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Resumen — The Wireless Sensor Networks (WSNs) 

technology is already perceived as fundamental for science 
across many domains, since it provides a low cost solution for 
environment monitoring. WSNs representation via the service 
concept and its inclusion in Web environments, e.g. through 
Web services, supports particularly their open/standard access 
and integration. Although such Web enabled WSNs simplify 
data access, network parameterization and aggregation, the 
existing interaction models and run-time adaptation 
mechanisms available to clients are still scarce.  

Nevertheless, applications increasingly demand richer and 
more flexible accesses besides the traditional client/server. For 
instance, applications may require a streaming model in order 
to avoid sequential data requests, or the asynchronous 
notification of subscribed data through the publish/subscriber. 
Moreover, the possibility to automatically switch between such 
models at runtime allows applications to define flexible 
context-based data acquisition. To this extent, this paper 
discusses the relevance of the session and pattern abstractions 
on the design of a middleware prototype providing richer and 
dynamically reconfigurable interaction models to Web enabled 
WSNs. 
 

Palabras clave—Web enabled Wireless Sensor Networks, 
Dynamic Interaction Models, Design Patterns 
 

I. INTRODUCTION 

imulation applications for unexpected but extreme 
events like large-scale flooding, hurricanes, severe 

droughts, etc., demand the access to different types of data 
collected across wide scale geographic areas, and for long 
periods of time. Only large amounts of diverse data support 
more precise information extraction and knowledge, 
concerning a better evaluation of complex events of this 
kind. 

Wireless Sensor Networks (WSNs), in particular, offer a 
good low cost solution for such large-scale environmental 
monitoring since they comprise a high number of sensor 
devices deployed throughout the geographic area to be 
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evaluated. Current WSNs may include different types of 
sensors, spanning from simple and static devices to 
increasingly complex mobile devices. WSNs allow hence 
the development of more or less elaborated applications [1] 
to which the interaction with the real world is a pressing 
requirement. Such includes not only more traditional 
applications like the ones mentioned above, but WSNs also 
allow the surge of novel ones. This is the case of the 
Participatory Sensing area [2] where applications like urban 
traffic management or virtual communities' support typically 
rely on data acquisition and dissemination through mobile 
devices (e.g. using sensors embedded in private cars and 
mobile phones). 

Nevertheless, one disadvantage of WSNs is still their 
low-level limited interfaces. To this concern, high-level 
abstractions have been used to simplify WSNs access, 
allowing their representation as data streams, databases, or 
through mobile agent models, for instance. Likewise, 
abstracting WSNs as Web services [3][4] allows their 
inclusion in Web environments, e.g. in the context of 
business processes. Namely, the service paradigm via 
standard Web technologies supports a uniform and simple 
access to WSNs, their parameterization and aggregation, 
and the systematic access to collected data.  

A service-based access to WSNs also allows their 
integration with very different systems, since the service 
paradigm provides a uniform access to, and aggregation of, 
distinct entities. One example may be the seamless 
integration of WSNs providing online, almost real-time, 
data acquisition with Cloud-based applications consuming 
that data. In fact, and considering the perceivable trend on 
making everything accessible as a service (XaaS), the 
service concept may provide a powerful but simple 
abstraction for heterogeneous systems' access, interaction, 
and integration, may those systems be Web enabled WSNs, 
Internet of Things entities (IoT) [5][6], Grid or Cloud 
computing services (for standardization efforts in this area 
see [7]), etc.  

Nevertheless, the access to those types of services may 
have requirements behind the traditional request/response 
interaction, demanding therefore dynamic/richer interaction 
models [8]. For instance IoT entities having one single client 
(the owner) may be interfaced through a stateful Web 
service. Cloud computing services, in turn, may interface 
stateful resources or long running activities which need to 
be inspected in terms of resource consumption, dynamic 
requirements, or overall cost [9][10]. Considering 
specifically Web enabled WSNs, sensors may have to be 
inspected/interrogated (e.g. in terms of sensor autonomy 
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evaluation and sensing frequency) and also be modified (e.g. 
sensor parameterization). Additionally, sensing data may 
have to be acquired with different QoS depending on 
contextual information (e.g. sensing data streaming on an 
emergency situation versus periodic data notification for 
sensors' autonomy preservation). 

WSNs accesses may consequently be modeled as Web 
services interfacing stateful resources [11][12] requiring the 
realization of a dynamic/variable state which has to be kept 
consistent along several message exchanges between a 
service and each one of its clients [13]. This is captured in 
the Web Services Resource Framework (WSRF) norm [14], 
which had its origin in the context of Grid computing [13] in 
order to represent the access to typical, long running, High 
Performance Computing applications. Consequently, such 
Web enabled WSNs may benefit from richer/dynamic 
interaction models for sensor data acquisition and 
dissemination that however are not generally available in 
current solutions.  

The following sections describe the dimensions 
concerning such limitations and propose a solution towards 
richer interactions for Web enabled WSNs access. 
Subsequent Sections IV and V describe, respectively, the 
implementation architecture and an application scenario. 
The conclusions are described in the final section as well as 
future work. 

II. PROBLEM DIMENSIONS 

Consider an emergency application for a critical area 
prone to cyclic wild fire situations. In order to more 
accurately calculate a fire ignition probability [15], 
simulation applications in this domain benefit from 
consuming almost real-time/online sensing data provided by 
different types of WSNs deployed in the area, e.g. 
temperature, humidity and wind characteristics’ monitoring. 
Under normal conditions, temperature data acquisition from 
a single type of sensors may be enough. However, in the 
presence of draught weather conditions, more precise 
temperature data may be needed, e.g. collected from 
different sensors at different heights. Moreover, if a fire 
ignition does occur, different types of data like wind 
velocity and direction are also needed.  

 In case a client uses a traditional request/reply interaction 
model to collected sensing data, several independent client 
requests are necessary in order to process enough quantities 
of different data. One solution is to support the collective 
data processing and dissemination as a single interaction 
action, similarly to what happens in the mashups concept. 
Moreover, the supporting system should allow the dynamic 
selection of those data sources at runtime. Additionally, and 
due to the low autonomy of typical sensing devices, the QoS 
in terms data acquisition rate and delivery should be low 
under normal situations, e.g. winter time for the fire 
application, and high in emergency situations.  

Other requirements may also be considered. For instance, 
critical data may be needed not only to the fire simulation's 
execution, but also to the firemen deployed in the area. 
Namely, these may be using mobile devices for their 
coordination and relevant data may now depend upon their 
geographical location (e.g. data collected at the vicinities of 

the firemen’s position). Likewise, if the mobile devices have 
already a low battery level, a data stream cannot be 
processed anymore, but sporadic data delivery is required 
instead.  

Whatever the clients’ perspective, the most adequate 
solution is to provide flexibility on data sources' dynamic 
selection and aggregation, and also in terms of the data 
acquisition rate. Such may be supported through selecting 
an adequate interaction model between the service and its 
clients, at some point in time. The supporting system should 
also provide their dynamic modification based on context 
data. For instance, a Streaming model is preferable for a 
continuous sensing data delivery; a Producer/Consumer is 
necessary if there are data delivery requirements; and a 
Publish/subscriber model is more adequate whenever low 
rate data transmission is enough. 

Having defined such a (more or less) complex monitoring 
scenario for different Web enabled WSNs data sensing, its 
reuse for related clients/applications may also be useful. For 
example, the described scenario could be used in the context 
of a similar tornado simulation application for the area. 
Likewise, in case additional firemen corporations are 
deployed into the affected location, the contextual 
information perceived by the former firemen should be 
quickly and easily shared to the new ones. 

Contextual information sharing may also support the 
coordination of relevant agents, e.g. considering that 
emergency protocols have to be precisely defined and 
known both by the actors in the field and authority entities. 
Based on a common context, emergency support systems 
may hence enforce some forms of pre-defined automatic 
dynamic reconfiguration capabilities concerning the 
evolution of a critical event. Such rules may be incorporated 
in those systems and be automatically triggered in face of 
particular events, e.g. sensing data values collected in a 
problematic area may trigger a switch from normal to an 
emergency situation.  

Therefore, it is our opinion that richer/dynamic 
interaction models are necessary on accessing Web enabled 
WSNs and that they should be captured allowing their 
sharing among different clients and reuse for similar 
situations. In the following, we propose a novel session-
based abstraction to represent and contextualize such 
dynamic interaction models. 

III. PROPOSED SOLUTION 

The conceptual view of the proposed solution is depicted 
in Fig. 1. The middleware layer hides the details inherent to 
accessing Web enabled WSNs and provides an interaction 
context to clients, either individual or to a set (e.g. clients 
which may benefit from sharing a particular interaction). 
The solution is based on a) the Session concept to capture 
dynamic rich interactions with Web enabled WSNs, and on 
b) the Pattern concept to implement a confined, structured, 
and well defined mechanism for dynamic reconfiguration 
within a session context.  

A. Sessions Capturing Dynamic Interaction Models 
The Session concept represents the interaction context of 

a set of users accessing the same Web enabled WSN 
services, as well as the dynamic reconfiguration features 
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possible within that context. A session includes: 
1) The identification of the data sources plus the particular 

interaction model in use at some point in time for data 
dissemination. All client accesses within this session's 
context obey the semantics of that interaction model, 
which defines the service/users' data and control flow 
dependencies. Basic interaction models are 
Client/Server, Publish/Subscriber, Streaming, and 
Producer/Consumer. Fig. 2 depicts an example for a 
Wind data source, whose data is disseminated through a 
Streaming interaction model.  

2) Management information, such as a unique session 
identifier used by new clients to join the session; the 
identifiers of the session's current members; the 
identifier of the session's owner, the sole that can 
perform explicit dynamic reconfigurations and 
terminate the session; and the session's life time limit 
which when expired causes the session's termination 
and the consequent notification of all its members. If 
this time is unbounded, the owner must explicitly 
request the termination. The session in Fig. 2 has two 
clients and an unbound lifetime limit. 

3) The possible adaptation mechanisms consisting of 
structured and context-based dynamic reconfigurations. 
These depend on the characteristics of the WSNs 
service/users interaction context and may also be pre-
defined: 

• The interaction's context includes: 
i. The context of the service client (e.g. a mobile 

device with limited autonomy or progressing to a 
different geographic area). 

ii. The interaction medium between the Web enabled 
WSN service and its user (e.g. the characteristics of 
the supporting communication networks).  

iii. The Web enabled WSN service's context (e.g. 
services representing relevant data sources like 
temperature or humidity sensing data whose critical 
values have to be acknowledged). 

• System evolution results from on-demand/pre-
defined interaction models’ dynamic modifications. 
Users may explicitly require dynamic reconfigurations, 
or these may be automatically triggered by the runtime 

system based on pre-defined rules and upon change 
detection of the cited interaction context. 

B. Pattern-based Dynamic Interaction Models 
Within a session’s context, the pattern concept is used 

both  
• To implement the interaction model in use by all 

clients belonging to the session at some point in time; 
and 
• To provide a structured dynamic adaptation 
mechanism ruling a session’s evolution. 

  Implementing the Session’s Interaction Model 
Patterns underlie an interaction model's implementation in 

the context of a session. Such is accomplished following the 
ideas in [16] where pattern abstractions in the form of 
parameterized Pattern Templates capture structure and 
behavior with separation of concerns, allowing their flexible 
composition.  

The implementation of a particular interaction model is 
based on the composition of one or more structural patterns 
with a behavioral pattern. Structural Patterns capture a 
session's "static view" in terms of the structural 
dependencies/relations among its members (e.g. a Façade or 
a pipeline) without specifying any restrictions in terms of 
data or control flows. 

The "dynamic view" is defined, on the other hand, by 
Behavioral Patterns like Producer/Consumer, Streaming, 
Publish/Subscriber, and so on. These characterize the 
dependencies in terms of data and control flows among a 
session's members, as well as their role concerning the 
behavioral patterns' semantics (e.g. roles of producer and 
consumer when considering the Producer/Consumer 
pattern). 

The left-hand side of Fig. 3 (a) presents the composition 
of a Façade structural pattern with the Publish/Subscriber 
behavioral pattern. The Façade captures the common 
interface for data dissemination to all clients in the session, 
and the behavior defines how that data is disseminated to 
session's clients. 

Different interaction models enable the presentation of 
data flows with distinct quality services at different points in 
time. This allows diversity on accessing Web enabled WSN 
services/data sources, as well as for their modification when 
convenient. For example, the use of a Client/Server model 
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Fig. 1.  Conceptual view. 
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Fig. 2.  Session abstraction with a Stream-based interaction model. 
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to inspect a data source versus a Publish/Subscriber model 
to receive asynchronous event notifications. 

The right-hand side of Fig. 3 (b), in turn, presents the 
implementation of an Aggregation model in the context of a 
session, which consists on the aggregation, and possible 
processing, of multiple data sources, and their 
dissemination. Such is supported by a hierarchical structure, 
namely a two-staged process (a two stage pipeline structure) 
consisting of an aggregation phase and a dissemination 
phase. Both phases must present the same behavior, for 
instance, an aggregation of streams must be disseminated 
according to the Streaming behavior. The logic used to 
combine the multiple data sources is defined in the form of 
an aggregation function parameterized upon the model's 
definition. This approach accommodates the definition of 
application-specific stream processing techniques to filter 
the data, compute statistics, and so forth. 

Structured Dynamic Adaptation 
The pattern abstraction also supports a structured 

dynamic adaptation mechanism dependent on the current 
state of the interaction's context. As a result 
a) Each pattern can be directly reconfigured at runtime, both 

in the dimensions of structure and/or behavior (e.g. to 
replace a behavior by another one); 

b) The adaptation/evolution of the system may be 
represented as a pre-defined sequence of patterns captured 
as a state machine (see Section IV). 

IV. A MIDDLEWARE FOR WSNS ADAPTABLE ACCESS 

The proposed middleware implements the concepts 
described in the previous section providing rich and 
dynamic interaction models for Web enabled WSNs. It is 
implemented as a Web accessible platform upon which 
sessions can be shared by multiple geographically dispersed 
users. 

The middleware's architecture, depicted in Fig. 4, follows 
a multi-tier model that cleanly separates the multiple 
concerns of the system, such as presentation, logic and data 
access. From a bottom-up perspective, the layers that 
compose the middleware are: 
• Data Acquisition: interacts with Web enabled WSNs, the 

data sources, providing a topic-based API. Upper layers 

can hence associate topics to data sources or define 
restrictions on those same sources. For example, a topic 
may refer to a stream of data produced by a given 
service or only to the items of the stream that obey a 
given condition (e.g. subscription of precipitation levels 
above 132 units, as depicted in the left-hand side of Fig. 
3 (b)). 

• Session Management: implements the session 
abstraction, supplying tools for session 
creation/termination; session management, ranging 
from membership accounting to parameter 
configuration (e.g. lifetime specification); and possible 
dynamic reconfiguration mechanisms. Since a session 
may comprise geographically dispersed members, this 
layer exposes a simple Web service interface intended 
to be used by higher-level language APIs. 

• Session-Centered High-Level API: provides a high-level 
session-centric interface for the cited capabilities. 

The remainder of this section will further detail the 
Session Management layer, the core of the middleware, and 
the Session-Centered API used in the example of Section V.  

A. Session Management Layer 
A session hosts a single behavior/interaction model to 

which all of its clients are automatically bound. This 
behavior must be defined when the session is created but 
may also change in time, as a response to a reconfiguration 
action. The client that creates a session is titled its owner 
and is the sole with permissions to perform reconfiguration 
actions that have a session-wide impact. The other members 
must comply with the session's current configuration, and 
adapt to any consummated reconfiguration or leave. The 
composition of one or more structural patterns with a 
behavioral pattern provides the framework upon which 
sessions are implemented, as described in Section III.B. 

Pattern-based Dynamic Reconfiguration 
The reconfiguration mechanisms featured in the 

middleware have the purpose of adapting, in the context of a 
session, the way a particular client or a set of clients (the 
session’s members) interacts with a set of Web services. 

The separation of the session, structure, and behavior 
concepts, and the way they are combined to support session 
execution, cleanly evidences the responsibility of each one. 

Session Centred High-Level API

Session Management

Data Acquisition

WSN WSN WSN

Topic-based API

Session-centred API
low-level access

Web enabled WSNs

 
Fig. 4.  Overall architecture. 
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Fig. 3.  Session's Interaction Models implemented as the composition of 
structural and behavioral patterns. 
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For instance, the session contextualizes the overall 
interaction; a new client joining an existing session is 
captured as a structural reconfiguration independent from 
the behavior (i.e. the new client has the same behavior as the 
other existing clients in the same session); the replacement 
of the session's interaction model in use is captured as a 
behavior reconfiguration independent from the structure (all 
clients in the session are notified of a new behavior ruling 
data dissemination). 

Additionally, the reconfiguration actions can be 
characterized as implicit (automatically triggered by the 
middleware) and explicit (requested by a client). 
Orthogonally, their scope may be confined to the tuning of 
the current interaction model, or have a session-wide 
impact, replacing the current model altogether. The 
conjunction of all the reconfigurations supported by the 
middleware defines a state machine whose description 
follows. 

Explicit Reconfigurations 
Valid reconfiguration requests may be issued by any 

member of any session, at any moment in time. Their 
purpose is twofold: to tune or to replace the current 
interaction model. Tuning requests are model dependent, 
and must conform to the currently active reconfiguration 
interface. For instance, setting the data rate is only available 
in the Streaming and Producer/Consumer models. 

The remainder requests have a broader impact and thus 
have their semantics bound to the role of the client in the 
session. Only a reconfiguration request issued by the 
session's owner may encompass the entire session. The other 
members are notified of such reconfiguration and will have 
to adapt to the new configuration or leave the session. 
Requests issued by some other member than the owner do 
not affect the target session. It is the client that is moved to 
another session fulfilling the required parameters. If no such 
session exists at the time, it is created on the fly. 

Fig. 5 illustrates the transitions of the state machine that 
are triggered by explicit requests. The ones that actually 
perform a state transition have been divided into three 
categories: 
• Explicit: an explicit reconfigure request. 
• Automatic: reconfiguration actions that, when in the 

scope of a Publish/Subscribe model, can be 
programmatically associated to a particular topic 
subscription. As soon as the middleware receives a 
notification on that topic it automatically reconfigures 

the client, according to its role in the session (owner or 
regular member). 

• Add interaction: addition of new data sources to the 
session. This reconfiguration forces the interaction 
model to become an aggregation, being that the 
dissemination model is inherited from the current 
configuration, e.g. adding a new source to a stream will 
result in the aggregation of two streams. 

Implicit Reconfigurations 
These constitute responses to changes in the context of 

the client, the service, or their communication channel. 
Their purpose is to ensure that the data flow between a 
session's sources and clients is adjusted according to the 
session configuration parameters and the ability of the 
sources to meet these requirements. 

Fig. 6 presents the transitions of the state machine 
dedicated to this type of reconfigurations. Three scenarios 
are handled: 
• Session out of reach: this transition is triggered whenever 

the data source is no longer reachable. The session's 
clients are notified of the incident and from that point 
on they will only able to interact with the source 
through the Client/Server model. Naturally, as long as 
the source is out of reach, any request will return an 
error message. 

• No data: when in the context of the Stream and 
Producer/Consumer interaction models, the absence of 
new data items causes the session to be reconfigured to 
Publish/Subscribe. Clients are notified of both the data 
stream’s interruption and resuming. 

• Lower the rate: the Producer/Consumer interaction model 
enables clients to consume data-streams at their own 
pace, which may be significantly slower or faster than 
their production rate. To support such feature, the 
middleware buffers data items on both ends of a client 
connection. In this context, the Lower the rate transition 
is triggered   whenever the buffer that resides on the 
client end detects that it is no longer able to consume 
the data at the current pace. As the name implies, the 
reconfiguration lowers the rate to which the data items 
are sent to that particular client. Thereby, this 
reconfiguration targets a single connection, and not the 
whole session. 

B. The Java Session-Centered API 
A high-level session-centric API has been developed for 

the Java language. It exposes all of the middleware's 
features, providing the means for applications to create, 
destroy, join and reconfigure existing sessions. Moreover, it 
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Subscribe

Aggregation
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ConsumerStream

Explicit

Aggregation
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Add interaction

Set rate Set rate

Edit subscription

 
Fig. 5.  Reconfiguration state machine: explicit reconfigurations. 
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specifies how an application can process incoming data 
items and react to consummated reconfigurations. Fig. 7 
showcases a simplified version of the API’s class diagram. 

Creating and Joining Sessions 
Session are instances of the Session class that can be 

parameterized with the topic(s) of the data sources, an 
interaction model (the default is Client/Server), a listener to 
handle incoming data  (more on this ahead), and a duration 
in minutes (the default is unbound). All interaction models 
share a common interface (InteractionModel) but provide 
specific reconfiguration interfaces (the methods of each 
class). The ability to join existing sessions is provided by 
the join() method. It requires the identifier of the session to 
be joined and the listener to handle incoming data. The 
inquiry of which sessions and topics are currently active is 
possible through methods getActiveSession() and 
getAvailableTopics(), respectively. 

Reconfiguration Requests 
Three methods are provided for requesting explicit 

reconfigurations: reconfigureCurrent(), reconfigure() and 
addInteraction(). The first empowers the tuning of the 
current interaction model, while the remainder two 
instantiate the explicit and add interaction transitions of Fig. 
5, respectively. 

Handling Incoming Data and Notifications 
A special handler that we refer as listener must process all 

the data received in the scope of a session. This handler 
must subtype abstract class NotificationListener and 
implement methods to process the reception of new 
application data items (processMessage()) and of all 
possible exceptions and reconfiguration notifications (the 
remainder methods). 

V. APPLICATION SCENARIO 

The application scenario chosen to illustrate some 
capabilities of our proposal belongs to the domain of the 

Data Driven Applications and Systems (DDDAS) [21]. 
These applications are characterized by the need to 
dynamically incorporate sensing data into a running 
simulation. Inversely, the simulation should also be able to 
dynamically parameterize how such sensing data is 
collected (e.g. restricting data acquisition to the most 
affected areas in order to reduce data processing). Our 
example describes only a partial scenario in the context of a 
fire monitoring and simulation application, as introduced in 
section II. Namely, a session contextualizes the dynamic 
aggregation of sensing data collected in a critical area, and 
typical clients to this session are fire workers and a fire 
evolution simulation. These clients may hence share the 
same context both in terms of collected data and the used 
interaction model for that data dissemination; additionally, 
all clients in the session are notified of the same dynamic 
reconfiguration events. The example in the next sub-section 
describes only the perspective of the fire workers. 

A. Wildfires notification application 
Consider a fire detection application supporting a fire 

department responsible for a critical geographical area prone 
to recurrent wild fire events. The department is interested on 
receiving a notification whenever the temperature in the area 
rises to values above 50º Celsius. Furthermore, when this 
happens, a dynamic reconfiguration should cause a switch 
from an alert state scenario to a critical state contemplating 
the raise of the temperature above 80º. Based on this last 
notification indicating a probable imminent fire ignition, the 
next step requires on-line (almost real time) data acquisition 
on wind-speed and direction, besides temperature. Such 
different data types should also be aggregated according to 
user’s defined criteria. 

In case a secondary fire department is appointed to fight a 
fire in the same area, the application should provide them 
with access to the same data as the main fire department. 
Furthermore, if during the fire fighting period the main fire 
department decides to add another source of data, e.g. 
"Humidity", in order to gain more precise information about 

Session(String topic, InteractionModel m, NotificationListener l, int duration)
Session(String[] topic, InteractionModel m, NotificationListener l, int duration)
boolean join(String SessionId, NotificationListener l)
void start()
void finish()
DataItem query()
void setListener(NotificationListener l)
boolean reconfigure(String topic, InteractionModel m, Listener l)
boolean reconfigure(String topic, InteractionModel m)
boolean reconfigure(InteractionModel m, Listener l)
boolean reconfigure(InteractionModel m)
boolean reconfigureCurrent(String operation, String[] parameters)
boolean addInteraction(String[] topics, NotificationListener l, String aggrFunctionClass)
boolean addInteraction(String[] topics, NotificationListener l)
String getClientId()
String getSessionId()
InteractionModelId getCurrentInteractionModel()
List<String> getAvailableTopics()
List<String> getActiveSessions()

Session
InteractionModelId getId()
List<String> getTopics()
NotificationListener getListener()

InteractionModel

PubSub()
void onNotification(String[] topics, 
                InteractionModel m, NotificationListerner l)

Pubsub

Stream(int rate)
Stream()
boolean setRate(int rate)

Stream

ProdCons(int rate)
ProdCons()
boolean setRate(int rate)

ProdCons

<uses>

Aggregation(InteractionModelId disseminationModel, String aggrFunctionClass)
Aggregation(InteractionModelId disseminationModel)

Aggregation

NotificationListerner()
void processMessage()
void sessionTerminated()
void sourceOutOfReach()
void noData()
void sessionReconfiguration()
void interactionModelReconfiguration()
void addedInteraction()

NotificationListener
<uses>

Client/Server()
DataItem query()

Client/Server

 
Fig. 7.  API's simplified class diagram. 
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the conditions in the terrain, this has to be acknowledged by 
the secondary fire corporation as well. Fig. 8 represents such 
modifications in the context of a session capturing this 
application scenario. 

B. System dynamic evolution 
The first image in Fig. 8 (on the left-hand side) depicts a 

session created by the middleware including: 
1) The interaction context between the session clients, 

namely the Main Fire Department (the session's owner) 
and the Secondary Fire Department (the auxiliary 
corporation). 

2) The available data sources accessible in the session, i.e. 
a Web enabled WSNs acquiring temperature data. 

3) The interaction model in use is the Publish/Subscribe 
being the subscription topic: temperature values above 
50, which defines an alert state. 

4) The dynamic reconfiguration rules. 
Namely, if such temperature value of 50 is observed, a 

user-defined dynamic reconfiguration takes place (First 
reconfiguration in 8) modifying the subscription topic. The 
fire departments are now interested in being notified when 
the temperature reaches 80º or above which indicates a 
critical situation. Note that the interaction model is left 
unaltered, and thus both departments are notified of this 
event. 

On such scenario, another automatic dynamic 
reconfiguration (Second reconfiguration) is triggered to 
build an aggregation of multiple data sources. In the face of 
a critical situation, temperature data inspection is not 
enough, and new data sources on wind speed and direction 
are dynamically added to the session context. Data collected 
from different types of Web enabled WSNs may hence be 
aggregated in the context of the session and processed 
according to a user-defined aggregation function. Moreover, 
for a precise evaluation of the fire situation (e.g. if a fire 
ignition is imminent or has already occurred), a continuous 
data flow from the sensor devices monitoring the area is 
now mandatory. Such is also depicted in the new 
configuration, where the interaction model used for both the 
aggregation and dissemination stages is the Streaming 
model. 

Finally, the case when additional data sources are still 
needed, e.g. on humidity values, is illustrated by the Third 
reconfiguration. The aggregation model remains as the 
underlying interaction model but a new Web service 

interfacing WSNs has been added, allowing the definition of 
a different aggregation function for processing all the types 
of incoming data. 
 
//	
  Listeners	
  
Listener	
  ownerListerner1	
  =	
  new	
  TemperatureListener50();	
  
Listener	
  ownerListerner2	
  =	
  new	
  TemperatureListener80();	
  
Listener	
  ownerListerner3	
  =	
  	
  

new	
  TemperatureWindSpeedWindDirectionListener();	
  
//	
  Interaction	
  models	
  
Aggregation	
  fire	
  =	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  new	
  Aggregation(InteractionModel.STREAM,	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
   	
   	
   	
   "fire.HPAggregationFunction");	
  
PubSub	
  critical	
  =	
  new	
  PubSub();	
  
critical.onNotification({"Temperature",	
  "WindSpeed",	
  	
  

"WindDir"},	
  fire,	
  ownerListerner3);	
  
PubSub	
  alert	
  =	
  new	
  PubSub();	
  
alert.onNotification(	
  "Temperature>80",	
  critical,	
  	
  

ownerListerner2);	
  
//	
  Session	
  creation	
  
Session	
  s	
  =	
  new	
  Session("Temperature",	
  alert,	
  	
  

ownerListerner1);	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
s.start();	
  
…	
  
	
  
//	
  Later,	
  during	
  the	
  fire	
  fighting	
  
Listener	
  ownerListerner4	
  =	
  new	
  HumidityListener();	
  
s.addInteraction("Humidity",	
  ownerListerner4);	
  

Listing 1: Main Fire Department’s session 
 
Note that this session's context captures the 

subordination, in the field, of the Secondary Fire 
Corporation to the Main Fire Department in terms of 
relevant collected data and the associated response. For 
instance, Listing 1 sketches the creation of a session with a 
Publish/Subscribe interaction model used to notify 
temperature values. When those values exceed a minimum 
threshold, the above critical situation is established and a 
pre-defined dynamic modification takes place ("Second 
reconfiguration" in Fig. 8). This reconfiguration is defined 
by the session owner (Main Fire Department) and consists 
on an Aggregation of streams on temperature, wind 
direction, and wind speed values, as depicted in Listing 1. 

To share the same session context and subsequently be 
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Temperature > 50

Publish/Subscribe

Main Fire
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Secondary 
Fire 

Department

Notification:
 Temperature > 50   

WSN
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Notification:
           Automatic     
 Reconfiguration  

Notification:
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Notification:
   Automatic 
   Reconfiguration

Notification:
   Temperature > 50

 Session

Temperature > 80

Publish/Subscribe

Main Fire
Department
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Notification:
 Temperature > 80   
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Temperature

Notification:
           Automatic     
 Reconfiguration  

Notification:
   Temperature > 80

Notification:
   Automatic 
   Reconfiguration

Notification:
   Temperature > 80

Session

Stream 

Aggregation
function 
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Department
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WSN
Temperature

WSN
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WSN
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Aggregation
function 
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WSN
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WSN
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WSN
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Aggregated 
             data       
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WSN
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First
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Second
Reconfiguration
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Fig. 8.  Dynamic reconfigurations in a session context. 
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notified of the same events as the owner - including 
dynamic reconfigurations - the Secondary Fire Corporation 
has to know this session's identifier and join it as specified 
in Listing 2.  

 
Session	
  s	
  =	
  Session.join(sessionId,	
  new	
  ClientListener1());	
  

Listing 2: A new fire corporation joins the session 
 

In order to acknowledge and handle the events occurring 
in the context of the session, the above Secondary Fire 
Corporation (or other novel clients joining the session at 
some point in time) has to implement the ClientListener1	
  
handler as it is sketched in Listing 3. The disclosed methods 
handle the reception of data items, displaying them in a user 
interface (gui), and define a new listener able to process the 
reconfigurations possible in a new session's state. 
	
  
public	
  class	
  ClientListener1	
  extends	
  AbstractListener	
  {	
  
	
  	
  	
  
	
  	
  public	
  void	
  processMessage(DataItem	
  msg)	
  {	
  
	
  	
  	
  	
  gui.display(msg.getTopic()	
  ,msg.getContents());	
  
	
  	
  }	
  
	
  	
  public	
  void	
  InteractionModelReconfiguration(	
  

ReconfException	
  n)	
  {	
  
	
  	
  	
  	
  gui.displayNotification(n.getTopic(),	
  n.getReason());	
  
	
  	
  	
  	
  getSession().setListener(new	
  ClientListerner2());	
  
	
  	
  }	
  
}	
  
Listing 3: Sketching	
  the	
  implementation	
  of	
  ClientListener1	
  

C. Example output 
In the context of the previous particular scenario Figs. 9 

and 10 illustrate the reception, on both fire departments, of 
the data values and notifications disseminated in the context 
of the session.  The display of data values complies with the 
following format: 

Topic: subscribed_topic | Value:  received_value 
 

while the display of notifications adheres to format: 
Topic: subscribed_topic | Value:NOTIFICATION:reason    
 
Reconfiguration notifications are disseminated to all 

members of a session, including its owner, which pre-
defined the reconfiguration request. This approach entails a 
uniform way to react to a given notification, regardless of 
the member’s role in the session. 

Fig. 10 also shows the situation when the Main Fire 
Department requests a novel stream on humidity values 
(third reconfiguration on Figure 7) but an aggregation 
function is not supplied in the invocation of addInteraction() 
(last line of Listing 1). As a consequence, the messages are 
no longer aggregated by the middleware, who simply 
forwards them. Such behavior can be observer on both 
figures from the point the fourth listener takes action. 

VI. RELATED WORK 

To the best of our knowledge, existing middleware 
platforms for Web enabled WSNs do not address client-
WSN interaction model’s dynamic reconfiguration concerns 
nor provide a session abstraction to capture and reuse such 
dynamicity. Among those platforms we highlight: 

52º North [12], the most known implementation of the 
Sensor Web Enablement (SWE) [3], a set of models and 
Web service interfaces proposed by the Open Geospatial 
Consortium for the Web integration of sensor systems. The 
models focus on the description of sensor systems and their 
capabilities to collect and process observations, while the 
services address the collection, storing, and dissemination of 
sensor reading and alerts (notifications). 

Global Sensor Network (GSN) [20], which aims at 
building a sensor Internet by connecting virtual sensors, 
abstracting data-streams originating from either a WSN or 
from another virtual sensor. SQL queries can be performed 
on top of these virtual sensors. 

 
Fig. 9.  Output of the main fire department - owner. 

 
Fig. 10.  Output of the second fire department - participative user. 
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SenSer [4], a generic middleware for the remote access 
and management of WSNs, being the latter virtualized as 
Web services, in a way that is programming language and 
WSN development platform independent. Its distinguishable 
properties include the ability to filter the acquired data and 
to submit WSN reprogramming requests. 

As for the presence of the pattern concept on system’s 
dynamic adaptations, the work in [17] presents one solution 
for self-adaptability of service-generated data streams 
targeting problems such as data loss or delays associated 
with communication networks disruptions. However, 
interaction models are not present as explicit configuration 
options considering service interactions as described in our 
proposal. Although the cited approach does implement a 
(sophisticated) Producer/Consumer interaction model, such 
is restricted to the support system (i.e. it is not explicitly 
visible at the point-to-point interaction level between a 
service and its user). Furthermore, in [17] there is no 
reference to the possibility of dynamically adding new data 
flow consumers or additional data sources, as we proposed 
in the session's context. 

Some other works use reconfigurable Architectural 
Patterns for adaptable system’s definition [18]. The 
architecture of the Publish/Subscriber pattern, for instance, 
allows the reconfiguration of publishers, subscribers, and 
subscribed events. The Master/Slave pattern also allows the 
addition of new slaves to optimize task execution [19]; such 
is also incorporated in our solution within the context of a 
session. In spite of such reconfigurable system architecture 
definition, these works do not provide a session capturing an 
interaction's context, nor a pattern-based system evolution 
based on pre-defined rules conform to those pattern's 
semantics.  

Finally, our solution is based on the work by [16] which, 
however, does not provide a session abstraction to 
contextualize and reuse dynamic interaction models, nor 
implements a state machine for pattern-based system 
evolution.  

VII. CONCLUSIONS AND FUTURE WORK 

Current applications relying on WSNs for large-scale 
environment monitoring require adequate abstractions for 
network access and parameterization, and sensing data 
acquisition. However, applications also increasingly request 
the seamless integration of WSNs in heterogeneous and 
dynamic complex systems, what is possible via the service 
concept. Moreover, the access to sensing data requires richer 
interaction models besides the traditional synchronous 
request/reply model, for example the Publish/Subscribe and 
Streaming models. Based on such Web enabled WSNs this 
work proposes a session abstraction in order to capture, 
contextualize, and reuse diverse richer dynamic interaction 
models to those services. 

A session embodies the common interaction 
characteristics relating a set of users accessing the same 
service at some point in time, and all perceive the same 
events occurring meanwhile in the session's context. A 
session also contextualizes the possible dynamic adaptations 
both in terms of the service, the communication medium, or 
the clients' contexts. For instance the sensing data, the data 

transfer rate, or a client's mobile device autonomy, may all 
trigger the modification of the interaction model. 
Furthermore, both the interaction models and the rules for 
their dynamic adaptation rely on the pattern concept and 
depend on individual pattern semantics. The system’s 
evolution is captured in a state machine based on pre-
defined pattern-based rules. Being well defined, such per-
pattern reconfigurations allow adaptation automation and 
contribute to limiting, to some extent, the impact of the 
dynamic reconfiguration upon the overall system.  

The performance evaluation in terms of the overhead of 
one additional middleware layer between a Web enabled 
WSN and its users (SenSer platform [4]) is one point that 
unfortunately is missing in this paper but which will be 
studied in the near future. Likewise, more application 
scenarios are needed in order to evaluate the expressiveness 
of the model.  

Nevertheless, it is our opinion that such novel session-
based abstraction opens several interesting further 
developments concerning the inclusion and aggregation of 
diverse WSNs sensing data in different domains. For 
instance the aggregation of session-based interactions may 
be captured in the form of workflow dependencies and be 
used in ambient intelligence contexts and participatory 
sensing applications. Furthermore, the proposed 
middleware’s deployment in a Cloud computing platform 
may provide clients a ubiquitous and reliable access to 
sessions. These cases are already under development. 
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