 — Validation of PROAES NL
2.2 VALIDATION OF PROAES NL

The relative error between the values obtained using PROAES NL and the values
presented in published articles or the results obtained using ANSYS will always be
calculated using the following formulae, 2.28.

PROAES.NL — Ref.Value
= *100

Ref.Value

(2.28)

2.2.1 EXAMPLE 1

The first numerical example considers the deformation of the frame shown in Fig.2.8
(a). Accordingly to Cichon [27] the analytical solution for this problem was presented
by Lee et all in 1968 [28] and the solution using finite elements was provided by
Cescotto in 1978 [29]. Cichon provided the solution for this frame supplying tables with
the values obtained for the horizontal, U, and vertical displacement, W, of the structure
for several values of the load factor, A. For this reason, to test the accuracy of the
results, a comparison was made with the article by Cichon [27].

The frame is made of an L shaped beam with a quadrangular cross-section of area A,
moment of inertia /and Young’s modulus E. In each of its extremities a fixed support
in constrained the horizontal and vertical translations of both nodes. The structure is
subjected to a concentrated vertical force Pthat acts along the negative direction of the
y-axis considered, and that has a value of 1000 kgf. The point of application of the load
is at 24 centimeters from the left extremity of the horizontal section of the beam. For
better understanding, the reader is asked to observe Fig.2.8 (a).

For the finite element analysis, 21 nodes and 20 beam elements with 3 degrees of
freedom, vertical and horizontal translation and rotation per node were defined as one
can observe in Fig.2.8 (b).

2431;:3' 96 cm
|® ‘

5
W I

N

AE EE
| (|

(A) (B)

FIGURE 2.8. LEE'S FRAME (A) SCHEMATIC (B) FINITEELEMENT MODEL

The geometric and material properties used are given in the Table 2.1.

13
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TABLE 2.1. GEOMETRIC AND MATERIAL PROPERTIES

Property A (cm?) I (cm?) E (Kgf/cm?)
Value 6.0 2.0 720000

2.2.1.1 NUMERICAL SOLUTION AND COMPARISON OF RESULTS

The response for the horizontal and vertical displacement was measured in the node
where the load Pis applied.

In the article [27] 9 values for the displacement vs. load factor are supplied.

The final configuration of the structure with the full magnitude of the force Papplied is
represented in Figure 2.9.

BO -

[=
T

wartical axis (om)
-
=
T

i

Horizontal axis {cm)

FIGURE 2.9. DEFORMED CONFIGURATION OF THE STRUCTURE

Tables 2.2 and 2.3 contain the results for the horizontal, U, and vertical, V,
displacement, respectively, obtained using PROAES NL and the comparison with the
published results [26] with the relative error calculated with (2.28).

The applied load is obtained multiplying the vertical load P by the load factor.
However, because a snap-through critical point occurs, it was not possible to match the
exact same values for load factor used in [27] since there are symmetric values and
negative load factor values.

14
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TABLE 2.2. COMPARISON OF RESULTS FOR THE HORIZONTAL DISPLACEMENT

Load factor U (cm) Load factor U (cm) Relative
(Cichon) (Cichon) (PROAES_NL) | (PROAES_NL) | error U (%)
0.5 0.3102 0.5 0.30402 1.9923
1.2989 4.5534 1.2989 4.48705 1.4572
1.7355 14.537 1.7355 14.735 1.3620
1.8744 25.449 1.8658 27.118 6.5582
1.3490 57.359 1.3368 57.534 0.3051
-0.07214 79.612 -0.0911 79.678 0.0829
-0.98781 90.314 -0.9618 90.225 0.0985
0.27050 88.974 0.2408 88.932 0.0472
1.4496 86.199 1.5716 86.226 0.0313

TABLE 2.3. COMPARISON OF THE RESULTS FOR THE VERTICAL DISPLACEMENT

Load factor W (cm) Load factor W (cm) Relative error
(Cichon) (Cichon) (PROAES NL) | (PROAES_NL) W (%)
0.5 3.7514 0.5 3.7816 0.8050
1.2989 18.212 1.2989 18.235 0.1263
1.7355 35.924 1.7355 36.657 2.0404
1.8744 47.073 1.8658 47.309 0.5013
1.3490 60.347 1.3368 60.901 0.9180
-0.07214 52.850 -0.0911 52.333 0.9782
-0.98781 58.257 -0.9618 58.122 0.2317
0.27050 87.607 0.2408 87.589 0.0205
1.4496 91.867 1.5716 92.219 0.3832

15
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The graphic comparison of the results is shown in Figure 2.10 and Figure 2.11.

2

— PROAES ML ' ! ' '
+ Gehen[i]l—"" o
15 1
T |
f |
05 \
n F \
4
\
\

Lambda

05 F

A 1 1 L
o 20 40 &80 ao 100

Horizontal displacement {cm)

FIGURE 2.10. GRAPHICAL COMPARISON LAMBDA VS VERTICAL DISPLACEMENTFOR THEPOINT OF APPLICATION OF P

2 T
= PRO&ES_ML

! ' [
+ Cachoa[1]

05 F 1

Lambda

A L ' = '
0 20 40 &0 80 100

vertical displacement {cm)

FIGURE 2.11. GRAPHICAL COMPARISON LAMBDA VS HORIZONTAL DISPLACEMENTFOR THEPOINT OF APPLICATION
OFP

The results obtained for this example are in close accordance with the values presented
in [27] with a relative error below 6%.
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2.2.1.2 COMPARISON OF THE RESULTS WITH ANSYS

The comparison of the results obtained for the horizontal and vertical displacement of
node 13 for the full value of the applied load using PROAES NL and ANSYS are
presented in Table 2.4 using formulae 2.28.

TABLE 2.4. COMPARISONBETWEEN PROAES NL ANDANSYS

PROAES NL ANSYS Relative error (%)
U (cm) 86.170 86.241 0.082
W (cm) 92.797 92.813 0.017

A minimal discrepancy exists between both results with a relative error below 0.1%.

2.2.2 EXAMPLE 2

The second example is a cantilever beam with an applied moment in its free end. This
configuration was studied analytically by Lewis and Monasa [30] and numerically
studied by Hsiao and Hou [31] and Urthaler and Reddy [32]. In both [31] and [32], the
numerical results were compared with the analytical results. Therefore, this example is
of extreme usefulness, given the fact that it’s possible to compare the results obtained
using PROAES NL with analytical results. The analytical equations that provide the
values of the horizontal and vertical displacement of the free end of the beam can be
obtained through a geometric analysis of the situation of curvature of the beam and with
the usage of the equations for the stress in a beam subjected to bending.

For the numerical solution, 11 nodes and 10 finite beam elements with 3 DOF were
defined. The reader is referred to the Figure 2.12 (b) for better understanding.

For the applied moment, M, a value of 6280.672 Nm was used to obtain a full rotation
of'the beam.

M
#&\ 4‘1..,3 10 11

(A) (B)

FIGURE 2.12. CANTILEVER BEAM WITH APPLIED MOMENT (A ) SCHEMATICS (B) FINITE ELEMENT MODEL

The cantilever beam has a rectangular section of area A, a moment of inertia Z length L
and Young’s modulus E. The values for the properties mentioned before are presented
in Table 2.5.

17
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TABLE 2.5. GEOMETRIC AND MATERIAL PROPERTIES

Property L (m) A(m?) I (m*%) E (N/m?)

Value 10 0.1 8.3(3)*107° 1.2*108

2.2.2.1 ANALYTICAL SOLUTION

Using as a starting point the equations for the stress in a Euler-Bemoulli beam subjected
to bending:

yE 2.29

Oy = ; ( )
2.30

Oxx = i y ( )

_EI _ ML (2.31)
P=M~ M
Where,
EI
M, = a (2.32)

For the deduction of the formulae for the horizontal, U, and vertical, W, displacement of
the free end of the beam, a geometric analysis of the beam bent in a generic position is
necessary.

The deduction for the vertical displacement, W, is presented below, see Figure 2.13.

prosa
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FIGURE 2.13. SCHEMATIC FOR THE DEDUCTION OF THE FORMULAE FOR THE VERTICAL
DISPLACEMENT

It’s necessary
to define a relation between o and the applied moment similar to the one found for the
curvature radius.

pa =1L (2.33)
L
& a=—
p
o LM
T
oM
=M

0

The vertical displacement, W, is given by the following expression:
W =p( —cosa) (2.34)
Adding the expressions 2.33 and 2.34 in equation 2.31 the following formulae for the

normalized vertical displacement is found.

(2.35)

The horizontal displacement is given by the following expression, see Figure 2.14:

U= L-— psena (2.36)

A
N
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.
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FIGURE 2.14. SCHEMATIC FOR THE DEDUCTION OF THE FORMULAE FOR THE HORIZONTAL DISPLACEMENT

Adding the relations 2.33 and 2.36 in equation 2.31 the following formulae, 2.37, for
the normalized horizontal displacement is found.

L M~ M,

2.2.2.2 NUMERICAL SOLUTION AND COMPARISON OF RESULTS

The calculations were made for a full rotation of the beam. To achieve that the curvature
radius, p, must be equal to the entire length of the beam, Z, divided by 2 r.

A comparison was made for the normalized displacements obtained for various load
factors obtained using PROAES NL and obtained through the analytical method.

The final configuration of the beam is presented in Figure 2.15.

wertical axis

Horizontal axis

In Tab le 2.6 FIGURE 2.15. DEFORMED CONFIGURATION OF THE STRUCTURE a

comparison of the
results for the modulus of the normalized horizontal displacement, U/L is shown.

TABLE 2.6. COMPARISON OF THE RESULTS OBTAINED FOR THE NORMALIZED HORIZONTAL DISPLACEMENT

U/L . Relative error
Load (Nm) (PROAES NL) U/L (Analytical) U/L (%)
314.66 0.01651 0,01642 0,54477
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607.06 0.06063 0,06030 0,55005
879.61 0.12473 0,12405 0,55143
1134.3 0.20214 0,20106 0.53720
1899.9 0.50445 0,50191 0.50607
2651.2 0.82610 0,82237 0.45357
3158.7 1.00944 1,00542 0.40000
3903.1 1.18011 1,17679 0.28212
5155.7 1.17470 1,17521 0.04334
6280.7 0.99663 1.00040 0.37685

In Table 2.7 a comparison of the results for the modulus of the normalized vertical
displacement, W/L is shown.

TABLE 2.7. COMPARISON OF THE RESULTS OBTAINED FOR THE NORMALIZED VERTICAL DISPLACEMENT

Load factor W/L W/L Relative error
(PROAES NL) (Analytical) W/L (%)
314.66 0.15666 0,15604 0,39912
607.06 0.29548 0,29432 0,39344
879.61 0.41374 0,41217 0.38100
1134.3 0.51075 0,50889 0.36550
1899.9 0.69851 0,69646 0.29435
2651.2 0.71104 0,70992 0.15776
3158.7 0.63315 0,63312 0.00474
3903.1 0.43990 0,44164 0.39399
5155.7 0.10793 0,11077 2.56387
6280.7 0 0 0

The graphical comparison of the results obtained is shown in Figure 2.16.
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FIGURE 2.16. GRAPHIC REPRESENTATION OF THE RESULTS OBTAINED AND COMPARISON WITH ANALYTICAL SOLUTION

The results obtained for this example are entirely satisfactory since there’s close

Adimensional displacement

accordance with the analytical values with a relative error below 3%.

2.2.2.3 COMPARISON OF THE RESULTS WITH ANSYS

In addition, the results obtained using PROAES NL were compared with the results
obtained using the non-linear option available in ANSYS. The comparison of results
was made for nodes 2, 6 and 11. The results obtained are presented in Table 2.8 and

Table 2.9.

The comparison of the results for the modulus of the normalized horizontal

displacement, U/L, is presented in Table 2.8.

TABLE 2.8. COMPARISON OF THE RESULTS FOR THE NORMALIZED HORIZONTAL DISPLACEMENT PROAES NL vs. ANSYS

(PROES%_NL) U/ (ANSYS) e%iit(l%e)
Node 2 0.00493 0.00489 0.81800
Node 6 0.50168 0.49980 0.37615
Node 11 0.99663 1.00040 0.37685

The comparison of the results for the modulus of the normalized vertical displacement,

W/L, is presented in Table 2.9.
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TABLE 2.9. COMPARISON OF THE RESULTS FOR THE NORMALIZED VERTICAL DISPLACEMENT PROAES NL V5. ANSYS

(PRO\X]/ELS_NL) W/L (ANSYS) Relat(l;oe)error
Node 2 0.03100 0.03089 0.35610
Node 6 0.32257 0.32373 0.35832
Node 11 0 0 0

The results obtained using PROAES NL are in close accordance with the results
obtained using ANSYSwith a relative error below 1%.

2.2.3 EXAMPLE 3

The third example studied is a cantilever beam with two concentrated loads of value
0.85P and 1.35P, where Phas a value of 4.45N. The beam has a uniform rectangular
cross-section of area A. This problem was studied in its analytical form through two
different methods by Frisch-Fay [33] and F.S.Manuel and S.Lee [34]. After that, it was
numerically studied using finite elements by Backlund [35] where the results obtained
are compared with the results presented in [33] and [34]. For this reason, for
comparison of the results obtained using PROAES NL, the article [35] was used,
allowing for the comparison with three already existing studies.

For the numerical solution, 11 nodes and 10 finite beam elements with 3 DOF per node
were defined. The reader is referred to the Figure 2.17 (b) for better understanding.

0.85P 1.35P

|

“1

1322m 1288m |

4
7
|

(A)

(B

FIGURE 2.17. CANTILEVER BEAM WITH TWO CONCENTRATED LOADS (A) SCHEMATICS (B) FINITE ELEMENT MODEL

The values for the geometric and material properties of the beam are presented in Table
2.10.

TABLE 2.10. GEOMETRIC AND MATERIAL PROPERTIES

Property L (m) A(m?) I (m%) E (N/m?)
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Value

2.61

0.000125

6.5%10~11

207*10°

2.2.3.1 NUMERICAL SOLUTION AND COMPARISON OF THE RESULTS WITH
OTHER AUTHORS

The values for the response of the vertical and horizontal displacement of the structure
were measured in node 11. These displacements can be compared with the analytical

results mentioned at the beginning of this section.

The final configuration obtained for the structure is represented in Figure 2.18.

In Table 2.11 are shown the results obtained for the horizontal displacement, U.

TABLE 2.11. OBTAINED RESULTS FOR THE HORIZONTAL DISPLACEMENT IN LITERATURE AND PROAES NL

Nesk | Y (Frzjfg'F 2y) | U (Manuel and Lee) (m) | U (Backlund) (m) | U (PROAES_NL) (m)
11 0.788 0.781 0.787 0.827
500 ,

E

E

E 1000 -
$

o ‘.-:;'_l 1000 1500 2000
Horizontal axis (mm)
FIGURE2.18. DEFORMED

CONFIGURATION OF THE STRUCTURE

In Table 2.12 are shown the comparison of results for the horizontal displacement, U.

TABLE 2.12. COMPARISON OF RESULTS IN LITERATURE AND PROAES NL

Node

Error U PROAES NL vs
[33] %

Error U PROAES NL vs
[34] %

Error U PROAES NL vs
[35] %

11

4.950

5.890

5.083
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In Table 2.13 are shown the results obtained for the vertical displacement, W.

TABLE 2.13. OBTAINED RESULTS FOR VERTICAL DISPLACEMENT IN LITERATURE AND USING PROAES NL

Node W [33] (m)

W [34] (m)

W [35] (m)

W (PROAES NL) (m)

11 1.710

1.701

1.716

1.743

In Table 2.14 are shown the comparison of results for the vertical displacement, W.

TABLE 2.14. COMPARISON OF RESULTS IN LITERATURE AND PROAES NL

Node Error W PROAES NL VS Error W PROAES NL VS Error W PROAES_NL Vs [35]
[33] % [34] % %
11 1.930 2.470 1.573

The graphic representation of the obtained results, in modulus, is shown in Figure 2.19

and Figure 2.20.

2 T T ‘-l:'
Honzontal displacement PROKES_NL '
+ [Frsch-Fay
QO Manusl & Lod
* Backhand
-
1.5F // 1
.l'/{-f
&
3 -
E - / 4
3 "
.-'/f
e g
i
P
0.5 / d i
.'/-'
.'lll..
0 f 1 1 L L
o 200 400 s00 800 1000

Horizontal displacement {mm}

FIGURE 2.19. OBTAINED RESULTS FOR THE HORIZONTAL DISPLACEMENT AND COMPARISON WITHLITERATURE
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2 i
= Vartical dsplcement PROGES ML
+ Frisch-Fay
O Manusl a Lew
¥ Backhmnd
15
% 1 [
05
|:| L i A
li] 500 1000 1500 2000

vertical displacement (mm)

FIGURE 2.20. OBTAINED RESULTS FOR THE VERTICAL DISPLACEMENT AND COMPARISON WITH LITERATURE
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2.2 — Validation of PROAES NL

2.2.3.2 COMPARISON OF THE RESULTS WITH ANSYS

A comparison was made between the results obtaned using PROAES NL and the
results obtained through a nonlinear analysis using ANSYS for the final vertical and
horizontal displacement of node 11. The modulus of the results is shown in Table 2.15.

TABLE 2.15. COMPARISON OF RESULTS BETWEEN PROAES NL AND ANSYS

PROAES NL (m) ANSYS (m) Relative error (%)
U 0.82711 0.82869 0.191
W 1.74295 1.74420 0.072

2.2.4 EXAMPLE 4

The last example is a cantilever beam subjected to a concentrated force i its free end.
The analytical form of this problem was studied by Bisshopp and Drucker[36]. The
numerical analysis was made by several authors such as Hsiao and Hou [31],
Horrigmoe and Bergan [37], Tada and Lee [38], and Urthaler and Reddy [32]. Urthaler
e Reddy [32] present their results in the form of millimetric graphics, making it possible
to extract with satisfactory approximation the results obtained. Therefore, the
displacements obtained using PROAES NL were compared with the results presented
in [32] and [38].

The free end of the cantilever beam is subjected to a concentrated vertical load with a
value of 100 N pointing in the negative direction of the vertical axis. The beam has a
uniform rectangular cross-section of area A, a moment of inertia Z and Young modulus
E. The values of these geometric and material properties are not provided in the
literature and therefore the same values used in example 2 were applied. The values for
the geometric and material properties can be consulted in Table 2.16.

For the numerical solution, 11 nodes and 10 beam finite elements with 3 DOF per node
were defined. For better understanding, the reader is asked to consult Figure 2.21.

l
g | ﬂﬁl 3 10 11

(A) (B

FIGURE 2.21. CANTILEVER BEAM WITH A CONCENTRATED FORCE IN ITS FREE END A) SCHEMATICS B) FINITE ELEMENT MODEL
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TABLE 2.16. GEOMETRIC AND MATERIAL PROPERTIES

Property L (m)

A(m?)

I (m%)

E (N/m?)

Value 10

0.1

8.3(3)*10~5

1.2%108

2.2.4.1 NUMERICAL SOLUTION AND COMPARISON OF THE RESULTS WITH

OTHER AUTHORS

The values for the horizontal and vertical displacement of the structure were measured

innode 11.

2
The final configuration for % = 5 is displayed in Figure 2.22.

Wertical axis [m)

i
2

Horizontal axis {m)

FIGURE 2.22, DEFORMED CONFIGURA TION OF THE STRUCTURE
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Both authors [32] and [38] present the vertical displacement in a normalized form.

The comparison between the results provided in the literature and the results obtained
using PROAES NL for the normalized vertical displacement is presented in Table 2.17.

TABLE 2.17. COMPARISON OF RESULTS BETWEEN LITERATURE AND PROAES NL FOR THE NORMALIZED VERTICAL DISPLACEMENT

PL* | WL (Tadae | WL (Uthaler | WIL | qefrly S| Reddyvs
El ke, s ey (PROATEI) PROAES NL (%) PROAES NL (%)
1.0 0.303 0.305 0.302 0.330 0.984

2.0 0.495 0.490 0.494 0.202 0.816

3.0 0.604 0.600 0.604 0.000 0.667

4.0 0.671 0.660 0.671 0.000 1.667

5.0 0.712 0.720 0.715 0.421 0.694

The graphic comparison of the results for the vertical displacement is shown in Figure

2.23.

Wertical displacemant PROAES_NL

+ Tadaelee
+ LUinhaler & Racddy

A
0z

vertical displacement (o)

0.4

A
0.6

FIGURE 2.23. GRAPHIC COMPARISON OF THE RESULTS OBTAINED FOR THE VERTICAL DISPLACEMENT

The results for the horizontal displacement are presented in both [32] and [38] in a
normalized way.
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In Table 2.18 is shown the comparison of results for the horizontal displacement
between PROAES NL and [32] and [38].

TABLE 2.18. COMPARISON OF RESULTS BETWEEN LITERATURE AND PROAES NL FOR THE NORMALIZED HORIZONTAL DISPLACEMENT

PIZ | 1UL(Tada | (uiic | UL | e | e Roddy vs
El B les) Reddrgy || PO | s %) Prms i)
1.0 0.836 0.945 0.944 12.92 0.106

2.0 0.726 0.842 0.840 15.70 0.238

3.0 0.655 0.740 0.746 13.89 0.811

4.0 0.641 0.670 0.671 4.680 0.150

5.0 0.568 0.610 0.613 7.923 0.492

The graphic comparison of the results obtained for the horizontal displacement is shown
in Figure 2.24.
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Through the analysis of the results obtained, one can conclude that a close agreement
exists for the vertical displacement between both articles and PROAES NL with
relative error well below 2%.

However, for the horizontal displacement, a slight discrepancy can be observed between
the values presented by Tada and Lee and the values provided by Urthaler and Reddy.
The values obtained using PROAES NL are in close accordance with the results
provided by Urthaler and Reddy with a relative error below 1%.

2.2.4.1 COMPARISON OF RESULTS WITH ANSYS

A comparison was made between the results obtained using PROAES NL and the
results obtained through a nonlinear analysis using ANSYSfor the vertical and
horizontal displacement of node 11.

The modulus of the results obtained and the comparison between ANSYS and
PROAES NL are shown in Table 2.19.

TABLE 2.19. COMPARISON OF RESULTS OBTAINED USING ANSYS AND PROAES NL

PROAES NL (m) ANSYS (m) Relative error (%)
U 3.875 3.883 0.210
W 7.146 7.151 0.070

Both the values obtained for the horizontal and vertical displacement are in close
accordance with the values obtained using ANSYS with a relative error below 0.3%.
Therefore, an assumption can be made that there is the possibility of a mistake in the
results presented by Tada and Lee for the horizontal displacement given the fact that the
values shown by Urthaler and Reddy are in accordance with the values obtained using
ANSYS.

2.2.5 FINAL REMARKS

To test the code developed in program PROAES NL, four examples from literature
were taken into consideration. The comparison between the results obtained using
PROAES NL and the results presented in the articles and the results obtained using
ANSYS allows one to verify the high quality and coherence of PROAES NL.
Therefore, the methodology implemented in PROAES NL for the analysis of structures
with geometrically nonlinear behavior is validated. Moving forward, the program
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Chapter 2 — Nonlinear analysis

PROAES NL will be used in the development of this thesis for topology optimization,
given the fact that it can perform accurate analysis for a structure with nonlinear

behavior.
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CHAPTER 3
SIZING DESIGN SENSITIVITY

3.1 THEORY DESCRIPTION

The theory of design differentiability of nonlinear structural response has been fully
developed by Santos [1] and was the base for the development of this thesis. A more
extensive analysis on the subject can be found in [1] and some essential parts on the two
articles published by Santos and Choi [39] and [17]. For the purpose of this work, the
impact of a variation of displacement vs. the resulting variation in the cross-section area
of the elements is going to be considered. The theory used for the development of this
thesis is now summarized and presented as a way of providing context for the work that
follows.

Using the principle of virtual wotk, it is possible to write the static equilibrium equation
of an elastic system in the configuration at time t + At in its variational form as:

a,(t8tz,2) = 1,,(2), forallz € Z (3.1)

Where Z is the space of cinematically admissible displacements. Being z(x) an
arbitrary function that satisfies the boundary conditions also known in classical
mechanics as virtual displacements. The subscript u denotes dependence of the
quantities on the design u. It’s not possible to solve this equation directly since the
configuration of the structure at time t + At is unknown. It’s possible to obtain a
solution by referring all variables to a known calculated equilibrium. In this thesis,
having used the corotational formulation in the development of the nonlinear analysis
program the variables are referred to the initial equilibrium configuration of the
structure attime t = 0.

To find the variations of structural performances due to the variations in the design, u,
the first derivative of equation 3.1 with respect to the design must be calculated.

Considering the configuration at time t + At for a perturbed designu + téu with the
reference configuration at time 0, equation 3.1 can be rewritten as:

au+r6u(t+A(§Z' OZ_) = lytrsu(2) , forallZ € z (3.2)

Where the subscript u+ tdu is used to indicate that the equilibrium equation
corresponds to design u+7téu , (Z is the cartesian component of the virtual
displacement vector referred to configuration time 0 and t+A§Z is the cartesian
component of displacement in configuration time t + At referred to configuration time
0.
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Chapter 3 —Sizing design sensitivity

The first variation of the energy form in equation 3.2 with respect to the design, u, is:

' — U (3.3)
a&u((gz' OZ) = Eau+ré‘u((§ Z, OZ)Irzo

Where § Z denotes the state 5z with dependence on T suppressed and (7 is independent
of 7.

The first variation of the load form in equation 3.2 with respect to the design, u, is:

' _ _ 34
l§u(oz) = E lu+ré‘u(oz)|1:=0 (3-4)

Considering that the variation of the solution of equation 3.2 with respect to the design,
u, is:

d .
OZ, = E t+A§z(u + T6U)|T=0 (3 5)

Using the chain rule of differentiation and equation 3.3 and equation 3.5, it is possible
to write:

d . , _ . .- (3.6)
E[au+r8u(t+A(§Z(u + Téu), oZ)]|r=0 = a5, (62, 02) + ai,(oZ; 42’1 oZ)
By inserting equations 3.4 and 3.6 in equation 3.3, it is possible to obtain:
a3.(62 7', 02) = U5, (02) — a5u (57, ¢2) (3.7)

3.1.1. ADJOINT VARIABLE METHOD FOR DESIGN SENSITIVITY ANALYSIS

It’s now necessary to determine the expressions of a general functional, Y, for sizing
design sensitivity analysis.

A measure of structural performance in integral form can be written as

traty, f g(t+0e, w4 T6u)OdV (3.8)

ov
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3.1 Theory description

The variation of the functional in equation 3.8 with respect to the design,u, can be
written as:

d 9
Ly = - [f (5 2(u + téuw), (VEHAz(u + Téu),u + TSu)OdV] le=0 3.9
Oy

0
= fo (ggz oz + 9 viz 0VZ' + gu6u) av
|4

By replacing ,z’ in equation 3.9 with a virtual displacement o1 and equating the terms
involving the virtual displacement into the energy bilinear form aj, it’s possible to
create the adjoint equation for the adjoint variable (A:

0
. o5 5 5 - 3.10
ai(8z 07,08 = Iy, (95,04 + gyvtz VA ) V. forall o7 € oz (3.10)
Because 4z € ,z by evaluating equation 3.10 at ¢4 = ,z’ one obtains:
0
* ' ' , 3.11
a3.(62 04, o7) = .’; (ggz oZ tg,vtz 0VZ ) dv ¢G.10
|4
Because (Z and (A are in 4z by evaluating equation 3.7 at ,Z = 44 one obtains:
a;,(§z; 47", o) = L5y (WD) — agy (52, 0D (3.12)
By substituting equations 3.11 and 3.12 in equation 3.9, one obtains:
(3.13)

=] (gu0w)°dV + L5, (A — a§u (&2, o

Oy

In the focus of this dissertation, it will only be considered the functional that defines the
value of the displacement at an isolated point X which can be written using the Dirac
function.
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o 3.14
L' = X 6 (%% — 9%) yz'(®x)d x (3-14)

Therefore, the adjoint equation is now written as:

a8z 01, 04 = fool 8(%x — %), Ad %, forall g1 € 4z (3.15)

Interpreting the Dirac measure as a unit load applied at the point °% the physical
interpretation of ¢4 can be of the displacement of the structure from the final
equilibrium configuration due to a unit load applied at °%. The variation of the
functional equation can then be rewritten as:

S =15, — agy, (52, o) (3.16)

For the problems considered in this work the variation of the load form lg, is zero.
Therefore, the variation of the functional can be written as:

W' =—a5,(§z 00 (3.17)

Using the undeformed configuration for reference, the energy form of a beam/truss
component is

0; 1< (3.18)
a,($z, 02) = .f {EA | {211 + EZ(SZL'J)Z loZ11 + §Zi1 0Zia]} d%x
0 . =1
l
+ o [EI2 522,11 02211 T EP 823,11 oZ_3,11] d®x

Where E is the young’s modulus, A is the cross-sectional area of the beam, I’ is the
moment of inertia, {z;, 'z, and tz3 are the axial displacement and the two orthogonal
lateral displacements corresponding to the configuration at time t referred to the
configuration at time 0, respectively and (Zz; are the cartesian components of the virtual
displacement vector referred to the configuration at time 0. It is of the utmost
importance to remember that the vector 'z =[!z,%z,,tz3] only contains the
components of the displacement due to the deformation of the element.

In the specific case of considering the cross-section area as the design variable, the
variation of the energy form with respect to a variation of the area d4 is:
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3.1 Theory description

0 (3.19)
dsaliz o) = | 1B

oZ11 + 2(0211) ] l0Z1,1 + 0Z11 0Zi1]}64 d%x

0
2t _ 3¢ _ 0
+ j [ET 022,11 02211 + ET 62311 02311]6Ad x
0

The calculation of the former integral requires the substitution of the virtual
displacement vector for an adjoint variable vector.

For the purpose of this dissertation, only bidimensional problems will be considered.
Therefore, the components that refer to displacements along the third axis will be
removed from equation 3.19.

Considering z; the first component of the incremental displacement vector as u, z, the
second component of the incremental displacement vector as v, Z; the first component
of the adjoint variable vector as A,, and z, the second component of the adjoint variable
vector as A,,.

Equation 3.19 can thus be rewritten as:

t
N O L7 TN T A B Al IR VA R P
cui - [ @03 )3 o)
0
Loy % 51,0%v022,
0y —zZ -~ 'V 0
+to7 a]}Md fO[EaAaZaz]aAdx

(3.20)

In order to compute the derivatives in the first and second integral of equation 3.20, it is
necessary to recall shape functions and Hermite polynomials for a beam element.

Using linear shape functions for the axial displacement in a beam element:

x
=1-= (3.21)
N; I
X
N, == (3.22)
n=y
Their first derivative being:
oN; 1 (3.23)
ox L
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ox

o~ =

The first derivative of u, v, A,and 4,, can be written as:

au . aNI aN" _ 1 1 Uy
ox  Ox wrt ox i = {_Z Z} {uu}
, 1
ou L { 1 1} u;
—_— =31 U u —_— = = iU u
(6x> {2} 1 L L {u,,} - unj
L
av aN, aNH 1 1 (%4
Ox  Ox Vi ox vn == Z} {1711}
, 1
ov L { 1 1} v,
D — =17 v _— = = 1V v
(6 ) {vi v} 1 T {v,,} {vi vy} )
L
aAu_aN, JdNy; B 1 1. (A
ox  Ox A ox Auyy = L Z} Ay,
dA, ON; dNy 1 1. (A
= A A, ={—— -—
ox ox I o9gx “'H { L L} Ay
Using the Hermite polynomials:
3 2
NI =1 —L—zxf +L—3xf
1

N” = x1 _ZXf +L_2x%

3 2
_ 2 3
Ny = L_le _L_3x1

1 2 1 3

Their second derivative being:

12

92N, 6

dx? _L_2+
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(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)
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3.1 Theory description

92N, 4 6 (3.36)
ox2 ~ 1T
92N, 6 12 (3.37)
6x2 2 DM
92N,y 2 6 (3.38)
ax2 L 2™

The second derivative of v and 4, can be written as:

d%v B 0%N, 0°Ny, 0%Ny; 62N,V9 (3.39)
0x2  9x? vt ax2 ! Jdx? Vi ax2 1
Uy
_ {ale aZN" asz aZva} 91
dx2  0Jx? dx? ox2 )|V
011
021, B 0%N, E)ZN,,)L 62Nm/1 62N”,/1 (3.40)
0x2  gx2’m 0 x? o + dx2 i 0 x? o1
()
_{aZN, 92N, 92N, (’)ZN,V} /19,$
dx2  9x%  9x?  0x2 )| Ay,
k)‘@u

The first derivative of the moment of inertia with respect to the z axis will depend on
the existing relationship between the width and the height of the cross-section of the
beam element. Consider A the cross-sectional area of the beam. It’s then possible to
write the moment of inertia of the cross-sectional area as

I; = aA? (3.41)
where a is a positive constant that depends on the shape of the cross section.
For better understanding consider a beam that has a height that is double of its width:

bh3 8b* 2(2b%)* (2b%)? A? (3.42)

=171 12 6 6

} 1 L ) )
In this case a = = The derivative of the moment of inertia becomes

oI, A (3.43)
oA~ 3 traxd
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Given the dependence of a with the geometry of the cross section of the element this
constant is an input value for the program and must be calculated by the user.

The first derivatives calculated above were inserted into the first integral of equation
3.20 and the second derivatives into the second integral of equation 3.20.

Considering that the Young’s modulus remains constant throughout the process it can
be taken out of the integral.

Taking into consideration that only small deformations occur the area of the element
remains, similarly to the length, unchanged throughout the loading process. The integral
can then be solved simply by multiplying the quantities in the equation by the value of
the lenght. Additionally, because only small strains are being considered, one can
assume that the initial length of the elements remains practically the same as the final
length of the element. Therefore, the initial value of the length of the element can be
used.

The resulting equation is simplified enough to be numerically implemented using post-
processional data from the non-linear analysis:

a'su.(82, 07) = EL X (3.44)
(1 1} uy
[ L L {u,,}
1 17 1 1
1 Z | Z 2|
- v, v
+2 {ul u”} 1 1 {u11}+{ I ”} 1 1 {U”} ] X
N 1212

[ | N
3 e Bl

V1

(2 6 12 6]
3 2 3 3
IS A1
+E2aA{v; 6, vy 6y} L 152 L6 {;:111}
? _4['_2 Uﬁ’u}
SYM 7 |

The flow chart for the computational implementation is presented in the next page, see
Figure 3.1. The following space is left intentionally empty.
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Cycle for each performance

3.1 Theory description

3.1.2 COMPUTATIONAL IMPLEMENTATION

Initialization of variables |

dedx, ALFA, variaveis, performances, nvariaveis,
nperformances, sensibilidades

Condition for the

computation of design
sensitivites

| if songibilidades = 1 |

Condition for the
computation of
displacoment functional

| if performances 2 |

Initialization of variables |

| x adjunto, [ adjunic |

Distribution of external
adjoint load in requested
nodes

Caleulation of adjoint
dizsplacement

Calculation of componentes
of displacement due to
deformation in local
coordinates

u? =Ty (R,(X + uw) — X)

Cycle for each element

Storage of computed
functional in sensitivity
matrix

Calculation of shape [ 1z 6 1z 6 1
function matrixes L 1 i3 Z L63 L; I
{_ 1 1} 2 |l PR
PRRY L D S 12 _ s
221 I 2 |
lsym 2
L
Caleulation of o |tauy 1 w1 fen2| ten, auar
displacement functional as 8z, 2) = f (E <_)+_ (_) += (_) [(_u)+__u
Sut0®r 0 o 0o\dx/ 2 \dx 2 o\9x o\ 0x ox Ox
0
av a4, O 3I,0%v %A
— SAd%x + f E—~2——]6Ad’x
dx Ox I o [ 9A 0x? 6x2]

dgdx=dgdx- a’

FIGURE 3.1. COMPUTA TIONAL IMPLEMENTA TION OF SENSITIVITIES CALCULATION
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3.2 EXAMPLES

In the following examples, the 2D beam finite element with 6 degrees of freedom is
used.

The accuracy of the design sensitivity analysis is checked by comparison of the results
against the values obtained using the finite difference method. In the examples that
follow consider ¥ and ¥ the values of the performance functional evaluated for a
design variation of u —u * du and u +u * du, respectively. Where du = 0.01 and
central finite differences calculated using the following expression 3.45.

L = vy —¥ (3.45)
p Au

3.2.1 CANTILEVER BEAM WITH CONCENTRATED MOMENT AND FORCES
IN ITS FREE END

The first example is the 60 inches cantilever beam shown in Figure 3.2. This example is
presented in the article “Sizing design sensitivity analysis of non-linear structural
systems. Part II: Numerical method” by José L.T. Santos and Kyung K. Choi [17]. Both
performance functional values and design sensitivity predictions are compared with the
results presented in the article before mentioned. The beam was modelled with 21 nodal
points and 20 finite elements. The geometric and material properties can be found in
Table 3.1.

x2

M
y |
A1]2]3] |1.t3|15i|£®—.—.’{:L []™h
A1 2 3 18 13 20 21 P2 L
p1 b
|
60" |
FIGURE 3.2. CANTIL VER BEAM FINITE ELEMENT MODEL
TABLE 3.1. GEOMETRIC AND MATERIAL PROPERTIES
Width, b (in) Height, h (in) Young’s modulus (psi) Poison’s ratio
0.25 0.5 30.0 % 10° 0.3

The design parameter vector is
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p= [b1:h1'b2)h2""' b20rh20]T

where b; and h; are the width and height of the ith element.

The beam is subjected to two concentrated loads and one concentrated moment with the
values presented in Table 3.2.

TABLE 3.2. LOADS APPLIED TO THE STRUCTURE

Axial load P, (lb) Transverse load P; (Ib) Moment M (lb — in)

100 100 100

As all the design parameters are affected by the same variation 8p, this is equivalent to
consider just one design variable, the cross-section area, A, from which the moment of
inertia depends upon, Eq. (3.41).

Considering a design variation of p —p * dp for the cross-sectional measures b and h,
Yy is obtained with the following values for area and moment of inertia in
PROAES NL:

A= 0.24750 % 0.495 = 0.12251

e 0.24750 * 0.4953

12 = 0.0025016

Considering a design variation of p + p * p for the cross-sectional measures b and h,
W7 is obtained with the following values for area and moment of inertia in
PROAES NL:

A% =0.2525% 0.505 = 0.1275125

2= 0.2525%0.5053

12 =0.0027099063

The total variation in the design variable, A, can be obtained by subtracting the cross-
sectional areas calculated above:

Au = A? — A1 = 0.1275125 - 0.12251 = 0.0050025

The expression for the moment of inertia of the beam with dependence to the value of
the area of the cross-section is:
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bh® 8b* 2(2b2)2 (2b2)2 A2
12 12 12 6 6

I =

Therefore, the input value for the derivative of the moment of inertia with respect to the

. A
area of the beam is 3

The performance functional was defined as the vertical displacement and the design
sensitivity values were calculated for six different nodal points: 2, 5,9, 13, 17, and 21.
The results obtained using PROAES NL are shown in Table 3.3.

TABLE 3.3. PERFORMANCE AND DESIGN SENSITIVITY VALUES OBTAINED USING PROAES NL

Node 'Pz} ’I’g A, ‘P'p
2 0.1429 0.1371 -1.1414 -1.1399
5 2.0157 1.9442 -14.2929 -14.2675
9 6.8435 6.6369 -41.2934 -41.1880
13 13.2132 12.8682 -68.9655 -68.7428
17 20.4076 19.9339 -94.6927 -94.3097
21 28.0158 27.4176 -119.580 -119.076

The comparison between design sensitivity predictions and central finite differences is
shown in Table 3.4 using the following expression:

design sensitivity prediction— central finite dif ferences
design sensitivity prediction

(3.46)

Relative error =

TABLE 3.4. COMPARISON BETWEEN DESIGN SENSITIVITY PREDICTIONS AND CENTRAL FINITE DIFFER ENCES

Node Relative error (%)
2 0.132
5 0.178
9 0.256
13 0.324
17 0.406
21 0423 [17] for performance

The results presented in
functionals and design sensitivity predictions are shown in Table 3.5.
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TABLE 3.5. RESULTS PRESENTEDIN THER EFERENCED ARTICLEFOR PERFORMANCE AND DESIGN SENSITIVITY PREDICTIONS

Node ¥} ¥ a¥, v,
2 0.1428 0.1371 -1.1394 -1.1394
5 2.0157 1.9441 -14.3128 -14.3128
9 6.8435 6.6369 -41.2993 -41.3193
13 13.2131 12.8681 -68.9655 -69.0055
17 20.4075 19.9338 -94.6927 -94.7526
21 28.0157 27.4173 -119.620 -119.700

The comparison between the before mentioned and PROAES NL is shown in Table 3.6
using the following expression:

Santos [1] — PROAES_NL
Santos [1]

(3.47)

Relative error =

TABLE 3.6. COMPARISON BETWEEN REFERENCED ARTICLE AND PROAES NL

Node Relative error (%)
2 0.044
5 0.316
9 0.318
13 0.381
17 0.467
21 0.521

It is observed that using PROAES NL, the results obtained for design sensitivity agree
with the values obtained through the finite difference method with relative errors below
0.5 percent. Moreover, the results obtained for design sensitivity using PROAES NL
agree with the values presented in [17] with a relative error below 1 percent. The
comparison between PROAES NL and the referenced article shows that both the non-
linear analysis method and the design sensitivity analysis method implemented in
PROAES NL are showing excelent results.

3.2.2 CANTILEVER BEAM WITH END FORCE

Consider the cantilever beam with a vertical end force represented in Figure 3.3. Design
sensitivity predictions are compared with the values obtained using the finite difference
method. The beam is modelled with 11 nodal points and 10 finite elements.
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Xl"‘
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-
W HHEL 0]—»
123 4 10 11 x1
e
10m |

FIGURE 3.3. CANTILEVER BEAM WITH END FOR CE FINITE ELEMENT MODEL

The beam has a rectangular cross-section with width = 1m and height = 0.1m.

The geometric and material properties can be found in Table 3.7.

TABLE 3.7. GEOMETRIC AND MATERIAL PROPERTIES

Area (m?) Moment of inertia Young’s modulus
(m*) (N/m?)
0.1 8.3(3)* 1075 1.2+10°

For this example, the design variable is the cross-sectional area, A.
The structure is subjected to one concentrated vertical force, P, with a value of 100 N.

The expression for the moment of inertia of the beam with dependence to the value of
the area of the cross-section is:

bh® 10h* A2

=1 =12 =10

Therefore, the input value for the derivative of the moment of inertia with respect to the

. A
area of the beam is prs

Considering a design variation of u — u * du for the cross-sectional area, 'Ppl is obtained

with the insertion of the following values for areca and moment of inertia in
PROAES NL:

A'=0.1-0.01%0.1=0.099 m?

_ 0.099?

1 — -5 4
=130 = 8.1675* 10> m
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Considering a design variation of u + u * du for the cross-sectional area, quz is obtained

with the insertion of the following values for area and moment of inertia in
PROAES NL:

A?=0.1+0.01%0.1=0.101 m?

_ 0.1012

2 — -5 4
=120 =8.5008333 10 m

The total variation in the design variable can be obtained by subtracting the cross-
sectional areas calculated above:

Au=A?—- A'=0.101-0.099=0.002m?

Performance functionals were considered to be vertical displacements and design
sensitivity values were calculated for four different nodal points: 2, 5, 9, and 10. The
results obtained using PROAES NL are shown in Table 3.8.

TABLE 3.8. PERFORMANCE AND DESIGN SENSITIVITY PREDICTIONS USING PROAES NL

Node ¥y (m) P2 (m) Ay, v,
2 -0.0818 -0.0794 1.2000 1.1914
5 -1.1226 -1.0924 15.100 14.995
9 -3.5846 -3.4991 42.750 42.415
10 -4.2847 -4.1848 49.950 49.535

The comparison between design sensitivity predictions and central finite differences is

shown in Table 3.9 using expression 3.46.

TABLE 3.9. COMPARISON BETWEEN DESIGN SENSITIVITY PREDICTIONS AND FINITE DIFFERENCES

Node Relative error (%)
2 0.722
5 0.700
9 0.790
10 0.838

The results obtained for the sensitivity of the design to a variation of the cross-sectional
area are in close accordance with the results obtained using the finite difference method
with all the nodal points with a relative error below 1 percent.

3.2.3 LEE’S FRAME

The structure shown in Figure 3.4 was already studied in chapter 2 to validate the non-
linear analysis method implemented in PROAES NL. Design sensitivity predictions are
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compared with the values obtained using the finite difference method. The beam is
modelled with 21 nodal points and 20 finite elements, as presented by [27], [28] and
[29].

24 cn:1 06 cm

20 21
P

120 cm

bad b

=[]

S,
‘-H""n—-

FIGURE 3.4. LEE'S FRAME FINITE ELEMENTMODEL

The beam has a rectangular cross-section with width = 3 cm and height = 2 cm.
The geometric and material properties can be found in Table 2.1.

A single design variable is used, representing the cross-sectional area of all the
elements.

The structure is subjected to one concentrated vertical force, P, with a value of 1000
Kgf.

The expression for the moment of inertia of the beam with dependence to the value of
the area of the cross-section is:

_ bh® 15n* A?
12 12 18

Therefore, the input value for the derivative of the moment of inertia with respect to the
. A
area of the beam is >

Considering a design variation of u — u * du for the cross-sectional area ‘Ppl is obtained
with the following values for area and moment of inertia in PROAES NL.:

A'=6-0.01%6=5.94cm?

5.942
1= 18 — 1.9602 cm*
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Considering a design variation of u + u * Su for the cross-sectional area ¥ is obtained
with the following values for area and moment of inertia in PROAES NL:

A?=6+0.01%x6=6.06 cm?

6.062
1?2 = 18 = 2.0402 cm*

The total variation in the design variable can be obtained by subtracting the cross-
sectional areas calculated above:

Au=A?-A'=6.06—5.94=0.12

Performance functional were considered to be the vertical displacement and design
sensitivity values were calculated for six different nodal points: 2, 5,9, 13, 17, and 20.
The results obtained using PROAES NL are shown in Table 3.10.

TABLE 3.10. PERFORMANCE AND DESIGN SENSITIVITY PREDICTIONS USING PROAES NL

Node ¥y (cm) Y2 (cm) Ay, v,
2 -19.1380 -19.1337 0.03583 0.03470
5 -70.6415 -70.5989 0.35500 0.34838
9 -102.299 -102.147 1.26667 1.25623
13 -92.8424 -92.7513 0.75920 0.75613
17 -47.8443 -47.8275 0.14000 0.13927
20 -11.9265 -11.9191 0.06167 0.06152

The comparison between design sensitivity predictions and central finite differences is

shown in Table 3.11 using expression 3.46.

TABLE 3.11. COMPARISON BETWEEN DESIGN SENSITIVITY PREDICTIONS AND FINITE DIFFERENCES

Node Relative error (%)
2 3.256
5 1.900
9 0.831
13 0.406
17 0.524
20 0.244

The results obtained for the sensitivity of the design to a variation of the cross-sectional

area are in close accordance with the results obtained using the finite difference method
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with 4 of the nodal points with a relative error below 1 percent and 1 nodal point with a
slightly larger error of 3 percent.

3.2.4 SIX-BAR TRUSS

Consider the six-bar truss structure shown in Figure 3.5. This example is featured in the
work of Santos [1]. Once again, both performance functional values and design
sensitivity predictions are compared with the results presented in [1]. The structure was
modeled using five nodal points and six finite elements.

x2

®

4
25

o ®

| 100" 100"

a2
o
Lh
=5
F
&

xl

FIGURE 3.5. SIX-BAR TRUSS FINITE ELEMENT MODEL

The geometric and material properties can be found in Table 3.12.

TABLE 3.12. GEOMETRIC AND MATERIAL PROPERTIES

Area (in?) B e L Poison’s ratio
(psi)
0.1 30.0%10 0.3

The design variable is considered to be the cross-sectional area for all the finite
elements, A.

The structure is subjected to two concentrated loads. The values of the vertical and
horizontal loads are presented in Table 3.13.

TABLE 3.13. VALUES FOR HORIZONTAL AND VERTICAL FORCES

Load case
Horizontal load Fy; (Ib) Vertical load F, (Ib)

5000 5000

Considering a design variation of u — §u for the cross-sectional area ¥ is obtained

with the insertion of the following values for area and moment of inertia in
PROAES NL:

A =0.1-0.01%0.1 =0.099 in?
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Considering a design variation of u + éu for the cross-sectional area lez is obtained

with the insertion of the following values for area and moment of inertia in
PROAES NL:

A?=0.1+4+0.01%0.1=0.101 in?

The total variation in the design variable can be obtained by subtracting the cross-
sectional areas calculated above:

Au = A%? — A = 0.101 - 0.099 = 0.002

Performance functional and design sensitivity values were calculated for three different
nodal points: 3,4, and 5. The results obtained using PROAES NL are shown in Table
3.14. The comparison between design sensitivity predictions and central finite
differences is shown in Table 3.15 using expression 3.46.

TABLE 3.14. PERFORMANCE AND DESIGN SENSITIVITY PREDICTIONS USING PROAES NL

Node ¥ (in) P2 (in) Ay, v,
3 -9.93471 -9.71802 108.345 104.858
4 -10.1168 -9.89326 111.770 108.245
5 -26.8087 -26.2237 292.500 285.146

TABLE 3.15. COMPARISON BETWEEN DESIGN SENSITIVITY PREDICTIONS AND FINITE DIFFERENCES

Node Relative error (%)
3 3.214
4 3.150
5 2.510

The results presented have a small error when compared with finite differences. In
Table 3.16 are shown the results presented in [1] for design sensitivity predictions.

TABLE 3.16. RESULTS FOR DESIGN SENSITIVITY PREDICTIONS PRESENTED IN [1]

Node U
3 108.332
4 111.786
5 292.461

A slight discrepancy is noted in this example when comparing the results obtained using
PROAES NL to the results presented in [1] because, in [1], a bar element is used.
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Whereas in the design sensitivity method implemented in PROAES NL, a beam
element is considered.

3.2.5 TWO-STORY FRAME

Consider the two-story structure shown in Figure 3.6. Design sensitivity predictions are
compared with the values obtained using the finite difference method. The structure was
modeled using 9 nodal points with 10 finite elements. The beam considered was a HEB
100.

This example is not based in any existing literature and was created to assess if a
difference would arise between the displacements obtained using PROAES, that
performs linear analysis, and PROAES NL, that performs nonlinear analysis. This
would determine if the nonlinear effects are, or not, significant.

The geometric and material properties can be found in Table 3.17.

TABLE 3.17. GEOMETRIC AND MATERIAL PROPERTIES

Area (mm?) Young’s modulus Moment of inertia
(N/mm?) (mm*)
2480 200000 4322667,002
#]
R i ! | | l
7 ] 8 10 a
3000mm 6 7 s
Q
> Pl | Ir 5 1
, ; :
SO0 1 7 3
* | 1_ _i i_ X
I -+ .
7500mm 7500mm

FIGURE 3.6. TWO-STORY FRAME FINITE ELEMENT MODEL
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The structure is subjected to two concentrated horizontal loads, P1 and P2 and two
distributed loads, Q, with equal intensity. The values of P1, P2, and Q are shown in
Table 3.18.

TABLE 3.18. LOADS APPLIED TO THE STRUCTURE

P1 (N) P2 (N) Q (N/mm)
13500 9000 4

Knowing that the measures of the cross-section of the beam can be written in terms of
measure B, see Figure 3.7, as,

H =B

o B
100
_ 6B

=100

It is now possible to determine the expression of the area with respect to the value of
measure B, see Figure 3.7.

A=HB —(H - 2t)(§ —e) =0,248B2

*t

A |

" — S E E— .

<
<«

v

B

FIGURE 3.7. HEB 100 BEAM CROSS SECTION

The expression for the moment of inertia of the beam with dependence to the value of
the area of the cross-section is:

BH?® (B—e)(H-2t)3
- &

I'== 12

© [ =0,702826971A2
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Therefore, the input value for the derivative of the moment of inertia with respect to the
area of the beam is

I; = 1,405653942 4

Assuming a single design variable, A, representing the cross-section area of all the finite
elements and considering a design variation of u — u * Su, ¥ is obtained with the

following values for area and moment of inertia:
A' =2480—2480%0,01 = 24552 mm?
11=0,702826971% 2455,2% = 4236645,929 mm*

Considering a design variation of u + u * Su for the cross-sectional area ¥? is obtained
with the following values for area and moment of inertia:

A% =2480+ 2480 % 0,01 = 2504,8 mm?
12 =0,702826971* 2504,82 = 4409552,609 mm*

The total variation in the design variable can be obtained by subtracting the cross-
sectional areas calculated above:

Au = A? — A1 = 2504,8 — 2455,2= 49,6

Performance functional and design sensitivity values for horizontal displacement were
calculated for six different nodal points: 4, 5, 6, 7, 8, and 9. The results obtained using
PROAES NL are shown in Table 3.19.

TABLE 3.19. PERFORMANCE AND DESIGN SENSITIVITY VALUES OBTAINED USING PROAES _NL

Node ¥y (mm) Y2 (mm) Ay, v,
4 43.88294 42.06707 -0.036610 -0.036850
5 43.88768 42.07165 -0.036614 -0.036855
6 43.91987 42.10318 -0.036627 -0.036869
7 94.64112 90.73307 -0.078791 -0.079406
8 94.35768 90.45527 -0.078678 -0.079291
9 94.17882 90.27991 -0.078607 -0.079220
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The comparison between design sensitivity predictions and central finite differences is
shown in Table 3.20 using expression 3.46.

TABLE 3.20. COMPARISON BETWEEN DESIGN SENSITIVITY ANALYSIS AND FINITE DIFFERENCE

Node Relative error (%)
4 0.6556

5 0.6582
6 0.6564
7 0.7745
8
9

0.7731
0.7738

The results provided for the design sensitivity are in close accordance with the results
obtained using the finite difference method with a relative error below 0.8%.

The values for vertical and horizontal displacement on the nodes of the structure
obtained performing a nonlinear analysis using PROAES NL are shown in Table 3.21.

TABLE 3.21. VERTICAL AND HORIZONTAL DISPLACEMENT VALUES OBTAINED USING PROAES NL

Node Dx (mm) Dy (mm)
4 42.960 -0.4541
5 42.965 -0.5048
6 42.997 -0.5070
7 92.656 -0.9410
8 92.375 -1.0130
9 92.198 -1.0050

The values obtained using the linear code PROAES are shown in Table 3.22.

TABLE 3.22. VERTICAL ANDHORIZONTAL DISPLACEMENT VALUES OBTAINED USING PR OAES

Node Dx Dy
4 40.663 -0.1482
5 40.667 -0.1979
6 40.698 -0.1983
7 87.763 -0.2235
8 87.482 -0.2998
9 87.304 -0.2932
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Comparing the results obtained using both programs, a relative difference can be
computed using the following formula.

Relative di |[PROAES — PROAES_NL| 100 (3.47)
= *
elative dif ference PROAES

The results for the relative difference are shown in Table 3.23.

TABLE 3.23. COMPARISON OF VERTICAL AND HORIZONTAL DISPLACEMENT VALUES OBTAINED USINGPROAES NLAND PROAES

Node | Relative error Dx (%) Relative error Dy (%)
4 5.649 206.41
5 5.651 155.08
6 5.649 155.67
7 5.575 321.03
8 5.593 237.89
9 5.606 242.77

One can conclude that there is a significant difference between performing a linear and
nonlinear analysis. In this example, an average relative difference of 5.6 % is found in
the horizontal displacement, and a much higher average difference of 219.8% is found
in the vertical displacement. In accordance, the design sensitivity prediction using a
nonlinear analysis, PROAES NL, see Table 3.19, is significantly different than the
design sensitivity prediction using a linear analysis, PROAES, see Table 3.24.

TABLE 3.24. DESIGN SENSITIVITY PREDICTIONS USING PROAES

Node U
4 6.8612e-07

5 3.2976e-07
6 -2.8289¢-06
7 -2.65083-05
8
9

1.29453-06
1.8972e-05
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CHAPTER 4
TOPOLOGY OPTIMIZATION

A minimum compliance optimization with a volume constraint was performed using
Octave SQP algorithm. It was considered a problem with the following formulation:

Minimizing f(X)
Subjected to: giX)<o0 1=1,..,p
h,X)=0, m=1,..,k
X;<X;<¥X;, j=1,..n
Where:

e X is the vector with the design variables, in this case, the cross-sectional area of
the elements.

e f(X) is the objective function, in this case, the objective function is the
displacement of the node where the external load is applied, as minimizing the
compliance for a single load applied results in minimizing the displacement.

e g,(X) and h,,(X) are thep inequality constraints and the k equality constraints,
respectively. In this case, one inequality constraint was used for the admissible
volume and no equality constraints were used.

The lower and upper bound limits for the cross-sectional area of the elements are ‘X j

and “Xj, respectively.

In order to compare the optimum designs obtained using the nonlinear code,
PROAES NL, and the linear code, PROAES, the work of Kang and Luo [11] was used.
In [11] density based topology optimization is used and the designs obtained using both
linear and nonlinear analysis codes are presented.

4.1 EXAMPLES

The initial admissible volume considered was of 0.1% of the total volume of the
structure when all the bars have their maximum area value. This value was then updated
according to the example. A uniform circular cross-section was considered.

The vector x is initialized with the areas considered to be at their upper bound.

The tolerance considered for the SQP optimization tool was 10712,

4.1.2 FIXED-FREE 38 BAR TRUSS
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The design domain and loading conditions for this example are illustrated in Figure 4.1.
This example is based on the example presented in the master thesis of André Teixeira
[40] where two-dimensional bar elements were used. The rectangular ground structure,
with a geometrical dimension of 16m x 6m, is fixed at the nodes of the left extremity
and free in the opposed nodes. A concentrated vertical force is applied at the mid-point
node of the right extremity. The model was created using 15 nodes and 38 two-
dimensional beam elements.

¥

4m 4m 4m 4m

FIGURE 4.1. INITIAL GROUND STRUCTURE FOR THE FIXED-FREE 38 BAR TRUSS EXAMPLE

4.1.2.1 OPTIMIZATION USING PROAES

The structure was first optimized with the PROAES linear code.

The variations allowed for the value of the area of the elements are presented on Table
4.1.

TABLE 4.1, LOWER AND UPPER BOUND FOR THE LINEAR OPTIMIZATION OF THE FIXED-FREE 38 BAR TRUSS EXAMPLE

Lower bound Higher bound

le-8 m? 3.142e-4 m?

The maximum volume of the structure is 4.9637e-2 m”3. The admissible volume of
0.00452m"3, approximately 0.1% of the maximum volume, was considered. Using two-
dimensional bar finite elements in PROAES it was possible to obtain a final design in
accordance with the one presented in [40]. Neglecting the bars with an area below 2.1e-
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05, in the final solution, it is possible to obtain the optimum design presented in Figure
4.2.

FIGURE 4.2. OPTIMUM LINEAR DESIGN USING 2D BAR ELEMENTS

Changing the type of finite element used from bar to beam but maintaining the same
admissible volume as used for the optimization with bar element led to an inconclusive
optimum configuration, as can be seen in Figure 4.3 (a). Although a structure similar to
the one in Figure 4.2 is seen, the area of the element 25, that doesn’t belong to the
previous solution is superior to the area of the element 29 that does belong to the
solution. The maximum admissible volume was then increased until a configuration was
visible. The evolution of the final designs with the increase of the admissible volume
can be seen in Figure 4.3. Elements with an area below 1.5e-5 were not considered in
the representation.

25

29

15 5

(a) V_ADM=0.00452 (b) V_ADM=0.009

s o s 5 o 15

(d) V_ADM=0.02

(c) V_ADM=0.015
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FIGURE 4.3. EVOLUTION GF THELINEAR OPTIMIZATION USING 2D BEAM ELEMENTS

The final optimum design with the admissible volume of 0.025 is different from the
design obtained using bar elements. In the beam configuration there wasn’t any element
overlapping. The configuration (¢) in Figure 4.3 shows great similarities to the one
presented in the article by Kang and Luo [11], although in the article the studied
structure is subjected to both an horizontal and vertical force. Neglecting the elements
with an area below 8.3e-5 in configuration (e) the comparison between both designs can
be made through Figure 4 .4.

(A) (B)

FIGURE 4.4. COMPARISON OF STRUCTURES: (A) PROAES (B) SOURCE [10]

The visible difference resides in the vertical bars of the PROAES optimum design when
in the article they have an inclination. This is due to the fact that in the article density-
based optimization is used allowing the bars to take a free disposition in the admissible
space. Whereas in PROAES the disposition of the elements depends on the initial
ground structure that was created by the user.

For the design (e) in Figure 4.3 the final value for the objective function, final external
load magnitude, ending code, duration of the optimization process and the number of
iterations performed are listed in Table 4.2.
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TABLE 4.2. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104
Time 281.494s
Iterations made 264

P (N) 100
Objective function 0.00012496

The optimized structure presents the 20 elements listed in Table 4.3.

TABLE 4.3. AREA AND VOLUME FOR THE ELEMENTS IN THEFINAL DESIGN

Number of the element Area (m?) Percentjgfu(r)i;he e
3 3.142000e-04 5.027
4 3.142000e-04 6.284
8 3.142000e-04 6.284
9 3.142000e-04 5.027
10 2.571579¢-04 3.086
11 2.532505e-04 3.039
12 3.142000e-04 5.027
13 3.142000e-04 6.284
17 3.142000e-04 6.284
18 3.142000e-04 5.027
19 2.053484e-04 2.464
20 2.090345¢-04 2.508
21 3.142000e-04 5.027
22 3.142000e-04 6.284
26 3.142000e-04 6.284
27 3.142000e-04 5.027
28 2.174483e-04 2.609
29 1.860135e-04 2.232
31 3.142000e-04 6.284
35 3.142000e-04 6.284

The 20 elements make up to 96.4% of the volume of the structure.

4.1.2.2 OPTIMIZATION USING PROAES NL

The same optimization formulation was then used with the PROAES NL nonlinear
code.
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The variations allowed for the value of the area of the elements are presented on Table
4.4,

TABLE 4.4. LOWER AND UPPER BOUND FOR THENONLINEAR OPTIMIZATION OF THE FIXED-FREE 38 BAR TRUSS EXAMPLE

Lower bound Higher bound

3e-6 m? 3.142e-4 m?

The usage of nonlinear analysis has inherent challenges, for example, it’s not possible to
use lower bounds as low as the ones used for linear analysis or considerable high
external loads.

The lower bound was then raised from le-8 to 3e-6 in order to avoid convergence
errors. The value of 3e-6 was found through trial and error.

Considering a circular cross-section, the input value for alfa, a, m PROAES NL was
the same as in the previous example.

Using the same maximum admissible volume as used in configuration (e) of Figure 4.3,
0.025, and neglecting the bars with an area below 7.7e-6, the resulting configuration is
presented in Figure 4.5.

20

FIGURE 4.5. OPTIMUM DESIGN USING NONLINEAR ANALYSIS AND 2D BEAM ELEMENTS

This configuration is equal to the one found using the linear code PROAES, seen in
Figure 4.4 a).

The final value for the objective function, final extemal load magnitude, ending code,
duration of the optimization process and the number of iterations performed are listed in
Table 4.5.

TABLE4.5. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104

Time 373.596s
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Iterations made 57
P (N) 100
Objective function 0.00012500

The optimized structure presents the 20 elements listed in Table 4.6.

TABLE 4.6. AREA AND VOLUMES OF THE ELEMENTS IN THE FINAL CONFIGURATION

Number of the element Area (m2) Percentage of the total

volume
3 3.142000e-04 5.027
4 3.142000e-04 6.284
8 3.142000e-04 6.284
9 3.142000e-04 5.027
10 2.526828e-04 3.032
11 2.526812¢-04 3.032
12 3.142000e-04 5.027
13 3.142000e-04 6.284
17 3.142000e-04 6.284
18 3.142000e-04 5.027
19 2.054922¢-04 2.466
20 2.054903e-04 2.466
21 3.142000e-04 5.027
22 3.142000e-04 6.284
26 3.142000e-04 6.284
27 3.142000e-04 5.027
28 2.051298e-04 2.462
29 2.051180e-04 2.461
31 3.142000e-04 6.284
35 3.142000e-04 6.284

The 20 elements make up to 96.4% of the volume of the structure.

When trying to modify the admissible volume and lower bound to see if a different
design would arise convergence errors occurred. Therefore, in this example it was only
possible to reach with the nonlinear code, PROAES NL, an optimum design equal to
the one obtained using the linear analysis, PROAES.

4.1.2.3 ANALYSIS AND COMPARISON OF RESULTS
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In this example the optimum design obtained using PROAES with bar finite elements is
in accordance with the design presented in the reference [11]. The design obtained using
PROAES is shown in Figure 4.6 (a) and the design presented in [11] is shown in Figure
4.6 (b).

(b)

(a)

FIGURE 4.6. COMPARISON OF STRUCTURES: (A) PROAES (B) SOURCE [10]

The design obtained using PROAES NL was equal to the one obtained using PROAES.
Is this example, due to convergence errors it was not possible to try different
combinations of maximum admissible volume and lower bound. When analyzing the
nonlinear solution presented in [11], the reader is referred to Figure 4.7, it’s possible to
conclude that the difference between the linear and the nonlinear design is mainly in the
localization of the nodes. Consequently, the length of the elements is altered. In
addition, an extra node appears in the nonlinear solution.

FIGURE 4.7. NONLINEAR OPTIMUM DESIGN PRESENTEDIN [10]

This would not be possible to achieve using the initial ground structure with
PROAES NL since the coordinates of the nodes are not a variable of the problem and
it’s not implemented in PROAES NL the possibility of removing or introducing new
nodes and elements.

Therefore, the final configuration obtained using linear and non-linear analysis is
presented in Figure 4.8.
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FIGURE 4.8. OPTIMUM DESIGN OBTAINED USING LINEAR AND NON-LINEAR ANALYSIS

4.1.3 TWO POINT SUPPORTED 46 BAR TRUSS

The design domain and loading conditions of this example are illustrated in Figure 4.9.
This example is based on the example presented in the article by Kang and Luo [11],
considering some modifications. The rectangular ground structure, with a geometrical
dimension of 16m x 4m, is fixed at the mid-points of both ends. The width, w, and
height, h, of the structure is in accordance to the proportion used in [11] of w/h=4. A
concentrated force P is applied at the center of the structure.

dm 4m 4m 4m

FIGURE 4.9. INITIAL GROUND S TRUCTURE FOR THE TWO-POINT SUPPORTED 46 BAR TRUSS

4.1.3.1 OPTIMIZATION USING PROAES

The variations allowed for the value of the area of the elements are presented on Table
4.7.
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TABLE4.7. LOWER AND UPPER BOUND FOR THELINEAR OPTIMIZATION OF THE46 BAR TRUSS EXAMPLE

Lower bound Higher bound

le-8 m? 3.12e-2 m?

The maximum volume of the structure, with the area of the elements at the upper bound
is 5.766m3. Considering the admissible volume of 0.6 m3, approximately 0.1% of the
maximum volume, the optimal topology obtained using the linear code PROAES is
presented in Figure 4.10.

4 —

FIGURE 4.10. OPTIMUM TOPOLOGY WITH LINEAR ANALYSIS

Neglecting the bars with an area below 6.0e-4 because of their proximity with the lower
bound it is possible to obtain the optimum design presented in Figure 4.11. This result is
in accordance with the results presented by [11] which can be seen in Figure 4.12.

+ T

a

0 5 10 15

FIGURE 4.11. FINAL OPTIMUM LINEAR DESIGN USINGPROAES
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FIGURE 4.12. OPTIMUM LINEAR DESIGN PRESENTED IN[11]

The final value for the objective function, final extemal load magnitude, ending code,

duration of the optimization process and the number of iterations performed are listed in
Table 4.8.

TABLE 4.8. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104
Time 89.799 s
Iterations made 69

P (N) 200
Objective function 2.9562¢-4

The optimized structure presents the 6 elements listed in Table 4.9.

TABLE4.9. AREA AND VOLUME OF THE ELEMENTS IN THE FINAL LINEAR CONFIGURATION

Number of the element Area (m?) Percentsz;gleuciltl";he ot
7 2.203345e-02 16.423
18 2.977477e-02 19.850
27 2.977471e-02 19.850
35 2.203345e-02 16.423
39 1.387695e-02 13.083
40 1.387695e-02 13.083

The 6 elements make up to 98.7% of the volume of the structure. The optimum design
is symmetric along a vertical axis with the outer elements taking the biggest percentage
of the total volume. One can observe this in Figure 4.12 through the analysis of the
thickness of the elements and through the analysis of Table 4.9.

4.1.3.2 OPTIMIZATION USING PROAES NL
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The variations allowed for the value of the area of the elements are presented on Table
4.10.

TABLE 4.10. LOWER AND UPPER BOUND FOR THE NONLINEAR OPTIMIZATION OF THE 46 BAR TRUSS EXAMPLE

Lower bound Higher bound

3.12e-4 m? 3.12e-2 m?

The lower bound was raised to 3.12e-4 m”2 because it is a value known to the author that
guaranties the proper functioning of PROAES NL without convergence errors.

Considering a circular cross-section, the expression for the moment of inertia of the
beam with dependence to the value of the area of the cross-section is:
1

| =—A2
a1

Therefore, the input value for alfa, a, in PROAES NL is:

Considering the maximum admissible volume of 0.6 m3, same as used in the linear
optimization, the optimal topology obtained using PROAES NL is presented in Figure
4.13.

o I I I
o 5 10 15

FIGURE 4.13. NONLINEAR DESIGN USING THE SAMEPARAMETER S FROM THE LINEAR OPTIMIZATION

The final value for the objective function, final extemal load magnitude, ending code,

duration of the optimization process and the number of iterations performed are listed in
Table 4.11.
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TABLE4.11. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104
Time 405.078 s
Iterations made 42
P (N) 200
Objective function 3.1434e-4

The optimized structure presents the 6 elements listed in Table 4.12.

TABLE 4.12. AREA AND VOLUME OF THE ELEMENTS IN THE NONLINEAR CONFIGURATION

Number of the element Area (m?) Percentsifu(i;he (il
7 2.013490e-02 15.008
18 2.754749¢-02 18.365
27 2.754749¢-02 18.365
35 2.013490e-02 15.008
39 1.276395e-02 12.034
40 1.276395e-02 12.034

The optimum design in Figure 4.13 was obtained using the same parameters that were
used in the linear optimization with exception of the lower bound of the area that
needed to be raised to assure the proper functioning of PROAES NL. The resulting
structure is similar to the one obtained using linear optimization. Therefore, the author
proceeded to vary the extemal load, the maximum admissible volume and the lower
bound of the area in order to verify if it would be possible to obtain a final design
different from the linear response and similar with the nonlinear result presented in [11].

The nonlinear design presented in [11] is displayed in Figure 4.14.

FIGURE 4.14. NONLINEAR DESIGNPRESENTED IN [11]

The solution presented in [11] had a considerable higher number of elements, implying
a higher total volume of the structure, when compared with the linear solution.
Therefore, the admissible volume had to be raised. Otherwise, the algorithm would
never be able to achieve this solution.

The admissible volume was raised until a visible difference from the linear response
appeared. The historic of optimization is displayed in Figure 4.15.
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FIGURE 4.15. HISTORIC OF OPTIMIZATION WHILE INCREASING THE MAXIMUM ADMISSIBLE VOLUME

The admissible volume used in each optimization is displayed to the right of each image
under the variable name “VOL _ADM”.

Image A is the design presented in Figure 4.15 and obtained using the same parameters
as the ones used for the linear optimization. In image B it’s possible to see that elements
5,12,21,31,14, 16, 22 and 26 have a slightly increased area. In image C the elements
mentioned before present now an even higher area and two new elements appear with
an increased area: elements 19 and 20. In the final image, D, all the elements mentioned
before now appear to have a higher contribution in area comparing to the elements 39
and 40 that belong to the linear optimum design. Therefore, the maximum admissible
volume of 2 was chosen as the starting point for the lower bound and external load
variations.

The final value for the objective function, final extemal load magnitude, ending code,
duration of the optimization process and the number of iterations performed for the
chosen configuration D are listed in Table 4.13.

TABLE 4.13. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104
Time 559.046 s
Iterations made 76
P (N) 200
Objective function 1.0211e-4

The optimized structure presents the 18 elements listed in Table 4.14.

TABLE 4.14. AREA AND VOLUME OF THE ELEMENTS IN CONFIGURATION D

Number of the element Area (m?) Percentage of the total
volume
5 3.120000e-02 6.977
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7 3.120000e-02 6.977
10 1.971213e-02 1.971
12 3.120000e-02 6.240
14 2.902176e-02 6.489
16 2.875974¢-02 6.431
18 3.120000e-02 6.240
19 2.606190e-02 2.606
20 2.601425e-02 2.601
21 3.120000e-02 6.240
22 2.902176e-02 6.489
26 2.875974¢-02 6.431
27 3.120000e-02 6.240
28 1.971213e-02 1.971
31 3.120000e-02 6.977
35 3.120000e-02 6.977
39 1.623804e-02 4.593
40 1.623804¢e-02 4.593

Having determined the maximum admissible volume the lower bound of the area was
decreased to evaluate what happened to the optimized structure. Figure 4.16 describes
the evolution of the area of the 18 elements present in Figure 4.15, configuration D, as
the lower bound decreases.

Element 5 Element 7

Element 10 Element 12
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Element 31 Element 35

Lower bound

Element 39 Element 40

1
Element area
CE-E-

FIGURE 4.16. EVOLUTION OF THE AREA OF THE ELEMENTS IN CONFIGURATIOND AS THE LOWER BOUND DECREASES

Through the analysis of the graphics in Figure 4.16 one can conclude that the area of the
bars that belong to the linear results, elements 39 and 40, is steadily decreasing whereas
the area of the other 16 elements listed in Table 4.14 is steadily increasing. Elements 5,
7,12, 18, 21, 27, 31 and 35 already had their areas at the upper bound which remain
equal throughout the several optimizations.

The analysis couldn’t be made further past a lower bound of 2e-6 because of the
limitation of the program when calculating §4 using the quadratic equation. When the
extemal load increased significantly or when the lower bound was lowered to try to
approximate the lower bound used in linear optimization an error occurred, and the
program failed to compute the value of 4. This error will be called “D parameter” error
throughout this work. However, it’s expectable that if given the opportunity to extend
the optimization to lower levels of lower bound the area of the elements 39 and 40
would continue to decrease.

It was possible to conclude that the variation of the lower bound had a significant
impact in the variation of the cross-sectional area with cases where the area varied up to
8 percent.

Using the lower bound of 2e-6 m? and considering only the elements with an area
above the area of elements 39 and 40, which from the 18 elements presented in Table
4.14 are the ones with the lowest cross-sectional area, the obtained optimum design is
presented in Figure 4.17.
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a 5 10 15 20

FIGURE 4.17. FINAL NONLINEAR OPTIMUM DESIGNUSING PROAES NL

The final value for the objective function, final extemal load magnitude, ending code,
duration of the optimization process and the number of iterations performed for the
optimum design are listed in Table 4.15.

TABLE 4.15. FINAL PARAMETERS OF THE OPTIMIZATION

Ending code (SQP) 104
Time 921.723s
Iterations made 123
P (N) 200
Objective function 1.0152e-4

The optimized structure presents the 16 elements listed in Table 4.16.

TABLE 4.16. AREA AND VOLUME OF THE ELEMENTS IN THE FINAL NONLINEAR CONFIGURATION

Number of the element Area (m?) Percentj,;g;eu(r)ltl‘;he g2
5 3.120000e-02 6.977
7 3.120000e-02 6.977
10 2.022934¢-02 2.023
12 3.120000e-02 6.240
14 3.085140e-02 6.899
16 3.081829e-02 6.891
18 3.120000e-02 6.240

76



4.1 Examples

19 2.758859¢-02 2.759
20 2.758986e-02 2.759
21 3.120000e-02 6.240
22 3.085297e-02 6.899
26 3.081985¢e-02 6.892
27 3.120000e-02 6.240
28 2.022928e-02 2.023
31 3.120000e-02 6.977
35 3.120000e-02 6.977

Using as a starting point the values used for the optimization D in Figure 4.15 but
changing the lower bound to 2e-6 m?, the external load was raised to see what effect it
would have in the cross-sectional area. However, raising the external load to as little as
210N triggered the error of the D parameter. Consequentially, to study the effect of the
extemal load in the cross-sectional area of the elements it was necessary to use a higher
value for the lower bound. The value chosen was the first initial value used for the study
of the maximum admissible volume, 3.12e-4 m?2.

The results are shown in Figure 4.18.

Element 5

Element 10

Element 7

Element 12
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FIGURE 4.18. EVOLUTION OF THE AREA OF THE ELEMENTS IN CONDIGURATION DAS THE EXTERNAL LOAD INCREASES

When analyzing the graphics in Figure 4.18 it was possible to conclude that the area of
the elements that make up the linear solution, elements 39 and 40, raised whereas in the
previous case with the lower bound reduction they decreased. Some of the elements that
had appeared in case D, Figure 4.15, had their areas reduced, elements 14, 16, 19, 20, 22
and 26 while others had their areas risen which is the case of elements 10 and 28.

The computational time necessary to perform each optimization increased greatly with
the increasing of the external load. With an extemal load of 200N it took 581 seconds to
perform the optimization while with the external load of 20000N it took 29008 seconds.

One can conclude that the variation of the extemal load did not have a great influence in
the variation of the cross-sectional area of the elements. Although through the analysis
of the graphics in Figure 4.18 one can see an increase or decrease in the value of the
area, it represents as little as 0.4 percent of variation of the initial area.
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Therefore, the results obtained with the variation of the lower bound are the ones that
will be used to compare with the results obtained using the linear finite element analysis
program.

4.1.3.3 ANALYSIS AND COMPARISON OF RESULTS

Using PROAES the linear optimum design obtained was in close accordance with the
ones presented in [11]. Both designs can be seen in Figure 4.19.

Ve

FIGURE 4.19. FINAL LINEAR OPTIMUM DESIGN: (A) PROAES (B) SOURCE [10]

Using PROAES NL and maintaining the same specifications as the ones used in Figure
4.19 (a), except for the lower bound that had to be raised, the obtained design was the
same as the one obtained using PROAES.

In order to obtain a design that better approached the nonlinear design presented in [11]
the maximum admissible volume, lower bound and extemal load were varied. After
raising the maximum admissible volume and lowering the lower bound it was possible
to obtain a final optimum design that better resembled the nonlinear results in the
bibliography. The comparison of both designs can be made in Figure 4.20.

(A) (B)

FIGURE 4.20. FINAL NONLINEAR CONFIGURATION: (A) PROAES NL (B) SOURCE [10]

The results presented in the bibliography were obtained using density-based
optimization whereas in this work the optimization is made using an initial ground
structure. Additionally, PROAES NL doesn’t have as a variable the coordinates of the
nodes, it can only increase or decrease the area of the bars that are created mitially and
that are connected to the nodes that are defined by the user. For this reason, it will
converge to a solution that is available using the available elements.
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Therefore, the final nonlinear design is presented in Figure 4.21 (A) and the final linear
design is presented in Figure 4.21 (B).

(A) (B)

FIGURE 4.21. FINAL OPTIMUM DESIGNS: (A) NONLINEAR (B) LINEAR
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CHAPTER 5
CONCLUSION AND RECOMMENDATIONS

5.1 CONCLUSION

The first goal of this work was to validate the nonlinear finite element analysis program
developed by Cardoso, PROAES NL. This program was created using a corotational
formulation for the cinematic of the elements and using the incremental-iterative
Newton-Raphson method allied with the cylindrical arc length formulation for load
control in order to obtain the equilibrium path of the structure. The displacements
obtained using PROAES NL were compared with the results presented in several
published articles and with the values obtained using ANSYS. The results were very
satisfactory with errors way below 7%. The program also demonstrated excellent
accuracy in surpassing critical points such as snap-through having been able to
construct the entire deformation path correctly, see Lee’s frame example. Besides, the
reading of the input file in PROAES NL was modified to accommodate the way input
information was given to PROAES, a linear finite element analysis program. This way
the same mput file can be read by both programs. However, the user must bear in mind
that PROAES NL up to this point is only able to perform calculations for bidimensional
problems and using beam finite elements.

José L. T. Santos developed as the subject of his Ph.D. thesis the theory for sizing
design sensitivity analysis for structures considering nonlinear behaviour. The
conclusions drawn in the study were that software implementation of nonlinear design
sensitivity analysis with established finite element programs was a possibility by using
only postprocessing data outside of the finite element code. In addition, the theory
developed allowed for a more efficient sensitivity analysis when compared with finite
difference design sensitivity analysis methods which carry a high computational cost.
The main pumpose of this work was thus to implement the design sensitivity analysis
theory inside PROAES NL for the analysis of structures with geometric nonlinearities.

The translation of the integral equations for design sensitivity analysis from the
mathematical domain into the physical domain was possible by using shape functions
and Hermite polynomials for beam elements. It is highlighted that the displacement
vectors in these integral equations refer to the components of the displacement due to
the deformation of the element. The matrix of design sensitivities is constructed using
two for cycles. A first cycle that goes through every requested performance and a
second cycle inside the first one that goes through every element and evaluates the
contribution of each element for the derivative of the performance with relation to the
variable chosen. For the development of this thesis, only one variable was considered:
the area of the elements. In the same manner, only two performances types were
considered: the volume and the nodal displacement.

The results obtained for design sensitivity analysis with the software implemented were
compared with the values obtained using finite difference methods and the values
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presented by several authors in published articles. The conclusions drawn were that
these results were in close accordance with the values obtained with both finite
difference methods and published articles with an average error below 3%. The
implementation was then assumed as validated with very satisfactory results. Therefore,
PROAES NL can now be used as a starting point for students and researchers for the
study of nonlinear structural phenomena.

For the final part of this thesis, topology optimization was performed using the
sensitivities implemented before and the ground structure approach. The goal was to test
if any difference would arise between the optimum designs obtained using linear and
nonlinear design sensitivity and finite element analysis. In most of the published
studies, authors agree that for common structures no significant difference is verified
and only in specific cases such as the design of space antennae’s and
MicroElectroMechanical systems a considerable difference is confirmed.

Two structures were studied: a 38-bar truss with three fixed supports in the left side and
free on the right side and a two-point supported 46-bar truss. In the articles used for
comparison a visible difference existed in both examples between linear and nonlinear
analysis. The differences occurred in the location of the nodes and the resulting
interconnecting bars. Using PROAES NL only for the 46-bar truss example a nonlinear
design that resembled the one presented in the articles was reached. The conclusions
drawn were that in both cases the nonlinear analysis provided optimum designs similar
to the designs obtained using linear analysis. Using the ground structure technique, it
would be very difficult to achieve the results presented in the articles used for
comparison since in those studies a density-based optimization methodology was used.
This is due to the fact that the traditional ground structure method doesn’t account for
the addition or removal of nodes or elements and the coordinates of the nodes were not
implemented as a variable. In addition, a limitation to the nonlinear analysis program
was discovered. For the calculation of 64 using the quadratic equation when the
extemal load increased significantly or when the lower bound was lowered to try to
approximate the lower bound used in linear optimization an error occurred, and the
program failed to compute the value of §4. This limited the nonlinear analysis by not
allowing the run of nonlinear optimization with the exact same presets like the ones
used for linear optimization.

5.2 RECOMMENDATIONS

Because nonlinear phenomena, such as buckling, can exist in a multitude of structures
the development of a program capable of assisting technicians and engineers in the
verification of the occurrence of this critical state would be necessary during both the
design and work-life stages of a structure.

Overall, the author concluded that a difference can exist between performing a linear
and nonlinear topology optimization. However, it was not possible to corroborate this
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affirmation due to convergence errors that are inherent to nonlinear structural analysis.
As a consequence, it was not possible to use the same values for extemal load,
maximum admissible volume, and area lower bound for both linear and nonlinear
optimization. Although, one must bear in mind that, in some cases, the maximum
admissible volume may have to be adjusted to reach a nonlinear design since it may
encompass a higher number of elements and, therefore, a higher total volume.

Regarding the optimization method, it should be considered a change from the classical
ground structure method to a growing ground structure method in order to allow for the
removal and insertion of nodes and elements. Also, in the articles studied where a
visible difference between linear and nonlinear optimum designs was presented, the
location of the nodes varied between both designs. Therefore, the coordinates of the
nodes should be introduced as a variable for optimization.
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