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lá sempre. Aos que o Grupo 23 de Queluz me trouxe, em especial ao
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de Tecnologia Qúımica e Biológica António Xavier (ITQB). The work

was performed under the supervision of Professor Manuel Carrondo and

Doctor Cristina Peixoto and was developed under the scope of European

project EDUFLUVAC which stands for EDUcate inFLUenza VACcine,

of which iBET is a key partner. The main goal of the collaborative pro-

ject is to develop a combinatorial immunization strategy to educate the

immune system towards cross-recognition and coverage against antigenic

drift in seasonal influenza virus exposure. It aims to develop a novel

influenza vaccine candidate that include a combination of multiple influ-

enza haemagglutinin (HA) or neuraminidase (NA) antigens delivered on

Virus-like particles (VLPs). This alternative vaccine should be capable

of inducing a long-lived broad coverage against seasonal influenza. My

PhD project, in particular, aims to improve the downstream processes

for these VLPs candidates and to develop novel analytical tools that will

allow the on-line/at-line monitoring, characterization and quality control

of VLP-based human vaccines during bioprocessing.

Taking into account that some of the proposed studies required tech-

nical skills and equipment not available at that moment at iBET/ITQB,

vii



viii PREFACE

several fruitful collaborations were established with other research groups

and companies. The development of a haemagglutinin quantification

method using BioLayer Interferometry with Octet platform resulted from

the collaboration with Pall Life Sciences and an internship at Pall Corpo-

ration. From this work, we published the “Universal label-free In-process

Quantification of Influenza Virus-like particles” manuscript. “Bioortho-

gonal processing of specific-site-functionalized enveloped Influenza-virus-

like particles” was a joint effort with two other groups, Physical Bioche-

mistry of Drugs & Targets Laboratory and Chemical Biology & Pharma-

ceutical Biotechnology Laboratory from IMM. With this work we were

able to develop a valuable platform for the downstream processing and

monitoring of enveloped Influenza VLP and refine the discrimination and

separation between VLPs and baculovirus — the major contaminant of

the process. A collaboration with Merck Millipore was set up with the

purpose to develop a non-chromatographic purification process for Influ-

enza VLPs. The manuscripts “Efficient filtration strategies for the cla-

rification of influenza virus-like particles derived from insect cells” and

“Membrane-based approach for the downstream processing of influenza

virus-like particles” resulted from this project. Aiming to develop impro-

ved Downstream processing unit trains adapted for virus and Influenza

VLPs a collaboration with the Downstream Processing Laboratory from

Bioprocess Engineering group at Max Planck Institute was started. It re-

sulted in an internship and in the work entitled “Purification of influenza

virus-like particles using sulfated cellulose membrane adsorbers”.

The PhD project was funded by The Portuguese Science Founda-

tion (FCT-MCTES) (SFRH/BD/52302/2013), under the scope of Mol-

BioS Program and by European Union (EDUFLUVAC project, FP7-

HEALTH-2013-INNOVATION).

Sofia Carvalho

Oeiras, Portugal



Abstract

Influenza virus seasonal epidemics is a global public health concern. An-

nually, it affects millions of people worldwide, representing significant

health and economic burdens. Moreover, sporadic pandemic outbreaks

have caused devastating effects, resulting in millions of deaths. Vac-

cination continues to be the cornerstone to prevent the infection with

Influenza viruses. However, there are several challenges and unmet li-

mitations to overcome for a successful vaccination. Influenza constant

antigenic drift and sporadic shift results in a variability of the circulating

virus, requiring annual vaccines’ update with high inherent costs and, in

some cases, low efficiency. Therefore, efforts are being made to develop

a universal influenza vaccine, that will confer a broader, better and lon-

ger lasting protection to cover virus constant evolution. It is important

to note that the reported diversity of virus surface epitopes contribu-

tes to a variability in the bioprocess, which can affect manufacturability.

Vaccine production and processing capacity should be achieved in a very

short period and supply an adequate number of doses to cope with global

demands, highly critic for pandemics. Increasing manufacturing speed,

capacity, and flexibility has supported cell-based vaccine production, an

alternative to conventional egg-based systems. In fact, there are new

vaccines in the market produced using mammalian and insect cell lines

and several platforms, including virus-like particles (VLPs), are under
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development as candidates for both seasonal and pandemic Influenza vi-

rus. VLPs are promising recombinant vaccine antigens: they have the

ability to stimulate an immune response to different influenza strains

combined with safety since they lack the viral genetic material required

for replication.

To fully exploit the potential of these novel manufacturing platforms,

research efforts are being put on the development of more efficient and

cost-effective downstream processes. To keep up with fast progress on

downstream processing, there is a driving force toward developing new

process monitoring, product quantification and robust characterization

methods.

The main goals of this thesis are to improve existing downstream

strategies and establish new process trains for influenza VLPs candidate

for a universal vaccine, and to develop novel analytical tools that will

allow the on-line/at-line monitoring, characterization and quality control

of VLP-based human vaccines during bioprocessing.

An introduction in Chapters 1 and 2 reviews the current advances in

the downstream bioprocessing of influenza virus and virus-like particles,

with emphasis on the different state-of-the-art unit operations, from cla-

rification to sterile filtration. Moreover, a broad overview of analytics

and quality control methods for virus-based biopharmaceuticals is des-

cribed. Focus is given to the currently available possibilities to process,

analyze and characterize viral particles, from production bulks to highly

purified samples.

One of the main bottlenecks on influenza bioprocessing is the lack

of analytical tools to detect and quantify VLPs. Traditional methods,

such as hemagglutination assay, Single Radial Immunodiffusion assay or

NA enzymatic activity assays are designed for virus particles and are

not optimized for VLPs. Moreover, the time required to process, and

the inefficient quantification of in-process samples poses challenges for

efficient downstream process development (DSP) and in-line monitoring.

Chapter 4 reports the development of a label-free tool that uses Biolayer
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interferometry technology applied on an octet platform to detect and

quantify Influenza VLPs at all stages of DSP, from crude sample up

to final VLP product. It is worth to note that this method does not

require the use of antibodies or red blood cells. By taking advantage

of hemagglutinin (HA) (Influenza’s main envelope protein) binding to

sialic acid receptors HA content could be quantified in several mono- and

multivalent Influenza VLP strains. Moreover, it shows better detection

limits than the gold standard method. This analytical method uses a high

throughput technology, providing an efficient and fast tool for process

control that can be applied as a PAT (process analytical technology)

tool.

Chapter 5 presents a strategy for the downstream processing and mo-

nitoring of tagged enveloped VLPs. By using a click-chemistry approach

that involves Azidohomoalanine incorporation and functionalization, In-

fluenza VLPs were selectively and fluorescently tagged during in vivo

production. Importantly, this labeling does not influence VLP produc-

tion and allows the construction of functionalized VLPs that maintain

their size, charge and biological function. The reported strategy uses the

baculovirus expression vector system that results in a considerable incre-

ase in downstream processing complexity because of routine purification

procedures and analytical methods are not able to strictly discriminate

between VLPs and baculovirus. However, combining this technique with

a fluorescence-activated cell-sorting (FACS) step it is possible to refine

discrimination and separation between VLP and baculovirus, the major

impurity of the process. This is a versatile and valuable tool broadly

applicable to the production, online/at-line product monitoring, during

DSP optimization of functionalized enveloped VLPs for vaccine design

trial runs, targeted drug delivery, and molecular imaging.

Taking into account the need for faster and better processes, the work

developed on Chapter 6, 7 and 8 is focused on the downstream processing

strategies, detailing the improvements on the different unit operations.

The first two chapters address the implementation of single-use techno-
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logies on a platform process for purification of Influenza VLPs. An effort

to replace chromatographic steps from the purification platform was un-

dertaken, with the ultimate goal of an all filtration purification process.

Chapter 8 describes an economically competitive chromatographic step

that works for both Influenza virus and VLPs.

Chapter 6 starts with the clarification stage, a critical step, not well

characterized for most of the purification processes, but with a strong

impact on the downstream performance. Aiming to establish a universal

influenza clarification framework, efforts were made to develop a clarifi-

cation platform for the manufacturing of several influenza strains, mono

and multivalent, at different production scales (up to 11 L). The applica-

bility of different filtration methodologies, as normal and tangential flow

filtration was evaluated in terms of product recovery and impurity clea-

rance. The selected train presents a product recovery of approximately

100% and a turbidity value below 10 NTU, resulting from high impurity

clearance, and consistent with an efficient clarification step. Notably,

these results were independent of strain, cell viability and turbidity at

harvest time. The recommended clarification strategy appears to be ea-

sily scalable to larger process volumes and can be applied to different

influenza strains, contributing to a speed-up of influenza vaccine manu-

facturing.

Moving forward to the purification stage, a membrane-based appro-

ach is described on Chapter 7. Following the clarification train previously

developed (Chapter 6), the proposed process employs a cascade of ultra-

filtration and diafiltration steps using membrane cassettes, followed by

a sterile filtration step. Different process parameters were assessed in

terms of product recovery and impurities’ removal. Membrane chemis-

try (PES vs Regenerated Cellulose), pore size (ranging from 1000 to 100

kDa) and mode of operation (parallel vs series), critical flux, transmem-

brane pressure, and permeate control strategies were evaluated. After

membrane selection and parameter optimization, concentration factors

and diafiltration volumes were also defined. By optimizing the filtration
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mode of operation, we were able to achieve product recoveries of 80%.

Overall, we speeded up the process, improved its scalability and reduced

the costs due to the removal of chromatographic, cleaning and validation

steps.

The study of Chapter 8 describes the optimization and establishment

of a chromatography capturing technique using sulfated cellulose mem-

brane adsorbers (SCMA) for purification of influenza VLPs. Design of

experiments was used to describe and optimize the critical factors for

membrane performance. For optimal conditions regarding membrane

ligand density, salt concentration on loading and elution as well as the

corresponding flow rates, 80% of product recovery was obtained. In terms

of impurity clearance, the yields for total protein removal and DNA were

higher than 89% and 80%, respectively. SCMA showed noteworthy im-

provements when compared to conventional ion exchanger membrane

adsorbers. Moreover, it is easily scalable and reduces the number of

steps required compared to conventional purification methods. Based

on the reported results, SCMA can be applied as a general platform for

purification of VLP-based influenza vaccines.

Overall, this thesis contributed to the field of vaccination and bioen-

gineering of virus-based biopharmaceuticals, in particular for influenza

virus. On one hand, the implementation of innovative analytical to-

ols for in-process control, product quantification and characterization

will contribute to downstream process understanding and optimization.

On the other hand, the development of efficient unit operations, based

on rational design and parameter optimization, created knowledge that

will contribute to more efficient and cost-effective strategies, globally

speeding-up influenza vaccine manufacturing.

Keywords - Analytics, Downstream Processing, Design of Experi-

ments, Influenza, Process monitoring, Process control, Vaccines, Virus-

like particles
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Resumo

As epidemias de influenza sazonal são um problema global de saúde

pública. Afectam anualmente milhões de pessoas representando uma so-

brecarga significativa, quer ao ńıvel da saúde, quer em termos económicos.

Para além disso, os surtos esporádicos de influenza pandémica têm cau-

sado efeitos devastadores, resultando em milhões de mortes. A vacinação

continua a ser a forma mais eficaz para prevenção de infeções através do

v́ırus influenza. No entanto, existem ainda vários desafios e limitações a

superar de modo a conseguir atingir uma vacinação de sucesso. O v́ırus

de influenza apresenta uma constante deriva e uma esporádica mudança

antigénica, resultando numa significativa variabilidade das estirpes em

circulação, tornando necessário uma atualização anual das vacinas. Esta

renovação apresenta elevados custos associados e, por vezes, uma baixa

eficiência. Por esse motivo, estão a ser feitos esforços para desenvolver

uma vacina universal que confira uma protecção melhor, mais ampla e

mais duradoura, de modo a acompanhar a evolução constante do v́ırus.

É importante referir que a diversidade reportada relativamente aos epi-

topos da superf́ıcie viral contribui para a variabilidade no bioprocesso, o

que pode afectar a manufaturabilidade. A produção de vacinas e a capa-

cidade de as processar são dois passos que devem ser atingidos num curto

espaço de tempo, de forma a fornecer um número adequado de doses para

as exigências globais, extremamente cŕıticas em casos de pandemias. A

xv
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necessidade de aumentar a velocidade, a capacidade e a flexibilidade de

fabrico tem suportado a produção de vacinas em linhas celulares como al-

ternativa aos sistemas convencionais baseados em ovos. De facto, existem

novas vacinas dispońıveis no mercado produzidas usando linhas celulares

de mamı́fero e insecto e estão em desenvolvimento diferentes platafor-

mas, incluindo part́ıculas semelhantes a v́ırus (VLPs), como candidatos

a vacinas contra v́ırus de influenza sazonal e pandémico. As VLPs são

antigénios recombinantes promissores para utilização em vacinas: pos-

suem a capacidade de estimular uma resposta imune contra diferentes

estirpes de influenza, garatindo uma segurança inerente ao facto de não

conterem o material genético necessário à replicação viral.

De modo a explorar todo o potencial das novas plataformas de produ-

ção, estão a ser desenvolvidos processos de purificação mais eficientes e

economicamente viáveis. Para acompanhar o rápido progresso nos pro-

cessos de purificação, há uma força motriz para se desenvolver métodos

mais robustos para monitorização de processo, quantificação e caracte-

rização do produto.

Esta tese tem como principais objetivos melhorar as estratégias de pu-

rificação existentes e estabelecer novas unidades de operação para VLPs

de influenza candidatas a uma vacina universal e desenvolver novas fer-

ramentas anaĺıticas que permitam a monitorização em tempo real/em

linha, a caracterização e o controlo de qualidade durante o bioprocesso

de vacinas humanas baseadas em VLPs.

A introdução dos Caṕıtulos 1 e 2 descreve os últimos avanços nos

processos de purificação de v́ırus e VLPs de influenza, dando particular

ênfase às atuais unidades de operação utilizadas, desde a clarificação à

filtração estéril. Para além disso, são descritos, de uma perspetiva ampla,

os anaĺıticos e métodos de controlo de qualidade para biofarmacêuticos

baseados em v́ırus. Em particular, são focadas as possibilidades atual-

mente dispońıveis para processar, analisar e caracterizar part́ıculas vi-

rais, desde amostras provenientes de suspensões iniciais de material até

amostras altamente purificadas.
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Uma das principais dificuldades inerentes ao processo de purificação

e produção de influenza é a falta de ferramentas anaĺıticas para dete-

tar e quantificar VLPs. Os métodos tradicionais, tais como o ensaio de

reação de hemaglutinação, o teste de imunodifusão radial simples, ou o

ensaio de atividade enzimática da neuraminidase, estão desenhados para

particulas virais e não estão optimizados para VLPs. Para além disso, o

tempo de processamento das amostras, e as dificuldades na quantificação

eficiente de amostras de processo torna-se um desafio no desenvolvimento

de processos de purificação (DSP) eficientes e na monitorização em linha

do produto. O Caṕıtulo 4 reporta o desenvolvimento de uma ferramenta

para detectar e quantificar VLPs de influenza em todos os passos de pu-

rificação, desde a amostra inicial até ao produto final. Esta ferramenta

não requer a marcação das amostras e utiliza a tecnologia de Interferome-

tria de Biocamada (BLI) aplicada numa plataforma Octet. É importante

referir que este método não necessita de anticorpos ou de eritrócitos. A

ligação entre a hemaglutinina (HA) (a protéına principal do envelope

do v́ırus) e receptores de ácido siálico permite a quantificação da HA

de várias estirpes, em VLPs mono e multivalentes. Para além disso,

apresenta limites de deteção menores que o método standard. Uma vez

que este método anaĺıtico utiliza tecnologia high throughput, torna-se

numa ferramenta de controlo de processo rápida e eficiente que pode ser

aplicada como PAT (tecnologia anaĺıtica de processo).

No Caṕıtulo 5 é apresentada uma estratégia para a purificação e moni-

torização de VLPs envelopadas e marcadas. Através de reações qúımicas

de “click”, que envolvem a incorporação de Azidohomoalanina e poste-

rior funcionalização, as VLPs de influenza foram seletivamente marcadas

com fluorescência durante a sua produção in vivo. Esta marcação não

influencia a produção de VLPs e permite a construção de part́ıculas fun-

cionalizadas que mantêm o seu tamanho, carga e função biológica. A

estratégia reportada utiliza o sistema de expressão em baculov́ırus, o que

resulta num aumento da complexidade do processo de purificação, uma

vez que os procedimentos de rotina e os métodos anaĺıticos comuns não
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são capazes de discriminar rigorosamente baculov́ırus e VLPS. No en-

tanto, a combinação desta técnica com um passo de separação de células

ativadas por fluorescência (FACS) torna posśıvel refinar a discriminação

e a separação entre VLPs e baculov́ırus, a maior impureza do processo.

Esta ferramenta pode ser amplamente aplicada na produção, monito-

rização do produto em tempo real/em linha e durante a optimização de

processos de purificação de VLPs envelopadas e funcionalizadas em cor-

ridas de teste para desenho de vacinas, entrega direccionada de fármacos

e imagiologia molecular.

Tendo em consideração a necessidade de novos processos de puri-

ficação, melhores e mais rápidos, o trabalho desenvolvido nos Caṕıtulos 6,

7 e 8 foca-se em estratégias de purificação, detalhando as melhorias em

diferentes unidades de operação. Os primeiros dois caṕıtulos visam a im-

plementação de tecnologias de uso único numa plataforma de purificação

de VLPs de influenza. Para esta plataforma fez-se o esforço de substituir

os passos de cromatografia, tendo como objetivo principal desenvolver

um processo de purificação baseado apenas em filtração. O Caṕıtulo 8

descreve um passo cromatográfico, competitivo em termos económicos,

que pode ser aplicado tanto em virus de influenza como em VLPs.

O Caṕıtulo 6 inicia o trabalho de desenvolvimento de estratégias de

purificação com a clarificação, um passo que embora cŕıtico, não está

ainda bem caracterizado para a maioria dos processos de purificação,

tendo um grande impacto na performance do mesmo. Tendo como

objetivo estabelecer um esquema universal de clarificação de influenza,

desenvolveu-se uma plataforma de clarificação para a produção e puri-

ficação de diferentes estirpes do v́ırus, mono e multivalentes, utilizando

diferentes escalas de produção (até 11 L). Avaliou-se a aplicabilidade

de diferentes métodos de filtração, como a filtração normal ou de fluxo

tangencial, em termos de recuperação de produto e de remoção de impu-

rezas. A sequência de filtros seleccionada apresenta uma recuperação de

produto de aproximadamente 100% e um valor de turbidez abaixo dos

10 NTU, resultante de uma grande remoção de impurezas e consistente
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com o que se espera de um passo de clarificação eficiente. Notavelmente,

estes resultados demonstraram ser independentes da estirpe, da viabili-

dade celular e valor de turbidez no tempo de recolha. A estratégia de

clarificação recomendada aparenta ser facilmente escalável para proces-

sos com maiores volumes e pode ser aplicada a diferentes estirpes de

influenza, o que contribui para acelerar a produção de vacinas.

O Caṕıtulo 7 descreve uma abordagem para o passo de purificação

baseada apenas no uso de membranas. Após a etapa da clarificação

(Caṕıtulo 6), no processo proposto é aplicada uma sequência de passos

de ultrafiltração e diafiltração utilizando módulos de cassetes, seguida de

um passo de filtração estéril. Foram avaliados diferentes parâmetros do

processo, quer em termos de recuperação de produto quer em termos de

remoção de impurezas. A qúımica da membrana (PES vs celulose rege-

nerada), o tamanho do poro (variando entre 100 e 1000 kDa) o modo de

operação (paralelo vs série), o fluxo cŕıtico, a pressão transmembranar

e diferentes estratégias de controlo do fluxo do permeado foram avali-

ados. Após a seleção das membranas e a optimização dos parâmetros

de operação, os factores de concentração e os volumes de diafiltração fo-

ram definidos. Através da optimização do modo de operação da filtração

atingiu-se um rendimento de recuperação de produto de cerca de 80%.

No geral, o processo de purificação foi acelerado, a sua escalabilidade foi

melhorada e o custo associado foi reduzido devido à remoção dos passos

de cromatografia, limpeza e validação.

O estudo reportado no Caṕıtulo 8 descreve a optimização e imple-

mentação de uma técnica cromatográfica de captura para a purificação

de VLPs de influenza utilizando adsorventes de membrana de celulose sul-

fatada (SCMA). A técnica do desenho de experiências (DoE) foi utilizada

para descrever e optimizar os fatores cŕıticos na performance da mem-

brana. Em condições ótimas no que diz respeito à densidade de ligando,

concentração de sal no passo de carga e na eluição, bem como os caudais

correspondentes a cada um desses passos, obteve-se uma recuperação

de produto de cerca de 80%. Em termos de impurezas, os rendimentos
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de remoção obtidos foram acima de 89% e 80% para protéına total e

DNA, respetivamente. O processo utilizando SCMA demonstrou melho-

rias significativas quando comparado com os tradicionais adsorventes de

membrana para cromatografia de troca iónica. Para além disso, é uma

estratégia facilmente escalável e reduz o número de passos necessários

quando comparado com os métodos de purificação convencionais. Tendo

em conta os resultados reportados, o SCMA pode ser aplicado como uma

plataforma geral para purificação de VLPs para vacinas de influenza.

Globalmente esta tese contribuiu para as áreas da vacinação e da

bioengenharia de biofarmacêuticos baseados em v́ırus, em particular no

que diz respeito ao v́ırus de influenza. Por um lado, a implementação de

métodos anaĺıticos inovadores para o controlo do processo, quantificação

e caracterização do produto permitirá um aprofundamento do conheci-

mento e optimização dos processos de purificação. Por outro lado, o de-

senvolvimento de unidades de operação eficientes, baseado num desenho

racional e na optimização de parâmetros, permitiu criar conhecimento

que irá contribuir para o desenvolvimento de estratégias mais eficientes e

economicamente viáveis, acelerando globalmente a produção de vacinas.

Palavras-chave - Anaĺıticos, Controlo de processo, Desenho de Ex-

periências, Influenza, Monitorização de processo, Part́ıculas semelhantes

a v́ırus, Purificação, Vacinas
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Downstream processing for influenza vaccines and candidates:

an update

Influenza seasonal and pandemic outbreaks constitute a huge worldwide

concern, with significant health and economic burdens associated. More-

over, the re-emergence of pandemic strains in the last decade made clear

that influenza is still a global threat. Despite all the improvements on

the field, there are still several limitations on influenza vaccines’ global

availability and effectiveness. The ultimate goal is to develop univer-

sal vaccines that could provide a broad, long-lasting protection against

multiple influenza subtypes, including potential pandemic ones.

To cope with these global needs, several expression platforms and

novel influenza vaccine designs are under development, in clinical trials,

or in the market. Amongst multiple possible solutions, namely inacti-

vated or live-attenuated virus, virus-like particles or recombinant anti-

gens, it is not yet clear which one(s) will have the desired effectiveness.

For all of them, there are still unmet challenges on bioprocessing. Down-

stream processing (DSP) of influenza viruses is always facing new chal-

lenges: it needs to deal with new influenza virus strains repeatedly, re-

quiring continuous research efforts; in the case of pandemic outbreaks,

the time required for research and development is shorter and there is a

pressure increase to develop fast bioprocesses. Moreover, it often entails

for the major production costs, and coupled with the advances in up-

stream processing and new regulatory demands on product quality and

1
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safety, it is critical to increasing the efficiency of the existing DSP trains,

and to develop new unit operations and integrated processes for novel

vaccine formats.

This review focuses on the purification of influenza vaccine formats

and intends to offer a comparison between the DSP reported for the

different types of influenza vaccine products that are currently being de-

veloped. Insight is given on how the differences in the type of vaccine

design and expression system impact DSP operations, from harvest to

sterile filtration. In particular, the challenges of moving from egg-based

processes to cell-based or recombinant productions are addressed. Case

studies for the manufacturing of products still under research develop-

ment, in clinical trials or in the market are also discussed, highlighting

the current challenges on Influenza DSP.

1.1 Influenza virus

Influenza virus belongs to the Orthomyxoviridae, a family of enveloped

viruses that are characterized by segmented genomes of single-stranded

negative-sense RNA. There are four types of Influenza (A,B,C, and D),

however, only Influenza A and B are the relevant responsible for the

annual human infections [1]. The structure of genera A and B is very

similar and despite the antigenic differences, the viral proteins of both

types have similar functions [2]. Each influenza A virus is composed of

three main components: a viral envelope, that contains hemagglutinin

(HA), neuraminidase (NA) and M2 transmembrane proteins, an interme-

diate layer of M1 matrix protein and an internal viral ribonucleocapsid

(vRNP) core containing a nucleoprotein (NP) and viral RNA (vRNA)

(Figure 1.1) [1, 3, 4]. All of these components have an important role

on virus mechanism of infection. HA is responsible for the binding to

receptor containing sialic acid, commonly Neu5Ac, promoting viral entry

into the cells. NA cleaves the sialic acid receptor, releasing the virus and

facilitating viral spread. M1 is a structural protein that gives rigidity
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Figure 1.1: Influenza virus structure.

to the virus and helps on the regulation of viral RNA segments into the

cell. M2 protein is a proton ion channel with an important role in the

life cycle of the virus, namely the release of viral RNA to the cytoplasm

(via pH changes) for replication by the host cell. There are also minor

components such as the nonstructural protein NS1 and nuclear export

protein (NEP). The virus presents a pleomorphic structure, with particle

shapes ranging from spheres to long filaments [1]. The virus spherical

particles have a size ranging from 80 to 120 nm [1, 3, 4].

Characterization of Influenza A viruses are based on the subtype of

their two major surface glycoproteins HA and NA. Up to now there are

18 HA (H1–H18) and 11 NA (N1–N11) subtypes known. Influenza B

viruses are described according to their lineage, with current circulat-

ing virus belonging to “Victoria” and “Yamagata” [1, 4]. HA plays an

important role in host tropism since the viral receptors vary according

to the host, it impacting infection and replication of influenza A virus

amongst species. For instance, avian influenza viruses engage preferen-

tially α-2,3-linked sialic acid (SA) moieties, whereas human-adapted ones

have higher affinity to α-2,6-SA. Interestingly, swine has been indicated
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as a “mixing vessel” as this animal has receptors with both α-2,3-SA and

α-2,6-SA moieties, allowing the binding of both avian and human viruses

and a possible reassortment [5, 6].

1.2 Preventing and treating infection

Influenza is responsible for acute respiratory infections. Annually it is

estimated that influenza A and B viruses can cause about 3 to 5 million

cases of severe illness, and up to 650 000 respiratory deaths, related to

seasonal epidemics [7]. Moreover, the potential for sporadic pandemics

outbreaks, caused by influenza A viruses, can lead to millions of deaths,

as observed in the past [4].

Influenza virus undergoes constant antigenic variation in their enve-

lope proteins, known as antigenic drift and antigenic shift. Antigenic

drift is a continuous process that results from two mechanisms: the se-

lective pressure mediated by antibodies and the accumulation of point

mutations in the HA and NA genes, due to the absence of proofreading

ability of the viral RNA polymerase. This process induces the variability

observed each year. Antigenic shift is the result of a genetic reassort-

ment that originates a novel virus that can potentially cause pandemics

(Figure 1.2) [4].

There are four classes of antiviral drugs that have been developed

for prophylaxis and therapy of influenza infection: adamantanes, neu-

raminidase inhibitors, membrane fusion inhibitors, and RNA-dependent

RNA polymerase inhibitors [8]. Only the first two are approved for use

in the European Union or the USA, and currently, due to the widespread

adamantane resistance of all the circulating influenza strains, only NA

inhibitors are recommended [9]. However, even NA inhibitors present

limitations: they have a short therapeutic window to be used and there

is also an emergence of resistance to these type of drugs [4].

Therefore, vaccination continues to be the leading strategy to pre-

vent virus infections. Due to the antigenic drift mechanism, an annual
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Figure 1.2: Schematic representation of influenza antigenic shift and drift processes.
Example for 1968 pandemic human influenza H3N2 virus reassortment. Adapted from
[4].

update on vaccine design is required. Therefore, research efforts to re-

duce the time needed for seasonal vaccine production time as well as the

need for continuous updates are being made. The ultimate goal is to

develop a universal vaccine with a longer-lasting and broader protection

against multiple strains of seasonal influenza virus as well as emerging

pandemic strains. There are several projects putting research efforts

on the development of universal vaccines, including EDUFLUVAC [10].

The mechanism exploited in this project is based on a concept developed

by Davenport and Hennessy [11] and relies on the broadening of the

antibody responses by increasing the relative concentration of common

epitopes, thus diluting out strain-specific epitopes. This is accomplished

by selecting a plethora of antigenic variants presenting a high diversity in

their sequences [10]. The timely production processes developed and ap-

proved by the authorities, will not be able to prevent the rapid spread of
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a pandemic virus strain [12]. Most of the Influenza vaccines are trivalent,

having in its composition two influenza A strain and one B strain. Some

improvements are being implemented, such as producing quadrivalent

vaccines, by adding a second B strain or using new adjuvants [13].

1.2.1 Influenza vaccines and production platforms

The conventional platform for influenza vaccine production has remained,

for the last 50 years, the egg-based approach. From the several vaccines

against influenza available on the global market and currently under de-

velopment at the pre-clinical or clinical stage, most of them are still

being manufactured using this method [14]. This strategy offers high

viral titers for almost all strains, its manufacturing capacity is high and

the production costs are low. Nevertheless, several drawbacks are asso-

ciated with this platform. First, the need for virus adaptation to eggs

leads to timely and sometimes ineffective productions which limits the

flexibility of the manufacturing process. Moreover, as avian receptors

differ from human (see section 1.1) it is frequent that, during egg adap-

tation, the HA protein from human viruses suffers mutations due to a

selective pressure to adapt to the avian receptors to grow. This implies

that there is a mismatch between the strain produced and the circulat-

ing one, affecting the efficacy of the vaccine. Additionally, it is a risk

to rely only on egg availability, either in terms of the required numbers,

a problem in case of pandemics, but also if we are not able to use the

existing ones if the avian population is infected with an avian influenza

disease. Therefore, the paradigm is changing and new solutions must be

achieved that cope with the demand for faster and more cost-efficient

vaccine productions. These needs paved the way for the development of

new production platforms and new products [14, 15].

One of the major changes is the replacement of egg productions by

cell-based platforms. In fact, there are already approved vaccines that

are manufactured using mammalian MDCK (Flucelvax) or insect Sf9 cell

lines (Flublok) [14]. The mammalian cell-based approach eliminates the
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constraints related to egg-shortages and turns the process and the time-

line more flexible. Moreover, the match between vaccine and circulating

strains is improved, as there is a reduction of the HA mutations related

to egg selective pressures. The glycosylation profile achieved also have a

positive impact on the immunogenicity of the vaccine. Moreover, it elimi-

nates the issues with egg allergies. Still, there is some adaptation needed

when using this strategy and, currently, there is no global capacity to

manufacture the number of doses needed worldwide. To completely re-

place the egg-based platforms it will take a significant investment. More-

over, up to now, the manufacturing costs are around 40% higher than

the conventional platform. Flublok uses the Baculovirus Expression Vec-

tor System (BEVS) to infect Insect Cells and produce a recombinant HA

vaccine. The protein produced has exactly the same amino acid sequence

as the circulating strain, enhancing the efficacy of the vaccine. This is

a more flexible and faster manufacturing platform. There is no need

for eggs or virus growth adaptation and it avoids the need of rescuing

circulating virus and selecting high producer variants. Similarly to the

mammalian production strategy, the vaccine costs doubled and there is

no suitable infrastructure to cope with global demands. Other influenza

vaccine production platforms, like plants or bacterial cells, are being

evaluated for the longer term [16, 17].

Currently, there are three types of vaccines approved: Live attenu-

ated influenza vaccine (LAIV), Inactivated influenza vaccine (IIV) and

recombinant subunit (Figure 1.3). Depending on the type of inactivation,

the vaccine can be composed of whole viruses - if treated with formalde-

hyde of β-propilacton) or disrupted virus. Disruption can originate a

split vaccine - if treated with ethyl ether or SDS - or a subunit vaccine

- if treated with detergents. Besides these strategies, new influenza vac-

cine designs are in development or in clinical trials for both seasonal and

pandemic influenza strains, such as: Virus-like particles (VLPs) [14, 16–

20], nanoparticles [21, 22], nucleic acid platforms - DNA [23–26], RNA

[27–29] and viral vectors [30, 31], peptide-based approaches [15, 32, 33]
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Figure 1.3: Schematic representation of different influenza vaccine approaches. 1-
Live-attenuated, 2-Inactivated, 3-Recombinant HA, 4-VLPs, 5-Nucleic acid based,
6-Peptide-based approach, 7-Nanoparticles, 8-Viral vectors.

or synthetic platforms [34, 35].

All of these solutions present advantages and disadvantages and are

under constant research and development. With the knowledge we have

now, it is still impossible to identify which product(s) or production

platform(s) will be finally selected as the most effective. There could

even be implemented more than one vaccine type. This selection will be

based on product effectiveness and the implementation of a scalable, fast

and cost-effective manufacturing process. Here in this review, the focus

will be placed on VLPs and on the development of suitable downstream

processing strategies for these particles as a vaccine candidate.
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Virus-like particles

VLPs display intact and active antigens that resemble the native virions,

triggering a protective humoral and cellular immune response. Since

these particles lack the viral genetic material, they are not infectious nor

replicative, making them safer alternatives to inactivated or attenuated

viruses [36]. VLPs have been long established for vaccines for hepatitis

B and human papillomavirus [37, 38] and they constitute a promising

platform for the development of vaccine candidates for both seasonal

and pandemic Influenza viruses [14, 39–43]. Beyond vaccines, engineered

VLPs can be used as nanoscale carriers in targeted drug-delivery and

molecular imaging [44], as a delivery platform of active proteins to cells

[45] or as drug-delivery systems for targeted delivery of cytotoxic agents

to tumors [46, 47].

1.3 DSP for Influenza Vaccines and Vaccine can-

didates

Figure 1.4 compares the purification processes described for representa-

tive cases of vaccines formats currently available on the market produced

using different strategies: an egg-based vaccine (FLUAD), a mammalian

cell-based (Flucelvax) and the recombinant based approach that uses

insect cells (Flublok).

After harvesting of the virus-containing bulk, either by extraction

and pooling of the allantoic fluid or by the collection of the virus frac-

tion (pellet or supernatant), cell lysis with detergent is performed. The

clarification step uses a combination of centrifugation and filtration or

only a depth filtration stage, depending on the production system. From

this step on, the processes diverge, although they have some points in

common. The recombinant vaccine produced by BEVS requires an ex-

traction step with detergent but does not need an inactivation step, con-

trarily to the other vaccine examples. Split and subunit vaccines have
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Figure 1.4: Comparison of downstream processes for licensed influenza vaccines pro-
duced using different strategies.
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Figure 1.5: Schematic flowchart of a standard downstream processing for influenza
VLPs.

an additional treatment step with detergent to dissociate the viral lipid

envelope, exposing all viral proteins and subviral elements [14, 48–51].

A standard purification process for influenza VLPs can be designed

based on the lessons learnt from virus purification, namely from imple-

mented and approved methods (Figure 1.5). Although some of the steps

are not required, virus inactivation for example, the similarity between

VLPs and virus gives a good starting point for downstream processing

development. Nevertheless, there are still several unmet challenges, ei-

ther product or production platform related. There are several points to

take into consideration while selecting a DSP for virus or VLPs: the ca-
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pacity to process large volumes, delivering high product recovery yields

and maintaining product stability, process cost-efficiency and easy scale-

up as well as purity levels complaint with regulatory authorities requests

[52].

1.3.1 Harvest

Virus harvest optimization is of critical importance to determine the suc-

cess of the viral production and the subsequent downstream processing.

The optimum point for harvest should take into consideration parame-

ters such as product concentration and stability, cell density and viability.

Pushing the time of harvest (TOH) for longer can increase the amount of

product produced, although it is difficult to evaluate the impact it may

have on its quality. Moreover, as time advances, cell viability decreases.

As a consequence, proteins, DNA or even cellular organelles and debris

are released to the supernatant changing characteristics of the bioreaction

bulk, which can have a detrimental effect on later purification tasks or

even degraded the quality of the product. Therefore, a balance between

these parameters should be achieved as it will strongly impact the next

steps. The way virus particles are harvested depends on the production

platform in use and on the type of product release. Some viruses such as

adenoviruses or adeno-associated viruses are present in both intra and ex-

tracellular fractions, requiring a cell lysis step to recover both. Cell lysis

can be accomplished using, for example, freeze-thaw cycles, detergents,

liquid homogenization or sonication. In the case of enveloped Influenza

viruses or VLPs, as these particles are secreted by budding, no lysis

is required. Nevertheless, even without the lysis step, cell viability de-

creases releasing host cell DNA and enriching the virus/VLP-containing

bulk with other impurities. In the case of VLPs produced using the

baculovirus-insect cell system, the optimal point of harvest is usually af-

ter 48 h post infection (hpi) when cell viability is around 50-70% [53–59].

Below these values, there is an increase in proteolytic activity and other

impurities, which may lead to product degradation. To overcome this
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issue, Baculoviruses with a decreased cell lysis capacity were developed

[60, 61]. However, TOH can change depending on the influenza strain

being produced as different strains present different viability profiles. As

previously discussed, maximizing VLP production may lead to low cell

viabilities, which will compromise the downstream process. Therefore,

an acceptable minimum value of cell viability should be defined to decide

TOH [57].

1.3.2 Nuclease treatment

Host-cell DNA is one of the major impurities that should be taken into

account on this type of processes. Its removal during the DSP is critical,

as to comply with regulatory authorities requirements, the DNA values

should be below 10 ng per dose with a size of less than 200 base pairs [62,

63]. Moreover, as DNA increases bulk viscosity and can form complexes

with the virus, its concentration and size impact the DSP performance

and product recovery yields. Therefore, most of the reported processes

include a nuclease treatment, usually with Benzonase although there

are several other possibilities [64]. For the sake of process cost-efficiency,

DNase incubation step should be performed after a concentration step, to

reduce the required amount (U mL−1) of nuclease. However, depending

on the product and selected process, it can also be applied before or after

clarification [14, 64]. In fact, for several influenza VLPs it is described

that the best point for incubation with the nuclease is 12 hours before

harvest, which will maximize the capacity of the primary clarification

filter without compromising recovery [57].

As the use of Benzonase or other similar products still represents a

significant cost on vaccine production, selective precipitation is an alter-

native for the removal of host cell DNA [64]. A protocol was reported,

for the influenza virus, using the cationic polymers protamine sulfate and

polyethyleneimine [65]. Using a Design of Experiments (DoE) approach,

the authors were able to achieve an optimal condition were DNA re-

moval was around 85%. However, they observed co-precipitation of virus
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particles with these polymers, which lowered the recovery yields. The

acidic isoelectric points of the virus particles may have been the cause

for this. This is a drawback that would probably be observed also for

VLPs. In the case of VLPs produced using the baculovirus expression

system, co-precipitation of baculovirus with the product of interest can

also occur. Moreover, the wide range of isoelectric points observed for

influenza strains (from 4.0 to 7.0) [66] poses challenges on universal opti-

mal conditions definition for selective precipitation, which will not occur

when using the nuclease treatment. Nevertheless, the conditions for op-

timal nuclease activity should be balanced with product stability, as for

instance, pH, temperature or ionic strength affect the enzyme perfor-

mance [57]. Additionally, the removal of nuclease or precipitation agents

should be confirmed later on the DSP.

1.3.3 Clarification

Clarification is considered the initial step of the purification, connecting

up and downstream processes. Although it is not extensively studied,

the research efforts on the improvement of this operation are increasing,

as it has a critical impact on the downstream purification train, affecting

product recovery and process performance. To be considered efficient,

a clarification step should deliver a solution with turbidity levels below

10 NTU [61, 67], with minimal impact on product recovery, while also

removing process and product-related impurities. Clarification can be

divided into two different stages, defined as primary and secondary clar-

ification steps. At a first stage, primary clarification is responsible for

the removal of large particulate matter, including intact and non-viable

cells. The main goal of secondary clarification is the removal of colloidal

matter, suspended species, and process- or product-related insoluble and

soluble impurities including large aggregates [43, 57, 61, 64]. In some

cases, removal of host cell proteins, DNA or baculovirus is also possible

using depth filters [57].

As described in Figure 1.4, there are several strategies that can be
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applied for the clarification stage, depending on the type of product

and production system. Although most of the processes are still using

the conventional centrifugation methods, new membranes and filtration

process technologies are attractive alternatives to replace them. If we

move to an industrial scale, to keep this unit operation, the only viable

option is a continuous flow centrifugation, using disc-stack centrifuges.

From the point of view of influenza processes, centrifugation is strain-

independent, being a robust option for a universal process [62]. However,

this implies high capital investments and scale-up drawbacks, as these

continuous disc-stack centrifuges only operate with volumes that are not

compatible with pilot-scale optimization experiments [64].

The clarification of egg-based vaccines should be able to handle with

the allantoic fluid, which is extremely challenging due to its high vis-

cosity, high protein content, and presence of residual tissue compounds.

For this cases, centrifugation continues to be a widely used method de-

livering product recovery yields of about 70 %. However, new filtration

techniques are also being applied, such as Normal Flow Filtration (NFF),

using polypropylene or cellulose-based depth filter. A second step can

easily be performed with an NFF cellulose, polypropylene or glass fiber

filter. Microfiltration (MF) membranes using Tangential Flow Filtration

are also a viable option [14, 61].

Cell-based processes are easier to clarify as the harvested bulks are

cleaner than allantoic fluid. For this cases, NFF can be applied directly

after the bioreactor harvest. Filter sizing should be optimized accord-

ing to cell culture conditions, to handle with different cell densities and

viabilities at time of harvest. In fact, improvement of upstream produc-

tivity has led to high cell density cultures, so the clarification filters have

an increased burden with high DNA content, cell debris, and large ag-

gregates [68]. There are several reports where clarification of influenza

virus was successfully achieved using depth filters or microfiltration, with

HA recoveries of 85% and 93%, respectively [69]. TFF can also be ap-

plied to Influenza VLPs [14, 57]. A clarification train using a depth
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filter followed by a sterile filter was successfully applied to the clarifica-

tion of different influenza VLP strains, including mono and multivalent

VLP strains, with recovery yields close to 100 % and turbidity values

below 10 NTU. MF was also evaluated presenting high recoveries and

low turbidities. This strain-independence is of extreme importance for

the development of universal processes for influenza [57]. It is important

to note that influenza virus, and VLPs also, are prone to form complexes

with impurities present in the bulk, which may lead to adsorption losses

during the clarification step [57, 61, 70]. Moreover, VLPs are a more

complex system, as they are more shear sensitive than the virus and due

to baculovirus presence, usually presenting a similar size [61]. Therefore,

careful selection of the filters and optimization of the operation parame-

ters requires critical handling. These membrane and filtration technolo-

gies offer process flexibility, rapid product changeover, the possibility of

single-use and capital savings as well as ease of scale-up [57, 61, 71].

1.3.4 Concentration

Volume reduction will simplify the handling of the clarified material, as

well as the scale selected for the next operations, accelerating the purifica-

tion process. Moreover, it is often necessary to change the product buffer

to one more amenable for the next purification tasks [64]. There are sev-

eral options to perform concentration, such as tangential ultra and micro-

filtration, or gradient ultracentrifugation (sucrose cushion, iodixanol or

cesium chloride gradients) [72]. Although tangential ultracentrifugation

is one of the most selected methods for virus concentration and initial pu-

rification at laboratory scale, it is time and equipment intensive requiring

an initial investment on scale-up. Quite often several ultracentrifugation

cycles are needed to achieve the desired purity. Furthermore, the density

gradient forming material should be removed after this step, either by

dialysis or Size-exclusion chromatography (Figure 1.4) [14, 64, 73]. Nev-

ertheless, this technique combines two steps into one and presents some

advantages in terms of separation of different populations, such as empty
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capsids and full viruses [64]. In fact, Novavax reported the discrimination

between Influenza VLPs and Baculovirus using a sucrose cushion proce-

dure [74]. However, other authors reported that VLPs produced using

insect cell line Sf9 or mammalian cells HEK293 are too fragile for allowing

ultracentrifugation cushions and iodixanol gradients without damaging

the particles. Moreover, the resolution of Baculovirus and VLPs was

challenging [59]. These different observations among literature reports

may be due to differences in the influenza strains produced, as well as

the structural matrix protein used, which can confer different stabilities.

These contrasting results combined with the drawbacks described above,

are probably the main reasons why there are few reports on the use

of ultracentrifugation for large-scale manufacturing [64] although some

authors still propose its applicability [74].

Ultrafiltration is one of the key methods for large-scale virus concen-

tration and buffer exchange (diafiltration), being one of the unit opera-

tions for most of the reported virus purification processes. This filtration

method is based on molecular weight differences between the product of

interest, that should be rejected by the membrane, and process impuri-

ties, that should be able to permeate the membrane.

The UF modules can be presented as flat-sheet cassettes or hollow

fibers (HF). The selection of the module to use depends on the stability

of the product of interest and on process parameters. On the one hand,

HF have wider flow paths which implies lower shear rates, critical for pro-

cessing fragile components, such as viruses and cells. On the other hand,

cassettes present shorter processing times at higher shear rates, as the

hydrodynamics of its flow channel causes lower concentration polariza-

tion near the membrane, decreasing the propensity to gel layer formation

and clogging, suitable for more viscous solutions [62, 64, 72].

Ultrafiltration uses membranes that can have different chemistries,

such as regenerated cellulose (RC), polysulfone (PS), polyethersulfone

(PES) and polyvinylidene fluoride (PVDF) and with a molecular weight

cutoffs (MWCO) that range from 0.5 to 1000 kDa.
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According to the cell producing system, influenza strain and har-

vest conditions the most suitable options and key operating parameters

can vary. Transmembrane pressure (TMP), cross-flow, retentate and

permeate fluxes, concentration factor or diafiltration volumes should be

optimized in order to maximize product retention, assuring the highest

separation from impurities at high permeate fluxes. Moreover, the spe-

cific goal of the ultrafiltration step as well as the DSP steps prior to

the concentration (usually clarification) have an impact on the device

performance [58, 75].

Kalbfuss el al [69] evaluated different PS HF with different MWCO

(750 kDa, 0.1 µm, and 0.45 µm) to concentrate influenza virus produced

using MDCK cells. Prior ultrafiltration, the bulk was clarified by depth

filtration, followed inactivation and a microfiltration step. Distinct prod-

uct recoveries were obtained: 0.45 µm device did not retain the virus,

0.1 µm HA recovery was 54 % and the 750 kDa provided 100 % recovery.

Reported strategies for influenza VLPs vaccine processing also uses HF

devices for concentration and diafiltration [74].

Although HF are widely used for influenza virus with high product

recoveries, membrane cassettes are also an option for VLPs and virus

processing. Nayak et al selected a 100 kDa PES membrane cassette to

concentrate an equine influenza strain produced in MDCK cells. Prior

to UF, the viruses were clarified using a depth filter followed by virus

inactivation. In this case, a 95 % HA recovery was obtained [76]. Wick-

ramasinghe et al selected a 300 kDa PES cassette and reported a yield of

around 100 % using also MDCK cells and the same clarification process

[77]. The differences in the selected MWCO can be strain-dependent but

it is important to note that the pore size defined for a device can vary

according to the manufacturer. Asanzhanova et al produce the virus in

eggs and the selected cassette for concentration after depth filtration had

an MWCO of also 300 kDa. The yields obtained were all above 92 % [78].

Tseng et al also selected the same MWCO for the influenza virus evalu-

ated that was also produced in eggs. However, the clarification process
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was slightly different having used a depth filter and a second filter after

inactivation. The defined DSP had two ultrafiltration steps: one imme-

diately after clarification and a final one after chromatography. For the

first UF step, the virus (HA) recovery yield was 76 %. However, the sec-

ond UF provided 93 % of recovery. This reveals that bulk conditions and

operation parameters had an impact on the cassette performance [75].

The selection and performance of different membrane cassettes for a com-

plete DSP of influenza VLPs(evaluation of several chemistries, MWCO,

operation parameters) were reported by Carvalho et al [58] and will be

addressed on Chapter 5. Membrane chemistry (PES vs RC), pore sizes

(ranging from 100 to 1000 kDa), operation modes, critical flux, trans-

membrane pressure, and permeate control strategies were evaluated. The

best performance was reported for 1000 and 300 kDa PES membrane cas-

settes, depending on the step of the process. Globally, the ultrafiltration

process achieved product recoveries of 80 %. Taking into account that

this method is independent of influenza strain, it is compliant with a uni-

versal process for influenza. Ultrafiltration PES membranes of 300 kDa

were also evaluated successfully for DSP that included chromatographic

unit operations [54, 55]. As mentioned previously, the Baculovirus ex-

pression system adds a layer of complexity to the DSP as it is challenging

to discriminate them from influenza VLPs.

Overall, ultrafiltration can be designed as a very robust method re-

sulting in high virus particle yields. The scale-up is relatively straight-

forward and both HF and membrane cassettes can be used as fully dis-

posable. Moreover, it can be coupled with diafiltration providing a buffer

exchange step [64, 73].

1.3.5 Chromatography

Due to the multitude of separation types, availability of materials and

operation modes, chromatography is commonly regarded as the bedrock

of DSP. It can be used at different stages with distinct purposes. A

capture step intends to concentrate and isolate the product of interest.
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Ideally, this should be a fast step to remove the product from conditions

that may affect its stability. Its use at a second stage, intermediate

purification, should remove contaminants using orthogonal approaches.

Finally, a polishing step will remove trace impurities [62, 64, 72].

Chromatographic separation is based on the exploitation of the physic-

ochemical differences between the target virus or VLPs and impurities

against the substrate surface. The stationary phases can be physically

structured as packed beds, membrane adsorbers or monoliths. Packed

beds are composed of beads packed into a column. This arrangement is

widely used in the field of biopharmaceuticals, although most of the mate-

rials are optimized for protein purification rather than for virus particles.

The main disadvantages are related to limitations on the operation flow

rate, due to the needed balance between pressure drop and mass transfer,

and low dynamic binding capacity, as a result of reduced intraparticle

diffusion. These impact process time, decreasing throughput and implies

an increase on the scale needed [62, 64, 72]. The development of convec-

tive media such as membrane adsorbers and monoliths, offers improve-

ments in processing time, capacity and recovery [64, 73, 79]. Monoliths

are continuous blocks of stationary phase with interconnecting channels

that offer transport via convective flux. They have a large process ca-

pacity and high-resolution [62, 64]. However, they present mechanical

instability, their lack of homogeneity limits scalability [79] and there are

reports claiming that they are prone to clog in the presence of high levels

of DNA, due to DNA-virus complex formation [64, 80]. Membrane ad-

sorbers are able to process large volumes offering high operational flow

rates, low-pressure drops, and neglectable compression or channeling.

However, their short diffusion times limits binding capacity [81]. More-

over, as these membranes present larger void volumes than monoliths,

their resolution is also lower [73]. Membrane adsorbers’ low production

costs make them a cost-effective strategy for single-use unit operations.

Recent developments on monoliths should allow them to follow the same

trend somewhere in the future.
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Ion exchange chromatography (IEX) exploits the reversible interac-

tion between a charged viral surface and an oppositely charged matrix to

give high-resolution elution gradients with high sample loading capacity.

It can be operated in positive (bind-elute) or negative (flow through)

mode. Most of the DSP reported in the literature use bind-elute mode.

Depending on the isoelectric point of the virus, and the desired opera-

tion mode, one can select anionic or cationic exchangers. Elution of the

product of interest is accomplished by increasing ionic strength or by a

pH change. It is important to note that these elution strategies can affect

virus stability. Influenza viruses stability shows a pH-dependent behav-

ior, in particular for acidic conditions. However, high salt concentrations

do not affect significantly the virus [72]. Nevertheless, as influenza is an

enveloped virus, high salt concentrations should be used for short peri-

ods of time. This is also true for VLPs, that usually are more sensitive

than the virus [59]. There are several reported examples of DSP for in-

fluenza virus using anion exchangers, such as Sartobind Q [54, 82, 83], Q

monolith or DEAE monolith [84] or sulfonic acid cationic exchanger [84].

More recently, Tseng et al reported a purification train that uses the an-

ion exchanger Capto Q in a flow-through mode for influenza purification

[75].

Influenza purification using affinity chromatography (AC) is widely

reported in the literature [85]. It is highly specific as it is based on

the affinity of a ligand to a specific component of the virus envelope.

There are examples exploiting the affinity of influenza to lectins [86],

metal ions [87], sulfated carbohydrate matrices [62, 72, 88–94] or sul-

fated cellulose membrane adsorbers [56, 93–95]. Its specificity delivers

high yields and simplifies the DSP however, scale-up is expensive due

to ligand purification and immobilization costs. A drawback related to

high specificity is the possible lack of robustness for processing different

influenza strains, which limits its application as a purification platform

[62, 64]. Moreover, for insect cells-based VLPs, both influenza particles

and baculovirus will have an affinity to the current ligands. Budding
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is responsible for common components in their envelope coming from

the host cell [54, 55, 96, 97]. A ligand that targets conserved regions

of influenza virus proteins, a not present in baculovirus, may deliver a

strain-independent affinity unit operation. Opitz et al reported an affin-

ity strategy that uses a lectin to efficiently capture two different influenza

strains. However, this lectin presented different specificities for strains

produced using different host cell lines, probably due to different product

glycosylation profiles [98].

Hydrophobic interaction chromatography (HIC) is routine for protein

purification procedures but is not commonly used for virus purification.

Tough, there are some examples in the literature [99, 100], for influenza

virus [101] and recombinant influenza proteins [14]. One of the main

reasons for the lack of popularity among viral vaccine DSP is the need

for high salt concentrations and, sometimes, kosmotropic salts to achieve

desorption, which can impact virus integrity [64].

Mixed-mode chromatography (MMC) exploits simultaneously multi-

modal binding mechanisms. One example is hydroxyapatite, which use

was reported for the purification of dengue virus. Additionally, research

efforts are being made to apply it to influenza viruses [102]. Another

recent example is GE’s CaptoCore technology. This resin is composed of

a ligand-activated core and an inactive shell. It operates under a mul-

timodal strategy, due to octylamine ligand dual functionality. The size

exclusion properties allow virus particles to be excluded from the core,

and ligands on inside the core capture efficiently contaminants. Several

strains of cell-derived influenza A and B viruses were purified combining

Capto Q and Capto Core 700 resins [103]. The results obtained are in

agreement with the requirements of European Pharmacopeia [104]. A

flow-through purification process for H7N9 and H5N1 influenza viruses

was reported employing this combination [75].

Size exclusion chromatography (SEC) separates virus particles and

impurities by differences in size. Viruses are excluded from the matrix,

eluting in the void volume. The process conditions are gentle, which



1.3. DSP for Influenza Vaccines and Vaccine candidates 23

is critical for stability and infectivity of fragile viruses. SEC has been

widely used for viral particles purification [64], including influenza virus

[76, 83] and VLPs [53–55], using several production platforms and usually

delivering high recovery yields [62]. In most of the cases, SEC is used at

the end of the DSP as a polishing step, but it can be applied also in early

stages [83]. As viral particles do not bind to the resin, buffer composition

does not directly affect resolution, meaning that conditions can vary to

suit different product or process requirements. It is a main advantage

for the development of universal processes for viruses that are constantly

changing, such as influenza. In fact, Carvalho et al reported a charge-

independent purification process for several influenza VLPs strains pro-

duced in insect cells [54, 55]. One challenge related to this producing

system is the discrimination between VLPs and baculovirus. Using this

strategy most of the baculovirus co-eluted with VLPs. There are other

drawbacks related to SEC low capacity, product dilution, matrix limited

pressure resistance and scale up challenges related with column pack-

ing, poor flow distribution, and time-consuming cleaning in place (CIP)

procedures [64].

The increasing demand for better and more cost-efficient purifica-

tion processes impose continuous research developments. New concepts

and strategies are being proposed to virus bioprocesses, including in-

fluenza viral particles. Steric exclusion chromatography (SXC) is based

on the capture of a target product at a non-reactive hydrophilic surface

by the mutual steric exclusion of polyethylene glycol (PEG) from both

the target species and the stationary phase. No direct chemical interac-

tions between ligand and target product are required and lower molecular

weight (MW) impurities are washed away. The product can be eluted by

reducing the PEG concentration in the mobile phase. This strategy was

recently applied for influenza virus purification, yielding a product recov-

ery above 95% and host cell DNA and total protein clearance of 99.7%

and 92.4%, respectively [105]. Continuous chromatography has been re-

cently exploited for recombinant proteins or antibody products due to its
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higher productivity and consistency (versus batch) and the possibility for

process automation [106]. Recent examples of the use of this technique

for influenza virus purification using SMB size-exclusion [65] or anion ex-

change approaches [107] are reported in the literature. From the different

continuous systems currently being employed in the biopharmaceutical

industry, countercurrent simulated moving bed (SMB) [65, 106, 108] or

periodic countercurrent chromatography (PCC) [109] are the most ad-

vanced. Despite the increased process design complexity, these strategies

are able to reduce buffer consumption, increase productivity and product

recovery while improving clearance of impurities [64].

1.3.6 Process Design and optimization

Optimization of bioprocesses requires a fundamental understanding of

the process and characterization of product recovery and impurity clear-

ance across the different steps. Beyond an initial design of process de-

cision, DSP optimization for viruses, including the selection of unit op-

erations and process conditions often relies on trial and error approach,

as little is known about the physicochemical properties of these complex

biomolecules. In order to reduce time and resources to optimize condi-

tions, new tools for process understanding are being implemented. In

this context, and as part of the Quality by Design (QbD) concept [110],

Design of Experiments (DoE) is a valuable tool allowing a rational, fast

screening and optimization of factors’ levels impacting product yield and

impurity levels even more so if scaled down tools are needed [111]. The

advantages of its application in the production of biopharmaceuticals,

using different chromatographic matrices were reported [64, 111–116].

A DoE experiment should have a goal, definition of critical parameters

(factors) and boundary conditions for the defined factors that cover the

intended experimental space. The multivariate data acquired is fitted

into a mathematical model that describes the system. The evaluation

of the model obtained allows the understanding of the relevant factors

and their impact on the process responses. DoE strategies were recently
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employed to investigate the influence of both matrix and process-related

critical factors on the purification of influenza virus derived from mam-

malian cell cultures [95] and influenza VLPs derived from insect cells

[56].
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2

Analytics and quality control for virus-based

biopharmaceuticals: from the classical methods to the newest

tools

Since the very first visualization of a virus by electron microscopy in

the late 30’s of the 20th century until the most recent Nanopore-based

technologies, a myriad of tools have been developed for processing, ana-

lyzing and characterization of virus and virus-based particles. With the

expansion of the therapeutic potential of these particles - vaccines, gene

therapy and oncolytic therapy - such methods assume critical relevance

to assure the highest standards of quality and safety.

Herein, an overview of the methods and techniques for the analysis

and quality control of virus-based particles is provided. Many of them

are reinventions or combinations of very classical methodologies origi-

nally developed for other applications, typically, proteins. Others are

new approaches using state-of-the-art equipment specifically targeting

the monitoring and characterization of nanoparticles. The methods are

presented based on their operation principle - spectroscopy, microscopy,

chromatography, microfluidics, etc. - and output - viral particles iso-

lation, fractionation, modification, and characterization. They are ad-

ditionally discussed as tools for monitoring upstream and downstream

process and in the context of assessing important manufacturing quality

control parameters such as identity, potency, toxicity, and purity.

This review offers an overview of currently available possibilities to

27
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process, analyze and characterize viral particles preparations, from pro-

duction bulks to highly purified samples. It intends to aid and speed-up

the selection of the appropriate methods through user-friendly decision-

trees and structured tables guiding readers into the several options and

relevant literature.

2.1 A growing market of very complex products

Virus-based biopharmaceuticals (VBBs) comprise a multitude of prod-

ucts derived from viral particles, namely viral vectors, inactivated or at-

tenuated viruses or VLPs, targeting important therapeutic applications

[117]. The interest in these products has experienced substantial growth

in the past decades mainly driven by (viral) Gene Therapy and modern

Vaccinology. Significant research efforts are being made on new designs,

production platforms, and cell line development as well as downstream

process development for these products [64, 117, 118]. After initial bumps

and setbacks, Gene Therapy has established as a 21st century medicine

to target orphan diseases derived from monogenetic defects [119]. Out-

side of monogenic disorders, Gene Therapy is also growing due to the

success of T-cells-based cancer immunotherapy, which typically use viral

vectors to modify T cells either by altering the specificity of the T cell

receptor (TCR) or by introducing antibody-like recognition in chimeric

antigen receptors (CARs) [120]. Classical vaccines have long secured a

safe position in the biopharmaceuticals market for a number of reasons,

including i) growing demand worldwide especially in emerging markets,

ii) low exposure to revenue declines from the expiry of patents and iii)

reduced competition due to complex manufacturing process [121, 122].

Apart from the classical vaccines - educators of the immune system, typ-

ically prophylactic, and directed at microbial targets - a new wave of

therapeutic vaccines is growing. Virus-based particles are harnessed as

protein and/or nucleic acids delivery vehicles to target infectious diseases

such as influenza [123], hepatitis B or human papillomavirus [37, 38],
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cancer [46, 47] or neurodegenerative disorders [124, 125]. The complex-

ity of VBBs is incomparably higher than that of small molecules or even

proteins. While this has sheltered the manufacturing industry from com-

petitors, it is also a main challenge for analytics and quality control. In

fact, proper characterization and robust product quantification are crit-

ical for bioprocess development and successful clinical trials of vaccine

candidates [96]. There are strict guidelines from regulatory authorities on

what type of quality and potency tests should be performed (Table 2.1)

but also which are the approved methods that can be used [126–128].

The methods and analytical tools available for virus particles de-

tection, visualization and quantification is vast and continue evolving,

increasing the toolbox available for vaccine development (Figure 2.1).
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Table 2.1: Standard specifications for biopharmaceuticals (Adapted from Refs. [64,
129]).

Attribute Specification

Appearance and description

Color

Physical state

Clarity/turbidity

Identity

Several tests may be required:

Physicochemical

Biological

Immunochemical e.g. ELISA

Purity: Product-related
impurities

Enzymatic degradation products

Truncated forms

Molecular variants

Dimers, multimers, aggregates

Misfolded product and/or product with random
disulphide bridge forms

Deamidated product variants

Product with oxidation of methionine

Product with heterogeneity of post-translational
modifications such as glycosylation, phosphoryla-
tion and acylation

Purity: Process-related
impurities

Host cell protein (HCP)

Host cell DNA, other nucleic acids

Cell-culture media components

Enzymes/chemicals

Proteolytic enzymes, other enzymatic activity

Endotoxins

Virus

Cell debris, lipids

Antifoams, antibiotics

Leakage, e.g., from affinity columns

Extractables, e.g., from plastic surfaces

Water, buffers

Potency Cell- or Animal-based tests

Quantity

Protein mass or

Potency (if applicable)

Virus titers or virus particles

Safety

Sterility

Adventitious viruses

Endotoxins/Pyrogens

Mycoplasma

General
pH

Osmolarity
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However, there are still unmet needs requiring research investment

to cope with regulatory entities demands for improved vaccine safety.

Figure 2.2 highlights, in the form of a decision tree, currently available

analytics and quality control methods for virus-based biopharmaceuti-

cals, grouped by type of analysis or output needed.

2.2 Analytical tools for Influenza candidate vac-

cines

The increasing interest in VLPs as vaccine candidates is raising the de-

mand for new process monitoring and product characterization tools.

The improved methods should be fast, reliable, easy to set up, and ap-

plicable for in-process samples, from upstream harvesting bulk to down-

stream purified product. VLPs are also becoming established as vaccine

candidates for influenza. Despite the innovations observed in the bio-

processing methods, VLPs are still being characterized by the standard

influenza virus analytical tools: Single Radial Immunodiffusion (SRID)

and Hemagglutination assays [96, 130]. These methodologies present

several drawbacks: they are time-consuming, cumbersome, and not sup-

portive of efficient downstream process development and monitoring, as

will be discussed in the following sections. Furthermore, they are not op-

timized for VLPs. Therefore, research efforts are being made to develop

new tools, namely alternative influenza potency assays, ideally strain-

independent, as recommended by the regulatory authorities [131]. It

is important to have tools available that enable process monitoring, al-

lowing viral particles’ detection and enabling discrimination of process

impurities, in particular baculovirus, for Influenza VLPs produced using

insect cells.

This chapter will be focused on analytical tools for influenza Virus-

like particles’ quantification, since a new method was developed. A mul-

titude of analytical tools and biophysical methods were used throughout

this thesis, whose details are described in the corresponding chapters.
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Figure 2.2: Decision tree: analytics and quality control methods for virus-based bio-
pharmaceuticals.

2.2.1 Influenza VLP quantification

SRID

Single Radial Immunodiffusion (SRID) was established and validated in

the 1970s [132] and remains the only FDA and WHO approved method

to measure influenza vaccines’ potency and determine dose [133, 134].

This method requires two types of reagents: an antibody reactive to the

influenza strain to be assayed and a reference antigen with a known con-

centration (and homologous to the assayed strain). In this assay, the
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polyclonal anti-HA antibody is incorporated uniformly in an agarose gel

that is then punched to form wells. These wells are then loaded with

several dilutions of the standard reference antigen and the samples with

unknown concentration. Antibody-antigen complex formation creates a

precipitation ring, that is stained with Coomassie blue, allowing antigen

(HA) concentration measurement by measuring rings’ diameter [96, 130].

Although it is the current gold standard, it presents several drawbacks

posing the need for better alternatives. Briefly, it is a simple assay that

does not require complex and expensive equipment. However, its imple-

mentation is not straightforward, requiring specific HA antigen references

and antibodies that need to be constantly updated, delaying the release

of new vaccines, critical in the case of pandemics. It is time-consuming,

taking up to 3 days to perform, which is impractical for process devel-

opment. Moreover, its low sensitivity (3-5 µg mL−1) and interference

with the presence of HA aggregates and non-aqueous components en-

cumber measurement of in-process unpurified samples [96, 130]. Not all

the strains can be digested to be analyzed by SRID, namely the pan-

demic H1N1 pdm009 [135] and the method is not optimized for VLPs or

viral particles produced using insect cell systems [134].

Hemagglutination assay

Hemagglutination assay (HA assay) is an antibody-free method for quan-

tification of influenza virus. It takes advantage of the HA protein binding

capacity for sialic acid receptors present in red blood cells (RBC) and its

agglutination properties. In the absence of viral particles, RBC will fall

at the bottom of the 96-well plate and form a button. When combined,

if the influenza particles are present in high enough concentration, there

is an agglutination reaction and the RBC link together to form a diffuse

lattice [96, 130, 136]. Serial dilutions of a known concentration reference

and of process samples are applied on a 96-well plate containing RBC

and visually inspected. The result is positive until the dilution at which

there is a button on the bottom of the well. Although it is not con-
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sidered a standard method by the regulatory entities, and no standard

protocol exists, this assay has been used for evaluation of production and

purification yields of both Influenza virus and VLPs. It is relatively fast

compared to SRID, but it presents other critical drawbacks. It requires

fresh RBC to obtain reproducible results. Due to the differences in cell

supply (type and donor), an external standard is required to be used for

each assay. This is critical for VLPs that lack this standard. The princi-

ple of the method assumes that one viral particle binds to one cell. Since

VLPs are more heterogeneous than the influenza virus, its agglutination

abilities differ and the ratio of red blood cells to VLPs can differ from

one. Changing this ratio can lead to an erroneous estimate of total par-

ticles. It presents also problems with in-process samples as free protein

and process impurities can also react with RBC [96, 130]. Moreover,

quantification of VLPs produced using insect cells present an additional

challenge as Baculovirus also have HA protein in their envelope [137].

NA enzymatic assay

Currently, no standardized assay is available to quantify viral glycopro-

tein neuraminidase in influenza vaccines. However, enzymatic NA assay

can be applied to confirm the presence of NA activity. There are sev-

eral commercially available kits for NA activity measurement that have

been used for both virus and VLPs: a colorimetric method (TBA), a

chemiluminescence-based assay (NA-star system), and two fluorometric

methods (Amplex Red and FL-MU-NANA) [96]. NA-star is reported to

yield higher sensitivity but is not suitable for non-purified samples [138].

FL-MU-NANA seems more robust for in-process samples analysis [139].

However, NA enzymatic assays are unacceptable for accurate quantifica-

tion. Therefore, Influenza vaccines that are on the market do not have

controlled NA concentration [140].
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Emerging analytical tools

Due to the increasing need to replace the current quantification meth-

ods, there are several emerging tools attempting to overcome the draw-

backs described above. ELISA (enzyme-linked immunosorbent assay) is

the most common alternative to SRID, namely using monoclonal anti-

bodies [141]. There is also receptor-based ELISA that uses synthetic

sialic acid receptors to HA quantification [131]. Flu-Toc, an immunoas-

say that uses subtype specific but broadly reactive monoclonal antibod-

ies, was reported as a time-saving approach for HA quantification [142].

There are several reports of methods based on reversed-phase HPLC

(high-performance liquid chromatography) to quantify HA, from differ-

ent strains and produced by different cell lines [143–147]. qPCR (quan-

titative real-time PCR) and TCID50 for infectious particles can also be

performed for influenza viruses quantification but not for VLPs [96, 130].

Several authors also report surface plasmon resonance (SPR) assays using

antibodies or sialic acid receptors [148–150]. Mass spectrometry methods

are also being evaluated [151, 152]. These new methods have to become

simple, cost and time effective, therefore the need for antibody or anti-

gen updates, the lack of proper standards and the capacity to quantify

in-process samples and from different strains at the same time have to

be taken into consideration.

Biolayer interferometry

Biolayer interferometry (BLI), the technology used by the Octet plat-

form, is based on the principles of optical interferometry. Briefly, when

two propagating waves are perfectly in phase, there is a constructive in-

terference and the resulting wave has an amplitude equal to the sum of

the two waves. When the two propagating waves are completely out of

phase, the destructive interference results in a wave with zero amplitude.

On the Octet platform, the interference pattern of white light reflected

from two surfaces, a layer of immobilized protein on a biosensor tip,
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and an internal reference layer is analyzed. When molecules bind to the

biosensor tip, there is a shift in the interference pattern. The binding

between a ligand immobilized on the biosensor surface and a molecule in

solution produces an increase in optical thickness at the biosensor tip,

which results in a wavelength shift. These interactions are measured in

real time, providing the ability to monitor binding specificity, rates of

association and dissociation, or concentration, with precision and accu-

racy.

This thesis reports the development of a VLP Influenza label-free

quantification tool based on biolayer interferometry applied on an Octet

platform (Chapter 4). The method takes advantage of HA interaction

with human (α2,6-linked sialic acid) and avian (α2,3-linked sialic acid)

receptors, eliminating the need for antibodies or RBC. It can quantify In-

fluenza VLPs at all stages of bioprocess, from crude bulk to final purified

product, mono and multivalent strains. It allows for real-time results,

critical for in-line monitoring of downstream processing, improving pro-

cess development, control, and optimization.
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3

Aims and Scope

The production of influenza viral particles towards vaccine applications

still faces major challenges. Amongst them are: i) the need for constant

updates due to antigenic drift, annually requiring new vaccines; ii) the de-

velopment of improved analytical tools for new vaccine formats, not only

to speed up the process of vaccine delivery, but also to properly monitor

the process and the target products; iii) development and optimization

of downstream process (DSP) unit trains enabling high product titers

and minimal presence of residuals, to cope with regulatory requirements.

The main goals of this PhD project, schematically represented in

Figure 3.1 were:

1. DSP improvement

• Design a universal, efficient and scalable DSP, adaptable to

several influenza VLPs, from different strains, subtypes, and

groups. A basic DSP backbone and operation conditions were

improved to obtain such process. This was accomplished by

optimizing all the unit operations and by combining orthogo-

nal methods (filtration and chromatography) to obtain a hy-

brid bioseparation process. New materials such as sulfated

cellulose membrane adsorbers were assessed.

39
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Figure 3.1: Schematic representation of the main goals of this thesis.

2. VLP characterization and development of analytical tools

• Characterize the physical properties and structural features of

VLPs using several biophysical techniques. Develop and im-

plement new quantification methods, suitable for in-process

sample analysis at all stages of the bioprocess, as well as pro-

cess monitoring tools. A label-free tool, that uses BLI technol-

ogy, was developed to quantify VLPs by exploring the inter-

action between sialic acid receptors and HA protein. A “tag

and modify” strategy through site-selective protein modifica-

tion was used to fluorescently label VLPs and monitor the

bioprocess.
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4.1 Context

One of the main goals of this thesis was to develop a universal down-

stream process for influenza VLPs as vaccine candidates. Such process

should be independent of virus group and strain and capable of process-

ing both mono and multivalent particles. However, at the beginning of

the work it was evident that we lack a robust quantification tool for

this type of VLPs, since most methods in the literature are optimized for

viruses and not for VLPs. Moreover, they are dependent of antibodies or

erythrocytes and the read-out varies with the operator. In this chapter it

is described the development of an Octet HA quantification tool, based

on the needs described above. This approach enabled us to analyse in-

process samples, from crude bulk to final purified bioprocessing product,

allowing the monitor and optimization of the downstream process. It

was exploited the HA interaction with sialic acid receptors, eliminating

the need of antibodies or red blood cells.

I was involved in the conception of the study and I performed, to-

gether with a colleague, the cell culture and VLPs’ productions as well

as the downstream processing steps. Moreover, I worked with the col-

laborators to design the biolayer interferometry experiments and all of

them were performed by me. I wrote the manuscript with contributions

from all authors.

This work was published in Biotechnology Journal (2017,12:1700031.

DOI: 10.1002/biot.201700031) and it is available at https://onlinelibrary.

wiley.com/doi/full/10.1002/biot.201700031.

https://onlinelibrary.wiley.com/doi/full/10.1002/biot.201700031
https://onlinelibrary.wiley.com/doi/full/10.1002/biot.201700031
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4.2 Abstract

Virus-like particles (VLPs) are becoming established as vaccines, in par-

ticular for influenza pandemics, increasing the interest in the develop-

ment of VLPs manufacturing bioprocess. However, for complex VLPs,

the analytical tools used for quantification are not yet able to keep up

with the bioprocess progress. Currently, quantification for Influenza re-

lies on traditional methods: hemagglutination assay or Single Radial Im-

munodiffusion. These analytical technologies are time-consuming, cum-

bersome, and not supportive of efficient downstream process development

and monitoring. Hereby we report a label-free tool that uses Biolayer in-

terferometry (BLI) technology applied on an Octet platform to quantify

Influenza VLPs at all stages of bioprocess. Human (α2,6-linked sialic

acid) and avian (α2,3-linked sialic acid) biotinylated receptors associ-

ated with streptavidin biosensors were used, to quantify hemagglutinin

content in several mono- and multivalent Influenza VLPs. The applied

method was able to quantify hemagglutinin from crude samples up to

final bioprocessing VLP product. BLI technology confirmed its value

as a high throughput analytical tool with high sensitivity and improved

detection limits compared to traditional methods. This simple and fast

method allowed for real-time results, which are crucial for in-line moni-

toring of downstream processing, improving process development, control

and optimization.



4.3. Introduction 45

4.3 Introduction

Influenza virus infections in humans remain a worldwide concern, re-

sulting in significant health and economic burdens [6]. During seasonal

epidemics, 5% to 10% of the adult population and 20% to 30% of chil-

dren are affected, resulting in 3 to 5 million cases of severe illness and up

to 500 000 deaths annually worldwide [153]. Pandemic strains are also a

significant global threat and can lead to millions of deaths [6].

Hemagglutinin (HA) and neuraminidase (NA) are the two influenza

glycoproteins on which virus subtype classification is based. HA, the

major envelope protein, contains the epitopes for neutralizing antibodies

and is responsible for virus binding to host cell receptors, glycans that

contain sialic acids. NA is a sialidase that removes the sialic acid receptor

from the host cell surface playing an important role in the release of the

virus progeny [3, 5, 154].

Host cell receptors contain α-2,6-linked or α-2,3-linked sialic acids

moieties. Depending on the HA proteins present on the virus surface,

the binding specificity for the two linkages is different. Human influenza

virus engages preferentially to α-2,6-linked sialic acids whereas avian

virus primarily binds to α-2,3-linked sialic acid receptors [5]. Binding

preferences of different strains are an important determinant for species

barrier, restraining human infections with avian influenza virus. How-

ever, virus ligand preferences change: some mutations in avian HA pro-

teins can lead to the emergence of new pandemic strains with different

binding preferences, acquiring human receptors’ specificity. The same

can happen for mutations in human HA proteins leading to changes in

binding specificity to avian receptors [5, 155, 156].

Vaccination is a key strategy for prevention of influenza infections

for both seasonal and pandemic virus. Due to the genetic processes of

antigenic drift and shift, the content of the influenza vaccine needs to

be reviewed annually [157]; furthermore seasonal vaccines do not provide

protection against novel pandemic strains [39]. Most current licensed in-
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fluenza vaccines are still produced using egg-based manufacturing, lim-

iting vaccine supply, critical in the case of pandemics. This is driving a

need for faster vaccine development and more effective vaccines against

influenza. New vaccines have recently reached the market using both

mammalian and insect cell lines [14].

Virus like particles (VLPs) display native virus proteins, triggering a

protective immune response. Since they lack genetic material, VLPs are

not infectious nor replicative, making them safer alternatives to killed

or attenuated virus [36] and have been long established for Hepatitis B

and human Papillomavirus viruses [37, 38]. Several platforms, includ-

ing VLPs, are under development as candidates for both seasonal and

pandemic Influenza virus [14, 39–43].

These trends increase the need for improved characterization and

quantification tools: fast, reliable and easy to set up, applicable for use

with in-process samples, from upstream crude extract to downstream

purified product. Single radial immune diffusion (SRID), the approved

method by regulatory authorities for potency determination, and hemag-

glutination assay (HA assay) are the main methods to quantify HA pro-

tein. HA assay has been used for evaluation of production and purifica-

tion yields of Influenza-VLPs. However, there are several disadvantages

associated with these assays. SRID is a time consuming assay, taking

2-3 days to perform, which is impractical for process development. It

has a low sensitivity (3-5 µg mL−1) and there are several limitations

regarding presence of aggregates and non-aqueous components that in-

terfere with HA diffusion in the gel. Importantly, it requires HA antigen

references and specific monoclonal antibodies that need to be constantly

updated, delaying the release of new vaccines. The HA assay, although

it is relatively fast compared to SRID, requires fresh red blood cells to

obtain reproducible results. Due to the different cell origin and different

cell types, an external standard is necessary to use for each assay. Since

VLPs are more heterogeneous than the influenza virus particles, the ra-

tio of red blood cells to VLPs can differ from 1. Usually, for normal
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Influenza virus, this ratio is approximately 1. Changing this ratio, which

happens for VLPs, can lead to an erroneous estimate of total particles

[96, 130].

The regulatory authorities recommend using alternative influenza

vaccine potency assays [131]. There are several emerging methods that

attempt overcome the issues described above: receptor-based ELISA (en-

zyme linked immunosorbent assay) that uses synthetic sialic acid recep-

tors to HA quantification [131], Flu-Toc immunoassay for HA quantifi-

cation using subtype specific but broadly reactive monoclonal antibod-

ies [142], reversed-phase HPLC (high-performance liquid chromatogra-

phy) [145–147], NA activity assays, qPCR (quantitative real time PCR)

[96, 130], surface plasmon resonance assays using antibodies or sialic acid

receptors [148–150]. These new methods have to become simple, cost and

time effective, therefore the need for antibody or antigen update, the lack

of proper standards and the capacity to quantify in process samples and

from different strains at the same time have to be evaluated.

Here we report a VLP Influenza label-free quantification tool based

on biolayer interferometry applied on an Octet platform that constitutes

a step forward to the related methods already reported because it takes

advantage of HA interaction with human (α2,6-linked sialic acid) and

avian (α2,3-linked sialic acid) receptors it eliminates the need for anti-

bodies. The method is able to analyse in-process samples from crude

bulk to final purified bioprocessing product with improved detection and

quantification limits, compared to the approved method. This simpler

and faster tool facilitated the measurement of results in real-time, which

is crucial for the monitoring and optimization of the bioprocess. It is

universal in the sense that it is suitable for different influenza groups

and strains; it is not just for monovalent but also for multivalent vaccine

candidates.
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4.4 Materials and Methods

4.4.1 Cell culture

High Five cells (Trichoplusia ni derived BTI-Tn-5B1-4 cell line) (B855-02,

Invitrogen Corporation, Paisley, UK) were routinely cultured in Insect-

XPRESS medium (Lonza, Basel, Switzerland) and kept in a humidi-

fied incubator at 27 ◦C and 110 rpm. Cells reach a concentration of

2-3×106 cells mL−1 every 2-3 days and were re-inoculated at 3×105 cells

mL−1. Cell concentration and viability were determined by using haemo-

cytometer cell counts (Brandt, Wertheinmain, Germany) and trypan blue

exclusion dye method (Merck, Darmstadt, Germany).

4.4.2 VLP production and harvest

For VLP production, High Five cells were infected with recombinant bac-

ulovirus (kindly provided by Redbiotec AG) encoding different strains of

Influenza HA and M1 proteins (described in Samples section). Cell con-

centration at infection (CCI) was 2×106 cells mL−1, and the multiplicity

of infection (MOI) was 1 IP cell−1(infectious particles per cell). Bac-

ulovirus titers were determined using the MTT assay [158, 159].

High Five infected cells were harvested at a viability of 50-60%, corre-

sponding to approximately 48 hpi, by centrifugation at 200 g for 10 min

(JA10 rotor, Avanti J25I centrifuge, Beckman Coulter, USA). The pellet

was discarded and Benzonase (101654, Merck Millipore, Germany) was

added to the supernatant at a final concentration of 50 U mL−1 and

incubated at room temperature (RT) (22 ◦C) for at least 15 min.

4.4.3 VLP Downstream processing

The clarification of VLP-containing bulk was carried out by dead-end fil-

tration using a Sartopore filter with 0.45+0.2 µm pore size (SART5445307H7-

SS-A, Sartorius, Germany). The filtration module was previously condi-

tioned with 50 mM HEPES, pH 7.4, 300 mM NaCl (working buffer). The
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clarification was performed at a constant flow rate of 100 mL min−1 us-

ing a Tandem 1081 Pump (Sartorius Stedim Biotech,Germany) and the

pressure was monitored by an in-line pressure transducer (080-699PSX-5,

SciLog, USA) to control possible overpressure.

Clarified bulk was concentrated using tangential flow filtration (TFF).

For ultrafiltration flat sheet Pellicon 2 Mini Ultrafiltration Module Bio-

max 300 kDa 0.1 m2 (P2C300C01, Merck Millipore, USA) was used.

The membrane module was set up accordingly with the manufacturer’s

instructions. A fixed feed flow rate of 500 mL min−1 was set up. Trans-

membrane pressure (TMP) was controlled by adjusting the retentate flow

rate using a flow restriction valve. The pressure was monitored at feed

inlet, retentate outlet and permeate outlet by in-line pressure transduc-

ers. The feed/retentate and the permeate volumes were monitored using

a technical scale (TE4101, Sartorius Stedim Biotech, Germany). At a

proper feed volume, three diafiltration volumes with working buffer were

performed. After achieving the desired concentration factor, the TFF

loop was completely drained and the VLP retentate was recovered.

Concentrated VLPs were loaded into a size exclusion chromatography

column HiLoad 26/600 Superdex 200 pg column (GE Healthcare, USA)

coupled to an ÄKTA Avant liquid chromatography system (GE Health-

care, USA.) equipped with UV and conductivity/pH monitors. System

operation and data gathering/analysis was done using the UNICORN

6.3 software (GE Healthcare, U.K.). The column was loaded with 13 mL

of concentrated VLPs, using a 13 mL capillary loop, at a constant flow

rate of 3 mL min−1. Working buffer was used as eluent and the eluted

fractions were collected for further analyses.

VLPs’ corresponding fractions were further concentrated and diafil-

trated with working buffer using a flat sheet Pellicon XL Ultrafiltration

Module Biomax 300 kDa 0.005 m2 (PXC300C50, Merck Millipore, USA)

at a constant flow rate of 40 mL min−1. Final product was sterile filtered

using a 0.2 µm syringe filter unit (10462960, Whatman - GE Healthcare,

USA).
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4.4.4 Samples

All Influenza VLP samples were produced and purified as described

above. Influenza vaccine Influvac (Abbott, USA) was used as positive

control. Different Influenza strains from distinct subtypes and groups

were selected (H1, B, and Group2 - H3, H4, H7, H10, H14, and H15)

to replicate genetic diversity. VLPs produced contained HA and M1 In-

fluenza proteins. Multivalent particles are composed of a combination of

multiple HA proteins.

4.4.5 Nanoparticle tracking analysis

Particles presence, concentration and size distribution were measured us-

ing the NanoSight NS500 (Nanosight Ltd, UK). The samples were diluted

in D-PBS (14190-169, Gibco, UK) so that virus-like particles concentra-

tion would be in the 108-109 particles mL−1 - the instrument’s linear

range. All measurements were performed at 22 ◦C. Sample videos were

analysed with the Nanoparticle Tracking Analysis (NTA) 2.3 Analyti-

cal software - release version build 0025. Capture settings (shutter and

gain) were adjusted manually. For each sample 60-seconds videos were

acquired and particles between 70 and 150 nm were considered.

4.4.6 Hemagglutination assay

Hemagglutinin protein detection and quantification was performed by

hemagglutination assay for all the samples and for all stages of bio-

process evaluated. The assay was carried out according to the proce-

dure described in the literature [54]. The predictive range of concentra-

tions calculated for the Hemagglutination assay was determined based

on the error associated with the 1:2 serial dilution used between plate

wells. For VLPs’ hemagglutination assay, the concentrations are typically

in µg mL−1, which does not happen for virus hemagglutination, where

a measure of activity is obtained, typically in HAU (hemagglutination

units).
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4.4.7 Biolayer interferometry quantification assay

Influenza VLPs’ binding to sialic acid receptors was measured by bio-

layer interferometry (BLI) using Octet RED96 and Octet RED384 sys-

tems (fortéBIO, Pall Corp., USA). Data was acquired (kinetics mode)

and analysed using the Data acquisition software v9.0 (fortéBIO, Pall

Corp., USA) or Data Analysis software v9.0 (fortéBIO, Pall Corp., USA).

When necessary, data was exported as a Microsoft Excel file for fur-

ther analysis in other software packages. Binding was calculated from

the response amplitude (wavelength shift in nm) obtained in the first

100 s of each step. Avian 3’-SLN (3’SiaLacNAc-PAA-biot, 0036-BP) and

human 6’-SLN (6’SiaLacNAc-PAA-biot, 0997-BP) receptors (Lectinity,

Moscow, Russia) containing 20 mol% receptor analogue and 5 mol% bi-

otin on a 30-kDa polyacrylamide backbone were resuspended in 50 mM

HEPES, pH 7.4, 300 mM NaCl (working buffer) with 3 mM EDTA and

0.005% Tween-20. High Precision Streptavidin (SAX) Biosensors (18-

0037, fortéBIO, Pall Corp., USA) were hydrated and blocked with Sam-

ple diluent (18-5028, fortéBIO, Pall Corp., USA). Unless otherwise stated

all the samples were diluted with working buffer. To prevent cleavage of

the receptors by influenza neuraminidase, Influvac vaccine samples were

incubated for 1 hour at RT with 100 µM Oseltamivir phosphate (CAS

number 204255-11-8, Sigma-Aldrich) and 100 µM Zanamivir (CAS num-

ber 139110-80-8, Sigma-Aldrich) inhibitors.

The quantification assay was set up by diluting biotinylated recep-

tors with sample diluent and loaded into SAX Biosensors. Influenza

VLP samples were then associated to the biosensors and association and

dissociation profiles were measured. The method was defined with five

steps: Baseline, Loading, Baseline, Association and Dissociation. Exper-

iments were performed at 25 ◦C and sample plates (microplate 96 well,

F-bottom, black, 655209, from Greiner bio-one and microplate 96 well

half-area, F-bottom, black, 3694, from Corning Costar) were agitated at

1000 rpm.

Limit of detection (LOD) and limit of quantitation (LOQ) were cal-
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culated based on the FDA Guidelines (FDA, ICH Guidance for Industry,

Q2B Validation of Analytical Procedures: Methodology, 1996). The

approach used for determining both limits was based on the standard

deviation of the response and the slope of the calibration curve:

LOD =
3.3σ

S
(4.1)

LOQ =
10σ

S
(4.2)

where σ is the standard deviation of the response and S the slope of the

calibration curve. Quantifications were made taking into consideration

the initial values (0 to 100 s) of the binding responses.

4.5 Results

4.5.1 Design of a quantification assay for Influenza VLPs

The Influenza VLPs quantification assay is based on biolayer interferom-

etry analysis and performed on an Octet RED system. The approach

takes advantage of the binding of Influenza virus hemagglutinin to sialic

acid receptors present in host cells. The method uses high precision

functionalized streptavidin (SAX) biosensors and biotinylated α-2,3 and

α-2,6-linked sialic acid receptors. Figure 4.1 schematizes the quantifica-

tion assay. Briefly, biosensors are hydrated and blocked for non-specific

binding with sample diluent at the initial baseline step. Then, the load-

ing of the biotinylated sialic acid receptors is performed; a new baseline

step with working buffer guarantees that the receptors that are not cor-

rectly linked are removed. Influenza VLPs are then associated to the

receptors. Depending on the sample stage of purification, there are im-

purities that can be removed during the dissociation step. For the cases

studied, the dissociation was negligible when compared to association

(data not shown). Non-specific binding was evaluated by VLP associ-

ation to naked biosensors, i.e, without loading of sialic acid receptors.
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Figure 4.1: Schematic representation of Influenza quantification assay. Biotinylated α-
2,3 and α-2,6-linked sialic acid receptors, hydrated and blocked (baseline), are loaded
into high precision streptavidin biosensors (loading). After a second baseline step, HA
protein from Influenza VLPs bind to the receptors, giving a response (association).
Possible process impurities or non-bound VLPs are removed in the dissociation step.

Having the biosensors blocked, the binding magnitude to naked biosen-

sors is significantly lower than the one observed for the receptor, which

was confirmed by subtracting both binding curves (Figure A.1).

4.5.2 Criteria definition and optimization for the assay

implementation

Human Influenza VLP strains were quantified using BLI technology.

As the results obtained with BLI analysis were compared with chicken

erythrocyte agglutination assay, it was necessary to evaluate influenza

strains’ binding to α-2,3, α-2,6 or a mixture of both receptors. It is ex-

pected that strains with higher affinity for α-2,6 present a higher bind-

ing response for that receptor. The same should occur for α-2,3 strains.
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The binding to the different sialic acid receptors of different influenza

strains (mono- or multivalent VLPs from different groups) was measured

(Figure 4.2a-e). Both receptors, alone or in a 1:1 ratio mixture, were

loaded. It was expected that different strains would present different

binding responses, according to their specificity for the receptors [160].

The binding profiles were different for all analysed strains. As predicted,

depending on the strain type higher binding responses for α-2,6 receptor

or for the mixture of both receptors were observed. The mixture of both

receptors gives more reliable results to compare the binding responses

calculated with BLI and HA assays. Thus, the quantification assay was

implemented using a mixture of both receptors in a 1:1 ratio.

Receptor concentrations ranging from 0.5 µg mL−1 to 4 µg mL−1

were evaluated to define the optimal loading. At concentrations above

2 µg mL−1 biosensor saturation occurred (data not shown) thus those val-

ues were not considered. Figure 4.2f presents the fine tuning optimization

for α-2,6, α-2,3 and mixture receptor loading. Optimal receptor concen-

tration was chosen at 1.2 µg mL−1, just before the saturation plateau for

α-2,6 receptor and the mixture, although not for the α-2,3 receptor to

avoid overcrowding of the biosensor and consequently VLP binding in-

terference (fortéBIO, PALL Life Sciences, Biomolecular Binding Kinetics

Assays on the Octet Platform, Application Note 14, 2013). Commercial

influenza vaccine Influvac was used as HA assay positive control. This

vaccine has both HA and NA influenza proteins. As described in the

literature [5] NA catalyses the cleavage of sialic acid so the binding of

Influvac vaccine to the receptors is affected by sample incubation with

NA inhibitors (Zanamivir, Oseltamivir) [161]. In the absence of NA in-

hibitors α-2,6 receptor binding curve suffers a significant decrease due to

enzyme activity (Figure 4.3a). However, even with NA inhibitors incu-

bation, vaccine binding behaviour is quite different from VLP samples,

presenting two binding transitions (Figure 4.2a-e and 4.3a). Moreover,

the vaccine does not significantly bind α-2,3 sialic acid receptor (with and

without NA inhibitors), as compared with α-2,6 receptor binding curves;
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Figure 4.2: Binding of Influenza strains to sialic acid receptors and receptor loading
optimization. Both α-2,3 and α-2,6-linked receptors were loaded into high precision
streptavidin biosensors, alone or mixed in a 1:1 ratio. Solid line corresponds to α-2,3,
long-dash-dot line to α-2,6 and square-dot stands for the mixture of both receptors.
Binding curves for B monovalent strain (A), B trivalent strain (B), H1 monovalent
strain (C), H3 monovalent strain (D), and Group 2 monovalent strain (E). Repre-
sentative example of the fine tuning optimization (n=2) for α-2,6, α-2,3 and mixture
receptor loading (F). Circle marker corresponds to α-2,6 receptor, square marker to
α-2,3 and triangle marker to the mixture of both receptors.
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Figure 4.3: Calibration curves for Influenza VLPs and Influvac vaccine. Representa-
tive binding curves (n=3) of Influvac vaccine at a HA concentration of 45 µg mL−1

to α-2,3 and α-2,6 sialic acid receptors. Incubation with NA inhibitors was evaluated.
Blue line corresponds to α-2,6 receptor incubated with NA inhibitors and orange line
to α-2,6 receptor without inhibitors. Grey line corresponds to α-2,3 receptor with
inhibitors and yellow line to α-2,3 receptor without inhibitors (A). Representative
calibration curves (n=3) of Influvac vaccine binding to α-2,3 and α-2,6 sialic acid
receptors. Circle marker corresponds to α-2,6 and square marker to α-2,3 (B). Rep-
resentative calibration curves of H1 strain Influenza VLP binding to α-2,3 and α-2,6
receptor mixture. Ultrafiltration retentate sample without trehalose (C) and with tre-
halose (D). The standard error of the estimation associated with the linear regression
is 0.02 nm (which corresponds to 0.53 µg mL−1) (C) and 0.006 nm (which corresponds
to 0.26 µg mL−1) (D).
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this is due to different affinities for the receptors, as it is well established

that human strains bind preferably to α-2,6 receptor [5]. Nevertheless, to

establish a calibration curve for the assay, vaccine at different concentra-

tions was loaded onto α-2,6 and α-2,3 receptors. As can be observed in

Figure 4.3b, initial response does not present a linear behaviour, in con-

trast to what is observed for VLP samples (Figure 4.3c-d). These results

show that Influvac vaccine is unsuitable for assay calibration. A recom-

binant HA protein was also evaluated, presenting extremely low binding

values (below 0.03 nm), even at high concentrations (20 µg mL−1) as

well as non-specific binding and high levels of dissociation (Figure A.2).

Ultrafiltrate (UF) retentate samples of each VLP were used to con-

struct the calibration curves. Figure 4.3c-d show representative calibra-

tion curves for one of the evaluated strains. The linear behaviour is

identical to the other strains in the concentration range analysed (Fig-

ure A.3). Limit of detection (LOD) was estimated as 0.5 µg mL−1 for

all the group 1 monovalent strains, 0.6 µg mL−1 for multivalent and

0.9 µg mL−1 for group 2 strains. Limit of quantitation (LOQ) was es-

timated as 1.6 µg mL−1 for the monovalent strains, 1.8 µg mL−1 for

multivalent and 2.7 µg mL−1 for group 2 strains (Table A.1). The addi-

tion of trehalose to improve long-term product stability was investigated.

The sugar was found to interfere with the assay, drastically changing the

response values of otherwise identical samples. Even for samples mea-

sured using calibration curves that also contained trehalose, the results

were inconsistent.

4.5.3 BLI quantification method enables in-process sam-

ples’ quantification

To evaluate the BLI quantification method, samples of mono and multi-

valent strains and different steps in the purification process were analysed

(Figure 4.4, Table A.2). For comparison samples were also quantified by

HA assay. As an example, Figure 4.4a confirms the methodology for a

B monovalent strain for the entire purification process, from bulk sam-
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Figure 4.4: Downstream process samples’ quantification using BLI method. B mono-
valent strain quantified by BLI method (black bars) and by hemagglutination assay
(white bars) at several stages of purification. s1: before harvest, s2: before clarifi-
cation, s3: after clarification, s4-s6: ultrafiltration (UF) retentate, s7: UF retentate
with trehalose, s8: final product (A). Calculated HA concentration values compared
with hemagglutination assay. Black lines correspond to hemagglutination assay error
range, x axis to HA values calculated by hemagglutination and y axis to HA values
calculated by octet assay (B). Error bars for panel A and B are omitted for clarity
(see standard errors of the estimation in Figure A.3b). Overview of HA quantification
of different VLP samples from several steps of the downstream process. Orange cir-
cles correspond to clarification samples, yellow squares to UF samples, blue triangles
to UF samples with trehalose and green diamonds correspond to samples after the
polishing step. Black lines correspond to hemagglutination assay error range, x axis
to HA values calculated by hemagglutination and y axis to HA values calculated by
octet assay (C). Zoom of the most populated range of HA concentrations from panel
C (D).
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ples to final bioprocessing product (before formulation): concentration

values correlate well between methods. A reduced number of samples

present differences in HA concentrations; this may be due to errors as-

sociated with the hemagglutination assay. Considering the errors asso-

ciated with the hemagglutination assay, the majority of the calculated

values with BLI assay fall between the predictive range of concentrations

(Figure 4.4b). The same results were observed for the other evaluated

strains, including multivalent ones (Figure A.4).

Samples have different purity levels, depending on the DSP (Down-

stream Processing) step, leading to slightly changes in binding response

behaviour. Grouping all the samples per DSP step confirms that the

majority of quantifications are within the predictive range of concentra-

tions in accordance with HA assays (Figure 4.4c-d). The overview of the

results shows that samples from the clarification stage contain culture

media compounds, possibly interfering with the analyses, as routinely

observed in laboratory HA assays; thus small differences between quan-

tification methods for these early stage samples are to be expected. As

the DSP advances, purity increases and HA concentrations calculated

with BLI assay became closer to those acquired with HA assay. Samples

with trehalose at the storage concentration used here (15% w/v) do not

allow robust quantifications.

4.5.4 BLI quantification method is specific for subtype

and group VLP strains

To evaluate specificity, several strains from the same subtype or group

were analysed against the same calibration curve; experiments were per-

formed for H1, H3 and B subtypes for several mono and multivalent

strains. Strains from H1 subtype group were quantified using only one

H1 strain as calibration curve; a UF retentate sample was used as cal-

ibration and three monovalent, one trivalent and one pentavalent VLP

samples were quantified (Figure 4.5). Results confirm subtype and group

quantification is possible, with only one sample out of the error limits.
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Figure 4.5: Example of subtype and group strain specificity. HA quantification of
several mono and multivalent strains from H1 subtype (n=2). UF retentate samples
from one monovalent strain were used as calibration. Bars without fill correspond to
HA values calculated using hemagglutination assay. Bars with coloured fill correspond
to HA values calculated using octet assay. For each strain, two different samples
with two different concentrations are presented. Monovalent strain #1 is coloured
in orange, monovalent strain #2 in green and monovalent strain #3 in yellow. Blue
corresponds to trivalent strain and red to the pentavalent one. Top right panel presents
calculated HA concentration values compared with hemagglutination assay. Black
lines correspond to hemagglutination assay error range, x axis to HA values calculated
by hemagglutination and y axis to HA values calculated by octet assay. Monovalent
strain #1 is coloured in orange, monovalent strain #2 in green and monovalent strain
#3 in yellow. Blue corresponds to trivalent strain and red to the pentavalent one.
Error bars are omitted for clarity (see standard errors of the estimation in Figure 4.3c).
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This was also observed for H3 and B group samples containing tri and

pentavalent VLPs (Figure A.5).

4.6 Discussion

Constant Influenza antigenic shift and drift drives rapid development of

vaccines and more efficient production and purification processes, requir-

ing fast and reliable analytical tools to characterize final bioprocessing

product but also all stages of the upstream and downstream processes. As

mentioned before, the main limitations of current methodologies, SRID

and hemagglutination assays were reviewed [96, 130]. These influenza

quantitation methods were designed for purified virus samples and are

not suitable for crude samples or for VLPs bioproduction assays.

Here we report a HA quantification assay permitting the analysis of

in-process samples of influenza multivalent VLPs involving sialic acid

receptors interaction with the virus.

As a proper standard was not available, a commercially available

influenza vaccine (Influvac) already implemented as HA assay positive

control was evaluated. However, initial responses obtained with this

“standard” were not linear, precluding the design of a calibration curve.

Moreover, the vaccine association to the sialic acid receptors does not

present the expected behaviour, when compared to the association curves

reported for the BLI technique. This is probably due to the presence of

NA that catalyses the cleavage of sialic acid receptors. However, even

when vaccine samples were incubated with NA inhibitors, the binding

response continues to be partially affected, meaning that vaccine formu-

lation, in particular the stabilizers, could also have a role.

Searching for a new standard with similar protein content and the

same production conditions as the evaluated samples, ultrafiltrate (UF)

retentate samples of each VLP were used for calibration curves. Recom-

binant HA protein was also evaluated as a standard but no significant

binding was observed, mainly because the protein was not in the na-
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tive conformational trimeric structure, required for receptor interaction

[150, 162].

The HA assay was performed for comparison to BLI technology. Ery-

throcytes used in HA assays should be chosen depending on the receptor

selectivity of the targeted virus. However, it is not feasible to use hu-

man erythrocytes for process development quantification assays. Human

Influenza virus agglutinates chicken erythrocytes and, due to their char-

acteristics they are routinely used in HA assays. These erythrocytes

contain both α-2,3 and α-2,6-linked sialic acid receptors, although in dif-

ferent proportions [160]. Therefore, to improve the comparison of both

assays a 1:1 ratio between both receptors was used. This ratio repre-

sents a broader condition to quantify different samples because different

strains have different affinities for the sialic acid receptors.

The developed method was designed for in-process VLP samples and

to be able to quantify HA for the entire bioprocess. As a proof of concept,

several influenza VLPs from different strains, groups, stages of the pro-

cess, mono and multivalent were evaluated. Most of the quantified values

are within the predictive range of concentrations, stipulated based on the

HA assay associated errors. However, there are several factors that can

influence the binding response and, therefore, the method robustness, as

reported elsewhere [148]. Our samples contained different levels of im-

purities such as DNA and total protein, different concentrations of cell

culture medium and NaCl, and presence or absence of trehalose. Only

samples with trehalose fall slightly out of the predictive range of concen-

trations.

The method is able to quantify different samples from the same sub-

type, using a single calibration curve. The binding affinities of strains

from the same subtype are close enough to give concentration values that

are within the predictive range.

This quantification method is an appealing tool for bioprocess de-

velopment, from time of harvest control to final bioprocessing product

quantification. Leading with broad spectra of samples from bulk to fi-
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nal product, residual amounts of baculovirus and/or exosomes can be

present. Analogously to the traditional and approved methods, our tool

is not able to distinguish HA that is present on VLPs or in other par-

ticles. This issue is not completely addressed due to the lack of proper

DSP processes and analytical tools. It is also worth to note that recent

reports showed that residual baculovirus, present in VLP samples, can

to trigger an innate immune response. This raises the question whether

baculovirus presence is harmful or an advantage [59, 163]. Nevertheless,

this method presents several advantages compared to the methods al-

ready settled for influenza virus. The method is an advance over the

SPR-based assays that use microfluidics and is not compliant with bulk

samples. Moreover, both the sialic acid receptos and the samples can be

recovered, and the biosensors can be regenerated, in contrast with the

SPR-methods. Being antibody- independent it eliminates the constant

update, required for SRID and other methods. Moreover, the replace-

ment of erythrocytes by sialic acid receptors solves the issue of influenza

strains that do not agglutinate chicken erythrocytes and makes the assay

more robust, when compared with HA assay, eliminating the use of fresh

cells and decreasing the variations associated with user operation and

host-origin. Importantly, it is possible to quantify a plethora of strains

and multivalent influenza VLPs with an improved LOD and LOQ [96], a

step further in the development of a universal quantification tool suitable

for bioprocess development.

4.7 Acknowledgments

The authors acknowledge funding from the European Union (EDUFLU-

VAC project, FP7-HEALTH-2013-INNOVATION). S.C. was funded by

the PhD fellowship SFRH / BD / 52302 / 2013 within the scope of

the PhD program Molecular Biosciences PD / 00133 / 2012 funded by

Fundação para a Ciência e Tecnologia. The authors acknowledge Red-

Biotec for kindly providing the baculovirus, António Roldão, Marcos



64 CHAPTER 4. Improved quantification of Influenza VLPs

Sousa and Ricardo Correia for providing extra validation material and

Attila Aranyos for technical support and profitable discussions.



5

Bioorthogonal Strategy for Bioprocessing of

Specific-site-functionalized Enveloped Influenza-virus-like

Particles

Sofia B. Carvalho1, João M. Freire, Mafalda G. Moleirinho, Francisca Monteiro, Diana

Gaspar, Miguel A. R. B. Castanho, Manuel J. T. Carrondo, Paula M. Alves, Gonçalo
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5.1 Context

When developing or improving bioprocesses it is critical to have ana-

lytical tools to monitor the product across the production and purifica-

tion steps. For the downstream processing development, this will be of

extreme importance to control where the product is being lost and to

optimize the yields. The typical way is to tag the product of interest,

usually with fluorescent labels, such as GFP. However, to directly apply

the knowledge obtained with the trial runs with purification process for

unlabelled VLPs, the labelling method should not affect the size and the

charge of the particles. Tagged enveloped VLPs is a bioorthogonal strat-

egy that we developed to overcome this issue. By using a click chemistry

approach, we were able to functionalize VLPs and add a fluorescent tag

during in vivo production. This tool allows the monitoring and control

of the process from the production stage until the end of the purification.

Using this method coupled with FACS, we were also capable to discrim-

inate and separate VLPs from Baculoviruses, the main impurity of the

process.

This study and all the required experiments were conceived by me and

J.M.F.. Cell culture and VLP production as well as metabolic labelling

were performed by me. I also performed the Downstream processing

steps and most of the analytical tools to characterize VLPs and impurity

sample content. Me and J.M.F. wrote the manuscript with contributions

from all authors.

This work was published in Bioconjugate Chemistry (2016,27:2386–

2399. DOI: 10.1021/acs.bioconjchem.6b00372) and it is available at

https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.6b00372.

https://pubs.acs.org/doi/abs/10.1021/acs.bioconjchem.6b00372
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5.2 Abstract

Virus-like particles (VLPs) constitute a promising platform in vaccine

development and targeted drug delivery. To date, most applications use

simple non-enveloped VLPs as human papillomavirus or hepatitis B vac-

cines even though the envelope is known to be critical to retain the native

protein folding and biological function. Here we present tagged enveloped

VLPs (TagE-VLPs) as a valuable strategy for the downstream processing

and monitoring of the in vivo production of specific-site-functionalized

enveloped Influenza VLPs. This two-step procedure allows bioorthogo-

nal functionalization of azide-tagged nascent influenza type A hemagglu-

tinin proteins in the envelope of VLPs through strain-promoted [3+2]

alkyne-azide cycloadditioneaction. Importantly, labelling does not influ-

ence VLP production and allows for construction of functionalized VLPs

without deleterious effects on their biological function. Refined discrim-

ination and separation between VLP and baculovirus – the major impu-

rity of the process – is achieved when this technique is combined with flow

cytometry analysis as demonstrated by atomic force microscopy. TagE-

VLPs is a versatile tool broadly applicable to the production, monitoring

and purification of functionalized enveloped VLPs for vaccine design trial

runs, targeted drug-delivery, and molecular imaging.
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5.3 Introduction

Virus-like particles (VLPs) hold great promise as a platform for the de-

velopment of long-lasting vaccine candidates, i.e., more effective vaccines

that do not require constant updates [37]. Vaccines with improved clin-

ical activities that use recombinant VLPs as their antigens have been

developed [36, 164, 165], namely against Hepatitis B as well as human

Papillomavirus viruses [37, 38]. Moreover, engineered VLPs carry addi-

tional promise for the generation of a wide range of nanoscale carriers

in targeted drug-delivery and molecular imaging [44]. Previous studies

have also shown VLPs to be a safe and efficient platform to deliver ac-

tive proteins to cells [45]. Additionally, genetically engineered VLPs have

been exploited as drug-delivery systems for targeted delivery of cytotoxic

agents to tumors [46, 47].

The versatility of VLP platforms has prompted development of strate-

gies to functionalize them. In contrast with genetic methods, chemical-

based approaches for the production of modified VLPs are experimen-

tally simpler, more efficient, less time-consuming, and more cost-effective.

In one report, surface modification of adenovirus vectors was achieved

by metabolic incorporation of azidohomoalanine (Aha) followed by a

copper(I)-catalyzed alkyne-azide cycloaddition reaction [166]. Alterna-

tively, Francis and co-workers produced synthetic MS2 viral capsids func-

tionalized with antibodies by using a oxidative coupling strategy [167].

However, to date, the production of synthetically modified VLPs has

been limited to simple non-enveloped VLPs. Complex enveloped VLPs

show potential as platforms for the presentation of membrane proteins.

The envelope is thus essential to maintain the proteins in their folded

and biologically functional state, which is critical to vaccine efficacy [168].

There are clinical trials that report efficacy and safety improvements only

after the incorporation of membrane proteins on the VLP surface, which

induces a more specific antibody response [169]. Enveloped VLPs have

the potential to generate antibodies of high diagnostic and therapeutic
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relevance to target transporters, ion channels, and membrane proteins

present in the human genome that lack inhibitory antibodies because

of current technical limitations [170]. The potential of enveloped VLP

platforms as vaccine candidates and drug carriers together with the strict

constraints of regulatory agencies for higher quality and safety control of

biopharmaceuticals highlights the need for new downstream processing

methods for the production of functionalized enveloped VLPs.

Herein we present a bioorthogonal labelling strategy that enables us

to successfully functionalize complex enveloped Influenza VLPs within

live cells. The approach reported here, termed as tagged enveloped

VLPs (TagE-VLPs) comprises four key components: (i) residue-specific

replacement of methionine (Met) by Aha [171, 172] to access azide-

tagged precursor enveloped Influenza VLPs, (ii) Aha-specific modifica-

tion by strain-promoted alkyne-azide [3+2] cycloaddition (SPAAC) re-

action [173], (iii) downstream processes monitoring and optimization,

and (iv) discrimination between VLPs and baculovirus. The TagE-VLP

strategy uses the baculovirus expression vector system that results in

a considerable increase in downstream processing complexity because

routine purification procedures and analytical methods are not able to

strictly discriminate between VLPs and baculovirus [170, 174]. The goal

is to have a minimal size tag that does not disrupt particle size, charge

and biological function. This is critical to develop and improve a pu-

rification process that can be applied also for untagged particles. With

Aha incorporation we can label our VLPs with other molecules of in-

terest, not only fluorescence tags, in order to address unmet medical

needs. The versatility and flexibility of TagE-VLP offers potential to

develop functionalized enveloped VLPs for applications in vaccine design

and targeted drug-delivery systems.
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5.4 Results and Discussion

5.4.1 Design criteria and implementation of the TagE-

VLP platform

The ability to achieve fully functional chemically modified enveloped

VLPs relies on efficient incorporation of a tagged non-canonical amino

acid at specific residues followed by bioorthogonal modification. This

strategy, if performed in live cells, enables the monitoring, character-

ization, and VLP quantification from the beginning of the production

process. This is a valuable tool to improve upstream and downstream

processes. To achieve site-specific in vivo VLP modification and labelling

we designed a two-step approach (Figure 5.1). The first step involves

metabolic incorporati on of non-canonical amino acid Aha, a Met ana-

logue that contains an azide tag, into the hemagglutinin (HA) protein of

Influenza VLPs. We chose triplet codon for Met to code our chemical tag

because of the low incidence of Met in the gene of HA. In addition, Met

replacement by Aha has been shown to be a powerful tool to introduce

azide tags at specific residues on recombinant proteins or newly synthe-

sized proteins on a cell without affecting the physico-chemical properties

or biological functions [171, 172, 175, 176]. The second step consists of

bioorthogonal labelling with a cyclooctyne derivative, in this case Click-

iT Alexa Fluor 488 DIBO alkyne, through strain-promoted alkyne-azide

[3+2] cycloaddition (SPAAC) that enables precise placement of a mod-

ification into the nascent enveloped VLPs in vivo. Labelling may be

performed at the desired purification step to achieve optimal yields and

purified VLPs. Briefly, to produce in vivo labelled enveloped VLPs, cells

were grown in culture and fed with Aha during protein synthesis. Met

was added to a parallel cell culture, which was used as a control. During

protein synthesis, Aha is incorporated as a surrogate for Met throughout

the gene sequence of HA.

HA is a protein from the envelope, thus the VLPs carry the azide-

tagged amino acid after budding from the host cells. At this stage, a
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(Caption next page.)
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Figure 5.1: Site-specific in vivo labelling of enveloped Influenza VLPs. a. Schematic
representation of the procedure to metabolically introduce an azide-tagged non-
canonical amino acid Aha for subsequent strain-promoted alkyne–azide [3+2] cycload-
dition (SPAAC) labelling. During cellular protein synthesis the Aha added to the
culture medium is incorporated into nascent HA proteins. Addition of the Alexa
488-cyclooctyne reagent allows site-specific modification of HA (fluorescent tag in our
case), which is reflected in VLP production. The modified HAs are incorporated into
the vesicles’ envelope that is secreted from the cells that carry the chemical modifica-
tion with it. b. Confocal microscopy analysis of chemically modified VLP with the
fluorescent probe Alexa 488. 100-fold dilution of bulk VLPS (107 particles mL−1) were
deposited onto IbiTreat 8 µ-well slides. 500 nm multi-colour fluorescent beads were
used as size and green signal reference (converted to grey scale). Red signal was also
acquired (converted to grey scale) and from green–red merge images 500 nm beads
can be discriminated from VLPs (yellow and green dots, respectively). In addition
to colour discrimination, for each particle detected the full width at half maximum
(FWHM) was determined to evaluate the approx. 500 nm size of the control beads
(Yellow) and the sub-diffraction limit VLP size (see Experimental Section for more
detail). The control VLP sample shows no green signal (no labelling with Alexa 488),
specific of SPAAC ligation in the experiment samples. Scale bars (white) indicate
2 µm in all images. Additional information regarding particle detection and RAW
confocal images can be found in Figure B.1.

complex particle is obtained that displays Aha-tagged HA in the enve-

lope and that is ideally suited for post-expression bioorthogonal labelling

with a cyclooctyne fluorescent probe (Figure 5.1a). The time of addi-

tion of amino acids was optimized through small-scale (50 mL) batch

production. The incorporation of Aha into HA protein was performed

12, 24, 36, and 48 hours post infection (hpi) of cells with baculovirus

and assessed by confocal microscopy and flow cytometry analysis (Fig-

ure 5.1b, B.1 and B.2). The time of addition that resulted in a higher

concentration of fluorescent VLPs was found to be 24 hpi (Figure 5.1b).

Further scale-up (500 mL) of Influenza VLP production was performed

with this time reference. The versatility of our TagE-VLP strategy allows

for bioorthogonal labelling at different stages of the production process

of Influenza enveloped VLPs. We chose to perform the SPAAC labelling

after the VLPs were harvested because downstream processing (DSP) is

the major bottleneck of bioprocess design. Fluorescent beads (500 nm)

were used in confocal microscopy analysis as fiducial markers of size and

green fluorescence signal as visual reference of successful VLP labelling
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and detection. As a result of its multi-colour fluorescence profile, red

signal was also acquired. Green–red merged images allowed discrimina-

tion between VLPs (green) and beads (yellow) dots, not only by particle

size, but also by colour. With this methodology one can perform quan-

titative analysis on the detected VLPs. The number per µm2 and mean

fluorescence intensity (If ) of labelled-VLPs determined by imaging pro-

cessing of confocal images indicates the optimal conditions to perform

the bioorthogonal functionalization step.

Particles with sizes below the diffraction limit of the microscope will

appear as the point-spread function (PSF) of the instrument. VLPs

are sub-diffraction limit particles, therefore their signal is the PSF of

the microscope (approximately 240 nm). Particle size analysis was per-

formed and the full width at half maximum (FWHM) was determined,

a parameter that is a better approximation to particle size. Control flu-

orescent beads (size approx. 500 nm) alone present a FWHM value of

approximately 540 nm. The mixture between VLPs and beads showed

a bimodal size distribution, which indicates the presence of both parti-

cles (Figure 5.1b and B.1). As mentioned, with sizes below the resolu-

tion limit of the microscope, the signal is limited by the PSF and the

value observed for the VLPs has an average size distribution of 240 nm,

which is the microscope’s PSF. The control VLP sample with added Met

showed no green fluorescence signal, even after incubation with Alexa

probe. This means that incorporation of Aha is necessary to observe

fluorescence and that azide ligation between the non-canonical amino

acid and the fluorophore is site-specific. The best time to incorporate

Aha into HA protein was 24 hpi (time-dependent baculovirus infection

was performed and is described in the SI, Figures B.2a and B.2b) (one

reached approx. 3722 labelled-VLP per cm2 with an If of 670.5±167

a.u. (arbitrary units) (mean ± SD), 40% and 100% higher than 12 hpi

or 36/48 hpi, respectively).
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5.4.2 TagE-VLPs platform improves downstream process-

ing of Influenza VLPs

By optimizing the amino acid incorporation, the system becomes suit-

able for scale-up production and purification of labelled VLPs, detailed

in Figure B.3a. During production, to label mainly the HA protein, ad-

dition of Aha amino acid to the cell culture was only performed after the

late onset of gene expression (hpi=24).

DSP proceeded with a standard protocol for Influenza VLP purifica-

tion already established in IBET’s laboratory. Analysis of all DSP steps

to monitor the presence and concentration of modified VLP across the

process was performed by confocal microscopy (Figures B.3 and B.4) and

by flow cytometry (Figures B.6 and B.7) for both labelled and control

VLPs. Alexa probe was added to the samples before analysis. Clarifica-

tion of the supernatant, to remove any remaining cells and cell debris,

was performed by means of depth filter technology [68]. Intermediate

purification involved an anionic exchange chromatography (AEX) and a

concentration/diafiltration step by using ultrafiltration technology. AEX

was operated in negative (flow through) mode, which means that the

working volume is still high. To make the process cost effective, labelling

with Alexa during purification was only performed after concentration of

the flow through bulk. Size exclusion chromatography (SEC) was used

in this case as a model of polishing step to remove a significant part of

the remaining impurities such as baculovirus, DNA, or host cell proteins

(Figure 5.2, B.4 and B.8). Elution of Influenza VLPs was monitored

by detecting the absorption of the eluted solution at 234 and 494 nm

(Maximum absorption wavelength of Alexa Fluor 488). Absorption at

234 reports roughly, all biomolecules that pass through the detector,

whether the absorption at 494 is specific for the fluorescent VLPs that

incorporated the Alexa-488 probe. This dual detection allows better dis-

crimination between the particles of interest VLP and all other contami-

nants such as baculovirus. Although SEC removed some baculovirus, the

product still contained impurities. A fluorescence-activated cell-sorting
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Figure 5.2: Detailed interpretation of VLP polishing step by means of size exclusion
chromatography (SEC) for the Alexa-488 labelled VLP. Two detection signals were
used to monitor SEC. The elution profile was monitored by detecting the absorption
of the eluted solution at both 234 nm (blue curve) and 494 nm (green curve) (emission
wavelength of Alexa probe). The absorption at 234 where roughly, all biomolecules
that pass through the detector contribute to the signal obtained either by absorp-
tion or light scattering (DNA, proteins, lipids). The detection of the absorption at
494 is specific for the fluorescent VLPs that incorporated the Alexa-488 probe. This
dual detection allows better discrimination between the particles of interest VLP and
all other contaminants such as baculovirus. VLPs are contained in the column void
volume. For each SEC fraction, confocal microscopy images were taken to monitor
the presence of modified VLP (green fluorescent VLP). Scale bars (white) indicate
2 µm in all images. Images are ROI from larger independent images to better visu-
alize the sub-diffraction green dots. Merge (green-red) images are shown for clarity.
According to the scheme highlighted in Figure 5.1, red signal was also acquired and
from green:red merge images 500 nm beads can be discriminated from VLPs (yellow
and green dots, respectively). At the end of the SEC, between 115-130 mL of elution
volume, concerning the elution of small molecules, there is evidence of detector signal
saturation due to the elution of a high concentration of free Alexa-488 in the solution
used in the labelling of VLPs.
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(FACS) step was added at the end to overcome this issue and separate

VLPs from baculovirus by taking advantage of their distinct particle sizes

(150–200 nm and 300–400 nm, respectively) (Figure B.5). Additional in-

formation regarding particle detection, individual Green and Red chan-

nels and RAW confocal images can be found in the SI, Figures B.4a

and B.4b for the control and Aha addition experiments. In order to

validate the approach, each sample of the DSP process was also studied

by flow cytometry. SSC–green fluorescence and Red–Green fluorescence

2D correlograms are depicted in the SI, Figures B.8a and B.8b, respec-

tively. Detailed procedures for confocal microscopy and flow cytometry

acquisition and apparatus are available in the Experimental Section.

Recent reports have described the ability to detect and sort lipid-

based particles, exosomes and enveloped viruses, with flow cytometry

[177, 178]. HA concentration and number of particles measurement was

performed to assess VLP production yields using the TagE-VLPs strat-

egy. HA concentration at harvest time was 1.4 µ ml−1 for both Met con-

trol and Aha experiments. Nanoparticle tracking analysis revealed that

both cultures, control and experiment, produced VLPs in the same order

of magnitude: 1.56 × 109 particles ml−1 and 1.39 × 109 particles ml−1,

respectively, meaning that the VLP production yields were not affected.

Further analysis of total protein, DNA concentration and baculovirus

content were also performed during upstream and downstream process-

ing. These analytical methods are essential to characterize the bioprocess

and to make sure that control and labelled VLPs’ data are comparable

(data not shown). The polishing step (SEC; Figures 5.2 and B.4) and

FACS (Figures 5.3, B.6, B.7, and B.8) are discussed later. It is consis-

tently observed (Figure 5.1b) that the control VLP, with Met, does not

exhibit significant green fluorescence signal, as seen in the flow cytome-

try 2D correlograms from Figures B.6, B.7, and B.8 (VLP gate for every

DSP step of the control reveals no increase in positive Alexa 488 pop-

ulation, whether for the Aha experiment a positive Alexa 488 signal is

observed). Moreover, the concentrated Aha-labelled VLP sample showed
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Figure 5.3: Discrimination between VLPs and baculovirus by FACS analysis. a. Flow
cytometry of a baculovirus sample (used for infection and VLP production). 2D cor-
relogram of side scatter and green fluorescence signals are shown with 5% contour plots
of each population. Size scatter size ruler was made with 100, 200 and 500 nm size
fluorescent beads (greyscale). Gate thresholds for negative and positive populations
were performed using 100 nm beads signal – Top-right quadrant indicates green fluo-
rescent positive >100 nm particles – VLP. In each chart, the [100-200] nm per Alexa
488 positive population gate – VLP – was built to quantify and sort the presence of
labelled-VLP. This analysis monitors the scatter profile of the 200-400 nm rods (Red)
of baculovirus that have no green fluorescence. b. Flow cytometry of a VLP sample
before the DSP steps (Blue) shows that there are clearly two particle populations, one
green positive population at ∼ 200 nm and one with lower/inexistent green fluores-
cence that has a wider size distribution. c. Flow cytometry of F4 from the VLP SEC
purification step. Analysis of the green fluorescent signal shows that the >200 nm
fraction is reduced relative to A as a result of the VLP specific green fluorescence
signal. This sample was sorted with populations P1 (<200 nm population VLP-rich)
and P2 (>200 nm population baculovirus-rich). d. 2D correlogram of Red and green
fluorescence signals are shown for each population depicted in I (baculovirus), II (be-
fore DSP) and III (SEC F4). Gate thresholds for negative and positive populations
were performed using 100 nm beads signal: Bottom-right quadrant is the VLP positive
quadrant (green positive:Red negative particles. Significant green signal and none red
correlate with modified VLP samples. SI Figures B.6a, B.6b, B.7a, B.7b, B.8a and
B.8b depict additional flow cytometry performed in the study for all steps of the DSP
process.
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an If of 670.5±167 a.u. in the confocal images, whereas only background

fluorescence intensity levels were detected in the control VLP samples.

The residual green signal detected at the control concentration step is

mainly a result of unspecific binding of the probe (incorporation onto

hydrophobic moieties of lipid membranes) to process impurities that are

more easily observed at higher concentrations. Furthermore, the concen-

tration detected was residual relative to the labelled VLPs (Figures B.6,

B.7, and B.8). The data confirmed the presence of labelled VLPs across

DSP, with levels of concentration and purity consistent with the eval-

uated step. Ultrafiltration permeates and column-wash fractions from

both AEX and SEC were analysed and no loss of labelled VLP was de-

tected. These results demonstrate that this methodology is a powerful

tool to monitor, on-line or at-line, each of the steps during manufacture

of the product of interest, which can play an important role in DSP opti-

mization [179]. On-line and at-line process analysers are inserted in one

of the major categories of Process Analytical Technology (PAT) tools,

having important applications in the biopharmaceutical industry.

The purification process flowchart was chosen as a proof of concept

for the applied methodology, which means that other schemes and types

of chromatography can also be exploited. As already discussed, labelling

was performed prior to the SEC step to decrease the process cost. Be-

cause the previous chromatographic step was performed in a negative

mode, the SEC step allowed the optimization process to be fine-tuned.

Each fraction of this polishing step was interpreted in detail by confo-

cal microscopy (Figure 5.2 and B.4) and confirmed by flow cytometry

analysis (Figure B.8). One of the drawbacks of the baculovirus expres-

sion system is that it is difficult to remove baculovirus from the purified

complex enveloped product [97, 180]. The rod-shape form of baculovirus

makes it difficult to diffrentiate them from VLPs because, even with dif-

ferent detection methods, there are angles at which their sizes appear

similar. Like VLPs, baculovirus also bud out of the cell to give an en-

velope content that is similar in the two species [97]. Control VLPs
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were injected onto a SEC column and the elution profile was followed at

234 nm (280 and 260 nm were also tested but showed lower absorbance

intensity and signal-to-noise ratio) (data not shown). The elution profiles

of both the labelled VLP and control samples are very similar, with the

VLP sample eluting at the void volume of the SEC column as expected

(Figure 5.2). For modified VLP bulk, the absorbance intensity at 494 nm

was also evaluated (emission wavelength of Alexa probe). Usually, VLP

samples are contained in the void volume peak of the chromatogram as

a result of their high Stoke radius. However, analysis of the two wave-

lengths shows that the two peaks are not superimposable. Fraction F4

presented a higher fluorescence (494 nm) value, which does not corre-

spond to the peak maximum at 234 nm. Confocal microscopy images

also revealed that F4 contains a higher concentration of labelled VLPs,

which is in agreement with results from SEC chromatogram and flow

cytometry analyses (Figures 5.4a, 5.4b and B.8). This means that a mix-

ture of VLPs and other components elute in the void volume. Due to its

rod-shape, baculovirus elutes in different volumes of the chromatogram

[180]. Notably, this labelling methodology enables better discrimination

between VLPs and other process impurities, in particular baculovirus,

which is the major contaminant in this process. The on-line detection

of VLPs leads to a more informed decision as to which fractions should

be selected to continue in the purification process; an important step to

obtain a higher recovery yield with improved VLP purity. The peak at

the end of the chromatogram corresponds to free probe (494 nm) or DNA

and low molecular weight contaminants (234 nm).

5.4.3 TagE-VLPs maintain integrity and functionality

Modified VLP integrity and HA biological function were assessed by

means of a hemagglutination assay (Figures 5.4c and 5.4d). The correla-

tion of their biological integrity with the number of fluorescent particles

is also demonstrated by the quantification of the acquired images and

particle counting (Figures 5.4a and 5.4b). Control and modified VLP
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Figure 5.4: Integrity and functionality of modified VLPs. a. Quantification of the
number of fluorescent particles detected in each DSP step in the control, unlabelled
VLP and in the labelled VLP (steps from Figure B.3a). b. Quantification of the
number of fluorescent particles detected in each SEC fraction in the labelled VLP
purification (SEC from Figure 5.2). c. Hemagglutination assay for each step of the
modified VLP purification process to assess preservation of HA biological function.
d. Hemagglutination assay for each fraction of the SEC step. e. TEM analysis
of control VLPs from the concentration step of the purification process. Scale bar
indicates 100 nm. f. TEM analysis of modified VLPs from the concentration step of
the purification process. Scale bar indicates 100 nm. Uncropped and additional TEM
images are available in Figure B.10. The determination of the concentration of the
labeled VLP solution based on the particle detection in c. and d. was also performed
using equation 5.2 from the Experimental Section and is available in Figure B.4b.
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HA concentration values are comparable for each step of the production

and purification processes. This assay evaluates the biological interac-

tion between sialic acid receptors present in erythrocytes and HA protein

[5, 181, 182]. The same interactions happen under our conditions, which

proves that the HA biological function is preserved even after chemical

functionalization and labelling. The ability of these enveloped VLPs to

maintain their characteristics may indicate that this methodology could

be used to functionalize these particles with distinct targets. HA content

increases as fluorescence intensity increases (Figures 5.2 and 5.4d), which

means that the labelling is specific for Aha-containing Influenza VLPs.

SEC fractions F4 and F5 give a higher percentage of HA recovery, which

is in agreement with confocal microscopy results and number of fluores-

cent VLP detected (Figures 5.2, 5.4a and 5.4b) and flow cytometry data

(Figure B.8).

As mentioned above, modified VLPs can be fluorescently labelled us-

ing Alexa Fluor488 probe. By taking advantage of this labelling, both

control and TagE-VLPs were incubated with Alexa, separated in a SDS-

PAGE gel and revealed using a fluorescent image analyser (Figure 5.5c

and B.11). No fluorescent bands were detected for control VLPs, meaning

that no labelling occurs without the noncanonical aminoacid incorpora-

tion, as previously described. However, in VLP samples with Aha mod-

ification, it was possible to detect three fluorescent bands. These bands

were excised from the gel and identified by NanoLC-MS (Table B.1).

Bands identified with (2) and (3) were confirmed by mass spectrometry

as Hemagglutinin of Influenza A virus. Band (3) is probably a result

of protein degradation during time. Band (4) was identified by mass

spectrometry as Telokin-like protein of Autographa californica nuclear

polyhedrosis virus, i.e., a protein from the baculovirus. As this virus

replicate during infection and VLP production, it is possible to obtain

some residual baculovirus Aha incorporation. However, Aha addition

to the cell culture was only performed after the late onset of gene ex-

pression to minimize this possibility. Gel fluorescent data supports the
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Figure 5.5: Identification of HA and M1 proteins by western blot analysis and fluo-
rescent band detection of labelled Influenza VLPs’ proteins. a. M1 Influenza protein
detection on control and labelled VLPs by western blot analysis. M1 protein from
Influenza A H1N1 strain was used as positive control (M1 std). Band (1) was excised
and identified as M1 by mass spectrometry. b. HA Influenza protein detection on
control and labelled VLPs by western blot analysis. H3 VLP from Influenza A H3
strain was used as positive control (H3 std). Band (2) was excised and identified as
HA by mass spectrometry. c. SDS-PAGE gel fluorescence detection of control and
labelled VLPs incubated with Alexa 488 probe. Bands (2) and (3) were excised and
detected as HA by mass spectrometry. Band (4) was detected as a Telokin-like protein
of baculovirus. “pp” means precipitated sample.
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specificity of Aha incorporation into HA. Fluorescence intensity of bac-

ulovirus (band (4)) is clearly lower than HA corresponding ones and

only appears when samples were precipitated resulting in VLP degrada-

tion. Mass spectrometry also detected Met-Aha modification in several

peptides of the fluorescent bands, observed by a shift in the spectra (Ta-

ble B.1). Therefore, Aha incorporation is preferentially made into HA

proteins, a result of amino acid time of addition optimization. TEM

analysis was performed to assess presence, integrity, and morphology of

both control (Figure 5.4e) and modified VLP samples (Figure 5.4f). The

morphology is maintained: their size (∼ 170 nm) and spherical shape

are similar. Furthermore, ultrastructural details of both VLP envelopes

revealed characteristic Influenza HA spikes [183, 184]. Moreover, west-

ern blot analysis for HA and M1 specific detection was performed (Fig-

ure 5.5a, 5.5b and B.11) revealing that both control and modified VLPs

have the two Influenza proteins. Protein identity was confirmed by mass

spectrometry (Band ID 1 and 2 from Table B.1). This result further

confirms the intact composition of modified VLPs.

5.4.4 FACS analysis enables VLP and baculovirus dis-

crimination

Flow cytometry analysis allowed the detection and characterization of la-

belled VLPs and size discrimination between these particles (100-200 nm

spheres) and baculovirus (200-400 nm rods). Fluorescent beads of 100,

200, and 500 nm were used as a particle size ruler in flow cytometry with

the side-scatter signal [177, 178], which was then used to evaluate the

VLP samples size distribution. It is possible to do a direct correlation

between bead size and VLP samples because their refractive indexes are

similar.

2D correlogram of side scatter and green fluorescence signals was

acquired for each bead (100, 200, and 500 nm) for the VLP and con-

trol samples to detect the presence of baculovirus and evaluate further

particle separation by cell sorting. A baculovirus sample (used for cell in-
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fection and VLP production) was analysed to monitor the scatter profile

of these 200-400 nm length rod-shape particles. Sizes that ranged ∼ 200-

500 nm were observed, which indicates that these rods are polydisperse

(Figure 5.3a). A sample from the harvest step showed that at this stage

there are clearly two particle populations, one green positive population

at ∼ 200 nm and one with lower green fluorescence that has a wider size

distribution (Figures 5.3b and B.7). The size heterogeneity comes from

a VLP/baculovirus mixture because the sample is from an early purifi-

cation step still rich in baculovirus contaminants. A fraction from the

SEC step (Figures5.3c and B.8) shows that the green fluorescent signal

of the >200 nm fraction is reduced relative to baculovirus and harvest

panels (Figures 5.3a and 5.3b). The presence of baculovirus is reduced

relative to VLP in the SEC sample that is from a final purification step.

However, the SEC fraction still contains some baculovirus because the

baculovirus has a broad elution profile as a result of their rod-like shape.

VLP sorting of the SEC F4 fraction sample was performed to separate

the VLPs from baculovirus. Fluorescent beads (200 nm) were used to

define two sorting populations: P2 (>200 nm particles) is a baculovirus-

rich population and P1 (<200 nm particles) is VLP rich (Figure 5.3c).

This strategy increased the yield on VLP production and minimized the

presence of baculovirus in the final DSP product.

TEM analysis of baculovirus control (used to infect cells) and mod-

ified VLP (after concentration) was used to evaluate the size and het-

erogeneity of samples (Figure 5.6a). Baculovirus samples are character-

istically rod-shaped with an average size of approximately 250 nm. As

expected, the concentrated VLP sample contained both small and large

particles, which corresponds to VLPs or baculovirus and process impuri-

ties, respectively. The size of the VLPs is different from the one presented

previously (Figure 5.4e and 5.4f), which confirms the heterogeneity of the

system [59]. It is clear that there are unwanted larger particles at this

stage of the process that are not VLPs, or at least not complete ones,

because of the lack of HA spikes. This result provides an indication of
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Figure 5.6: Modified VLP detailed analysis. a. TEM images of the major impurity in
VLP production, baculovirus and a VLP sample before sorting revealing optimal VLP
and large undesirable particles. Scale bars indicate 100 nm in all images. Uncropped
and additional TEM images are available in Figure B.10. b. AFM images (error
and 3D images) of a baculovirus control sample, which shows rod-like morphology
of this virus. Samples from each DSP step were sorted into P1 and P2 as described
in Figure 5.3c. AFM images of P2 and P1 samples clearly show <200 nm spherical
particles, consistent with VLP and on the opposite side the >200 nm show rod-shaped,
non-spherical particles, more akin to baculovirus morphology as shown in the left AFM
panels. The longitudinal (fill line) and transversal (dashed lines) cross sections were
performed to better illustrate the spherical and rod shapes of each particle visualized
in each sample.
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what to expect from both sorting populations. The presence of VLP and

baculovirus was performed for baculovirus control, P1 and P2 sorting

populations by atomic force microscopy (AFM; Figure 5.6b). AFM im-

ages of the baculovirus control samples revealed the well-known rod-like

structure. Images of the P1 sorting population (<200 nm, VLP rich frac-

tion) revealed only the presence of spherical particles. However, the P2

sorting population (>200 nm, baculovirus rich fraction) presented only

large particles, which mainly consisted of baculovirus rod-shaped parti-

cles and other large process impurities. The baculovirus size in the P2

sorting population is similar to that calculated from the control sample.

This data confirms that our system is suitable as a FACS purification

step, and represents important progress to meet the increasing demand

for VLP-baculovirus separation and DSP quality control requirements.

5.5 Conclusions

Herein we report a straightforward two-step strategy to chemically func-

tionalize and label complex enveloped VLPs in vivo by using SPAAC.

Unlike previous reports, this methodology is designed for VLPs that are

able to display membrane proteins in their lipid bilayer and potentiate the

plethora of antigens that can be presented to cells in vaccine design. The

functionalization of these particles, in particular of membrane proteins,

is not straightforward with current methods. The technical challenges

and antigen choice limitations can be overcome by using the TagE-VLPs

strategy described here. This flexible and site-specific system does not

have an impact on biological function of the VLPs studied and can be

potentially used in several virus or VLPs. The reported strategy can be

used to functionalize these particles and expand their utility in exciting

applications, such as vaccine design, drug delivery or molecular-imaging

agents for diagnostics.

Importantly, the use of flow cytometry to analyze polydisperse lipid

suspensions that contain VLPs has greatly enhanced our knowledge on
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their heterogeneity. Techniques that characterize, discriminate, and ac-

curately separate each individual population with particle counting and

concentration determination are scarce for nano-sized particles. By ex-

tended use of FACS to characterize VLPs provides a better description

and understanding of purified VLPs produced under different methods

and systems, and enables proper identification/separation of contami-

nants and desired particles. This easy-to-use and fast methodology only

requires fluorescent beads for size calibration, which lends this technique

to be used as an at-line, high-throughput, non-disruptive method to mon-

itor all stages of VLP production in addition to current techniques, which

are time consuming and typically do not allow analysis of the VLPs in

their native form. Both fluorescent labelling and FACS methods de-

scribed in this manuscript are powerful tools for DSP monitoring and

optimization that allow the improvement of product recovery yields and

increase VLP purity levels.

It is worth to note that this method is not exclusively dependent on

two-dimension particle discrimination. The new bioorthogonal labelling

method here reported allows to engineer biologically functional VLPs, for

instance, by conjugation of synthetic epitopes that are non-fluorescent,

as the size signal enables one-dimension functionalized VLP:Baculovirus

separation. We have sorted VLPs from baculovirus using their distinc-

tive size and green colour discrimination (Figure B.9). Having both dif-

ferentiating parameters only increased the accuracy of the method but

restricting to one variable does not obviates its application and multi-

functionalize the Aha moiety with other bioactive molecules.

5.6 Experimental Section

5.6.1 Cell culture

High Five cell line (Trichoplusia ni derived BTI-Tn-5B1-4) was obtained

from Invitrogen (B855-02, Invitrogen Corporation, Paisley, UK). Cells

were routinely cultured in ESF921 protein-free medium (96-001-01, Ex-
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pression Systems, USA) in 125 mL Erlenmeyer flasks (430421, Corning,

USA) with a working volume of 10 mL. High Five cells were kept in a

humidified incubator at 27 ◦C and 110 rpm. Every 3-4 days, after reach-

ing a cell concentration of 2-3×106 cells mL−1 they were re-inoculated

at 3×105 cells mL−1. Cell concentration and viability were determined

by haemocytometer cell counts (Brandt, Wertheinmain, Germany) and

trypan blue exclusion dye method (Merck, Darmstadt, Germany). High

Five cells were chosen as producer cell line due to the higher productiv-

ity achieved for the proof-of-concept of the method described. However,

when considering late stage biopharmaceutical production, it is crucial

to evaluate the safety of this host cell line, since it was reported the

presence of latent alphanodavirus in the High Five genome [185, 186].

By itself, the virus may not constitute a burden, however if it assumes

the replicative form may contaminate final product preparations requir-

ing extra downstream processing efforts [187]. Nevertheless, it has been

described that there is no contamination present in Invitrogen master

High Five cells bank [188], the cell source used, and additionally there

are not any reports indicating the infection of human hosts by the al-

phanodavirus. In fact, both High Five and Sf9 cell lines have regulatory

acceptance for manufacturing of biologicals, such as Cervarix, GSK HPV

vaccine, or Flublock, Protein Sciences Influenza vaccine [185].

5.6.2 VLP production and metabolic labelling optimiza-

tion

For production studies, cells were cultured in 500 mL Erlenmeyer flasks

(431145, Corning, USA) with a working volume of 50 mL or in 2000 mL

Erlenmeyer flasks (431255, Corning, USA) with a working volume of 250

mL. High Five cells infection with recombinant baculovirus (kindly pro-

vided by Redbiotec AG) encoding the H3 subtype Influenza A/Johannes-

burg/33/94 and M1 A/California/06/2009 Influenza virus strains was

performed at a cell concentration at infection (CCI) of 2×106 cells mL−1,

with a multiplicity of infection (MOI) of 15 IP cell−1. After 12 hours
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post-infection (hpi) the culture medium was removed by centrifugation

at 200 g for 10 min and the cells were washed with D-PBS (14190-169,

Gibco, UK). ESF921 methionine deficient and protein-free medium (96-

200-01, Expression Systems, USA) was then added to the infected cells.

Noncanonical amino acid incorporation was tested at several hpi val-

ues (18, 24, 36 and 42 hpi) in order to identify the best condition for

VLP production. The culture medium was supplemented with 4 mM

Aha (AS-63669, AnaSpec, USA). To generate appropriate controls, this

study also carried out with 4 mM l-Methionine (M2893, Sigma-Aldrich,

Switzerland) at the same conditions.

5.6.3 Harvest and Clarification

High Five infected cells were harvested at 48 hpi by centrifugation at

200 g for 10 min (JA10 rotor, Avanti J25I centrifuge, Beckman Coulter,

USA). Harvest was set to 48 hpi, at which time productivity was high-

est, a parameter that was screened and optimized previously (data not

shown). The pellet was discarded and Benzonase (101654, Merck Milli-

pore, Germany) was added to the supernatant at a final concentration of

50 U mL−1 and incubated at room temperature (22 ◦C) for 15 min. The

clarification of supernatant was performed by dead-end filtration using

a Sartopore filter with 0.45 + 0.2 µm pore size (SART5445307H7-SS-A,

Sartorius, Germany). The clarification of VLP-containing bulk was per-

formed at a constant flow rate of 100 mL.min−1 using a Tandem 1081

Pump (Sartorius Stedim Biotech, Germany). The pressure was moni-

tored by an in-line pressure transducer (080-699PSX-5, SciLog, USA) to

control possible overpressure. The filtration module was previously con-

ditioned with three capsule volumes of buffer 50 mM HEPES, pH 7.4,

300 mM NaCl (working buffer).

5.6.4 Anion exchange chromatography

Sartobind Q MA 75 (93IEXQ42DB-12V, Sartorius, Germany) membrane

adsorber was used as a first purification step, operated in negative mode
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(flow through (FT)). The membrane adsorber was equilibrated with

50mM HEPES, pH 7.4, 400 mM of NaCl equilibration buffer. The

VLP clarified suspension was diluted with concentrated NaCl buffer to

match the conductivity of equilibration buffer. The flow rate was set to

4.76 MV min−1 and the VLPs were collected in the FT pool. A final

elution step was performed with 50 mM HEPES, pH 7.4, 1.0 M NaCl

elution buffer in order to guarantee that all particles were removed from

the membrane adsorber. VLP concentration along these fractions was

determined by hemagglutination assay and nanoparticle tracking anal-

ysis. All chromatographic steps were performed at room temperature

(RT) (22 ◦C).

5.6.5 Ultrafiltration and Diafiltration

Sartobind Q FT pool containing VLPs were concentrated using tangen-

tial flow filtration (TFF). Ultrafiltration experiments were conducted

using flat sheet Pellicon XL Ultrafiltration Module Biomax 300 kDa

0.005 m2 (PXB300C50, Merck Millipore, USA). The membrane module

was set up accordingly with the manufacturer’s instructions. The ultra-

filtration module was preconditioned with deionized water, to eliminate

trace preservatives and equilibrated with working buffer before the con-

centration step. To ensure sterility, the TFF system was sanitized with

0.1 M NaOH and incubated with this solution for 60 min. A Tandem 1081

Pump (Sartorius Stedim Biotech,Germany) was used on the feed side set

up to a fixed flow rate of 40 mL min−1. Transmembrane pressure (TMP)

was controlled by adjusting the retentate flow rate using a flow restric-

tion valve. The pressure was monitored at feed inlet, retentate outlet and

permeate outlet by in-line pressure transducers (080-699PSX-5, SciLog,

USA). The feed-retentate and the permeate volumes were monitored us-

ing a technical scale (TE4101, Sartorius Stedim Biotech, Germany). At

a proper feed volume, three diafiltration volumes with working buffer

were performed. After achieving the desired concentration factor, the

TFF loop was completely drained and the VLP retentate was recovered.
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Samples of the final retentate and permeate were taken to assess process

yield.

5.6.6 Size-exclusion chromatography

Concentrated VLPs were labelled with 20 µM of Alexa Fluor 488 (C-

10405, Life Technologies, USA) for 60 min, according to manufacturers’

instructions and prior to the polishing step. Size exclusion chromatogra-

phy was performed using a HiLoad 16/600 Superdex 200 pg column (GE

Healthcare, USA) coupled to an ÄKTA explorer 10 liquid chromatogra-

phy system (GE Healthcare, U.K.) equipped with UV and conductivity-

pH monitors. System operation and data gathering and analysis was

done using the UNICORN 5.0 software (GE Healthcare, U.K.).

The column was loaded with 5 mL of concentrated VLPs, using a

5 mL capillary loop, at a constant flow rate of 0.5 mL min−1. Working

buffer was used as eluent and the eluted fractions were collected for fur-

ther analyses. Elution of Influenza VLPs was monitored by detecting the

absorption of the eluted solution at 234 and 494 nm (maximum absorp-

tion wavelength of Alexa Fluor 488). Absorption at 234 reports roughly,

all biomolecules that pass through the detector either by absorption or

light scattering (DNA, Proteins, lipids). The detection of the absorption

at 494 is specific for the fluorescent VLP that incorporated the Alexa-

488 probe. This dual detection allows better discrimination between the

particles of interest VLP and all other contaminants such as baculovirus.

5.6.7 Hemagglutination assay

Hemagglutinin protein was quantified using a hemagglutination assay.

The assay was carried out based on the protocol described elsewhere [189]

with some modifications. Briefly, 25 µL of D-PBS (14190-169, Gibco,

UK) were added in each well of a clear, V bottom 96-well microtiter

plate (611V96, Sterilin, USA). In the first well (upper left), 25 µL of

each sample were added and then two fold serial dilutions (25 µL of

sample in an equal volume of PBS) were performed. The excess 25 µL
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from the final dilution were discarded. After this step, 25 µL of 1%

chicken erythrocytes (LOHMANN TIERZUCHT GmbH, Germany) was

added to each well of each serial dilution series. The plate was incubated

at 4 ◦C for 30 min without disturbance. As a positive control, Influenza

vaccine (Influvac, Abbott, USA) was used. The level of hemagglutination

was inspected visually for all the wells and the highest dilution capable

of agglutinating chicken erythrocytes was determined.

We have plotted the hemagglutination assay according to the per-

centage (%) of HA recovery in each analysed sample. This percentage is

determined according to equation 5.1:

%HA recovery =
[HA]DSP step × VDSP step

[HA]initial step × Vinitial step
× 100 (5.1)

5.6.8 Total Protein Quantification

Total protein was quantified using the BCA Protein Assay Kit (23225,

Thermo Fisher Scientific, USA) according to the manufacture’s protocol.

Bovine serum albumin (BSA) was used for the calibration curve (23209,

Thermo Fisher Scientific, USA). In order to avoid matrix interference,

the samples were diluted between 2-256 fold. The assay took place in

a clear 96-well microplate (260895, Nunc,USA) and the absorbance at

562 nm was measured on Infinite 200 PRO NanoQuant (Tecan, Switzer-

land) microplate multimode reader.

5.6.9 Total dsDNA Quantification

Total DNA was quantified using the fluorescent-based Quant-iT Picogreen

dsDNA assay kit (P7589, InvitrogenTM, UK) according to the manufac-

turer’s instructions. In order to avoid matrix interference, the samples

were diluted between 2-256 fold with the provided reaction buffer. The

assay took place in a black 96-well microplate, flat transparent (3603,

Corning, USA) and the fluorescence was measured on Infinite 200 PRO

NanoQuant (Tecan, Switzerland) microplate multimode reader.
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5.6.10 Nanoparticle tracking analysis

Total virus-like particles concentration and size distribution were mea-

sured using the NanoSight NS500 (Nanosight Ltd, UK). The samples

were diluted in D-PBS (14190-169, Gibco, UK) so that virus-like parti-

cles concentration would be in the 108-109 particles mL−1 - the instru-

ment’s linear range. All measurements were performed at 22 ◦C. Sample

videos were analysed with the Nanoparticle Tracking Analysis (NTA) 2.3

analytical software - release version build 0025. Capture settings (shut-

ter and gain) were adjusted manually. For each sample 60 s videos were

acquired and particles between 70 and 130 nm were considered.

5.6.11 Confocal Microscopy

Using Life Technologies (Carlsbad, CA, USA) TetraspeckTM beads one

can use as visual reference of successful VLP labelling and detection.

Due to its four-colour fluorescence using green (which also detects la-

belled VLP) and orange (specific for beads) one can perform quantita-

tive analysis on the detected VLP. An inverted confocal point-scanning

Zeiss LSM 710 microscope equipped with 405, 458, 488, 561 and 633 nm

lasers was used. Due to the diffraction limit associated with microscopy

techniques, no particle below that threshold can be visualized with high

resolution. Thus it would appear the point-spread function (PSF) of the

instrument. VLP are sub-diffraction limit particles, thus their signal in

the microscope would be the PSF of the microscope (approx. 240 nm).

By using 500 nm size fluorescent beads as a control, together with their

dual-fluorescence emission spectra, one can perform an accurate detec-

tion of sub-diffraction limit particles - VLP. This methodology was used

to evaluate the best time for amino acid (Aha or Met) addition after bac-

ulovirus infection: 12, 24, 36 and 48 hpi were evaluated. 100-fold dilu-

tions of each condition supernatant were deposited into IbiTreat 8 µ-well

slides (Ibidi, Martinsried, Germany) and allowed to attach for 1 h. Each

preparation was then labelled with 20 µM of Alexa Fluor 488 (C-10405,
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Life Technologies, USA) for 30 min, according to manufacturers’ instruc-

tions. The sample was washed 3 times with PBS and 500-fold dilution of

500 nm fluorescent beads were added to each sample for 30 min. Medium

was changed for fresh PBS. In all steps, the PBS used for dilution prepa-

ration, wash steps and sample acquisition, was filtered with a 0.1 µM

nylon filter. Control VLP (methionine amino acid added during VLP

production, M2893, Sigma-Aldrich, Switzerland), modified VLP (with

the Click-it noncanonical amino acid, Aha, AS-63669, AnaSpec, USA),

and 500 nm beads were imaged using a 63×-oil objective and green and

orange channels were acquired. From each independent experiment at

least 3 images at different viewfields in the µ-slide were taken for all

samples. ImageJ software was used to perform merge images as well as

to perform particle count/detection and size analysis in each prepara-

tion from which the full width at half maximum was determined (reflects

particle size). From the number of particles detected we estimated the

concentration of fluorescent VLP [VLPfluo] in each DSP step and SEC

fraction according to the relationship in equation 5.2:

[VLPfluo] = N × (acoverslip/aimage)× dil ×
1

V
(5.2)

where N is the number of fluorescent VLP detected in the microscopy

image, acoverslip and aimage are, respectively the area of the microscope

coverslip (9.4×10.7 mm for each µ-well) and the area of the acquired

image (44.5×44.5 µm), dil is the dilution factor of the added VLP (100-

fold in our case) and V is the sample volume.

5.6.12 Flow Cytometry

Detection and characterization of labeled VLP and size discrimination

between VLP (spheres of 100-200 nm) and Baculovirus (rods of 200-

400 nm) with flow cytometry were performed using a BD LSR Fortessa

(BD Biosciences, San Jose, CA, USA). It is equipped with 3 lasers (violet,

405 nm; blue, 488-nm; red, 640 nm), forward and side scatter detectors
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and 9 fluorescence emission detectors (530/30 - green channel was used

for VLP-A488 and 100, 200 and 500 nm Tetraspeck fluorescent beads).

Side scatter detector was used to define the detection threshold. Using

100, 200 and 500 nm beads one can build a particle size ruler in flow

cytometry with the scatter signal [178] which can then be used to evaluate

the VLP samples size distribution. The refractive index (RI) depends on

the material of the scattered solution, thus direct correlation of bead

size and VLP can only be achieved if each sample has approximately

the same RI. The RI for PBS, UF Retentate, SEC fractions (100-fold

dilution), Baculovirus (100-fold dilution), 100 nm (2000-fold dilution),

200 nm (1000-fold dilution) and 500 nm beads (500-fold dilution) are

respectively, 1.334, 1.335, 1.335, 1.336, 1.334, 1.334, and 1.334, measured

using a digital refractometer (13950000, AR 200 Digital Refractometer,

Leica, USA). The side-scatter–alexa-488 correlograms were acquired for

each bead and VLP sample, at the dilutions previously stated, to detect

baculovirus presence and evaluate further particle separation by sorting.

In all steps, the PBS used for dilution preparation, wash steps and sample

acquisition, was filtered with a 0.1 µM nylon filter.

5.6.13 VLP sorting

Sorting of the SEC F4 sample from the downstream processing was per-

formed to separate VLPs from the baculovirus-rich fraction (> 200 nm).

Fluorescence activated sorting was performed in a BD FACS Aria III

equipped with 3 lasers (blue, 488 nm; yellow-green, 561 nm; and red,

633 nm). The 200 nm fluorescent beads were used to define two sorting

populations: P2 corresponding to the > 200 particles detected, which

is a baculovirus-rich population and P1 which is the < 200 nm parti-

cles that, in contrast to P2 is VLP-rich. Each population was acquired

in vials filled with PBS and the presence for VLP and baculovirus was

performed by atomic force microscopy.
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5.6.14 Atomic force microscopy

AFM images of VLPs and baculovirus were acquired using a JPK Nano

Wizard II (Berlin, Germany) mounted on a Zeiss Axiovert 200 inverted

microscope (Göttingen, Germany). The AFM head is equipped with

a 15 µm z-range linearized piezoelectric scanner and an infrared laser.

All samples were prepared in freshly cleaved mica. For scanning in liq-

uid environment the mica was pretreated with poly-d-lysine for 20 min

and rinsed with miliQ water. A 50 µL drop of each sample was added

to the mica and rinsed with PBS buffer at least 4 times. The sample

was then allowed to air-dry or maintained in buffer for subsequent imag-

ing. Scanning was performed using uncoated silicon ACL cantilevers

from Applied NanoStructure for air-dried samples and uncoated silicon

cantilevers HQ:CSC38–No Al from MikroMasch for samples in liquid

medium. ACL cantilevers had typical resonance frequencies between 145

and 230 kHz and an average spring constant of 45 N/m. HQ:CSC38

cantilevers had typical resonance frequencies between 5 and 17 kHz and

an average spring constant of 0.03 N/m. All measurements were carried

out in contact mode. All images were obtained with the same or similar

AFM parameters (setpoint, gain and scan rate) values. Setpoint and

gain were continuously adjusted during scanning to maintain the lowest

possible value and reduce sample damage.

5.6.15 Transmission Electron Microscopy

To analyze the presence, integrity and morphology (shape, size) of the

VLPs, electron microscopy was performed as follows: a drop (5 µl) of

sample was adsorbed onto a formvar coated 150 mesh copper grid from

Veco (Science Services, Germany) for 2 min. The grid was washed 5 times

with sterile filtered dH2O. Then it was soaked in 2% uranyl acetate for 2

minutes and dried in air at room temperature (22 ◦C). The samples were

examined with a Hitachi H-7650 120 Kv electron microscope (Hitachi

High-Technologies Corporation, Japan).
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5.6.16 PCR

Baculovirus viral DNA was extracted and purified using the High Pure

Viral Nucleic Acid Kit (Roche Diagnostics, Germany) using the manu-

facturer’s instructions. The number of genome containing particles were

monitored by real time quantitative PCR (q-PCR) following the protocol

described elsewhere [190].

5.6.17 Western Blot analysis

Western blot analysis was performed for control and modified Influenza

VLPs, with both precipitated and not precipitated samples. As a con-

trol M1 protein from Influenza A H1N1 strain (SinoBiological) and H3

Influenza VLP (produced and purified at iBET) were used. Protein pre-

cipitation was performed with 20% (v/v) ethanol overnight. Loading

buffer (LDS sample buffer and reducing agent (Invitrogen)) was added

and protein samples were incubated at 70 ◦C for 10 min. Influenza VLPs

were separated in a 4-12% (w/v) polyacrylamide NuPAGE gradient pre-

cast gel (Invitrogen). Samples were resolved for 60 min at a constant

voltage of 200 V and transferred into a PVDF membrane using iBlot Dry

Blotting System (Invitrogen). Membranes were blocked with 5% (w/v)

of dry milk (Merck Millipore) in Tris-buffered saline with 0.1% (w/v) of

Tween 20 (T-TBS buffer) for 1 h. After blocking, membranes were in-

cubated overnight with the respective primary antibody: Anti-Influenza

A Virus M1 goat antibody (dilution 1:2000) (Abcam ab20910) or a 1:1

mixture of Anti-A–Johannesburg/33/94 sheep serum (dilution 1:1000)

and anti-A–Nanchang/933/95 (H3N2) HA sheep serum (dilution 1:1000)

(both provided by NIBSC). Western blot detection was performed with

the corresponding anti-goat or anti-sheep secondary antibody (dilution

1:2000, 1 h incubation) conjugated to Horseradish peroxidase and devel-

oped using the ECL Detection Reagent protocol (GE Healthcare).
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5.6.18 Fluorescence imaging

Control and labelled VLP samples were incubated with 20 µM of Click-

iT Alexa Fluor 488 fluorescent probe for 30 min prior to SDS-PAGE gel

running. FLA-5100 fluorescent imaging system (FLA-5100 fluorescent

imaging system, Fujifilm Life Sciences, USA) was used to reveal the gel

and analyse the presence of fluorescent bands. The 473 nm laser was

used and images were acquired with 25 µ of resolution and at a voltage

of 600 V.

5.6.19 Mass Spectrometry

HA and M1 protein bands, detected by western blot, and fluorescent

bands were destained, reduced, alkylated and digested with trypsin (Pro-

mega, 6.7 ng/µL) overnight at 37 ◦C. The tryptic peptides were desalted

using POROS R2 (Applied Biosystems) and analysed by NanoLC-MS

using TripleTOF 6600 (ABSciex). External calibration was performed

using β-galactosidase digest (ABSciex). The 40 most intense precur-

sor ions from the MS spectra were selected for MS/MS analysis. Data

were acquired with the Analyst software TF 1.7 (ABSciex). The raw

MS and MS/MS data were analysed using Protein Pilot Software ver-

sion 5.0 (ABSciex) for protein identification. The search was performed

against the HA and M1 protein sequences and against Swissprot Viruses

database plus the protein sequences of Influenza VLP proteins’ HA and

M1. Protein identification was considered with an unused score greater

than 1.3 (95% confidence). In order to detect modified peptides, data

were also analysed using the BioPharmaView software version 1.0 (AB-

Sciex) considering a Met-Aha modification (mass shift of -4.986 Da) with

m/z tolerance of ±10 ppm.
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6.1 Context

As described in the preface, this PhD thesis was developed under the

scope of the European Project EDUFLUVAC. As a key partner, iBET

was responsible for the production and purification of more than thirty

different influenza VLPs, from different groups, strains and some of

them multivalent. With this variability, the downstream process ap-

plied should be as much as possible independent on the product charge,

meaning strain-independent. The first issue we faced on the development

of this process was to have a clarification step capable of handling with

the variability on the upstream, not only in terms of strain differences

but also in what it implies on cell viability, product concentration and

process impurities obtained for each one of them. This chapter reports

the study performed to implement a universal clarification strategy for

influenza VLPs. We were able to obtain a scalable train that decreases

the turbidity to values below 10 NTU without compromising product

recovery yield.

I was involved in the conception of the study, on the design and

upstream production of VLPs. I was the main responsible for the clar-

ifications studies, analytics for quality control as well as writing of the

manuscript.

This work was submitted to an international peer reviewed journal

and is currently under revision.
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6.2 Abstract

Vaccination remains the most effective available tool for preventing in-

fluenza infection, which affects millions of people annually. The virus

is constantly mutating, requiring annual immunization. Vaccine pro-

duction should be achieved in a very short period to cope with global

requirements for seasonal treatment. Moreover, pandemic outbreaks re-

quire quick production of large amounts of vaccines. Virus-like particles

(VLP) have become a promising alternative for influenza vaccines due to

their versatility, immunogenicity and safety profile. However, the diver-

sity of virus surface epitopes contributes to a variability in downstream

purification, that could ultimately affect manufacturability and necessi-

tate yearly redevelopment of processes. Therefore, there is a demand for

development of better and faster influenza vaccine bioprocesses. Clarifi-

cation is a critical step, not well characterized for most of the purification

processes, but with a strong impact on the downstream performance.

For that purpose, we have undertaken an effort to develop a clarification

platform for the manufacturing of several influenza strains, mono and

multivalent, at different production scales (1–11 L). Both normal and

tangential flow filtration approaches were evaluated in terms of product

recovery and removal of impurities. The selected clarification train re-

sults in essentially 100% product recovery with a turbidity value below

10 NTU, as well as high impurity clearance. Most importantly, these

results are independent of strain, cell viability and turbidity at harvest

time. The developed clarification framework may be applied to different

influenza strains, contributing to a speed-up of vaccine manufacturing.
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6.3 Introduction

Due to antigenic shift and drift, the influenza virus still affects 5 million

people worldwide leading to 250k-500k deaths annually [191]. Limita-

tions in production processing time and capacity are the main bottle-

necks preventing global immunization. Furthermore, seasonal vaccines

are not suitable for pandemic outbreaks, which require fast availability

of doses to cope with global demand [39]. Therefore, new manufacturing

strategies are being evaluated to enable a fast response and to improve

product yield and consistency. New options are moving away from egg-

based platforms to new expression systems such as mammalian, insect

or plant cells, bacteria or yeast [14].

Virus-like particles (VLP) have been recently used for vaccine de-

velopment given their strong immunogenicity as they mimic the virus

from which they were derived. Furthermore, due to their lack of genetic

material they are not infectious nor replicative. VLP-based vaccines are

already commercially available for human papilloma virus, hepatitis B

and E viruses and VLP-based vaccine candidates are being produced, for

both seasonal and pandemic Influenza virus [14, 39–43].

Influenza VLP can be expressed in different cell systems, such as

mammalian, plant or insect cell cultures, implying different purification

strategies [96]. Advantages for the use of insect cell-baculovirus expres-

sion systems include short production times, high productivities and

a straightforward scale-up, maintaining efficiency [53]. There are also

drawbacks related to product stability and baculovirus removal due to

size and charge similarity with VLPs [54, 61]. Initial purification strate-

gies relying on centrifugation and ultracentrifugation using CsCl, sucrose

or iodixanol gradients [14, 43, 62] are difficult to scale up, expensive and

result in low recovery yield. Improvements in purification methodologies

are clearly needed.

Clarification, the first stage in the purification of VLP-based vaccines,

connects upstream and downstream processes, affecting yield, product
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Figure 6.1: Influenza VLP bioprocess. Schematic representation of insect-cell pro-
duced influenza VLP bioprocessing workflow. Description of upstream, midstream
and downstream steps.

consistency and reproducibility (Figure 6.1) [43]. An efficient clarifica-

tion step should deliver a low turbidity solution with minimal impact

on product recovery, while also removing process and product-related

impurities. Clarification can be conceptually divided into primary and

secondary steps, according to their roles (Figure 6.1). Primary clarifi-

cation is used for the removal of large particulate matter, including in-

tact and non-viable cells, whereas secondary clarification has been used

for the removal of colloidal matter, suspended species, and process- or

product-related insoluble and soluble impurities including large aggre-

gates [43, 61, 64]. On top of this, the removal of host cell proteins and

DNA may in some cases, be accomplished by depth filtration.

Improvement of upstream productivity has led to cultures with higher

titters and consequently higher cell densities and impurity content, re-

sulting in a burden on clarification processes and subsequent purification

steps [68]. To address these challenges, conventional methods are being

replaced by new membranes and filtration processes technologies. Both

tangential flow microfiltration and dead-end depth filtration have been
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reported for clarification of cell feedstocks [180, 192–194]. These tech-

nologies offer process flexibility, rapid product changeover, possibility of

single-use and capital savings [61, 71].

The aim of the present work was to develop a platform to speed up

VLP vaccine production and purification, addressing vaccine availability.

Towards this goal, we established a clarification train for influenza VLPs

that can replace traditional techniques, such as centrifugation. This was

accomplished through the use of a rational approach for each clarification

stage. Because of the characteristics and properties of the cell culture

process used in VLP vaccine production, a preferred clarification step

should be able to cope with upstream variability and diversity (annual

vaccine update using different strains and pandemics), high DNA and

protein content and, if possible, remove baculovirus [61]. To select a

suitable clarification train, several influenza strains, mono and multiva-

lent VLP, at different scales were evaluated.

6.4 Materials and Methods

6.4.1 Influenza VLP production

Influenza VLPs evaluated in the screening experiments were produced as

described by Carvalho et al [55] or by Sequeira et al [53] in a disposable

stirred-tank bioreactor Mobius 3L (Cat# CR0003L200, EMD Millipore,

Billerica, MA) (Figure 6.1). Cells were cultured at 27 ◦C, pO2 was main-

tained above 30% adding O2 in the gas mixture at an aeration rate of

20 mL min−1 (0.01 vvm and agitation of 170 rpm). For 10 L scale up ex-

periments a disposable 10 L Wave bioreactor (GE Healthcare, Uppsala,

Sweden) was used. The pO2 was set to 30% of air saturation and con-

trolled by varying the agitation rate and sequentially the percentage of

N2 and O2 in the gas mixture. The gas flow rate was set to 0.03 vvm. Cell

concentration and viability were determined by using haemocytometer

cell counts (Brandt, Wertheinmain, Germany) and trypan blue exclusion

dye method (Merck, Darmstadt, Germany). High Five (Hi5) cells were
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infected with recombinant baculovirus (kindly provided by Redbiotec

AG) encoding different mono and pentavalent strains from subtype H1,

H3, and B with M1 core protein. Infection was performed at a cell

concentration at infection (CCI) of 1×106 or 2×106 cells mL−1, with a

multiplicity of infection (MOI) of 0.01 or 1 IP cell−1, respectively. Addi-

tion of antiproteases was performed 12 hours before harvest (cOmplete,

EDTA-free protease inhibitor cocktail tables, Cat #05056489001, Roche

Diagnostics, IN, USA).

6.4.2 Harvest and DNA digestion

Hi5 infected cells were harvested at a viability of 50-60%, corresponding

to approximately 72 hours post infection (hpi) (CCI = 1×106) or 48 hpi

(CCI = 2×106). Depending on the case, Benzonase (101654, Merck

Millipore, Germany) was added to the bulk at a final concentration of

50 U mL−1, either 12 hours before harvest, 38 hours before harvest or

15-30 min at room temperature (RT) (22 ◦C) after harvest.

6.4.3 Clarification

The primary clarification of VLP-containing bulk was carried out by

dead-end filtration or tangential flow filtration using the devices de-

scribed in Table 6.1.



T
a
b
le

6
.1

:
S
p

ec
ifi

ca
ti

o
n
s

o
f

th
e

cl
a
ri

fi
ca

ti
o
n

d
ev

ic
es

u
se

d
in

th
e

sc
re

en
in

g
ex

p
er

im
en

ts
.

N
F

F
:

N
o
rm

a
l

F
lo

w
F

il
tr

a
ti

o
n
;

T
F

F
:

T
a
n
g
en

ti
a
l

F
lo

w
F

il
tr

a
ti

o
n
;

C
L

:
ce

ll
u
lo

se
;

P
P

:
p

o
ly

p
ro

p
y
le

n
e;

P
V

D
F

:
p

o
ly

v
in

y
li
d
en

e
F

lu
o
ri

d
e;

B
G

F
:

b
o
ro

si
li
ca

te
g
la

ss
fi
b

er
;

M
C

E
:

m
ix

ed
ce

ll
u
lo

se
es

te
rs

;
P

E
S
:

h
y
d
ro

p
h
il
ic

p
o
ly

et
h
er

su
lf

o
n
e.

D
ev

ic
e

T
a
rg

et
S
te

p
C

h
em

is
tr

y
M

a
n
u
fa

ct
u
re

r
re

co
m

m
en

d
a
ti

o
n
s

S
cr

ee
n
in

g
su

rf
a
ce

a
re

a
(c

m
2
)

N
o
m

in
a
l

p
o
re

si
ze

(µ
m

)

1
.1

M
il
li
st

a
k
+

D
0
H

C
N

F
F

P
ri

m
a
ry

cl
a
ri

fi
ca

ti
o
n

C
L

fi
b

er
s

w
it

h
in

o
rg

a
n
ic

fi
lt

er
a
id

P
ri

m
a
ry

cl
a
ri

fi
ca

ti
o
n

d
ir

ec
tl

y
o
u
t

o
f

th
e

b
io

re
a
ct

o
r

2
3

1
0

-
0
.5

5

1
.2

M
il
li
st

a
k
+

C
E

3
0

N
F

F
C

L
C

la
ri

fi
ca

ti
o
n

o
f

se
ru

m
,

p
la

sm
a
,

va
cc

in
es

,
ce

ll
cu

lt
u
re

o
r

o
th

er
fl
u
id

s
2
3

6
-

3

1
.3

P
o
ly

g
a
rd

C
N

5
.0
µ

m
N

F
F

P
P

L
iq

u
id

a
n
d

g
a
s

fi
lt

ra
ti

o
n

a
p
p
li
ca

ti
o
n
s,

fo
r

fi
n
in

g
o
p

er
a
ti

o
n
s

a
n
d

b
io

b
u
rd

en
re

d
u
ct

io
n

1
7
.7

5

1
.4

D
u
ra

p
o
re

0
.6

5
µ

m
T

F
F

P
V

D
F

H
a
rv

es
t,

w
a
sh

in
g

a
n
d

cl
a
ri

fi
ca

ti
o
n

o
f

ce
ll

cu
lt

u
re

s,
ly

sa
te

s
a
n
d

fe
rm

en
ta

ti
o
n

b
ro

th
s

5
0

0
.6

5

2
.1

P
o
ly

se
p

II
1
/
1
.2
µ

m
N

F
F

S
ec

o
n
d
a
ry

cl
a
ri

fi
ca

ti
o
n

B
G

F
a
n
d

M
C

E
C

la
ri

fi
ca

ti
o
n

a
n
d

P
re

fi
lt

ra
ti

o
n

1
7
.7

1
/
1
.2

2
.2

M
il
li
st

a
k
+

C
E

5
0

N
F

F
C

L
C

la
ri

fi
ca

ti
o
n

o
f

se
ru

m
,

p
la

sm
a
,

va
cc

in
es

,
ce

ll
cu

lt
u
re

o
r

o
th

er
fl
u
id

s
2
3

1
-

0
.4

2
.3

P
o
ly

g
a
rd

C
N

0
.3
µ

m
N

F
F

P
P

L
iq

u
id

a
n
d

g
a
s

fi
lt

ra
ti

o
n

a
p
p
li
ca

ti
o
n
s,

fo
r

fi
n
in

g
o
p

er
a
ti

o
n
s

a
n
d

b
io

b
u
rd

en
re

d
u
ct

io
n

1
7
.7

0
.3

2
.4

D
u
ra

p
o
re

0
.4

5
µ

m
T

F
F

P
V

D
F

H
a
rv

es
t,

w
a
sh

in
g

a
n
d

cl
a
ri

fi
ca

ti
o
n

o
f

ce
ll

cu
lt

u
re

s,
ly

sa
te

s
a
n
d

fe
rm

en
ta

ti
o
n

b
ro

th
s

5
0

0
.4

5

2
.5

P
o
ly

se
p

II
1
/
0
.5
µ

m
N

F
F

B
G

F
a
n
d

M
C

E
C

la
ri

fi
ca

ti
o
n

a
n
d

P
re

fi
lt

ra
ti

o
n

1
7
.7

1
.0

/
0
.5

2
.6

M
ii
li
g
a
rd

1
.2

/
0
.5
µ

m
N

F
F

M
C

E
C

la
ri

fi
ca

ti
o
n

a
n
d

P
re

fi
lt

ra
ti

o
n

1
7
.7

1
.2

/
0
.5

2
.7

P
o
ly

se
p

II
2
/
1
.2
µ

m
N

F
F

B
G

F
a
n
d

M
C

E
C

la
ri

fi
ca

ti
o
n

a
n
d

P
re

fi
lt

ra
ti

o
n

1
7
.7

2
/
1
.2

2
.8

M
il
li
p

o
re

E
x
p
re

ss
S
H

C
0
.5

/
0
.2

N
F

F
P

E
S

C
el

l
h
a
rv

es
t

(p
o
st

cl
a
ri

fi
ca

ti
o
n
)

1
4
0

0
.5

/
0
.2



110 CHAPTER 6. Clarification of Influenza VPLs

All filtration modules were previously flushed and conditioned ac-

cording to manufacturer’s recommendation with WFI and working buffer

(50 mM HEPES, pH 7.4, and 300 mM NaCl), respectively. Both primary

and secondary filters were evaluated at a constant flux. NFF filters

and MF-TFF cassettes were operated at a flux and at a cross flow flux

of 200 LMH, respectively and according to manufacturer’s instructions.

Load capacity (L m−2) of primary and secondary filters in the screening

experiments was evaluated until feed pressure reached a maximum of 1

bar. After selection of the primary clarification filter, clarified bulk was

used as secondary clarification feed. The turbidity of the clarification

samples was measured using a Turbidimeter (2100 Qis Portable HACH,

Colorado, USA).

6.4.4 Nanoparticle tracking analysis

The presence and size distribution of virus-like particles and other re-

maining bulk particles was measured using the NanoSight NS500 (Nano-

sight Ltd, UK). Samples were diluted in D-PBS (14190-169, Gibco, UK)

to a particle concentration between 108-109 particles mL−1 - the instru-

ment’s linear range. All measurements were performed at 22 ◦C. Sample

videos were analysed with the Nanoparticle Tracking Analysis (NTA) 2.3

Analytical software - release version build 0025. Capture settings (shut-

ter and gain) were adjusted manually for each analysis. For each sample

60-seconds videos were acquired and particles between 70 and 150 nm

were considered.

6.4.5 Hemagglutination assay

Hemagglutinin protein detection and quantification was performed by

hemagglutination assay. The assay was carried out according to the

procedure previously described [55]. Influenza vaccine Influvac (Abbott,

USA) was used as positive control.
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6.4.6 Total Protein Quantification

BCA Protein Assay Kit (23225, Thermo Fisher Scientific) was used,

according to the manufacturer’s instructions, to quantify total protein.

Bovine serum albumin was used for the calibration curve (23209, Thermo

Fisher Scientific). Samples before clarification were previously diluted

8-fold to avoid interferences with the kit. After clarification, samples

were diluted between 2- and 256-fold as recommended. A 96 well clear

microplate (260895, Nunc) was used to perform the assay and the ab-

sorbance at 562 nm was measured on Infinite 200 PRO NanoQuant

(Tecan) microplate multimode reader.

6.4.7 Total dsDNA Quantification

Total dsDNA was quantified using the Quant-iT Picogreen dsDNA as-

say kit (P7589, Invitrogen) according to the manufacturer’s protocol.

Samples before clarification were previously diluted 8-fold to avoid inter-

ferences with the kit. After clarification samples were diluted between 2-

and 256-fold as recommended. A 96 well black microplate, flat transpar-

ent (3603, Corning) was used to perform the assay and the fluorescence

was measured on Infinite 200 PRO NanoQuant (Tecan) microplate mul-

timode reader.

6.4.8 Baculovirus Quantification

Baculovirus DNA was extracted and purified using the High Pure Viral

Nucleic Acid Kit (Roche Diagnostics) following manufacturer’s instruc-

tions. The number of genome copies was quantified by real time quan-

titative PCR (q-PCR) following the protocol described elsewhere [190]

with some modifications. Briefly, DNA samples were diluted 1:100 in wa-

ter PCR grade (03315932001, Roche Diagnostics) and diluted again 1:4

with master mix. Master mix is prepared by diluting 1:2 the Light Cycler

480 SYBR Green I Master (04707516001, Roche Diagnostics, Germany)

and 0,5 µM of each primer. q-PCR reaction took place in capillaries
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or in a 96-well white plate (04729692001, Roche Diagnostics) using a

LightCycler 1.5 or 480 Instrument II (Roche Molecular Systems, Inc.),

respectively.

6.5 Results and Discussion

6.5.1 Screening of primary and secondary filters for the

clarification of Influenza VLPs

The first task in purification after bioreactor harvesting is to perform

a solid/liquid separation of the product of interest from the suspended

solids. In the present work, this was accomplished by a series of filters,

which will play different roles. The main goal of the primary clarifica-

tion step is to remove cells, cell debris, and other particulate impurities.

Therefore, the optimal filter should provide efficient turbidity reduction

combined with maximum load capacity and high product recovery. Fig-

ure 6.2A reports the filter load capacity (L m−2) and the final turbidity

(NTU) obtained for this stage. At this stage of the purification pro-

cess it is difficult to evaluate the correct amount of HA due to its low

concentration and the presence of several impurities that interfere with

quantification. All evaluated devices resulted in complete HA recov-

ery (within the considerable experimental error of the assay), therefore

the selection criteria, was based on load capacity and turbidity. Filters

1.1 (Normal Flow Filtration) and 1.4 (Tangential Flow Filtration) pre-

sented the lowest turbidity values (20 and 26 NTU, respectively) with

an associated load of 150 and 170 L m−2, thus being suitable for the

primary clarification step. It is noteworthy that the capacity comparison

for NFF and TFF filters should not be done in a straightforward man-

ner. Although TFF will enable higher throughput and can be reused,

its operation is more complex, requiring the use of different skids. As

reported in Table 6.1, Filter 1.1 is designed for primary clarification, di-

rectly out of the bioreactor. The main differences between Filter 1.1 and

1.2 and 1.3 are the materials of construction of the filter media, the num-
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Figure 6.2: Performance screening of clarification filters. The specifications of each
filter device are described on Table 6.1. (A) Load (L m−2) (orange bars) and turbidity
(NTU) (grey bars) values for primary clarification filters; (B) Load (L m−2) (orange
bars) and turbidity (NTU) (grey bars) values for secondary clarification filters. ?The
reported load does not correspond to the maximum capacity of the filter; (C) Product
(HA) recovery (%) (blue bars) and impurity removal (%) after secondary clarification.
Red bars refer to baculovirus removal, green bars refer to total protein removal and
grey bars to DNA removal.
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ber of layers, and the range of pore sizes. Filter 1.1 is a multilayer depth

filter that incorporates an open, cellulose-based, first filtration layer fol-

lowed by a tighter, diatomaceous-earth containing, second filtration layer.

The combination of the open cellulose-containing layer and the tighter

diatomaceous-earth containing layer allows the filter to remove more tur-

bidity while still allowing a high filter capacity. Particles to be removed

during the clarification step are attracted to the filter material and are

adsorbed by a combination of electrostatic and hydrophobic interactions.

This adsorption is not as efficient for filter 1.2, which contains only a sin-

gle layer of cellulose filter media, or for filter 1.3, which is composed of a

layer of polypropylene filter media. Moreover, both filters 1.2 and 1.3 are

less retentive than filter 1.1, as shown by the higher filtrate pool turbidity

values for these filters in Figure 6.2A. Filter 1.4 has a pore size of 0.65 µm

which is much lower than Filter 1.1, 1.2 and 1.3. Nevertheless, it also

showed a good performance which is related to the mode of operation

(TFF). As mentioned previously, nonspecific adsorption for a TFF filter

where the fouling layer is cleaned with cross flow cannot be directly com-

pared to dead end filtration of filters with completely different material.

The evaluated NFF (Filter 1.1) and TFF microfiltration devices (Filter

1.4) proved to be successful for the clarification of influenza VLPs. The

selected filter was Filter 1.1. Filter 1.4 was not selected since the opera-

tion of a TFF-based filtration system presents some disadvantages when

compared to NFF-based filtration methods. TFF membrane modules are

normally much more expensive and their use requires specialized pump-

ing equipment, and an increased set-up complexity and longer processing

time.

The inlet bulk material for the secondary clarification stage contains

colloidal material and cellular debris that were not retained in the pre-

ceding primary clarification stage. In addition to the filter capacity and

retention requirements described above, the filters used at this stage

should also provide an increased impurity clearance, reducing DNA and

total protein content, as well as the presence of baculovirus. The goal
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of this clarification step is to obtain a final turbidity below 10 NTU,

so that the clarified material can be sterile filtered [61, 67]. Moreover,

the sterilizing grade filter offers a convenient process holding point. Fig-

ures 6.2B and 6.2C depict the screening results for this stage. Filters 2.1,

2.5 and 2.7 have the same membrane chemistry: borosilicate glass fiber

and mixed cellulose esters (Table 6.1). These filters combine the dirt-

holding capacity similar to a depth filter with a high retention efficiency

of a membrane filter. HA recovery is around 100% for all three filters,

suggesting that these materials do not adsorb the product of interest.

However, the pore sizes of these depth filters vary, strongly impacting

the profile of impurity removal (Figure 6.2C). Clearance of total protein

and DNA from filters 2.5 and 2.7, when compared to filter 2.1, is neg-

ligible. Filter 2.6 contains only a layer of mixed cellulose esters and is

also inefficient in terms of its final impurity profile. Filter 2.2 was also

evaluated. This filter has a similar chemistry to filter 1.2 but presents a

tighter pore structure. This single layer cellulose filter did not achieve

the performance of filters 2.1 or 2.8 in terms of loading capacity (200

L/m2) or the final impurity profile. Filters 2.3 and 2.4 were not selected

due to low HA recovery yields (25% and 50%, respectively). Filters 2.1

and 2.8 provided the best performance in terms of final turbidity (12.5

and 5 NTU, respectively), DNA removal (24% and 84%, respectively)

and Baculovirus removal (0.2% and 51%, respectively), and provided a

high HA recovery. Furthermore, the reported load capacity for filter

2.8 (140 cm2, see Table 6.1) may significantly understate the maximum

capacity achievable, since due to feed volume limitations, the terminal

pressure of 1.0 bar was not achieved during the filtration test. Taking

this into account, filters 2.1 and 2.8 were selected for an investigation of

secondary clarification performance at a larger scale.
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Figure 6.3: Endonuclease impact on clarification performance. Effect of benzonase
treatment on Filter 1.1 load capacity (L m−2). Full circles correspond to a harvested
bulk clarified without benzonase incubation; empty circles correspond to harvested
bulk clarified with benzonase incubation.

6.5.2 Impact of endonuclease treatment on the primary

stage of clarification

The use of endonuclease is a common procedure in vaccine manufacturing

[43], with a combined effect of reducing both DNA content and the viscos-

ity of the harvested material. This strategy, however, not only increases

the cost but also requires the demonstration of endonuclease removal at

the end of the purification process. During bioprocess development it is

important to evaluate the real need for endonuclease treatment, balanc-

ing advantages found for each individual case with inherent costs. The

effect of Benzonase endonuclease addition on the load capacity was eval-

uated for the primary clarification filters with the best performance (1.1

and 1.4). The filter load capacity was determined at a terminal pressure

of 1 bar. Without endonuclease treatment, a load capacity of 150 L m−2

and 170 L m−2 was achieved for Filter 1.1 and 1.4, respectively (Fig-

ure 6.2A and 6.3). A clear difference was observed after endonuclease

addition. For depth Filter 1.1, the pressure did not reach 1 bar and was

stable at low values until at least 800 L m−2 (Figure 6.3). Similar results

were observed for the filter 1.4 (load capacity of 170 L m−2 without en-
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donuclease treatment and at least 400 L m−2, without pressure reaching

1 bar after the endonuclease treatment, data not shown). These differ-

ences in filter capacity upon endonuclease treatment may be explained

by the digestion of the nucleic acids in suspension, which can reduce

the viscosity of the bulk, as well as by competitive binding of nucleic

acids to the filter. Critical parameters that influence Benzonase perfor-

mance are: concentration, incubation temperature, incubation time, and

time of addition (before or after harvest). The first two parameters were

previously optimized for the studied system (see materials and methods

section). The incubation time was evaluated at the following timepoints:

30 minutes after harvest, 12 hours before harvest, and 38 hours before

harvest. Several experiments, with different cell viabilities at the time of

harvest, were performed to evaluate the timepoints described above for

filter 1.1, using only one influenza strain (Table 6.2).
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In spite of the range of viabilities (60–77%) assessed or time of in-

cubation, turbidity removal was above 97% for all the experiments; fur-

thermore, pressure did not reach 1 bar for the samples treated with

Benzonase. In fact, the higher the time of incubation, the lower the

maximum pressure achieved for the same volume loaded, which is in ac-

cordance with the results reported in Figure 6.3. Based on these results,

further clarification studies were performed with Benzonase treatment

starting 12 hours before harvesting (Table 6.2). This is the point when

viability starts to decrease and there is a higher amount of free DNA to

digest.

6.5.3 Clarification process Scale-up

The scalability of the filters selected for each stage, filter 1.1 for primary

clarification and filters 2.1 or 2.8 for secondary clarification stage was

assessed (Table 6.3).
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The scale-up criteria were filter throughput (L m−2) at a constant

Flux (200 L m−2 h−1).

Filter train A

The stage I filter (1.1) performance was verified at an intermediate scale

(approx. 1.3L) as reported in Table 6.3 with complete HA recovery and a

significant total protein and DNA removal, 31% and 93.4%, respectively.

Clarification scale-up studies proceeded with the train comprising filters

1.1 and 2.1 up to 10 - 11 L scale. Different VLP strains, mono and

multivalent, were studied. For all of the evaluated strains, HA recovery

yields were 100%, and the total protein clearance varied from 49% to 59%.

The filter capacity for DNA removal was between 93% - 98% and the

baculovirus reduction ranged from 89.5% to 98.2%. Despite the results on

total protein clearance, DNA and baculovirus removal, turbidity values

were higher than 10 NTU for most of the cases. As mentioned above,

for a clarification step to be considered efficient, the filtrate turbidity

should be below 10 NTU [61, 67]. An efficient clarification step should

remove whole cells, cell debris as well as a large part of the soluble

process impurities. Given the need to reduce turbidity, a second train,

comprising filter 1.1. and 2.8, was then considered.

Filter train B

Filter 2.8 is a two-layer microporous filter with a final pore size of 0.2 µm

and is often used as a sterilizing grade filter that is installed at the

end of the clarification step. This filter allows for a process holding

point, helps to protect further downstream processing steps and should

improve turbidity reduction. Process volumes ranged from 1 L to 2.5

L and different VLP strains were also studied. HA recovery yield was

100% in most of the cases, with only two experiments having lower, but

still acceptable, values (75% and 95%). Nearly the same removal was

obtained for total protein (46% to 59%) and DNA (93% to 99%) as

for the Train A alone. Turbidity reduction was improved with values
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Figure 6.4: Initial turbidity and cell viability effect on after clarification turbidity. Sev-
eral mono and pentavalent influenza strains, from different subtypes were evaluated.
H1 Mono: H1 subtype monovalent strain; H1 Penta: H1 subtype pentavalent strain;
H3 1 Mono: H3 subtype monovalent strain 1; H3 2 Mono: H3 subtype monovalent
strain 2; H3 Penta: H3 subtype pentavalent strain; B Mono: B subtype monovalent
strain; B Penta: B subtype pentavalent strain. Initial turbidity (NTU), at time of
harvest, grey bars; Cells viability (%), at time of harvest, black bars; turbidity after
clarification train (NTU), pattern bars.

below 10 NTU reported for all the experiments. Moreover, as observed

for the previous clarification train, baculovirus removal was also high

(from 92.3% to approximately 100%). These results confirm that filter

train B, comprising filter 1.1 and 2.8 is the most suitable for a successful

clarification of the studied influenza VLPs.

6.5.4 Robustness of the clarification train for different

mono and multivalent strains

The robustness of the proposed clarification train was verified across

different influenza VLP strains, including mono and multivalent strains

(Figure 6.4). Depending on the strain complexity, in particular for the

pentavalent strains, cell viability at time of harvest and the specific pro-

ductivities obtained may vary. Contrary to what was expected, there

is no significant correlation between viability (measured by cell mem-

brane permeability to trypan blue) and initial turbidity, for the eval-
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uated strains. As reported in Figure 6.4, turbidity after the selected

clarification train (Filter train B) was always below the 10 NTU limit,

independent of the strain, cell viability and turbidity at harvest. Results

suggest that this two-stage filter train, a clarification stage followed by

an aseptic filtration, is “universal” in the sense that is suitable for differ-

ent influenza VLPs strains, mono and multivalent, produced using the

baculovirus expression vector system. Importantly, the developed filter

train could be extended to the purification of vaccines, particularly using

multiple influenza VLPs.

6.6 Concluding Remarks

Clarification is a critical step in the purification of biologicals, having a

strong impact in product recovery yields, product consistency and pro-

cess reproducibility [61]. Therefore, for a candidate vaccine, it is impor-

tant to select a clarification train that ensures the highest level of product

recovery and impurity removal. In this work, the main goal was to de-

velop a robust clarification process for different influenza VLPs produced

using insect cells / baculovirus expression vector system.

Scale down trials were performed for screening primary and secondary

clarification filters. For primary clarification, filter load capacity and tur-

bidity level reduction were evaluated as selection criteria. In the second

stage of the process, impurity clearance in terms of total protein, DNA

and baculovirus content was also assessed. Millistak+ D0HC (Filter 1.1)

and Durapore 0.65 µm (Filter 1.4) were the primary clarification filters

that presented the best performance. Millistak+ D0HC was selected over

Durapore 0.65 µm due to the ease of implementation of NFF-based depth

filtration process. The selected secondary filters were Polysep II 1/1.2 µm

(Filter 2.1) and Millipore Express SHC 0.5/0.2 (Filter 2.8). Millipore Ex-

press SHC 0.5/0.2 gave an improved turbidity reduction and, having a

final 0.2 µm pore size, was selected for the secondary filtration step.

The impact of endonuclease treatment before and after time of har-
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vest was also evaluated. Despite the efforts to eliminate its use, the load

capacity of the filter was drastically reduced without nuclease treatment.

Therefore, a user would need to balance a desire for a smaller footprint

(favored by a higher load capacity of the filter) and a lower process cost

(not favoured by the use of endonuclease).

The selected train comprising Millistak+ D0HC and Millipore Ex-

press SHC 0.5/0.2) offers a robust approach for the clarification of differ-

ent influenza VLP strains, including mono and multivalent VLP strains.

The resulting clarified filtrate presents a turbidity value below 10 NTU

and the test results were independent of strain, viability, and turbidity

at harvest time. The recommended clarification strategy appears to be

easily scalable to larger process volumes.
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7.1 Context

Having the clarification step established, we moved to the downstream

process itself. At this point the goal was to purify several different VLPs

for toxicology animal studies. Although the regulations are less restric-

tive for this type of studies, there are still guidelines that need to be

followed. Hence, it was important to define a balanced process in terms

of product recovery, impurities’ profile and cost-efficiency. As we are

dealing with different products, that we need to deliver in an endotoxin-

free way, we need to consider the economic and time burdens associated

with cleaning and validation steps of the process. This chapter proposes

a membrane-based process, eliminating the use of chromatographic steps.

The strategy described here employs a cascade of ultrafiltration and di-

afiltration steps, followed by a sterile filtration step. We were able to

maximize the yield to nearly 80% with acceptable impurity levels, while

improving process time and costs.

I was involved in the conception of the study, on production of VLPs

and the chromatographic downstream process used for comparison. I

was the main responsible for the ultrafiltration and diafiltration studies,

analytics for quality control as well as writing of the manuscript.

This work was submitted to an international peer reviewed journal

and is currently under revision.
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7.2 Abstract

Currently marketed influenza vaccines are only efficient against homolo-

gous viruses, thus requiring a seasonal update based on circulating sub-

types. This constant reformulation adds several challenges to manufac-

turing, particularly in purification due to the variation of the physic-

ochemical properties of the vaccine product. A universal platform ap-

proach capable of handling such variation is therefore of upmost impor-

tance. In this work, a filtration-based approach is explored to purify

influenza virus-like particles. Switching from an adsorptive separation

method to a size-based purification allows overcoming the differences in

retention observed for different influenza strains. The proposed process

employs a two-stage clarification step, followed by a cascade of ultra-

filtration and diafiltration steps, and a sterile filtration step. Different

process parameters were assessed in terms of product recovery and impu-

rities’ removal. Membrane chemistry, pore size, operation modes, critical

flux, transmembrane pressure, and permeate control strategies were eval-

uated. After membrane selection and parameter optimization, concen-

tration factors and diafiltration volumes were also defined. By optimizing

the filtration mode of operation, product recoveries of approximately 80%

were achieved. Overall, process time was decreased by 30%, improved its

scalability and reduced the costs due to the removal of chromatography

and associated buffer consumptions, cleaning and its validation steps.

7.3 Introduction

Influenza epidemics remains a global public health concern, affecting an-

nually millions of people and leading to significant economic burden. Vac-

cination continues to be the cornerstone for influenza prevention. How-

ever, actual vaccines present several drawbacks that need to be addressed.

Apart from the annual update required to cope with virus constant mu-

tations, there is also an increasing concern regarding world readiness for
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new potential pandemic outbreaks that possibly will have severe conse-

quences. Therefore, significant research efforts are being put in the de-

velopment of a universal vaccine with an efficient broad coverage against

different seasonal and pandemic influenza strains. Another concern is

related with relying on egg-based vaccines. Although this platform was

established decades ago and represents the current standard for influenza

vaccines manufacturing, it presents several drawbacks: the need for virus

adaptation or the mismatch between the produced virus and the circu-

lating one, are examples why there is an increasing need to move to

cell-based technologies.

Virus-like particles (VLPs) are considered as a promising egg-inde-

pendent platform for vaccine design. By displaying native virus proteins,

VLPs can stimulate a high and protective immune response presenting

an effective and safer alternative compared to killed or attenuated virus,

due to the lack of viral genetic material [36]. In fact, there are already

VLP vaccines in the market for hepatitis B virus, hepatitis E virus and

human papillomavirus [37, 38]. Influenza VLPs can be produced using

the Insect Cells/Baculovirus Expression Vector system as efficiently as

egg or mammalian cell-based technologies [59]. Moreover, VLPs’ struc-

tural flexibility allows the display of multiple hemagglutinin (HA) and/or

neuraminidase (NA) proteins in their surface from different strains. Sev-

eral multivalent VLPs-based vaccines are under development or in the

preclinical stage presenting protective effects against both seasonal and

pandemic influenza [123, 195–197].

The evolution of vaccine production technologies from egg to cell-

based culture systems, and the higher product safety demands from

regulatory agencies shifted the bioprocesses’ bottlenecks to downstream

processing (DSP) that often accounts for the majority of the production

costs. (Downstream processing of viral vectors and vaccines [52, 62, 64].

Virus classical purification procedures at laboratory scale have been ex-

ploring density differences using methods such as sucrose, caesium chlo-

ride or iodixanol gradient ultracentrifugation. However, despite the pu-
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rity achieved, they present several drawbacks: they are labor intensive,

time-consuming, present variability in the purity profile, low yields, high

cost of goods related to equipment and maintenance and limited scal-

ability [52, 75, 198]. Therefore, there is an emergent trend to replace

these traditional methods by scalable and more efficient unit operations

(Downstream processing of viral vectors and vaccines [43, 52, 199].

Continuous flow ultracentrifugation is the industry’s current gold

standard for influenza purification, however this technique is often as-

sociated with high investment costs. Chromatography and membrane

filtration techniques are widely used for virus purification [62]. Chro-

matographic separation is often looked as the most versatile and power-

ful method for large-scale production. Recent developments in materials

used for virus purification have been providing improved capacities and

scalability from laboratorial to commercial scale. Nonetheless, unique

characteristics of virions, including physico-chemical properties, stability

and variability must be considered alongside the choice of the purifica-

tion strategy for maximum efficiency. Konz and coworkers [200] reported

a serotype dependence on chromatographic retention for adenovirus. A

similar behavior was illustrated for several other viruses and in particular

for influenza by Michen and coworkers [66], where the reported isoelet-

ric points were found to be strain dependent. This observation implies

that retention in ion exchange adsorbers will also vary with different

virus strains. The development of a platform approach for influenza pu-

rification should therefore be supported by techniques that make use of

properties that are common to all strains. Filtration techniques are com-

monly used in several steps of downstream processing of virus, namely in

clarification, concentration, buffer exchange or sterile filtration. The ex-

ploitation of particle size, combined with the different modes of operation

- tangential flow and normal flow, and the different membrane materials

available make this technique attractive for a platform approach.

The strategy proposed in this work, and illustrated in Figure 7.1,

consists in a filtration-based purification process for influenza VLPs pro-
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Figure 7.1: Comparison between a standard chromatographic-based DSP (left) and
the proposed filtration-based DSP (right).

duced using insect cells and baculovirus expression system. Contrarily

to a chromatography-based purification, in particular ion exchange, pu-

rification is carried out due to size differences between the virus particles

and associated impurities. Even though it is possible to exploit this in

size exclusion chromatography, its low productivity, product dilution and

limited sample volume makes the use of this technique challenging for

large-scale applications. Although a purification scheme, such as the one

described in the left side of Figure 7.1, supported by two orthogonal

chromatography steps (such as ion exchange and size exclusion) has the

potential to deliver a product with a higher purity level, this has to be

balanced against the final use of the product. The proposed process (Fig-

ure 7.1, right-hand side) aims to deliver product for pre-clinical studies,

thus its main goal is to obtain a high product concentration, with less

restrictive purity specifications. Another advantage associated with the
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use of filtration devices is the availability of scalable single-use materials,

contributing for a higher turnover of purification processes and reduced

preparation steps.

7.4 Materials and methods

7.4.1 Production of Influenza VLPs

Influenza VLPs were produced as described by Carvalho et al [55]. Cell

concentration and viability were determined using haemocytometer cell

counts (Brandt, Wertheinmain, Germany) and trypan blue exclusion dye

method (Merck, Darmstadt, Germany). High Five (Hi5) cells (B855-02,

Invitrogen Corporation, Paisley, UK) were infected with recombinant

baculovirus (kindly provided by Redbiotec AG, Switzerland) encoding a

monovalent strain from subtype H1. Infection was performed at a cell

concentration at infection (CCI) of 2×106 cells mL−1, with a multiplicity

of infection (MOI) of 1 IP cell−1. Addition of antiproteases, 20 tablets

per liter of cell culture (cOmplete, EDTA-free protease inhibitor cocktail

tables, Cat #05056489001, Roche Diagnostics, IN, USA) and nuclease

(Benzonase endonuclease, 101654, Merck Millipore, Germany), at a final

concentration of 50 U mL−1, was performed 12 hours before harvest.

7.4.2 Harvest and Clarification

Hi5 infected cells were harvested at a viability of 50-60%, correspond-

ing to approximately 48 hpi. Clarification was carried out by two filters:

Millistak+ D0HC (Cat #MD0HC23CL3, Merck Millipore, Germany) fol-

lowed by Opticap XL 150 Capsule (Millipore Express SHC 0.5/0.2 µm,

Cat #KHGES015FF3, Merck Millipore, Germany) [57]. All the filtra-

tion modules were previously conditioned with three capsule volumes of

working buffer (50 mM HEPES, pH 7.4, and 300 mM NaCl). The tur-

bidity of the clarified samples was measured using a Turbidimeter (2100

Qis Portable HACH, Colorado, USA).
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7.4.3 Tangential flow filtration (TFF)

Ultrafiltration

Clarified VLPs were further processed by tangential flow filtration (TFF)

and using the set-up described in Figure 7.4. The ultrafiltration screen-

ing experiments were conducted using Pellicon XL ultrafiltration modules

with an area of 0.005 m2. Different molecular weight cut off (MWCO)

and membrane chemistries were evaluated (Table C.1). MWCO of 100

(Cat#: PXB100C50), 300 kDa (Cat#: PXB300C50), 500 kDa (Cat#:

PXB500C50), and 1000 kDa (Cat#: PXB01MC50) were evaluated for

Polyethersulfone (PES) and 300 kDa (Cat#: PXC300C50) and 1000 kDa

(Cat#: PXC01MC50) for regenerated cellulose (CRC) material (Merck

Millipore, USA). The membrane modules were set up according to the

manufacturer’s instructions. The devices were preconditioned with deion-

ized water to eliminate trace preservatives and equilibrated with working

buffer (50 mM Hepes, 300 mM NaCl, pH 7.4) before the concentration

step.

Process parameters were determined by evaluating the best TMP for

operation and the permeate flux decay. TMP was set from 0 to 1 bar

to evaluate the permeate flux (Figure C.1). The permeate flux decay

was also determined during the concentration of VLPs and the stable

value was used as set point for the permeate pump (Watson Marlow

Model 120S/DV 200 rpm pump, Watson-Marlow Pumps Group, Mas-

sachusetts, USA) (Figure 7.2). A Tandem 1081 Pump (Sartorius Ste-

dim Biotech, Germany) was used on the feed side set up to a fixed flux

of 480 LMH, according to the recommended flow rate. The pressure

was monitored at the feed inlet, retentate outlet and permeate outlet

by in-line pressure transducers (080-699PSX-5, SciLog, USA). Retentate

pressure was adjusted with a valve to avoid vacuum in the permeate.

The feed/retentate and the permeate volumes were monitored using a

technical scale (TE4101, Sartorius Stedim Biotech, Germany).
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Figure 7.2: Screening experiments. Performance evaluation of different membrane
cassettes with several MWCO and different chemistries (PES vs RC) (A). Permeate
flux (black line), HA recovery (orange bars) and impurity clearance - DNA (gray
bars), total protein (yellow bars), baculovirus (blue bars); Screening of sterile filters
with different chemistries (B). HA recovery (orange bars) and impurity clearance -
DNA (gray bars), total protein (yellow bars), baculovirus (blue line); Effect of product
concentration on sterile filtration recovery yield (C).
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Diafiltration

Diafiltration with working buffer was performed. Evaluation of the num-

ber of diafiltrations was performed for the selected ultrafiltration mem-

brane devices, PES material with 1000 and 300 kDa. For both mem-

branes, six diafiltration volumes were evaluated. After achieving the

desired diafiltration volume, the TFF loop was completely drained and

the VLPs in the retentate were recovered. Samples of the final retentate

and permeate were taken to assess process yield as well as clearance of

process impurities.

7.4.4 Sterile filtration

Sterile filtration screening experiments were performed using Polyether-

sulfone (Cat# SLGP033RS, Merck Millipore, USA) and Polyvinyl Di-

fluoride (Cat#SLGV033RS, Merck Millipore, USA) syringe filters (Ta-

ble C.2). Each filter was pre-equilibrated with working buffer prior filtra-

tion. After filtration the syringe filters were emptied with air to recover

all the product.

7.4.5 Hemagglutination assay

Hemagglutinin protein detection and quantification was performed by

hemagglutination assay. The assay was carried out according to the

procedure previously described elsewhere [55]. Influenza vaccine Influvac

(Abbott, USA) was used as positive control and as a standard for the

quantification of hemagglutinin concentration.

7.4.6 Total Protein Quantification

BCA Protein Assay Kit (23225, Thermo Fisher Scientific) was used ac-

cording to the manufacturer’s instructions to quantify the total protein

content. Bovine serum albumin was used for the calibration curve (23209,

Thermo Fisher Scientific). Samples before clarification were previously
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diluted 8-fold with D-PBS to avoid interferences with the kit. After clar-

ification, samples were diluted between 2- and 256-fold, as recommended.

A 96 well clear microplate (260895, Nunc) was used to perform the as-

say and the absorbance at 562 nm was measured on Infinite 200 PRO

NanoQuant (Tecan) microplate multimode reader.

7.4.7 Total dsDNA Quantification

Total dsDNA was quantified using the Quant-iT Picogreen dsDNA assay

kit (P7589, Invitrogen) according to the manufacturer’s protocol. Sam-

ples before clarification were previously diluted 8-fold with D-PBS to

avoid interferences with the kit. After clarification samples were diluted

between 2- and 256-fold as recommended. A 96 well black microplate,

flat transparent (3603, Corning) was used to perform the assay and the

fluorescence was measured on Infinite 200 PRO NanoQuant (Tecan) mi-

croplate multimode reader.

7.4.8 Baculovirus Quantification

Baculovirus DNA was extracted and purified using the High Pure Viral

Nucleic Acid Kit (Roche Diagnostics) following manufacturer’s instruc-

tions. The number of genome copies was quantified by real time quan-

titative PCR (qPCR). Master mix was prepared using the Light Cycler

480 SYBR Green I Master (04707516001, Roche Diagnostics, Germany),

a final concentration of 0.5 µM of each primer, for ie-1 baculovirus gene

region, and PCR grade water [190]. qPCR reaction took place in 96-well

white plates (04729692001, Roche Diagnostics) using a LightCycler 480

Instrument II (Roche Molecular Systems, Inc.).

7.4.9 SDS-PAGE electrophoresis

Samples’ protein profiles for the diafiltration studies were analysed for

both membrane devices selected through an SDS-PAGE gel. Precast

SDS-PAGE gels (4-12% polyacrylamide NuPAGE (Invitrogen, USA) were
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used. Loading buffer (LDS sample buffer and reducing agent (Invitro-

gen, USA) was added to the samples that were incubated at 95 ◦C for

5 min. Precision Plus Protein Dual Color Standards (Bio-Rad, USA)

molecular weight markers were used. Samples were resolved for 60 min

at a constant voltage (200 Volts). InstantBlue (Expedeon, San Diego,

USA) was used for staining.

7.4.10 TEM analysis

TEM analysis was performed to analyse the presence, integrity and mor-

phology of influenza VLPs across the entire purification step. Sample

preparation was performed as follows: a drop (5 µL) of each sample was

adhered to cooper 100 mesh grids coated with 1% (w/v) formvar (Agar

Scientific) in chloroform (VWR) and carbon. The samples were washed

five times with sterile filtered H2O and stained with 2% (w/v) uranyl

acetate for 2 min. Grids were blotted with No. 1 Whatman filter pa-

per and images were taken using a Hitachi H-7650 transmission electron

microscope (Hitachi High-Technologies) operating at 100 keV.

7.4.11 Nanoparticle tracking analysis

Presence and size distribution of virus-like particles was measured us-

ing the NanoSight NS500 (Nanosight Ltd, UK). Samples were diluted in

D-PBS (14190-169, Gibco, UK) to a particle concentration between 108-

109 particles mL−1, to work at the instrument’s linear range. All mea-

surements were performed at RT (22 ◦C). Sample videos were analysed

with the Nanoparticle Tracking Analysis (NTA) 2.3 Analytical software

- release version build 0025. Capture settings (shutter and gain) were

adjusted manually for each analysis. For each sample 60-seconds videos

were acquired and particles between 60 and 200 nm were considered.
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7.5 Results and Discussion

7.5.1 Screening of ultrafiltration membrane cassettes

Ultrafiltration membrane materials of regenerated cellulose (CRC) and

Polyethersulfone (PES) with different pore sizes were screened (Table C.1).

An initial membrane load of approximately 10 L m−2 was applied to

each device. This initial assessment of the devices focused on product

(HA) recovery, impurity clearance (DNA, total protein, baculovirus) and

permeate flux profile (Figure 7.2A). Results obtained show that no sig-

nificant losses of VLPs were observed for all the assessed membranes.

Although HA recovery is one undeniable factor to take in consideration

for the selection of the devices, other parameters such as permeate flux

and impurity clearance should also be considered.

In the chromatography-based process depicted in the left side of Fig-

ure 7.1, the intermediate purification or capture step serves a dual ob-

jective. First, due to the bind and elute operation, VLPs will be eluted

at a higher concentration, and secondly due to the modulation of the

ionic strength in different elution steps it is possible to deplete impu-

rities with charges different from the VLPs. Considering the filtration

process reported in the current work and described in right side of Fig-

ure 7.1, the first tangential flow filtration step should not only be able to

cope with the fast processing of the clarified bulk but also be designed

in such way that a similar volume reduction and impurity clearance oc-

cur, while maintaining a good product recovery yield. Moreover, at this

stage the volume to process is high, thus a device with a high permeate

flux should be considered in order to reduce processing time. On top

of that, process time can also be reduced at the expense of increasing

the membrane area. It is expected that with larger pore sizes higher

permeate fluxes are achieved. This was verified in the initial material

screening (Figure 7.2A). Both 1000 kDa cassettes presented the highest

fluxes when compared with small pore sizes of the same material (100

– 500 kDa). However, PES showed better performance than CRC, not
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only in terms of permeate flux (99 LMH vs 52 LMH) but also regarding

DNA (86% vs 61%) and total protein clearance (89% vs 60%). Bac-

ulovirus’ removal was similar for both materials. For the first step of

ultrafiltration/diafiltration, 1000 kDa PES membrane was therefore se-

lected. However, due to the open pore structure, increasing the volume

reduction factor (data not shown) as well as the number of diafiltration

volumes lead to product loss (as seen in Figure 7.3E). The goal of a

second ultrafiltration/diafiltration stage was to further concentrate the

product to the desired final concentration, formulate the VLP in the final

buffer while refining the purity level (polishing). To identify the most

suitable membrane for this step, the 500 kDa membrane (PES) and the

two 300 kDa (PES and CRC) were compared (Figure 7.2A). It was ob-

served that the permeate fluxes were similar, varying between 50 LMH

(500 kDa PES), 49 LMH (300 kDa CRC) and 43 LMH (300 kDa PES).

Despite the slight higher value for the permeate flux of the 500 kDa

membrane, the lowest percentage of DNA removal achieved with this

membrane is not satisfactory. Total protein clearance was similar for

both membrane chemistries. However, the 300 kDa membrane was se-

lected due to the highest DNA removal. It is also worth noting that

during this initial screening, membranes with lower pore sizes (100 kDa)

were also evaluated. Their potential to be used in the second UF/DF

step (instead of 300 kDa) or as an additional step was assessed. Never-

theless, it was observed a severe permeate flux decay (approx 95%) and

a loss on membrane permeability, indicating that that this pore size is

too tight to concentrate these VLP suspensions.

7.5.2 Screening of sterile filters chemistries

Usually, the last step of a typical downstream process is a sterile filtration

(Figure 7.1), critical to ensure sterility of the final product, and therefore

patient safety. Filters with a nominal pore size of 0.22 µm and two dif-

ferent chemistries (PES and PVDF) were evaluated for HA recovery and

for impurity removal (DNA, total protein and Baculovirus) (TableC.2,
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Figure 7.2B). Both materials presented high recoveries (approximately

100%). Moreover, in terms of total protein and DNA clearance, both

filters showed comparable results, with PVDF presenting slightly higher

removals for DNA (15.4% vs 24.3%) and total protein (6.8% vs 8.7%).

Since both filters presented a moderate baculovirus LRV (Log reduc-

tion value) equal or higher than 2 [201], the same chemistry (PES) was

maintained on the process.

Figure 7.2C depicts the impact of lnfluenza VLPs’ concentration on

the sterile filtration process. For product (HA) concentrations lower than

11.25 µgmL−1, recovery yield corresponds to 100%. However, as HA con-

centration increases, the recovery yield obtained for this step decreases

achieving values as low as 33% for a HA concentration of 33.75 µg mL−1.

In fact, higher concentration leads to membrane fouling, observed by the

decrease of the flux and the pressure increase during filtration. Polar-

ization of product concentration near the membrane resulted in cake

formation, which prevented VLP to pass through the filter. The effect

of membrane fouling in filtration is extensively reported in the litera-

ture, in particular the critical impact protein or DNA concentration on

filtration processes (ref 32 BA, Zydney2000, ALLMENDINGER 2015,

Watson 2006). Based on the results obtained, and considering the target

dose, an optimal load of 12.5 µg cm−2 was hypothesized.

7.5.3 Evaluation of process parameters and operating con-

figurations

Device arrangement and scalability

The surface area required for purification at each stage is closely related

with the volume to be processed, process time, final product concen-

tration and purity requirements. Moreover, one should also take into

consideration the surface area of the commercially available membrane

devices. In order to keep the process time for increasing bioreaction vol-

umes, the available permeation area should be increased. This can be
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performed either by placing several devices in parallel or in series as de-

picted by Figure 7.3A and 7.3B respectively. As a proof of concept, both

configurations were evaluated for the 1000 kDa membranes using two 50

cm2 cassettes with a TMP setpoint of 0.8±0.1 bar until a volume re-

duction factor of 2 was achieved. The final retentate of each experiment

was then collected and HA recovery was determined by hemagglutination

assay. Total particle recovery for VLP size range (70-200 nm) was also

evaluated by Nanoparticle tracking analysis. The parallel configuration

enabled a complete VLPs recovery where only approximately 50% was

recovered in the series configuration (TableC.3).

One possible explanation to the different recoveries obtained might

reside in the fact that higher pressure in the feed inlet prevents the use

of the entire area of the membrane, meaning that the bulk is not able

to recirculate properly. This can lead to product losses in the area that

is not being used. Moreover, as influenza VLPs are enveloped particles,

high pressure can disrupt or destabilize them, decreasing also product

recovery yield. Process time is longer for series configuration (39 min

vs 18 min for parallel configuration), which can also impact on VLPs

recovery as they are subjected to shear stress for longer periods.

Moreover, the pressure drop associated to the series configuration

of membranes makes impractical its use since to overcome the increase

on the differential pressure across the devices and to keep it within the

manufacturers recommendation one must operate at lower cross flow ve-

locities, thus reducing the permeate flux. On the contrary, a parallel

configuration is easily scaled just by connecting extra devices by means

of splitting the flow or by adding extra pumps to the system.

7.5.4 TMP and permeate flux control

The optimization of process parameters was developed in two stages:

by evaluating different TMP values to optimize the permeate flux (Sup-

porting Figure 1A and 1B) and by analyzing the permeate flux decay

(Figure 7.3C and 7.3D). During screening experiments, a TMP excur-
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Figure 7.3: Process parameters evaluation. Configuration design, Parallel design (A)
and series design (B); Permeate flux decay for PES, 1000 kDa (C), 300 kDa (D);
Diafiltration studies for the 1000 kDa (E) and 300 kDa (F) membranes. HA recovery
(yellow line) and percentage of impurities retained according to diafiltration number
DNA (orange line), total protein (blue line), and baculovirus (gray line).
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sion was carried for the 300 and 1000 kDa membranes of both PES and

CRC materials (Figure C.1). Results indicate that both cassettes share

the same dependence of flux on TMP for the same cutoff independently

of the material. Ideally, the ultrafiltration process should be performed

where the highest flux is achieved for the lowest TMP. The appropri-

ate combination of these two parameters will minimize processing time

and membrane area. On top of that, flux decay should also be consid-

ered. This is of particular importance when using ultrafiltration mem-

branes with open pores, typically above 100 kDa, where permeability

is high. The high fluxes obtained at low TMP cause a high polariza-

tion of the membranes, which might be translated in membrane fouling

[202]. In order to assess the flux decay profile of each cassette, 300 and

1000 kDa (PES), an experiment was carried out with constant cross flow

rate (30 mL min−1) and without TMP control. The permeate flux vari-

ation was recorded and reported in Figures 7.3C and 7.3D. Both cutoffs

presented an initial region where high permeate fluxes are achieved fol-

lowed by a transition to a low flux region. As expected, the 1000 kDa

membrane achieved higher fluxes indicative of the high permeability of

the membrane. It should also be noted that the 300 kDa experiment

was carried with a pre-concentrated bulk (2x) to simulate its later use

in the process. In order to reduce the initial fouling of the membranes

during startup, and to ensure a longer and robust operation of the UF

process, permeate control at 40 LMH by means of an additional pump

was introduced for both UF steps.

Diafiltration studies

The goal of a diafiltration step is usually to exchange the buffer to one

that suits the next DSP step or for a formulation solution capable of

promoting long-term stability to the product of interest. In addition to

this, if the product is completely rejected by the membrane, as in the

present case for the chosen influenza VLPs and membrane, diafiltration

can also be used to permeate species smaller than the chosen cutoff.
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One key point of a diafiltration operation is the definition of where it

should be considered in the UF/DF process. Run a diafiltration before

concentration will in principle lead to higher permeate fluxes, due to the

lower protein concentration, but will have the detrimental effect of high

buffer consumption and longer processing times. On the other hand, if

diafiltration is considered after a concentration step, buffer savings will

be evident, but lower permeate fluxes will be achieved due to higher

product concentration. On top of these aspects, one most also take

in consideration product stability and losses due to product aggregation

and/or unspecific adsorption on the membrane. In Figure 7.3E and 7.3F,

a diafiltration study was carried for the chosen 1000 kDa and 300 kDa

PES membranes. From the analysis of these figures it is evident that the

1000 kDa membrane allows for a greater depletion of impurities when

comparing with the 300 kDa device for the same number of diafiltration

volumes. SDS-Page profile was also analyzed for retentate and permeate

samples of both 300 kDa and 1000 kDa membranes confirming these

results (Figure C.2). Moreover, another interesting point to observe is

that in the 300 kDa membrane the impurities are depleted at different

rates. Contrarily, there is not a clear differentiation of these species

in the 1000 kDa membrane. This suggest that the wider pores found

in this device can provide a higher increase in purity if diafiltration is

considered. However, when looking at VLPs recovery, suggested by HA

recovery, after the first diafiltration there is a clear drop in HA recovery,

which can compromise the delivery of pure material. When looking at

the same feature, HA recovery, for the 300 kDa membrane the recovery

drop is less pronounced and happens only after the fifth diafiltration

volume.

From the results obtained with this study and having in mind the

objective of deliver enough material for pre-clinical studies and with a

high process turnover, the workflow decision should be based on a holistic

perspective of the DSP. Figure 7.4 depicts the current process proposal,

considering only filtrations operations. The DSP starts at the clarifica-



7.5. Results and Discussion 145

Normal Flow Filtration

Clarification

Peristaltic 

pump Manometer

Flow

Balance

Flat Sheet 

Cassette

Flow 

Restrictor

Feed

Permeate

Data 

acquisition

Data 

acquisition 

system

Ultrafiltration

Diafiltration

Membrane cassette 

1000 kDa; PES

#1

Ultrafiltration

Diafiltration

Membrane cassette 

300 kDa; PES

#2

Retentate

Sterile filtration

0.22 μm filter; PES

P
ri

m
a

ry
 

C
la

ri
fi

c
a

ti
o

n
S

e
c
o

n
d

a
ry

 

C
la

ri
fi

c
a
ti

o
n

Figure 7.4: DSP for influenza VLPs using membrane-based process proposal.

tion step, where a combination of microfiltration and depth filters are

used, and as previously described by our group [57]. Afterwards, two

steps of UF/DF are used with different membranes cutoffs, followed by

a sterilizing grade filtration. The global VRF should be able to deliver

a HA concentration compatible with the dose required, while ensuring a

reasonable depletion of impurities needed for pre-clinical studies.

7.5.5 Proof of concept

Influenza pre-clinical studies using mice require a dose of 1.5 µg HA and a

maximum volume of injection of 100 µL [203]. Therefore, the target con-

centration that should be achieved is 15 µg mL−1. Having this in mind,

and assuming the lowest productivity obtained for this system (1 µg HA

mL−1 bulk), VRF for both UF operations can be defined assuming the

following: i) 350 mL bulk per 50 cm2 of membrane can be processed in
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a reasonable time window (considering a controlled permeate flux - 40

LMH), ii) the minimum volume that could be obtained for these devices

is approximately 10 mL due to limitations of system hold-up volume, iii)

global yield for this process is approx 70 – 80%. These criteria restrict

the possible options of VRF combinations for both UF membranes that

could be performed to achieve the target dose (Figure C.3). Having set-

tled all the process parameters and conditions to operate, a first proof

of concept run was performed. At a determined point of both UF/DF

processes, permeate pressure decreased to values below zero, meaning

that clogging of the membrane occurred and the permeate control using

the pump cannot be maintained. Although this happened nearly the

end of the operation it suggests that the operation TMP was not high

enough, leading to a global HA yield of 41% (Figure 7.5A). Therefore,

a second run was performed. In order to increase the TMP and since

the operation was being performed at the cross-flow range recommended

by the manufacturer, a restriction valve was placed on the retentate of

the 300 kDa cassette since this was the step with lower recovery. It was

observed an increase of 28% in the yield of this step, shifting the global

yield to 64%. Given this data, a final run using restriction valves in

retentates of both cassettes was performed in order to evaluate if the

recovery yield could be further improved. As expected, the yield of the

1000 kDa UF/DF step increased 11% allowing a global yield of 76%. One

possible explanation could be that higher recoveries with higher TMPs

might be related with effective flux throughout the membrane and the

set point for the permeate pump. Permeate flux is proportional to the

difference between hydraulic and osmotic pressure driving forces [129].

Thus, by increasing TMP the hydraulic pressure is also increasing, lead-

ing to a higher permeate flux. Interestingly, total protein removal for

all the runs (n=3) was similar (ranging from 98.4 to 98.8%). The first

run (no restriction valves) presented the highest value (86.3%) for DNA

removal. Adding one or two restriction valves (runs 2 and 3) showed not

to impact DNA removal - 75.8% and 78.1%, respectively. These results
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Figure 7.5: Proof of concept. Product recovery (HA), total protein and DNA re-
moval for the three runs (A). Run 1 (blue) - Retentate flux was not restricted, Run
2 (orange) - Retentate flux 300 kDa device restricted with a valve. Run 3 (gray) -
Retentate flux 1000 and 300 kDa device restricted with a valve; TEM images of the
DSP steps: B - initial sample. C- 1000 kDa retentate (concentration). D - 1000 kDa
(diafiltration). E - 300 kDa retentate (concentration). F - 300 kDa retentate (di-
afiltration). G - Sterile filtration. Scale bar corresponds to 100 nm. Gantt charts
for standard chromatographic process (H) and membrane based process (I). Capture
chromatography is performed with a IEX membrane. Polishing is performed with
size exclusion chromatography. Concentration and formulation using Tangential flow
filtration. Considered harvested volume of 0.5 L; Comparison on buffer consumption
for chromatographic and membrane processes (J).
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indicate that TMP value is critical for VLP recovery, allowing higher

yields for highest TMP values.

TEM analysis was performed to detect VLP presence and morphol-

ogy across the entire downstream process. Moreover, it was also a quality

control tool for the detection of process impurities, including baculovirus.

As it can be observed, VLPs maintain their shape and HA characteris-

tic spikes across all DSP steps (Figure 7.5B - 7.5G). TEM images also

revealed the heterogeneity of the particles in terms of size (ranging from

60 to 250 nm), which poses challenges for the purification process.

As previously mentioned, it is important to balance the process re-

quirements in terms of HA recovery and impurity removal as well as

process economics. The requirements for pre-clinical studies screening of

efficacy are not as restricted as for human applications. Therefore, the

efforts should be balanced in terms of process cost-efficiency and purity.

Chromatography is often used as unit operation in DSP for vaccines. Al-

though it can deliver product with higher purity, process time is strongly

impacted. Figure 7.5H and 7.5I compare processing times for a standard

chromatography-based process and the proposed membrane-based pro-

cess. Globally, the chromatography process requires more steps and is

time intensive (376 min vs 262 min for membrane based process). More-

over, the unit operations are more laborious, the equipment required is

more expensive as well as the materials, which is not compatible with a

single use process, critical to achieve high turnovers. In terms of buffer

consumption, which impacts process cost, a decrease from 918 mL to

165 mL can be achieved by using the membrane process (Figure 7.5J).

7.6 Concluding Remarks

Here, a completely membrane-based DSP for influenza VLPs vaccine

candidates was proposed, starting at clarification step until sterile fil-

tration. Screening of different ultrafiltration membranes, with different

chemistries (PES vs CR) and MWCO (ranging from 100 to 1000 kDa)
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was performed. Membrane performance was evaluated in terms of prod-

uct recovery, impurity removal and permeate flux profile. PES mem-

branes of 1000 and 300 kDa were selected for an initial purification and

polishing step, respectively. The chosen sterile filter (PES) revealed a

recovery yield dependence on HA concentration, with yields decreasing

abruptly for HA concentrations higher than 20 µg mL−1. However, for

the target dose, the filter enabled a total product recovery. Scale-up de-

signs were also assessed using membranes in parallel and in series. The

parallel strategy revealed to be the best option in terms of HA recovery

and process time. Process parameters were optimized by means of TMP

and permeate flux decay analysis. Permeate flux control using a pump

was the best option, coupled with a restriction valve in retentates of

both membranes. Moreover, the maximum number of diafiltration vol-

umes (DFV) was defined to maximize product recovery. The 1000 kDa

membrane was only able to accommodate one DFV without losing HA.

In the case of the 300 kDa membrane it was possible to achieve four DFV.

Importantly, analysis of the VLPs by TEM revealed that particles main-

tain their shape and morphology across the entire process, presenting the

characteristic HA influenza spikes.

The proposed membrane-based process intends to be a scalable and

robust platform for influenza VLPs expressed using insect cells - bac-

ulovirus expression system. All unit operations exploit characteristics

that are strain and subtype-independent, their size and not charge, paving

the way for a universal process train. Process was optimized with the

ultimate goal of deliver product for pre-clinical studies, thus balancing

manufacturing economics and delivery speed with product recovery and

impurity clearance. In fact, when compared with a chromatographic

standard process (Figure 7.1), the proposed one decreased significantly

both process time and buffer consumption, using only single use ma-

terials. Nevertheless, the goal of each ultrafiltration/diafiltration unit

operations can be shifted to achieve higher impurity clearance, in line

with regulatory authorities’ guidelines. DSP of vaccine candidates can
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be sped up, which is important for annual vaccine delivery and critical

for pandemics.
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8.1 Context

The purification step was far from being fully optimized for manufactur-

ing of vaccines for human use as we need to cope with the acceptable

impurity levels defined by the regulatory authorities. As the selection of

strains narrows, it is important to further improve the process in a scal-

able way. To improve the process, a chromatographic capture step was

established using sulfated cellulose membrane adsorbers. This strategy

proved to be better than the conventional methods and worked efficiently

for both VLPs and influenza virus. Therefore, it can be applied as a unit

operation platform for the purification of influenza particles.

I participated actively in the design of the study and it was con-

ceived as an internship project at Max Planck, under the scope of my

PhD and funded by FCT. I performed the VLP production and together

with A.R.F. did the VLP and virus purification process and also the

manuscript writing.

This work was published in Journal of Chemical Technology and

Biotechnology (2018,93:1988–1996. DOI: 10.1002/jctb.5474) and it is

available at https://onlinelibrary.wiley.com/doi/full/10.1002/

jctb.5474.

https://onlinelibrary.wiley.com/doi/full/10.1002/jctb.5474
https://onlinelibrary.wiley.com/doi/full/10.1002/jctb.5474
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8.2 Abstract

Background: Vaccines based on virus-like particles (VLPs) are an alter-

native to inactivated viral vaccines that combine good safety profiles with

strong immunogenicity. In order to be economically competitive, efficient

manufacturing is required, in particular downstream processing, which

often accounts for major production costs. This study describes the op-

timization and establishment of a chromatography capturing technique

using sulfated cellulose membrane adsorbers (SCMA) for purification of

influenza VLPs.

Results: Using a design of experiments approach, the critical fac-

tors for SCMA performance were described and optimized. For optimal

conditions (membrane ligand density: 15.4 µmol cm−2, salt concentra-

tion of the loading buffer: 24 mM NaCl, and elution buffer: 920 mM

NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL mL−1),

a yield of 80% in the product fraction was obtained. No loss of VLPs

was detected in the flow through fraction. Removal of total protein and

DNA impurities were higher than 89% and 80%, respectively.

Conclusion: Use of SCMA represents a significant improvement

compared to with conventional ion exchangers membrane adsorbers. As

the method proposed is easily scalable and reduces the number of steps

required compared to conventional purification methods, SCMA could

qualify as a generic platform for purification of VLP-based vaccines.
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8.3 Introduction

Every season, influenza epidemic outbreaks raise serious health concerns

and lead to substantial economic burdens [6]. In fact, seasonal epidemics

are responsible for 3 to 5 million cases of severe illness and up to 500 000

deaths annually worldwide [191]. Moreover, the virus potential to cause

pandemic outbreaks makes it a continuous public health threat that can

result in millions of deaths [6]. Vaccination remains the most effective

and economical way to prevent and control infection for both seasonal

and pandemic strains. However, due to antigenic drift and shift, sea-

sonal vaccines need to be annually reviewed. Another concern relates

to the poor efficacy of seasonal vaccines in case of pandemics [39]. The

need to increase manufacturing capacity and flexibility, as well as de-

crease vaccine’s time to deliver, critical specially in case of pandemics,

has supported cell-based vaccine production, in alternative to conven-

tional egg-based systems [14, 92].

New vaccines produced using mammalian and insect cell lines that

have been recently licensed [14] and several platforms, including virus-

like particles (VLPs), are under development as candidates for both sea-

sonal and pandemic Influenza virus [14, 39–43]. In fact, VLPs hold great

promise as vaccine candidates and have been long established for hepati-

tis B and human papillomavirus vaccines [37, 38]. The potential of these

platforms, together with the increasing demands on safety and quality

control in vaccine manufacturing stresses the need for new downstream

processing (DSP) methods for their purification [72]. Influenza VLPs are

being produced using different expression systems (mammalian, plant or

insect cell cultures), which implies different purification strategies [96].

Insect cell-baculovirus expression system is a promising strategy to re-

place traditional egg and cell-based systems. Advantages are related

with short production times, high production yields and a straightfor-

ward scale-up, maintaining efficiency [53]. There are several reports de-

scribing different approaches to produce and purify influenza VLPs us-
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ing insect cells. Most of the downstream strategies rely on traditional

methods such as centrifugation, sucrose or iodixanol gradient ultracen-

trifugation [96, 204, 205]. These methods are cumbersome and not easily

scalable and most of the described purification strategies are not com-

plete processes or do not cope with the purity specifications for human

application. Novavax’s influenza VLP vaccine manufacturing process

combines these unit operations with ion exchange chromatography, ul-

trafiltration or diafiltration [74]. In fact, there are several separation

technologies available for DSP of biopharmaceuticals, which often include

bead-based chromatography [64, 206]. However, this technique presents

several drawbacks, including high pressure drop across the packed bed,

slow intraparticle diffusion, high process times and difficulties in scale-up

[207]. Membrane-based chromatography processes overcome some of the

limitations associated with packed beds and have been increasingly ap-

plied for bioprocessing of large biomolecules, such as viruses and VLPs

[206]. Mass transfer constraints are improved through fully convective

transport, which is possible due to the large pore size of membranes,

and direct availability of the specific ligands on the membrane surface.

These factors decrease process time and, together with low void volumes,

reduce process and equipment costs. Moreover, membrane adsorbers can

be used as disposable units, eliminating column packing, cleaning, regen-

eration and validation efforts [105, 206, 207]. Several chromatographic

membranes have been applied for the purification of biopharmaceuticals,

including whole virus particles (WVPs) and VLPs [206]. For influenza

WVPs purification, the use of traditional cation and anion exchange

membranes has been tested [82, 87]. However, using only this approach,

protein and DNA contamination levels exceeded acceptable limits for

manufacturing of vaccines for human use. As an alternative, the use

of pseudo-affinity sulfated cellulose membrane adsorbers (SCMA) has

been reported for DSP of influenza A WVPs. In particular, SCMA con-

siderably improve DNA and total protein removal, show better strain

robustness and productivity [62, 87, 92, 93].
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VLPs resemble native viruses by displaying the membrane proteins

on their envelope [36]. The similarity between both allows to transfer

processes established for DSP of WVPs to VLPs’ purification. However,

there are several factors that increase the complexity of VLPs’ purifica-

tion processes: lack of proper analytical tools, high heterogeneity and

low stability compared to native viruses, and presence of baculovirus

particles as process impurity. Baculovirus’ rod-shape makes the discrim-

ination between them and VLPs difficult to achieve. Moreover, VLPs and

baculovirus have a similar envelope, as both bud from the cell. These

increases the challenges faced in the downstream processing, as most of

the baculovirus can be co-eluting with the VLPs [54, 55, 96] Accord-

ingly, process conditions have to be optimized. In this context, the use

of a design of experiments (DoE) approach allows a rational and fast

screening and optimization of factors impacting yield and contamination

levels. Similar approaches have been successfully applied to investigate

the separation of other biopharmaceutical products, using different chro-

matographic matrices [64, 112–116]. For instance, Fortuna et al [95],

employed a DoE strategy to investigate the influence of both matrix and

process-related factors on the purification of influenza WVPs derived

from mammalian cell cultures.

This work presents the establishment of a pseudo-affinity chromatog-

raphy method to successfully purify influenza VLPs using SCMA. The

use of SCMA resulted in a superior performance in terms of product re-

covery and impurity removal compared to other conventional membrane

adsorbers. The approach reported is therefore a step towards establish-

ment of a generic platform for VLP purification.
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8.4 Materials and Methods

8.4.1 Membrane production, characterization and assem-

bly

Unmodified reinforced cellulose discs with a pore size of 3-5 µm (provided

by Sartorius Stedim Biotech GmbH, Germany) were sulfated according

to Wolff et al [87, 93, 99] adapting the reaction time and temperature to

achieve ligand densities of 7.9, 11.8, and 15.5 µmol O-SO−
3 cm−2. Briefly,

for 3 reactions chlorsulfonic acid (1.2 mL; Sigma Adrich, Germany) was

added dropwise to pyridine (30 mL, Sigma Aldrich, Germany) on ice.

Subsequently, the solution was heated to 65 ◦C until all precipitated

compounds were completely dissolved. To obtain the different ligand

densities, the respective reactions were cooled to 42 ◦C (7.9 µmol cm−2),

45 ◦C (11.8 µmol cm−2), 55 ◦C (15.5 µmol cm−2), cellulose discs (diame-

ter: 13 mm) were added to the reaction mixture and incubated for 16 h,

3 h, and 3 h, respectively. Next, the discs were washed with water and

stored in 20% ethanol until further usage. For all chromatography runs

and the determination of the ligand density (LD) 5 discs (total mem-

brane area and volume of 5.65 cm2 and 0.14 mL) were mounted in a

13 mm diameter stainless steel Swinney Filter Holder (Pall Life Sciences,

Germany).

Ligand density of the studied membrane adsorbers was determined

via ionic capacity (IC) measurement. IC was calculated by exchanging

hydrogen ion (H+), previously bound to the membrane, for sodium ion

(Na+). Briefly, the membrane was conditioned with 1 M HCl for 35

column volumes (CV) and then washed with ultrapure water until con-

ductivity is below 0.05 mS cm−1 or for a maximum of 250 CV. H+ is

then titrated with 10 mM NaOH until conductivity reaches the max-

imum or for 300 CV. The IC determination was made using 100% of

Na+ breakthrough, given in terms of conductivity, as the area below the

chromatogram curve and considering the void volume of the membrane
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adsorber device (equation 8.1):

ionic capacity =

[(Vload − Vvoid)NaOHconductivity −NaOHpeakarea]NaOHmolarity/NaOHconductivity

Vmembrane

(8.1)

8.4.2 Virus-like particles production and clarification

Cell culture and VLP production were performed as described by Car-

valho et al [55]. Briefly, High Five Cells were cultured in Insect-EXPRESS

medium (Lonza, Basel, Switzerland) and infected with recombinant bac-

ulovirus (kindly provided by Redbiotec AG) encoding for hemagglutinin

subtype H1 from Influenza A/Brisbane/59/2007 and M1 protein from

A/California/06/2009 virus strains. Infection was performed at a cell

concentration (CCI) of 2×106 cells mL−1, with a multiplicity of infec-

tion (MOI) of 1 IP/cell. Baculovirus titers were determined by MTT cell

viability assay [158, 159]. One tablet/50 mL of cell culture of EDTA-free

Protease Inhibitor Cocktail (05056489001, Roche Diagnostics, Germany)

and 50 U mL−1 of Benzonase (101654, Merck Millipore, Germany) were

added to the cell culture approximately 12 hours before harvest. Cells

were harvested at a viability of 50-60%, which corresponds to approxi-

mately 48 hours post infection. Clarification was performed by sequen-

tial depth filtration using a D0HC filter (MD0HC23CL3, Merck Milli-

pore, Germany) and a Opticap XL150 Capsule with 0.5/0.2 µm pore

size (KHGES015FF3, Merck Millipore, Germany). Clarified material

was aliquoted and stored at -80 ◦C.

8.4.3 Virus production and primary processing

Influenza virus A/PuertoRico/8/34 (H1N1) whole particles were pro-

duced in suspension MDCK.SUS2 cells cultivated in chemically defined

medium (Smif8, Gibco, by contact through K. Scharfenberg, FH Olden-

burg/Ostfriesland/Wilhelmshaven, Germany) [208] and pre-processed as

described by Fortuna et al [95].
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8.4.4 Desalting and sterile filtration

Sample preparation prior to the purification step was required for both

VLPs and WVPs. Buffer exchange to phosphate buffered saline (PBS)

with the required NaCl concentration for the loading buffer (more details

in the chromatography section) was performed with a HiPrep 26/10 de-

salting column (17-5087-01, GE Healthcare LifeSciences, Uppsala, Swe-

den). A Minisart filter unit (0.2 µm) was used for sterile filtration (16534,

Sartorius Stedim Biotech, Göttingen).

8.4.5 Experimental design

A set of experiments was generated using a 3-level optimization Rechtscha-

ffner design supported by the software MODDE Pro 11 (Sartorius Stedim

Data Analytics AB, Sweden). The factors investigated (Table 8.1) were:

ligand density (LD, µmol cm−2), salt concentration for loading and elu-

tion (respectively NaClload and NaClelution, mM) and flow rate in the

load and elution steps (respectively Qload and Qelution, mL min−1); and

the responses considered: loss in the flow through and product yield in

the elution fraction (both given as relative amount of the total of HA

loaded). Overall, 24 chromatographic runs were carried out, including

three replicates of the center point. The data was fitted using partial

least squares regression (PLS) according to a general second order poly-

nomial equation (equation D.1) [209, 210].

Based on the results of the experimental design (Table D.1) and using

MODDE’s Optimizer, a combination of factors (set point) that minimizes

HA loss during the loading step and maximizes the yield of the elution

step was chosen.

8.4.6 Chromatography experiments

All chromatography experiments were carried out on an ÄKTA Pure

25 system (UNICORN 6.3 software, GE Healthcare Bio-Sciences AB,

Uppsala, Sweden) and monitored inline using UV absorbance (at 280 nm
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Table 8.1: Factors investigated, and respective levels, for the optimization of influenza
virus-like particles (VLPs) using sulfated cellulose membrane adsorbers (SCMA).

Level

Factors Abbreviation Low center high

Ligand density
(µmol cm−2)

LD 7.9 11.8 15.4

Salt concentration
for load (mM)

[NaCl]load 20 40 60

Salt concentration
for elution (mM)

[NaCl]elution 200 600 1000

Flow rate for load
(mL min−1)

Qload 0.2 0.4 0.6

Flow rate for elution
(mL min−1)

Qelution 0.5 1.0 1.5

wavelength) and dynamic light scattering (DLS, NICOMP 380 at 633 nm

wavelength, Particle Sizing Systems, Santa Barbara, CA, USA). Briefly,

the SCMA were equilibrated with loading buffer and then loaded. After

a wash step with the loading buffer, the membranes were eluted in a

single step with elution buffer, sanitized with 0.5 M sodium hydroxide

(for 15 min) and re-equilibrated. Each set of membranes was used for

a maximum of 5 times. PBS was used as basis buffer system for all

chromatographic runs. The concentration of NaCl in the loading and

elution buffer was adjusted according to the design matrix (Table D.1)

or to the predicted set-point. The total void volume of the system (1 mL

considering system and membrane device) is considerably bigger than

the total membrane volume, therefore every chromatography step lasted

as long as required to have a correct buffer exchange to the required

buffer (minimum 4 mL). For the experiments in the design matrix, the

membranes were loaded with 5 mL of the desalted and filtered VLP

material. Dynamic binding capacity at 20% breakthrough (DBC20%) was

determined with the conditions of NaClload, NaClelution, Qload and Qelution

predicted for the set point. Sample loading (10 mL) was monitored
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by absorbance and light scattering signal. Additionally, the amount of

hemagglutinin protein in the flow through fractions was quantified offline

as described in hemagglutination assay section. The DCB20% and the

chosen set point were experimentally verified with technical replicates

(n=3). For the set point, a loading challenge of 70% of the DBC20%

was used. Chromatographic purification performance with SCMA was

compared to Sartobind pico S and Sartobind pico Q (both 0.08 mL bed-

volume) using the operation parameters described for the set point and

technical replicates (n=3). The flow rates were scaled down, keeping the

residence time for the loading and elution step constant. The elution of

the Sartobind Q included 3 steps with elution buffers containing 600 mM,

920 mM and 2 M NaCl. For Sartobind S only the two last steps were

performed.

Finally, as positive control, the SCMA performance with influenza

WVPs was evaluated (n=3) under the same set-point operation condi-

tions, loading 4 mL.

8.4.7 Total protein quantification

To quantify the total protein present in each sample, the BCA Protein

Assay Kit (23225, Thermo Fisher Scientific, USA) was used, following

manufacturer’s instructions. Bovine serum albumin (BSA) was used for

the calibration curve (23209, Thermo Fisher Scientific, USA). Samples

were diluted between 2-256-fold to avoid interferences with the method.

A clear flat bottom 96-well microplate (655101, Greiner Bio-One GmbH,

Germany) was utilized and the absorbance at 562 nm was measured on

Infinite M200 PRO NanoQuant (Tecan, Switzerland) microplate multi-

mode reader.

8.4.8 Total dsDNA quantification

Total dsDNA was determined according to the fluorescence method de-

scribed by Opitz et al [86] and using the Quant-iT Picogreen dsDNA

reagent (P7581, Molecular Probes, USA). The standard curve was pre-
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pared with λ-DNA (#D1501, Promega GmbH, Germany). The assay was

carried out in a black 96-well microplate, flat transparent (3915, Corning,

USA) and the fluorescence (λexcitation = 485 nm, λemission = 535 nm) was

measured on the Infinite M200 PRO NanoQuant (Tecan, Switzerland)

microplate multimode reader.

8.4.9 Hemagglutination assay

Hemagglutinin (HA) protein content was evaluated using two hemag-

glutination assays: a quantitative assay for VLPs and an activity as-

say for virus, respectively. Quantitative hemagglutination assay, for HA

quantification of VLPs, was carried out based on the protocol described

elsewhere [54] with some modifications. Briefly, 50 µL or 66.7 µL, de-

pending on the dilution factor, of PBS were added in each well of a

clear, V bottom 96-well microtiter plate (611V96, Sterilin, USA). For

each sample, two initial dilutions were performed, 1:2 and 1:3. 50 µL or

33.3 µL were added to the first well of each line and then two-fold serial

dilutions (50 µL of sample in an equal volume of PBS) were performed.

The final 50 µL from the last dilution were discarded. Finally, 50 µL of

1% chicken erythrocytes (LOHMANN TIERZUCHT GmbH, Germany)

were added to each well. The plate was incubated at 4 ◦C for at least 30

minutes without disturbance. As positive control, an internal standard

purified and concentrated was used. The standard HA concentration was

previously evaluated by SRID assay. The level of hemagglutination was

inspected visually for all the wells and the highest dilution capable of

agglutinating chicken erythrocytes was determined.

Influenza WVPs were quantified according to the method described

by Kalbfuss et al [211]. Briefly, each sample was prepared in two different

pre-dilutions by adding PBS to 100 µl or 70.7 µl of virus sample to achieve

a final volume of 200 µl. These were then diluted in series (1:2) with

PBS in a U-bottom 96-well plate (650160, Greiner Bio-One, Germany).

In addition, an internal standard was included and measured at least

twice. 100 µl of purified chicken erythrocytes (2×107 cells mL−1) were
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added to each well and the plates were allowed to incubate for at least 2

hours, before evaluation.

8.4.10 Transmission electron microscopy

TEM analysis was performed to analyze the presence, integrity and mor-

phology of the VLPs before and after SCMA purification step. Sample

preparation was performed as follows: a drop (5 µl) of each sample was

adsorbed onto a formvar coated 150 mesh copper grid from Veco (Science

Services, Germany) for 2 minutes. Then, the grid was washed 5 times

with sterile filtered dH2O, soaked in 2% uranyl acetate for 2 minutes

and dried in air at room temperature (22 ◦C). A Hitachi H-7650 120 Kv

electron microscope (Hitachi High-Technologies Corporation, Japan) was

used to analyze the samples.

8.5 Results and Discussion

8.5.1 Experimental design and optimization

The chromatographic purification of influenza VLPs reported in this

work was optimized using a design of experiments (DoE) approach con-

sidering factors already identified as critical for the purification of in-

fluenza whole virus particles (WVPs) using sulfated cellulose membrane

adsorbers (SCMA) [87, 92, 93, 95]. Taking into account the similarities

between WVPs and VLPs, it is also expected these factors to be impor-

tant. Table 8.1 summarizes the factors investigated: ligand density (LD),

load and elution conductivity were already reported; load flow rate was

assessed as it was observed that residence time is important for bind-

ing and further elution; elution flow rate has also an important role on

product recovery [212, 213]. The results showed that product recovery

increases with the increase of the elution flow rate. This can be explained

by the improvement of mechanical removal of VLPs from the membrane.

Higher flow rates force the particles to detach from their binding sites
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and entrapment of these large particles into membrane pores is reduced.

Although product concentration is usually taken into consideration on

the experimental design, in this case it was left out of investigation.

Our strategy intends to use VLPs’ clarified bulks (always with low HA

concentrations) as loading product for the SCMA. From our knowledge,

HA concentration is similar (in the same order of magnitude) amongst

different influenza VLPs, and using the insect cells/baculovirus expres-

sion system. However, this factor should be evaluated in the future if

one intends to use SCMA train at a different stage of the downstream

process.

The initial design considered several responses: HA recovery yield

(in the product fraction), loss of HA (in the flow through fraction) and

contaminant removal (DNA, total protein and baculoviruses) from the

product fraction. The goal was to establish a set point with the highest

HA recovery and the lowest value for all the other responses. However, as

a bind-elute strategy was used, total protein and DNA presented low val-

ues in the product fraction, often below limit of detection (LOD) of the

quantification methods. Moreover, to minimize baculovirus content, the

set point would be pushed towards higher HA losses in the flow through

and lower recovery yields. The best operation set point was then ad-

justed to minimize the HA loss in the flow through and maximizes the

product yield, excluding the impurities content from the optimization

objectives. The contour plots on Figure 8.1a-b, graphically represent

the mathematical fitting of the HA loss and yield to the factors that re-

spectively describe them (equations D.2 and D.3). The regression model

was significant for both responses according to the analysis of variance

(Table D.2).

In the case of the HA loss in the flow through of the loading step (Fig-

ure 8.1a), the factors related to elution ([NaCl]elution and Qelution) were

excluded since this is only relevant in the subsequent step. Within the

range of the investigated factors, the model predicts a HA loss between

15% and 45%. Lower Qload, resulting in higher residences times, allows
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Figure 8.1: Contour plots generated with MODDE Pro 11, according to the model
predicted (equations D.2 and D.3) for HA loss in the flow through (A) and yield in
terms of HA (B). Membrane ligand density (LD), salt concentration for loading and
elution (respectively NaClload and NaClelution) and flow rate in the load and elution
steps (respectively Qload and Qelution).
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Table 8.2: Set point predicted by Monte Carlo simulation (resolution 16, 10 000
simulations per point, 95% confidence level) and experimentally implemented. The
predicted values are presented as average ± standard deviation.

Factors Predicted Experimental

LD (µmol cm−2) 14.7 ± 1.2 15.4

NaCl]load (mM) 24 ± 16 24

NaCl]elution (mM) 920 ± 307 920

Qload (mL min−1) 0.24 ± 0.15 0.24

Qelution (mL min−1) 1.4 ± 0.2 1.4

more time for the interaction between the VLPs and the chromatographic

matrix to be established; while higher ligand densities increase the avail-

ability of ligands for the particles to interact with, as well as the strength

of the interaction. The same trends for LD were observed by Fortuna

et al [95], with influenza WVP, although they have investigated a higher

range (14-25 µmol cm−2). Similar to what was observed in this work, for

optimal LD the salt tolerance during load is the highest and therefore the

NaClelution can be higher without compromising on the reduced particle

losses.

Regarding the HA yield, all five factors (including linear combina-

tions of these) describe this response. The contour plot for this response

(Figure 8.1b) predicts, for a fixed Qload = 0.2 mL min−1, yield values

from 30% up to full recovery of the HA loaded. It is possible to con-

firm that, as expected from the mass balances, conditions that reduce

loss of HA in the flow through also benefit product yield in the elution

step, i.e. higher ligand densities and lower [NaCl]elution, in addition to

a low Qload. Concerning the factors directly related to the elution step,

the higher range of both [NaCl]elution and Qelution results in better yield

values. These conditions lead to a fast elution and concentrated fraction.

Table 8.2 summarizes the predicted set point and the conditions im-

plemented to test the membrane performance experimentally. The only

restriction to the suggested set point was in the LD, as only membranes
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with a certain LD were available, the closest value was selected. The ex-

periments were carried out with the membrane adsorbers with the highest

LD (15.4 µmol cm−2), which is still within the standard deviation of the

predicted value.

8.5.2 Validation of the optimal set point

Using the implemented set point described in Table 8.2, SCMA dynamic

binding capacity at 20% breakthrough (DBC20%) for the influenza VLPs

was calculated. In these conditions, the DBC20% was 78 ± 17 ngHA mL−1

(n=3) with variations corresponding to the error associated with the

hemagglutination assay. This value is lower than the one obtained for

influenza virus (data not shown) which is expected, taking into account

the differences in the strains, heterogeneity of VLPs, when compared to

native virus, and also the presence of baculovirus that compete for the

binding sites. Moreover, the expression system was not the same, which

affects the DNA and total protein levels and, consequently, impacts DBC.

To evaluate experimental set point performance, SCMA was chal-

lenged with a load equivalent to 70% of the DBC20% (0.31 µgHA), the

HA yield was 79.7 ± 5.8% and no losses of HA were detected in the

flow through fraction. Since the loaded volume was not the same as the

one used for the DoE experiments, it is not possible to directly com-

pare the responses (HA yield and losses in the FT) with the predicted

ones. However, any batch chromatography purification process, in bind

and elute mode, will be carried out using a load correspondent to a

reasonable challenge of the DBC, which validates the load conditions

mentioned above. The representative chromatograms corresponding to

these three technical replicates are represented in Figure 8.2. The UV,

measured at 280 nm, and the DLS signals allow to distinguish where

VLPs and baculovirus are co-eluting. In the flow through fraction UV

signal is high (of the same magnitude as the elution peak), while DLS

remains low. In fact, offline assays reveal that no HA is present in the

flow through, so the UV signal corresponds to process impurities and
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Figure 8.2: Representative chromatogram (n=3) of the purification of influenza VLPs
using SCMA. Red line corresponds to conductivity, blue line to UV signal measured
at 280 nm, and the green line to DLS signal.

not to influenza VLPs. UV and DLS signals are concomitant in the elu-

tion, starting to increase with the conductivity. The presence of VLPs

on the elution step was confirmed not only by the higher DLS signal but

also by the HA quantification. VLPs’ purity was assessed by the total

protein/HA and total DNA/HA ratios, before and after SCMA purifica-

tion. The values for total protein were 0.39 ± 0.04 mgtot.prot µg−1
HA and

0.11 ± 0.04 µgDNA µg−1
HA, before and after purification, respectively. For

DNA were 0.07 ± 0.03 mgtot.prot µg−1
HA and <0.02 µgDNA µg−1

HA, before

and after purification, respectively. These values correspond to a total

protein removal of 82.2% and a total DNA removal above 78.9% suggest-

ing a high purity level. Moreover, to evaluate the presence, integrity and

morphology of the VLPs TEM analysis was performed (Figure 8.3). Ini-

tial bulk (Figure 8.3a) and elution step of the SCMA purification process

(Figure 8.3b) samples were analyzed. VLPs’ morphology is maintained

after the purification process; their size, although heterogeneous, and

spherical shape are similar for both samples evaluated. Additionally, it

is possible to observe that particles contain the ultrastructural details

characteristic of influenza HA spikes [183, 184]. These results revealed

that SCMA chromatography as a single unit operation does not have an

impact in VLPs.



170 CHAPTER 8. Purification of influenza VLPs using SCMA

Figure 8.3: Transmission Electron Microscopy analysis of influenza VLPs from the
initial bulk sample (A) and from the elution step of the SCMA purification process
(B). Scale bar indicates 100 nm.

8.5.3 SCMA process performance

The potential of SCMA as chromatographic matrix for a downstream

processing train for influenza VLPs was compared with the membrane

adsorbers Sartobind Q and Sartobind S. HA recovery yield, losses in

the flow through, DNA and total protein impurity levels were analyzed

(Table 8.3).
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To compare these membranes, it is important to take into account

several parameters: pore size, chemical properties and configuration, as

well as ligand density. All membranes have similar pore sizes of >3 µm,

but they present different ligand type and density. Both Sartobind mem-

branes have a cellulose-based macro-porous structure, which is then func-

tionalized either with quaternary ammonium ligands (Q), being a strong

anion exchanger; or with sulfonic acid ligands (S), being a strong cation

exchanger. SCMA have the same backbone structure and a cation ex-

changer character resulting from the sulfate ligands, which are directly

bound to the sugar ring of the cellulose, through a covalent bond. The

ligand density also distinguishes them, with SCMA presenting higher lig-

and densities. Since Sartobind Q and Sartobind S matrices are both ion

exchangers (IEX), the mechanism of loading and elution is regulated by

ionic strength. As DoE and previous reports revealed [87, 95], SCMA

purification of influenza particles (virus and VLPs) requires loading with

low salt containing feed streams. Also, the same conditions can promote

binding to the IEX membranes. Those conditions were evaluated, avoid-

ing unnecessary optimization efforts and material consumption. Gradi-

ent runs were performed to optimize ionic strength for elution of the IEX

membranes (data not shown) . Using this information, buffer composi-

tion was determined for the performed elution steps. Interestingly, these

were the same for S and Q membranes. The additional step performed

for Q membrane with a higher ionic strength did not further improve

virus recovery. The theoretical isoelectric point for the evaluated strain

is 6.74. This value was calculated using the ExPASy ProtParam tool that

assumes that all titrable aminoacid residues have the same pKa value in

solution and in the protein environment. Due to product and process

complexity it is very difficult to have a correct experimental value, as

the overall charge of the particles can also change with the purification

step. Nevertheless, considering the theoretical value, at the working pH

(7.4) the VLPs have a negative charge. Therefore, as expected for the

anion exchanger (Sartobind Q), like for the SCMA, no losses in the FT
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were observed. HA recovery was 47.4% which is a low yield, and signif-

icantly lower (Student’s two-tailed t-test for paired samples, p = 0.016)

than the one obtained with SCMA (79.7%). This might indicate VLPs

entrapment in the membrane, even at high conductivities. Total protein

recovered in the elution fraction was more than 2.4 times higher than

the level obtained with SCMA (p = 0.008). DNA value is not com-

pared as it was below LOD. In the case of Sartobind S, HA losses in the

FT were significantly bigger than zero (one sample Student’s one tailed

t-test, p = 0.017), around 23.8%, which can be explained by the elec-

trostatic repulsion bet the negative charges of the virus and membrane

ligands. Therefore, the recovery in the elution fraction was 45.9 %, sig-

nificantly lower than SCMA (Student’s two-tailed t-test for paired sam-

ples, p = 0.012). DNA level was also below LOD and the ratio total

protein/HA was more than 1.7 times higher (p = 0.004). It can be dis-

cussed if changing pH will improve Sartobind S performance but these

VLPs are less stable at low pH than at neutral pH. Moreover, SCMA

can be used as a platform for influenza VLPs purification, applicable for

several strains, which invalidates pH-dependent processes. Finally, the

direct comparison of Sartobind S and SCMA also support that the in-

teraction between the virus and the sulfate ligand in the latter case, is

not solely of an electrostatic nature and rather relies on a pseudo-affinity

interaction with the hemagglutinin molecules in the VLPs surface. Al-

though both membranes have negatively charged groups, sulfated cel-

lulose resembles Heparin, a naturally occurring glycosaminoglycan, to

which several hemagglutinins are known to have affinity to [214]. The

chromatography strategy presented here takes advantage of this affinity

to selectively retain VLPs presenting hemagglutinin in their surface and

therefore purifying them.

SCMA performance was also evaluated for influenza WVP as a pos-

itive control (Table 8.3). The recovery yield was 64% and there was

around 2.4% of HA in the FT. The results were close to the ones ob-

tained with VLPs. Differences in yield and HA losses in the FT can be
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explained by different affinity for the ligand. DNA levels were measur-

able for virus fraction but still low (0.0038 µgDNA µg−1
HA). In the case

of total protein, the value obtained for virus was 5.38 times lower than

the one obtained for VLPs. The small differences can derive from the

different production systems (insect vs. mammalian cells), virus strain

and previous downstream treatment.

8.6 Conclusions

Herein, a downstream processing strategy using sulfated cellulose mem-

brane adsorbers (SCMA) is reported for the first time to purify influenza

VLPs.

The DoE results showed that, for an optimized process, high ligand

densities, low flow rate and salt concentration for the load and high flow

rate and salt concentration for elution should be used. The evaluated

responses were established to define a set point with the highest HA

recovery and the lowest value of HA in the FT. Using these conditions,

DBC20% (78 ± 17 ngHA mL−1) was determined and the performance of

SCMA using the predicted set point was evaluated with a 70% challenge

of DBC20%. The recovery obtained was 79.7% ± 5.8% and no losses of

HA in the FT were observed. Importantly, this system does not have an

impact on the morphology of the VLPs as confirmed by TEM analysis.

SCMA were compared with conventional membrane ion exchangers,

Sartobind S and Sartobind Q, and were superior not only in terms of

recovery yields and losses in the FT but also concerning impurity re-

moval. Moreover, as positive control, it was confirmed that these specific

SCMA under the optimal conditions for VLPs, are also suitable for whole

influenza virus particles purification.

This approach represents a step towards improvement and efficient

development of purification techniques for VLPs. Moreover, this DSP

unit operation is easily scalable and allows a reduced number of purifi-

cation steps, overall supporting the use of SCMA as platform for purifi-
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Conclusions and perspectives

Virus-based vaccines have been a health care tool for more than 50 years,

presenting a plethora of potential applications and a high market value

[64]. For influenza virus, vaccination continues to be the most effective

prophylactic strategy. However, influenza is a challenging virus to manu-

facture, namely due to its constant mutation. Therefore, research efforts

continue to be made to develop new and more effective vaccine formats,

such as VLPs, and improve current bioprocesses, both in terms of prod-

uct quality attributes and process cost-effectiveness. The ultimate goal is

to develop a vaccine that does not require annual updates, avoiding the

constant manufacturing and annual vaccination campaigns. However, as

pointed out throughout this thesis, there are still some hurdles to over-

come, namely in the DSP and analytical tools. These challenges opened

the path for the work developed here, aiming to establish improved ana-

lytical tools for influenza VLPs and novel purification processes. In this

thesis, a novel quantification method for influenza VLPs was developed

and implemented, overcoming the issues related to antibodies or fresh

red blood cells requirements. Moreover, an analytical tool using a click

chemistry approach enabled product monitoring throughout the biopro-

cess and discrimination between VLPs and baculovirus. At the DSP

level, several unit operations, based on filtration and chromatographic

tools, were studied and critical process parameters were optimized to

maximize product recovery yield and assure the minimal presence of

177
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impurities, consistent with the regulatory requirements. To cope with

influenza virus variability challenges, research efforts were focused on

process robustness and flexibility, scalability and cost-efficiency.

9.1 The EDUFLUVAC challenge

Aiming to develop a universal vaccine, EDUFLUVAC project [10] re-

quired production and purification of thirty-one different VLPs, repre-

sentative of the antigenic drift within the H1, H3, and B (sub)types.

Such a great diversity presented challenges for both USP and DSP. To

deliver all VLP products at the target dose, the goal was to maximize

productivity, recovery yield and assure the impurity clearance needed

at the pre-clinical stage. Moreover, having in mind further challenge

studies, the scalability of the selected process was taken into consider-

ation. The balance of all these factors was critical, as it is not feasible

to optimize USP and the DSP for each VLP, neither in terms of time,

nor in terms of cost. Thus, we searched for production and purification

processes that could fit all the strains. This strategy took into consid-

eration the heterogeneity and complexity of the VLPs, requiring some

flexibility during process development. Multivalent VLPs were produced

using different polycistronic baculoviruses as vectors. Distinct specific

productivities and vectors stability [215], as a result of influenza strains

particularities, were observed. Indeed, to overcome co-infection draw-

backs observed during production of one pentavalent H3 VLP, a modu-

lar strategy, combining stable and baculovirus-mediated expression was

pursued [53]. As specific productivities were different, and a target dose

should be achieved, parameters such as time of harvest (TOH), multiplic-

ity of infection (MOI) or cell concentration at infection (CCI) suffered

optimization during this project. Although the main focus of this thesis

was on DSP development, the variability of the USP has a strong impact

on VLPs’ purification performance. This multitude of VLPs presenting

different physicochemical properties, such as charge and viral proteins’
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stability, required the adjustment of several process parameters, like pH

or ionic strength. Therefore, process integration should balance USP and

DSP efficiency with product quantity and quality.

9.2 An integrated DSP workflow for influenza

VLPs

Manufacturing of influenza vaccine candidates is facing significant im-

provements, but DSP remains one of the main bottlenecks for their

success. Therefore, there is an increasing interest in optimizing novel

DSP strategies, to increase process efficiency, flexibility, robustness and

scalability. Research efforts are also being made to speed-up the biopro-

cesses, enabling a faster release of vaccines, critical in the case of pan-

demics, and supporting worldwide demands for influenza vaccine doses

[39, 40, 43, 216]. Moreover, purification processes for new vaccine for-

mats, such as VLPs, are not yet mature, relying mostly on the processes

described for virus. Additionally, implementation of proper analytical

tools for product quantification and process monitoring are critical. The

work reported in this thesis contributed to overcoming some of the in-

fluenza biomanufacturing limitations and can be, in the future, employed

as an integrated and flexible platform for influenza VLPs, produced using

IC-BEVS system.

9.3 Robust quantification tool

Current methodologies for influenza virus quantification, SRID and HA

assay, present several drawbacks, namely related with the antibody or

red blood cells-dependence, incapacity to analyze crude samples or for

VLPs bioproduction assays [96, 130]. Chapter 4 reports a novel label-

free HA quantification method, that exploits the binding capacity of the

viral HA protein to sialic acid receptors present in the cells. It elim-

inates the use of antibodies, and their required constant updates, and
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the need for fresh red blood cells, decreasing the variations associated

with the user operation and host-origin. This fast tool allows the anal-

ysis of in-process samples of influenza multivalent VLPs, independently

on the strain, group, and subtype. This is an advantage when consider-

ing screening experiments for pre-clinical studies, as the same tool can

be applied to an entire range of products. Given its capacity to ana-

lyze in-process samples, it can also be helpful during USP optimization

(Figure 9.1). This quantification method is an appealing tool for biopro-

cess development, being a step further in the development of a universal

quantification tool.
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9.4 Establishing process monitoring tools

Monitoring is critical for process optimization, often requiring labeling

of the target product to discriminate it from the remaining impurities.

The ideal label does not affect product biological function, charge or

size, allowing the direct comparison with the behavior of a non-labeled

product. Complex systems, such as heterogeneous influenza VLPs pro-

duced here, offer an increased challenge associated with the presence of

Baculoviruses, the main impurity of the process. Chapter 5 describes

a straightforward two-step strategy to chemically functionalize and flu-

orescently label influenza VLPs, specifically, by using a click-chemistry

approach. It constitutes an important support throughout the bioman-

ufacturing process, enabling its optimization and aiding process integra-

tion, as it covers both USP and DSP. Importantly, it is not restricted to

the DSP scheme reported, and labeling after particle functionalization

is not reduced to fluorophores [54]. This tool coupled with a FACS step

also enabled the discrimination and separation between Baculoviruses

and VLPs (Figure 9.1). This strategy can be used as a powerful at-line

tool for DSP monitoring and optimization leading to improved recovery

yields and product purity levels. Moreover, this functionalization does

not affect particle size, charge and HA biological function is preserved.

9.5 Improved downstream processing operations

When the adequate tools for process and product monitoring are imple-

mented, the tasks of defining and optimizing a manufacturing process

become easier. Nevertheless, having a process backbone already defined

will speed up development. Our initial DSP strategy was based on a

standard process (Figure 7.1), but as VLP complexity increased, further

optimization was required. Accounting for the effects of process vari-

ability and challenges related to VLPs’ variable biophysical properties,

different unit operations were evaluated. The goal was to achieve a uni-
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versal process, in the sense that only strain independent unit operations

were applied. Moreover, a balance between product recovery, impurity

clearance, processing time and costs was also considered. Starting with

the clarification step, on Chapter 6, and ending with sterile filtration, a

complete DSP was defined.

9.5.1 Clarification strategies

Clarification is a critical step that links USP and DSP processes, hav-

ing a strong impact in product recovery yields, product consistency and

process reproducibility [61]. However, it has not been well studied, rep-

resenting an opportunity to improve the purification of biologicals, in

particular, influenza vaccine candidates. On Chapter 6, a two-stage NFF

clarification train, comprising primary and secondary filters, was selected

for studied influenza VLPs. This strategy is robust to USP variability

and is a scalable approach, offering a high level of product recovery and

impurity clearance, presenting a final turbidity value below 10 NTU,

which is desirable at this stage of the process. Importantly, it can be

applied as a potential universal platform, being suitable for mono and

multivalent VLPs, from different strains and groups (Figure 9.1). This

clarification approach can be adapted either for screening experiments,

to deliver pre-clinical material, or at a later stage, when there are only

one or two selected products to develop.

9.5.2 Membrane-based process

The delivery of pre-clinical material for toxicology studies required a

compromise between productivity and impurity clearance, coupled with

process economics and fast turnover. Chapter 7 proposes a membrane-

based DSP for influenza VLPs vaccine candidates. Selection of appro-

priate ultrafiltration membrane chemistries, MWCO and process oper-

ating parameters (TMP, permeate flux control, volume reduction factor,

diafiltration volumes) was performed. Selection criteria were based on

maximizing product recovery, critical to achieving the target dose, and
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decreasing process time. Two UF/DF unit operations, using PES mem-

brane cassettes of 1000 and 300 kDa, were optimized enabling a product

yield of approximately 80%. DNA and total protein clearances were

above 78% (<LOD) and >98%, respectively. All the process unit opera-

tions are scalable, single-use and strain and subtype-independent, paving

the way for a universal process train for influenza VLPs. When compared

with a chromatographic standard process (Figure 7.1), the proposed one

decreased significantly both processing time (30%) and buffer consump-

tion (5.6 fold), using only single-use materials (Figure 9.1). Importantly,

this strategy does not impact VLPs’ morphology. These unit operations

can also be used for influenza viruses and for other production systems.

Moreover, at clinical phases, further purification is needed to achieve im-

purity targets required by regulatory authorities. In these cases, TFF

can also be included as a step of a wider DSP and more diafiltration

volumes can be added, to improve purity.

9.5.3 Improved Chromatographic strategies

Chapter 8 offers an orthogonal chromatographic pseudo-affinity step to

purify influenza VLPs and whole influenza virus particles, using sulfated

cellulose membrane adsorbers (SCMA). A Design of Experiments (DoE)

strategy was applied to optimize process parameters, such as ligand den-

sity, flow rate and ionic strength at load and elution steps and establish

a set point with the highest HA recovery. As the selection of strains nar-

rows, individual optimization is required to improve the process. DoE

can be used to optimize the process for a selected VLP, having as a base

the data reported, and achieve product and impurity specifications. A

VLPs’ recovery of approximately 80% was obtained with DNA and total

protein clearances above 80% (<LOD) and >89%, respectively. SCMA

proved to be better than the conventional chromatographic methods,

are easily scalable, disposable, and can be optimized for different types

of particles, supporting their potential use as a platform for purification

of influenza particles vaccine candidates (Figure 9.1).
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9.6 Final remarks and Future perspectives

The purification strategies developed under the scope of this thesis can

provide an alternative to the conventional virus purification trains found

in the literature [62, 64, 72]. Figure 9.2 depicts a possible DSP as a

strategy to optimize later clinical phase processes, taking advantage of

tangential flow filtration combined with an orthogonal pseudo-affinity

chromatographic step. The clarification operation is compliant with up-

stream variability, yielding high recovery yields for the plethora of VLPs

assessed, even at different scales. It is worth to note that the final pore

size of the secondary clarification filter is 0.22 µm, which is ideal to store

the product during a possible holding point. Depending on the clarified

bulk volume, the first UF/DF step can be employed as a concentration

and initial purification operation. As the chromatography proposed is

a pseudo-affinity step, low flow rates are required during load, to in-

crease residence time and enhance product capture. Therefore, a prior

product concentration will impact significantly process productivity. Af-

ter SCMA step, here developed as a purification stage, a new UF/DF

step can be employed to further concentrate and formulate prior ster-

ile filtration. Importantly, the developed analytical tools for product

quantification and process monitoring can be applied at all stages of the

process, from USP to DSP sterile filtration. Overall, the results pre-

sented in this thesis contributed to generate knowledge regarding the

development of new analytical tools, for both process monitoring and

product quantification, that impact undoubtedly the DSP of influenza

VLPs. New processes were designed by optimizing and integrating sev-

eral unit operations, including the use of new materials. Critical process

parameters of filtration-based methods and chromatography were as-

sessed. By combining membrane technology and chromatographic tools,

a more efficient and robust DSP, comprised by clarification, ultrafiltra-

tion/diafiltration, pseudo-affinity chromatography, and sterile filtration

unit operations, was established. Importantly, high product recovery
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Figure 9.2: Proposed integrated process comprising the optimized unit operations:
clarification, capture chromatographic (SCMA), UF/DF and sterile filtration.

was achieved, VLPs’ morphology was maintained, and impurity clear-

ance was optimized based on the stage of the clinical studies. This data

can now be used as a base to develop a potential universal platform for

influenza VLPs as vaccine candidates.

9.6.1 Future perspectives

There are still some hurdles to overcome and points that deserve discus-

sion to achieve further improvements in the influenza vaccination field.

The HA quantification tool (Chapter 4) lacks a proper VLP reference

standard, which is true also for other methods [96, 130]. One possible

solution is to use a FACS step coupled with a purification process (Chap-

ter 5) to attain a highly pure VLP preparation, free of Baculoviruses.

This will improve the specificity of the signal, by removing the contri-

bution of the HA present on the envelope of Baculovirus. On the other

hand, a gradient ultracentrifugation to purify these VLPs can also be ap-

plied [74]. However, this laborious process does not work properly for all

the strains, and Baculovirus discrimination can be challenging [59]. The

proper formulation should also be evaluated, to guarantee VLP stability.

Research efforts are being made to develop efficient separation meth-

ods, using for instance anion exchange or hydroxyl-functionalized mono-

liths, that allow discrimination between baculovirus and VLPs [217, 218].

Moreover, Marek et al [219] develop a novel baculovirus-insect cell tech-

nology approach that allows the production of biopharmaceuticals with-
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out contaminating baculoviruses. This strategy uses a defective bac-

ulovirus vector which lacks an essential gene for viral structure, thus

disrupting virus replication. The DSP using this system is simplified, as

it eliminates the need for baculoviruses removal during the purification

process. Despite these achievements, that can be evaluated for influenza

VLPs, the question of whether we need to remove baculoviruses from

the final purified product can be raised. In fact, Baculovirus-derived

VLPs are able to induce a stronger and broader immune response, when

compared to VLPs derived from other expression systems, such as mam-

malian cells [163].

Besides Baculovirus, the presence of other extracellular vesicles on

VLP preparations, such as microvesicles and exosomes, are often reported

[220, 221], having a significant impact in the DSP unit operations and

on product characterization. Exosome production using this insect cells

and Baculovirus system is not well characterized, but these vesicles can

be observed by TEM analysis, for instance. Therefore, their presence

and ways to discriminate them from the product of interest should be

studied in detail. This is of particular importance when dealing with

this challenging system, highly heterogeneous VLPs, and Baculovirus

presence. The separation of vesicles from HIV-1 gag VLPs was reported

[217, 218] and can also be a starting point for influenza VLPs.

Strategies to cope with the complexity of this system and achieve

better processes need to go beyond the development of robust meth-

ods for product and process monitoring. New materials and matrices

should be considered for specific baculovirus and/or exosome affinity,

which will greatly improve product purity. In fact, the use of affinity

chromatography in influenza vaccine purification will be critical to im-

proving yields and product purity, also enabling reduce the number of

unit operations [85]. Moreover, having in mind the main goal of influenza

vaccine research and manufacturing, a universal vaccine, optimization of

affinity unit trains that are strain independent, targeting HA conserved

regions, for instance, will be a considerable improvement on the field
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[85, 222]. The design of new stationary phases is also emerging with the

development of additive manufacturing (“3D printing”), which will pro-

vide a fresh perspective and opportunity to improve vaccine DSP [223].

Nevertheless, the printing technology still needs improvements regarding

resolution.

To cope with global demands for seasonal vaccines and pandemic

possibilities, new processes and materials should be designed taking into

consideration all the new possible vaccine formats, as it is still difficult to

define which one(s) will present the best efficacy and succeed as a vaccine.

Furthermore, move towards single-use strategies will speed up vaccine

delivery and decrease the turnover time between different products.
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Figure A.1: Evaluation of non-specific binding for H1 VLP. Subtracted association
values from VLP association to sialic acid receptors and naked biosensors, i.e, without
loading of sialic acid receptors to assess non-specific binding. H1 VLP is presented
as an example at different concentration values: 90 µg mL−1 (blue), 45 µg mL−1

(orange), 22.5 µg mL−1 (grey) and 12.25 µg mL−1 (yellow).
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Figure A.2: rHA binding response. rHA H1N1 protein binding to sialic acid receptors
α-2,3 (orange) and α-2,6 (blue). The dissociation step starts at 2400 s (black vertical
line). HA protein was at a concentration of 20 µg mL−1. Receptors concentration
used was 0.5 µg mL−1.
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Figure A.3: Calibration curves for Influenza VLPs. Representative calibration curves
of different Influenza VLP strains binding to α-2,3 and α-2,6 receptor mixture. Ul-
trafiltration retentate sample of H15 (A), B monovalent (B), B trivalent (C) and H3
(D) strains. The standard error of the estimation associated with the linear regression
is 0.01 nm (which corresponds to ∼2.44 µg mL−1) (A), 0.003 nm (which corresponds
to ∼1.43 µg mL−1) (B), 0.001 nm (which corresponds to ∼0.5 µg mL−1) (C) and
0.003 nm (which corresponds to ∼0.43 µg mL−1) (D).
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Figure A.4: Downstream process samples’ quantification using BLI method. Calcu-
lated HA concentration values compared with hemagglutination assay from different
Influenza strains. Black lines correspond to hemagglutination assay predictive con-
centration range, x axis to HA values calculated by hemagglutination and y axis to
HA values calculated by octet assay. Representation for H1 (A), H15 (B), B Trivalent
(C) and H3 (D) strains.
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Figure A.5: Subtype and group strain specificity. HA quantification of several mono
and multivalent strains from B group (A) and H3 subtype (B). UF retentate samples
from one monovalent strain of each group were used as calibration. Bars without fill
correspond to HA values calculated using hemagglutination assay. Bars with coloured
fill correspond to HA values calculated using octet assay. For each strain, two or three
different samples with different concentrations are presented. Monovalent strains #1
are coloured in orange, monovalent strains #2 in green and monovalent strain #3 in
yellow. Blue corresponds to trivalent strains and red to the pentavalent one. Top right
panel presents calculated HA concentration values compared with hemagglutination
assay. Black lines correspond to hemagglutination assay error range, x axis to HA
values calculated by hemagglutination and y axis to HA values calculated by octet
assay. Monovalent strains #1 are coloured in orange, monovalent strains #2 in green
and monovalent strain #3 in yellow. Blue corresponds to trivalent strains and red
to the pentavalent one. Error bars are omitted for clarity (see standard errors of the
estimation in Figure A.3B and A.3D).
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Table A.1: LOD and LOQ for Influenza strains of different subtypes and groups.

Strain LOD (µg mL−1) LOQ (µg mL−1)

H1 0.43 1.30

H15 0.87 2.65

B 0.52 1.57

BTrivalent 0.61 1.85

H3 0.66 2.02
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Table A.2: HA quantification by hemagglutination and Octet assay for all the sam-
ples evaluated in this study. ?HA concentration value obtained by the Octet was
evaluated for being inside the predictive range of concentrations associated with the
hemagglutination assay error.

Strain Sample
HAOctet

(µg mL−1)
HAHemagglutination

(µg mL−1)
Out of
Range?

H15

Before
Harvest

3.2 0.7 Yes

Before
Clarification

2.94 1.4 Yes

After
Clarification

2.33 0.7 No

UF retentate
(1)

18.3 22.4 No

UF retentate
(2)

3.59 5.6 No

UF retentate
(3)

1.8 1.4 No

UF retentate
with trehalose

4.44 13 Yes

Final product
with trehalose

11.88 45 Yes

Final product
(1)

14.48 15 No

Final product
(2)

10.74 10 No

Final product
(3)

6.31 5 No

Final product
(4)

4.07 2.5 No

H7

Final product
(1)

15.4 15 No

Final product
(2)

16.72 10 No

Final product
(3)

8.74 5 No

Final product
(4)

4.5 2.5 No
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Strain Sample
HAOctet

(µg mL−1)

HAHemagglutination

(µg mL−1)

Out of

Range?

B Mono-

valent

#1

Before

Harvest
2.79 2.8 No

Before

Clarification
2.73 2.8 No

After

Clarification
2.45 1.4 No

UF retentate

(1)
5.21 5.6 No

UF retentate

(2)
2.23 3.6 No

UF retentate

(3)
1.6 1.6 No

UF retentate

with trehalose
2.05 4.3 Yes

Final product

with trehalose
3.31 2.8 No

Final product

(1)
4.44 2.8 No

Final product

(2)
1.94 1.6 No

B Mono-

valent

#2

Final product

(1)
23.51 5.6 Yes

Final product

(2)
21.24 4.6 Yes

B Mono-

valent

#3

Final product

(1)
15.83 5.6 Yes

Final product

(2)
14.80 4.6 Yes
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Strain Sample
HAOctet

(µg mL−1)

HAHemagglutination

(µg mL−1)

Out of

Range?

B

trivalent

Before

Harvest
0.79 0.35 Yes

Before

Clarification
0.83 0.35 Yes

After

Clarification
0.83 0.26 Yes

UF retentate

(1)
3.81 4.2 No

UF retentate

(2)
1.83 2 No

UF retentate

with trehalose
1.19 2.1 No

Final product

with

trehalose (1)

6.22 10 No

Final product

with

trehalose (2)

6.10 3 Yes

Final product

(1)
16.56 10 No

Final product

(2)
6.82 4 No
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Strain Sample
HAOctet

(µg mL−1)

HAHemagglutination

(µg mL−1)

Out of

Range?

H3 Mono-

valent

#1

UF retentate

(1)
5.53 5.6 No

UF retentate

(2)
3.89 3.6 No

UF retentate

(3)
1.48 1.6 No

UF retentate

with

trehalose (1)

5.43 5.6 No

UF retentate

with

trehalose (2)

2.76 2.8 No

Final product

with

trehalose (1)

4.20 10 Yes

Final product

with

trehalose (2)

5.42 5 No

Final product

with

trehalose (3)

3.72 2.5 No

Final product

(1)
11.65 10 No

Final product

(2)
6.80 5 No

Final product

(3)
3.86 2.5 No

H3 Mono-

valent

#2

Final product

(1)
16.1 5 Yes

Final product

(2)
9.44 2.5 Yes
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Strain Sample
HAOctet

(µg mL−1)

HAHemagglutination

(µg mL−1)

Out of

Range?

H3

Trivalent

Final product

(1)
4.85 5 No

Final product

(2)
2.66 2.5 No

H3

Pentavalent

Final product

(1)
5.44 5 No

Final product

(2)
2.58 2.5 No
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Figure B.1: Fluorescence Microscopy of VLP. Raw confocal images (2048x2048 pixels;
135x135 µm) from Figure 5.1 (Green, Red and Merge channels, and Particle detec-
tion analysis output; single channels were converted to grey scale). Right panels
zoom Green/Red signal and highlight the accuracy of the Particle detection tool used
throughout the study to quantify VLP production and green fluorescence emission
(ImageJ Mosaic particle tracking pluggin). Observation of chemically modified VLP
with a fluorescent probe (Alexa Fluor 488) that were added into IbiTreat 8 µ-well
slides. 500 nm Fluorescent beads were used as size and green signal reference. Due
to its multi-color fluorescence profile, red signal was also acquired. From green-red
merge images one can discriminate beads from VLP (yellow and green dots, respec-
tively) after proper total particle identification and count by Mosaic tool. Control
VLP sample shows no green signal (no labeling with Alexa Fluor 488, meaning that
azide ligation is specific for the non-canonical azidohomoalanine (Aha) amino acid).
Observation of chemically modified VLP with the fluorescent probe Alexa Fluor 488
or control experiment was performed by depositing 100-fold dilutions of each condi-
tion supernatant into IbiTreat 8 µ-well slides and allowed to attach for 1 h. Each
preparation was then labelled with 20 µM of Alexa Fluor 488 for 30 min and washed
3 times with PBS. 500-fold dilution of 500 nm stock fluorescent beads were added to
each sample for 30 min and were used as size and green signal reference.
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Figure B.2: a. Evaluation of the best time to add the non-canonical azidohomoalanine
(Aha) in the experiment samples after baculovirus infection. The incorporation of
Aha into HA protein was evaluated at different conditions: 12, 24, 36 and 48 h post
baculovirus infection (hpi). This figure shows control experiment with the addition of
methionine (Met) instead of Aha. These were performed to evaluate potential non-
specific labeling with the Alexa Fluor 488 probe of Met amino acid residues from other
proteins or other types of unspecific binding and confirm azide-specific ligation of our
method. Observation of chemically modified VLP with the fluorescent probe Alexa
Fluor 488 was performed by depositing 100-fold dilutions of each condition supernatant
into IbiTreat 8 µ-well slides and allowed to attach for 1 h. Each preparation was then
labelled with 20 µM of Alexa Fluor 488 for 30 min and washed 3 times with PBS.
500-fold dilution of 500 nm stock fluorescent beads were added to each sample for
30 min and were used as size and green signal reference.
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Figure B.2: b. Evaluation of the best time to add the non-canonical azidohomoala-
nine (Aha) in the experiment samples after baculovirus infection. The incorporation
of Aha into HA protein was evaluated at different conditions: 12, 24, 36 and 48 h post
baculovirus infection (hpi). This figure shows the existence of green labelled VLP
(green dots in Merge channel) indicating site-specific azide ligation of VLP HA pro-
teins. Observation of chemically modified VLP with the fluorescent probe Alexa Fluor
488 was performed by depositing 100-fold dilutions of each condition supernatant into
IbiTreat 8 µ-well slides and allowed to attach for 1 h. Each preparation was then
labelled with 20 µM of Alexa Fluor 488 for 30 min and washed 3 times with PBS.
500-fold dilution of 500 nm stock fluorescent beads were added to each sample for
30 min and were used as size and green signal reference.
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Figure B.3: a. Flowchart showing specific-site-functionalized enveloped VLP produc-
tion and purification steps. VLP production begins in a cell culture Erlenmeyer in
which 3×105 cells mL−1 of High Five are added. Once 2×106 cells mL−1 is reached,
cells are infected with baculovirus. The medium is replaced with one that does not
contain Met at 12 hpi (∆Met), and at 24 hpi the Aha non-canonical amino acid
is added to the cell culture (Met is added to control cell culture). At 48 hpi, the
VLP-rich supernatant is harvested and downstream processing (DSP) of VLP starts.
At the end of the purification process high-purity VLPs are obtained. In each DSP
step, and by including the fractions acquired in the SEC step, confocal microscopy
images were recorded to monitor the presence of modified VLPs. Images for the con-
trol experiment were also acquired. Scale bars (white) indicate 2 µm in all images.
Images are zoomed ROI from larger independent images to better visualize the sub-
diffraction green dots (VLP signal). Merge (green-red) images are shown for clarity
using the analysis described in Figure 5.1. Red signal emission was also acquired and
from green:red merge images 500 nm beads can be discriminated from VLPs (yellow
and green dots, respectively). Additional information regarding particle detection,
individual Green and Red channels and RAW confocal images can be found in Fig-
ures B.3b and B.3c for the control and Aha addition experiments, respectively. In
order to validate the approach, each sample of the DSP process was also studied by
flow cytometry. SSC:green fluorescence and Red:Green fluorescence 2D correlograms
are depicted in Figures B.6a, B.6, B.7a, and B.7b for the control and Aha addition
experiments, respectively. Experimental procedure on confocal microscopy and flow
cytometry acquisition and apparatus are available in detail in the experimental section.
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Figure B.3: b. Follow-up of DSP steps by confocal microscopy. Observation of the
presence of green fluorescent VLP at each step of the DSP (Harvest, Clarification,
Sartobind, Retentate and Permeate). Each recollected SEC fraction of the DSP step
is observed in more detail in Figure B.4. RAW confocal images (2048x2048 pixels;
135x135 µm) depicted in Figure B.3a (Green, Red and Merge channels). Figure B.3b
shows control experiment performed to evaluate non-specific azide-binding. Control
VLP sample shows no green signal. Images were acquired from depositing 100-fold
dilutions of each condition supernatant into IbiTreat 8 µ-well slides and allowed to
attach for 1 h. 20 µM of Alexa Fluor 488 was then added to each preparation for
30 min and washed 3 times with PBS. 500-fold dilution of 500 nm stock fluorescent
beads were added to each sample for 30 min and were used as size and green signal
reference.
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Figure B.3: c. Follow-up of DSP steps by confocal microscopy. Observation of the
presence of green fluorescent VLP at each step of the DSP (Harvest, Clarification,
Sartobind, Retentate and Permeate). Each recollected SEC fraction of the DSP step
is observed in more detail in Figure B.4. RAW confocal images (2048x2048 pixels;
135x135 µm) depicted in Figure B.3a (Green, Red and Merge channels). Figure B.3c
shows Aha samples to evaluate azide-binding and green fluorescence (A488 signal)
from VLP HA protein. Contrary to control VLP experiment (Figure B.3b) the im-
ages reveal positive green dots specific from VLP (Merge channel). Observation of
chemically modified VLP with the fluorescent probe Alexa Fluor 488 was performed
by depositing 100-fold dilutions of each condition supernatant into IbiTreat 8 µ-well
slides and allowed to attach for 1 h. Each preparation was then labelled with 20 µM of
Alexa Fluor 488 for 30 min and washed 3 times with PBS. 500-fold dilution of 500 nm
stock fluorescent beads were added to each sample for 30 min and were used as size
and green signal reference.
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Figure B.4: a. Detailed follow-up of SEC DSP step by confocal microscopy. RAW
confocal images (2048x2048 pixels; 135x135 µm) depicted in Figure 5.2 (Green, Red
and Merge channels). This figure shows SEC from Control experiment and SEC F0 to
F4 from Aha samples to evaluate azide-binding and green fluorescence (A488 signal)
from VLP HA protein. Contrary to control VLP experiment the images reveal positive
green dots specific from VLP in F4. Observation of chemically modified VLP with the
fluorescent probe Alexa Fluor 488 was performed by depositing 100-fold dilutions of
each condition supernatant into IbiTreat 8 µ-well slides and allowed to attach for 1 h.
Each preparation was then labelled with 20 µM of Alexa Fluor 488 for 30 min and
washed 3 times with PBS. 500-fold dilution of 500 nm stock fluorescent beads were
added to each sample for 30 min and were used as size and green signal reference.
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Figure B.4: b. Continuation of Figure B.4a. Detailed follow-up of SEC DSP step by
confocal microscopy. RAW confocal images (2048x2048 pixels; 135x135 µm) depicted
in Figure 5.2 (Green, Red and Merge channels). Figure B.4b shows SEC F5 to F8
from AHA samples to evaluate azide-binding and green fluorescence (A488 signal)
from VLP HA protein (F5). Observation of chemically modified VLP with the fluo-
rescent probe Alexa Fluor 488 was performed by depositing 100-fold dilutions of each
condition supernatant into IbiTreat 8 µ-well slides and allowed to attach for 1 h. Each
preparation was then labelled with 20 µM of Alexa Fluor 488 for 30 min and washed
3 times with PBS. 500-fold dilution of 500 nm stock fluorescent beads were added to
each sample for 30 min and were used as size and green signal reference. Determina-
tion of the concentration of labelled VLP (VlP mL−1) of each DSP process and SEC
fraction based on the particle detection of the microscope images. Calculation was
performed with equation 5.2. The number obtained is in accordance with the VLP
stock solution used to perform the labelling protocol >109 particles /mL.
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Figure B.5: a. Extrapolation of VLP population particle size diameter from SSC
signal using standard fluorescent beads with 100, 200 and 500 nm. Size distribution
of each population depicts the size heterogeneity within the VLP sample and showing
the mode of the distribution at 67 nm (green histogram).

Figure B.5: b. Flow cytometry SSC signal and the size of polydisperse samples.
For spherical particles the orientation by which the particle is detected in the flow
cytometer is irrelevant, retrieving always the same SSC value, thus a monomodal
size distribution around the diameter of the particle sphere (100 nm or 500 nm in
the example). As for the VLP sample, apart from the spherical VLP (giving a size
distribution around 70-100 nm) the presence of rod-shaped particles, baculovirus will
give SSC values far from the spherical distribution. This reflects the orientation by
which the rod-shaped particle was detected. So, using the beads ruler one can separate
the particles that are clearly larger/longer and enrich the sample with spherical VLP.
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Figure B.6: a. Supporting data to the flow cytometry experiment shown in Figure 5.3.
Observation of the presence of VLP at each step of the DSP by Flow cytometry for
Control experiment: Harvest, Clarification, Retentate, Sartobind and SEC fraction F4.
2D correlogram of side scatter (SSC) and green fluorescence signals (A488) are shown
with 5% contour plots of each population of each DSP step. Top left panel indicate
the side scatter size ruler made with 100, 200 and 500 nm size fluorescent beads
(greyscale). Gate thresholds for negative and positive populations were performed
using 100 nm beads signal - Top-right quadrant indicates green fluorescent positive
>100 nm particles - VLP. In each chart, the [100-200] nm/Alexa Fluor 488 positive
population gate - VLP - was built to quantify the presence of HA-labelled-VLP in each
stage of the DSP. Control VLP sample shows no significant green signal but rather a
heterogeneous distribution in the SSC axis (presence of VLP and Baculovirus).



213

Figure B.6: b. Supporting data to the flow cytometry experiment shown in Figure 5.3.
Observation of the presence of VLP at each step of the DSP by Flow cytometry:
Harvest, Clarification, Retentate, Sartobind and SEC fraction F4. 2D correlogram of
Red (580 nm) and green fluorescence signals (A488) are shown with 5% contour plots
of each population of each DSP step. Top left panel indicate the signals from the 100,
200 and 500 nm size fluorescent beads (greyscale). Gate thresholds for negative and
positive populations were performed using 100 nm beads signal - Top-right quadrant
indicates Red:green fluorescent positive particles. Control VLP sample (Figure 5.3)
shows no significant green signal but rather a heterogeneous distribution in the SSC
axis (presence of VLP and Baculovirus) and residual indication of auto-fluorescence
from the samples in some of the DSP steps.
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Figure B.7: a. Supporting data to the flow cytometry experiment shown in Figure 5.3.
Flow cytometry of VLP at in each step of the DSP for the Aha VLP-labeling exper-
iment (Harvest, Clarification, Retentate). A more detailed observation of each SEC
fraction was performed (Figure B.8). 2D correlogram of side scatter and green fluores-
cence signals are shown with 5% contour plots of each population of each DSP step.
Top left panel indicate the side scatter size ruler made with 100, 200 and 500 nm size
fluorescent beads (greyscale). Gate thresholds for negative and positive populations
were performed using 100 nm beads signal - Top-right quadrant indicates green fluo-
rescent positive >100 nm particles - VLP. In each chart, the [100-200] nm/Alexa Fluor
488 positive population gate - VLP - was built to quantify the presence of labelled-
VLP in each stage of the DSP. VLP sample show significant green signal of labelled
VLP (59.9%), especially on the retentate sample, the concentrated sample prior to
SEC DSP step.
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Figure B.7: b. Supporting data to the flow cytometry experiment shown in Figure 5.3.
Flow cytometry of VLP at in each step of the DSP for the Aha VLP-labeling exper-
iment (Harvest, Clarification, Retentate). A more detailed observation of each SEC
fraction was performed (Figure B.8). 2D correlogram of Red (580 nm) and green fluo-
rescence signals are shown with 5% contour plots of each population of each DSP step.
Top left panel indicate the side scatter size ruler made with 100, 200 and 500 nm size
fluorescent beads (greyscale). Gate thresholds for negative and positive populations
were performed using 100 nm beads signal - Top-right quadrant indicates Red:green
fluorescent positive particles. VLP sample show significant green signal of labelled
VLP with no Red signal, especially on the retentate sample, the concentrated sample
prior to SEC DSP step.



216 APPENDIX B. Supporting information for chapter 5

Figure B.8: a. Supporting data to the flow cytometry experiment shown in Fig-
ure 5.2 and Figure 5.3. Flow cytometry of each fraction collected in the SEC step
of the DSP for the Aha VLP-labeling experiment. 2D correlogram of side scatter
and green fluorescence signals are shown with 5% contour plots of each population of
each SEC fraction. Top left panel indicate the side scatter size ruler made with 100,
200 and 500 nm size fluorescent beads (greyscale). Gate thresholds for negative and
positive populations were performed using 100 nm beads signal - Top-right quadrant
indicates green fluorescent positive >100 nm particles - VLP. In each chart, the [100-
200] nm/Alexa Fluor 488 positive population gate - VLP - was built to quantify the
presence of labelled-VLP in each stage of the DSP. The SEC fractions with major
VLP concentration (F4 and F5) - significant green signal of labelled VLP - correlate
with the absorbance peaks from Figure 5.2 and confocal microscopy green dots.



217

Figure B.8: b. upporting data to the flow cytometry experiment shown in Figure 5.2
and Figure 5.3. Flow cytometry of each fraction collected in the SEC step of the
DSP for the Aha VLP-labeling experiment. 2D correlogram of Red (580 nm) and
green fluorescence signals are shown with 5% contour plots of each population of
each SEC fraction. Top left panel indicate the side scatter size ruler made with
100, 200 and 500 nm size fluorescent beads (greyscale). Gate thresholds for negative
and positive populations were performed using 100 nm beads signal - Bottom-right
quadrant indicates green fluorescent positive:Red negative particles - VLP. The SEC
fractions with major VLP concentration (F4 and F5) - significant green signal and none
red - correlate with the absorbance peaks from Figure 5.2 and confocal microscopy
green dots.
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Figure B.9: Supporting data to the flow cytometry experiment shown in Figure 5.3.
Flow cytometry of the nanometer sized particle controls (ruler made with 100, 200 and
500 nm size fluorescent beads) highlighting the possibility of using one-dimension dis-
crimination features to separate VLP from Baculovirus. Left panel shows the FSC:SSC
FACS plot identifying the well-defined 100-200 nm interval that enables accurate and
precise VLP separation. Right panel shows the green fluorescent emission of the beads
also highlighting the Green positive (VLP in the case of labeling) against the Green
negative (Baculovirus in our case).
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Figure B.10: Supporting data to the TEM images acquired for Baculovirus control
sample, control VLPs from the concentration step of the purification process, and
of modified VLPs from the concentration step of the purification process. Scale bar
indicates 100 nm. Uncropped and additional TEM images from Figure 5.4 and 5.6.
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Western Blot analysis and MS proteomics of HA

/ M1 labelled VLP

Western blot analysis was performed for control and modified Influenza

VLPs, with both precipitated (pp) and non-precipitated samples. As a

control, M1 protein from Influenza A H1N1 strain and H3 Influenza VLP

(produced and purified at iBET) were used. SeeBlue markers were used

as molecular weight (MW) control. Control and labelled VLP samples

were incubated with Alexa Fluor 488 fluorescent probe prior to SDS-

PAGE gel running. A fluorescent imaging system was used to reveal

the gel and analyse the presence of fluorescent bands. Bands identified

with numbers from 1 to 4 were excised from the corresponding gel and

analysed by mass spectrometry. In order to detect modified peptides,

MS data were also analysed using the BioPharmaView software version

1.0 considering a Met-Aha modification.
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Figure B.11: Raw data of Figure 5.5 for identification of HA and M1 proteins by
western blot analysis and fluorescent band detection of labelled Influenza VLPs’ pro-
teins. a, M1 Influenza protein detection on control and labelled VLPs by western blot
analysis. M1 protein from Influenza A H1N1 strain was used as positive control (M1
std). Band (1) was excised and identified as M1 by mass spectrometry (Table B.1). pp
means precipitated sample. b, HA Influenza protein detection on control and labelled
VLPs by western blot analysis. H3 VLP from Influenza A H3 strain, produced and
purified at iBET, was used as positive control (H3 std). Band (2) was excised and
identified as HA by mass spectrometry (Table B.1). pp means precipitated sample.
c, SDS-PAGE gel fluorescence detection of control and labelled VLPs incubated with
Alexa Fluor 488 probe. Bands (2) and (3) (red highlight) were excised and detected
as HA by mass spectrometry (Table B.1). Band (4) was detected as a Telokin-like
protein of baculovirus (blue highlight). Free Alexa Fluor 488 probe was observed at
the bottom of the gel (orange highlight). Fluorescent molecular weight was added as
a control (green highlight). pp means precipitated sample.
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Supporting information for “Membrane-based approach for

the downstream processing of influenza virus-like particles”

(Chapter 7)
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Table C.1: Technical specifications of ultrafiltration membrane cassettes evaluated.
NMWL: Nominal Molecular Weight Limit; PES: Polyethersulfone; RC: Regenerated
Cellulose.

Membrane
type

Material NMWL (kDa) Screen Type
Screening

surface area
(cm2)

Biomax PES

1000

C (coarse screen)
50

500

300

100

Ultracel RC
1000

300

Table C.2: Technical specifications of sterile Millex filter units evaluated. PES:
Polyethersulfone; PVDF: polyvinylidene fluoride.

Membrane
Material

Pore size
(µm)

Screening
surface area

(cm2)

Filter
Diameter

(mm)

PES
0.22 4.5 33

PVDF

Table C.3: Series and parallel device arrangement evaluation. PF, PR and PP are
the measured pressures at the feed, retentate and permeate ports at the experiment
endpoint.

Configura-
tion

VLPs
recovery %
HA assay

VLPs
recovery %
Nanosight

TMP
bar

PF | PR | PP bar

Parallel 95.4 115.0 0.74 (0.86 | 0.61 | 0.01)

Series 50.4 49.3 0.81 (1.57 | 0.05 | 0.01)
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Figure C.1: TMP excursion for the 1000 and 300 kDa devices. CRC (A), PES (B).
300 kDa red series, 1000 kDa blue series.
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Figure C.2: SDS page analysis for the diafiltration studies. 300 kDa (A) and 1000
kDa (B).
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Figure C.3: Possible combination that simultaneously verify two constraints: (i) min-
imum operational volume for each UF step is 10 mL; (ii) The target concentration
after the two UF steps, should be higher than 15 µg mL−1, considering a feed concen-
tration of 1.14 µg mL−1 of HA, with an initial sample volume of 350 mL. The figure
depicts three process yield scenarios: 100, 80 and 60%. V1/V2 and Vinitial/V2 are
representative of the ratio of the volumes obtained after each UF stage.
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Supporting information for “Purification of influenza

virus-like particles using sulfated cellulose membrane

adsorbers” (Chapter 8)

D.1 Experimental Section

D.1.1 Baculovirus quantification

To quantify baculovirus viral copies in each sample, viral DNA was ex-

tracted and purified using the High Pure Viral Nucleic Acid Kit (11858874001,

Roche Diagnostics, Germany) following manufacturer’s instructions. The

number of genome containing particles were monitored by real time quan-

titative PCR (q-PCR) following the protocol described elsewhere[190]

with some modifications. Briefly, DNA samples were diluted 1:100 in

water PCR grade (03315932001, Roche Diagnostics) and diluted again

1:4 with master mix. Master mix is prepared by diluting 1:2 the Light

Cycler 480 SYBR Green I Master (04707516001, Roche Diagnostics, Ger-

many) and 0.5 µM of each primer. q-PCR reaction took place in a 96-well

white plate (04729692001, Roche Diagnostics) using a LightCycler 480

Instrument II (Roche Molecular Systems, Inc.).

D.1.2 Nanoparticle tracking analysis

After VLPs production and clarification, particle presence, concentra-

tion and size distribution were measured using the NanoSight NS500

229
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(Nanosight Ltd, UK). Samples were diluted in D-PBS (14190-169, Gibco,

UK) so that VLPs concentration would be in the 108-109 particles ml−1 -

the instrument’s linear range. All measurements were performed at room

temperature (22 ◦C). Sample videos were analysed with the Nanoparticle

Tracking Analysis (NTA) 2.3 Analytical software - release version build

0025. Capture settings (shutter and gain) were adjusted manually. For

each sample 60-seconds videos were acquired and particles between 70

and 150 nm were considered.

D.2 Design matrix

Using MODDE 11, an experimental matrix was generated for a 3-level

optimization Rechtschaffner design. Table D.1 resumes the values for

each investigated factor and the resulting responses for each experiment.

D.3 Model fitting and statistical analysis

Each response Y is described as a function of each factor X and all possi-

ble factors interactions according to the general second order polynomial

equation D.1:

Y = C0 +

n∑
i=1

CiXi +

n∑
i=1

CiiX
2
i +

n∑
i,j=1

Ci,jXiXj (D.1)

where Ci are the calculated regression coefficients, n the total number

of factors, and j all other factors except i. All coefficients were scaled,

centered and normalized to the variance of each response[210].

Equations D.2 and D.3 describe respectively HA loss and HA yield,
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Table D.1: Design matrix (3-level Rechtschaffner design) implemented for the opti-
mization of the chromatographic purification of influenza VLPs using sulfated cellulose
membrane adsorbers (SCMA). Five responses (ligand density (LD), salt concentration
for loading and elution (NaClload and NaClelution, respectively) and flow rate in the
load and elution steps elution (Qload and Qelution, respectively)) and two responses
(HA loss and HA yield) were investigated. The center points of the design are marked
with a star (?) and outlier values, not considered for data fitting, appear between
brackets.

Exp. LD [NaCl]load [NaCl]elution Qload Qelution HA HA

no. µmol
cm−2

mM mM mL
min−1

mL
min−1

loss
%

yield%

1 7.9 20 200 0.2 0.5 17.0 37.5

2 7.9 60 1000 0.6 1.5 41.7 97.3

3 15.4 20 1000 0.6 1.5 21.8 (155.9)

4 15.4 60 200 0.6 1.5 32.9 37.3

5 15.4 60 1000 0.2 1.5 30.9 112.9

6 15.4 60 1000 0.6 0.5 30.9 90.5

7 15.4 60 200 0.2 0.5 (0) 12.3

8 15.4 20 1000 0.2 0.5 10.9 103.9

9 15.4 20 200 0.6 0.5 23.2 19.9

10 15.4 20 200 0.2 1.5 16.7 53.4

11 7.9 60 1000 0.2 0.5 26.8 66.5

12 7.9 60 200 0.6 0.5 48.0 21.8

13 7.9 60 200 0.2 1.5 42.9 42.2

14 7.9 20 1000 0.6 0.5 21.4 21.8

15 7.9 20 1000 0.2 1.5 13.2 69.3

16 7.9 20 200 0.6 1.5 24.2 41.6

17 15.4 40 600 0.4 1.0 27.3 58.1

18 11.8 60 600 0.4 1.0 37.7 74.0

19 11.8 40 1000 0.4 1.0 36.0 102.6

20 11.8 40 600 0.6 1.0 25.9 56.7

21 11.8 40 600 0.4 1.5 28.0 80.0

22? 11.8 40 600 0.4 1.0 32.6 78.3

23? 11.8 40 600 0.4 1.0 34.9 92.3

24? 11.8 40 600 0.4 1.0 31.4 69.6



232 APPENDIX D. Supporting information for chapter 8

Table D.2: ANOVA for the proposed experimental design together with the predicted
variation (Q2), the validity, and the reproducibility of the model for both responses.

Response Degrees of
freedom

p-value Lack
of fit

F-value R2 Q2 Validity Reproducibility

HA loss 13 1.4e-6 0.15 20.0 0.81 0.67 0.53 0.96

HA yield 17 5.6e-5 0.52 12.1 0.82 0.55 0.84 0.85

excluding all terms found not-significant.

HA loss = 32.1

− 2.3LD

+ 6.9[NaCl]load

+ 2.1Qload

+ 3.9Q2
load

− 1.6LD[NaCl]load

(D.2)

HA yield = 71.3

− 4.8LD

+ 2.8[NaCl]load

+ 22.0[NaCl]elution

− 4.5Qload

+ 8.3Qelution

− 9.3[NaCl]2elution

+ 7.0LD[NaCl]elution

+ 6.3[NaCl]load[NaCl]elution

+ 5.0[NaCl]loadQload

(D.3)

Analysis of variance (ANOVA) was used for the evaluation of the sig-

nificance of the regression model of both responses (Table D.2). For

both responses, the model is significant as attests the p-value (< 0.05),

the F-value below the respective Fcrit (Fcrit ≤ 2.8) and the lack of fit
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(>0.05). Furthermore, the explained variation (R2), predicted variation

(Q2), model validity and reproducibility are within accepted ranges[210].
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