

1

Resumen — The Wireless Sensor Networks (WSNs)

technology is already perceived as fundamental for science
across many domains, since it provides a low cost solution for
environment monitoring. WSNs representation via the service
concept and its inclusion in Web environments, e.g. through
Web services, supports particularly their open/standard access
and integration. Although such Web enabled WSNs simplify
data access, network parameterization and aggregation, the
existing interaction models and run-time adaptation
mechanisms available to clients are still scarce.

Nevertheless, applications increasingly demand richer and
more flexible accesses besides the traditional client/server. For
instance, applications may require a streaming model in order
to avoid sequential data requests, or the asynchronous
notification of subscribed data through the publish/subscriber.
Moreover, the possibility to automatically switch between such
models at runtime allows applications to define flexible
context-based data acquisition. To this extent, this paper
discusses the relevance of the session and pattern abstractions
on the design of a middleware prototype providing richer and
dynamically reconfigurable interaction models to Web enabled
WSNs.

Palabras clave—Web enabled Wireless Sensor Networks,
Dynamic Interaction Models, Design Patterns

I. INTRODUCTION

imulation applications for unexpected but extreme
events like large-scale flooding, hurricanes, severe

droughts, etc., demand the access to different types of data
collected across wide scale geographic areas, and for long
periods of time. Only large amounts of diverse data support
more precise information extraction and knowledge,
concerning a better evaluation of complex events of this
kind.

Wireless Sensor Networks (WSNs), in particular, offer a
good low cost solution for such large-scale environmental
monitoring since they comprise a high number of sensor
devices deployed throughout the geographic area to be

This work was supported in part by the PEst-OE/EEI/UI0527/2011
Centro de Informática e Tecnologias da Informação (CITI/FCT/UNL) -
2011-2012. The collaborations of M.C. Gomes and H. Paulino are partially
supported by projects SITAN—PTDC/EIA-EIA/113729/2009 and
MACAW--PTDC/EIA-EIA/115730/2009, respectively.

 M. C. Gomes and H. Paulino are with the Departamento de

Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa, Portugal (phone: +351-212948536; fax: +351-212948541; e-mails:
mcg@fct.unl.pt and herve.paulino@fct.unl.pt).

 A. Baptista and F. Araújo concluded their MsC at the Departamento
de Informática of Faculdade de Ciências e Tecnologia, Universidade Nova
de Lisboa, Portugal, in 2012.

evaluated. Current WSNs may include different types of
sensors, spanning from simple and static devices to
increasingly complex mobile devices. WSNs allow hence
the development of more or less elaborated applications [1]
to which the interaction with the real world is a pressing
requirement. Such includes not only more traditional
applications like the ones mentioned above, but WSNs also
allow the surge of novel ones. This is the case of the
Participatory Sensing area [2] where applications like urban
traffic management or virtual communities' support typically
rely on data acquisition and dissemination through mobile
devices (e.g. using sensors embedded in private cars and
mobile phones).

Nevertheless, one disadvantage of WSNs is still their
low-level limited interfaces. To this concern, high-level
abstractions have been used to simplify WSNs access,
allowing their representation as data streams, databases, or
through mobile agent models, for instance. Likewise,
abstracting WSNs as Web services [3][4] allows their
inclusion in Web environments, e.g. in the context of
business processes. Namely, the service paradigm via
standard Web technologies supports a uniform and simple
access to WSNs, their parameterization and aggregation,
and the systematic access to collected data.

A service-based access to WSNs also allows their
integration with very different systems, since the service
paradigm provides a uniform access to, and aggregation of,
distinct entities. One example may be the seamless
integration of WSNs providing online, almost real-time,
data acquisition with Cloud-based applications consuming
that data. In fact, and considering the perceivable trend on
making everything accessible as a service (XaaS), the
service concept may provide a powerful but simple
abstraction for heterogeneous systems' access, interaction,
and integration, may those systems be Web enabled WSNs,
Internet of Things entities (IoT) [5][6], Grid or Cloud
computing services (for standardization efforts in this area
see [7]), etc.

Nevertheless, the access to those types of services may
have requirements behind the traditional request/response
interaction, demanding therefore dynamic/richer interaction
models [8]. For instance IoT entities having one single client
(the owner) may be interfaced through a stateful Web
service. Cloud computing services, in turn, may interface
stateful resources or long running activities which need to
be inspected in terms of resource consumption, dynamic
requirements, or overall cost [9][10]. Considering
specifically Web enabled WSNs, sensors may have to be
inspected/interrogated (e.g. in terms of sensor autonomy

Accessing wireless sensor networks via
dynamically reconfigurable interaction models
Maria Cecília Gomes, Hervé Paulino, Adérito Baptista, and Filipe Araújo, CITI/Departamento de
Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica,
Portugal

S

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/288869214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

evaluation and sensing frequency) and also be modified (e.g.
sensor parameterization). Additionally, sensing data may
have to be acquired with different QoS depending on
contextual information (e.g. sensing data streaming on an
emergency situation versus periodic data notification for
sensors' autonomy preservation).

WSNs accesses may consequently be modeled as Web
services interfacing stateful resources [11][12] requiring the
realization of a dynamic/variable state which has to be kept
consistent along several message exchanges between a
service and each one of its clients [13]. This is captured in
the Web Services Resource Framework (WSRF) norm [14],
which had its origin in the context of Grid computing [13] in
order to represent the access to typical, long running, High
Performance Computing applications. Consequently, such
Web enabled WSNs may benefit from richer/dynamic
interaction models for sensor data acquisition and
dissemination that however are not generally available in
current solutions.

The following sections describe the dimensions
concerning such limitations and propose a solution towards
richer interactions for Web enabled WSNs access.
Subsequent Sections IV and V describe, respectively, the
implementation architecture and an application scenario.
The conclusions are described in the final section as well as
future work.

II. PROBLEM DIMENSIONS

Consider an emergency application for a critical area
prone to cyclic wild fire situations. In order to more
accurately calculate a fire ignition probability [15],
simulation applications in this domain benefit from
consuming almost real-time/online sensing data provided by
different types of WSNs deployed in the area, e.g.
temperature, humidity and wind characteristics’ monitoring.
Under normal conditions, temperature data acquisition from
a single type of sensors may be enough. However, in the
presence of draught weather conditions, more precise
temperature data may be needed, e.g. collected from
different sensors at different heights. Moreover, if a fire
ignition does occur, different types of data like wind
velocity and direction are also needed.

 In case a client uses a traditional request/reply interaction
model to collected sensing data, several independent client
requests are necessary in order to process enough quantities
of different data. One solution is to support the collective
data processing and dissemination as a single interaction
action, similarly to what happens in the mashups concept.
Moreover, the supporting system should allow the dynamic
selection of those data sources at runtime. Additionally, and
due to the low autonomy of typical sensing devices, the QoS
in terms data acquisition rate and delivery should be low
under normal situations, e.g. winter time for the fire
application, and high in emergency situations.

Other requirements may also be considered. For instance,
critical data may be needed not only to the fire simulation's
execution, but also to the firemen deployed in the area.
Namely, these may be using mobile devices for their
coordination and relevant data may now depend upon their
geographical location (e.g. data collected at the vicinities of

the firemen’s position). Likewise, if the mobile devices have
already a low battery level, a data stream cannot be
processed anymore, but sporadic data delivery is required
instead.

Whatever the clients’ perspective, the most adequate
solution is to provide flexibility on data sources' dynamic
selection and aggregation, and also in terms of the data
acquisition rate. Such may be supported through selecting
an adequate interaction model between the service and its
clients, at some point in time. The supporting system should
also provide their dynamic modification based on context
data. For instance, a Streaming model is preferable for a
continuous sensing data delivery; a Producer/Consumer is
necessary if there are data delivery requirements; and a
Publish/subscriber model is more adequate whenever low
rate data transmission is enough.

Having defined such a (more or less) complex monitoring
scenario for different Web enabled WSNs data sensing, its
reuse for related clients/applications may also be useful. For
example, the described scenario could be used in the context
of a similar tornado simulation application for the area.
Likewise, in case additional firemen corporations are
deployed into the affected location, the contextual
information perceived by the former firemen should be
quickly and easily shared to the new ones.

Contextual information sharing may also support the
coordination of relevant agents, e.g. considering that
emergency protocols have to be precisely defined and
known both by the actors in the field and authority entities.
Based on a common context, emergency support systems
may hence enforce some forms of pre-defined automatic
dynamic reconfiguration capabilities concerning the
evolution of a critical event. Such rules may be incorporated
in those systems and be automatically triggered in face of
particular events, e.g. sensing data values collected in a
problematic area may trigger a switch from normal to an
emergency situation.

Therefore, it is our opinion that richer/dynamic
interaction models are necessary on accessing Web enabled
WSNs and that they should be captured allowing their
sharing among different clients and reuse for similar
situations. In the following, we propose a novel session-
based abstraction to represent and contextualize such
dynamic interaction models.

III. PROPOSED SOLUTION

The conceptual view of the proposed solution is depicted
in Fig. 1. The middleware layer hides the details inherent to
accessing Web enabled WSNs and provides an interaction
context to clients, either individual or to a set (e.g. clients
which may benefit from sharing a particular interaction).
The solution is based on a) the Session concept to capture
dynamic rich interactions with Web enabled WSNs, and on
b) the Pattern concept to implement a confined, structured,
and well defined mechanism for dynamic reconfiguration
within a session context.

A. Sessions Capturing Dynamic Interaction Models
The Session concept represents the interaction context of

a set of users accessing the same Web enabled WSN
services, as well as the dynamic reconfiguration features

3

possible within that context. A session includes:
1) The identification of the data sources plus the particular

interaction model in use at some point in time for data
dissemination. All client accesses within this session's
context obey the semantics of that interaction model,
which defines the service/users' data and control flow
dependencies. Basic interaction models are
Client/Server, Publish/Subscriber, Streaming, and
Producer/Consumer. Fig. 2 depicts an example for a
Wind data source, whose data is disseminated through a
Streaming interaction model.

2) Management information, such as a unique session
identifier used by new clients to join the session; the
identifiers of the session's current members; the
identifier of the session's owner, the sole that can
perform explicit dynamic reconfigurations and
terminate the session; and the session's life time limit
which when expired causes the session's termination
and the consequent notification of all its members. If
this time is unbounded, the owner must explicitly
request the termination. The session in Fig. 2 has two
clients and an unbound lifetime limit.

3) The possible adaptation mechanisms consisting of
structured and context-based dynamic reconfigurations.
These depend on the characteristics of the WSNs
service/users interaction context and may also be pre-
defined:

• The interaction's context includes:
i. The context of the service client (e.g. a mobile

device with limited autonomy or progressing to a
different geographic area).

ii. The interaction medium between the Web enabled
WSN service and its user (e.g. the characteristics of
the supporting communication networks).

iii. The Web enabled WSN service's context (e.g.
services representing relevant data sources like
temperature or humidity sensing data whose critical
values have to be acknowledged).

• System evolution results from on-demand/pre-
defined interaction models’ dynamic modifications.
Users may explicitly require dynamic reconfigurations,
or these may be automatically triggered by the runtime

system based on pre-defined rules and upon change
detection of the cited interaction context.

B. Pattern-based Dynamic Interaction Models
Within a session’s context, the pattern concept is used

both
• To implement the interaction model in use by all

clients belonging to the session at some point in time;
and
• To provide a structured dynamic adaptation
mechanism ruling a session’s evolution.

 Implementing the Session’s Interaction Model
Patterns underlie an interaction model's implementation in

the context of a session. Such is accomplished following the
ideas in [16] where pattern abstractions in the form of
parameterized Pattern Templates capture structure and
behavior with separation of concerns, allowing their flexible
composition.

The implementation of a particular interaction model is
based on the composition of one or more structural patterns
with a behavioral pattern. Structural Patterns capture a
session's "static view" in terms of the structural
dependencies/relations among its members (e.g. a Façade or
a pipeline) without specifying any restrictions in terms of
data or control flows.

The "dynamic view" is defined, on the other hand, by
Behavioral Patterns like Producer/Consumer, Streaming,
Publish/Subscriber, and so on. These characterize the
dependencies in terms of data and control flows among a
session's members, as well as their role concerning the
behavioral patterns' semantics (e.g. roles of producer and
consumer when considering the Producer/Consumer
pattern).

The left-hand side of Fig. 3 (a) presents the composition
of a Façade structural pattern with the Publish/Subscriber
behavioral pattern. The Façade captures the common
interface for data dissemination to all clients in the session,
and the behavior defines how that data is disseminated to
session's clients.

Different interaction models enable the presentation of
data flows with distinct quality services at different points in
time. This allows diversity on accessing Web enabled WSN
services/data sources, as well as for their modification when
convenient. For example, the use of a Client/Server model

Client1 Client2 Client3 Client4

Interaction models and dynamic
reconfiguration for Web services

interfacing stateful resources

Web
enabled

WSN

Web
enabled

WSN

Web
enabled

WSN

Web
enabled

WSN

WSN WSN WSN WSN WSN WSN

Context of
interaction

Context of
interaction

Fig. 1. Conceptual view.

 Session

SessionId: Session1
Owner: Client1
Users: Client1, Client2
Topic: Wind
Lifetime: illimited

Structure (Façade)
Behaviour

(Streaming)

Client1 Client2

Data
Stream

Service

Fig. 2. Session abstraction with a Stream-based interaction model.

 4

to inspect a data source versus a Publish/Subscriber model
to receive asynchronous event notifications.

The right-hand side of Fig. 3 (b), in turn, presents the
implementation of an Aggregation model in the context of a
session, which consists on the aggregation, and possible
processing, of multiple data sources, and their
dissemination. Such is supported by a hierarchical structure,
namely a two-staged process (a two stage pipeline structure)
consisting of an aggregation phase and a dissemination
phase. Both phases must present the same behavior, for
instance, an aggregation of streams must be disseminated
according to the Streaming behavior. The logic used to
combine the multiple data sources is defined in the form of
an aggregation function parameterized upon the model's
definition. This approach accommodates the definition of
application-specific stream processing techniques to filter
the data, compute statistics, and so forth.

Structured Dynamic Adaptation
The pattern abstraction also supports a structured

dynamic adaptation mechanism dependent on the current
state of the interaction's context. As a result
a) Each pattern can be directly reconfigured at runtime, both

in the dimensions of structure and/or behavior (e.g. to
replace a behavior by another one);

b) The adaptation/evolution of the system may be
represented as a pre-defined sequence of patterns captured
as a state machine (see Section IV).

IV. A MIDDLEWARE FOR WSNS ADAPTABLE ACCESS

The proposed middleware implements the concepts
described in the previous section providing rich and
dynamic interaction models for Web enabled WSNs. It is
implemented as a Web accessible platform upon which
sessions can be shared by multiple geographically dispersed
users.

The middleware's architecture, depicted in Fig. 4, follows
a multi-tier model that cleanly separates the multiple
concerns of the system, such as presentation, logic and data
access. From a bottom-up perspective, the layers that
compose the middleware are:
• Data Acquisition: interacts with Web enabled WSNs, the

data sources, providing a topic-based API. Upper layers

can hence associate topics to data sources or define
restrictions on those same sources. For example, a topic
may refer to a stream of data produced by a given
service or only to the items of the stream that obey a
given condition (e.g. subscription of precipitation levels
above 132 units, as depicted in the left-hand side of Fig.
3 (b)).

• Session Management: implements the session
abstraction, supplying tools for session
creation/termination; session management, ranging
from membership accounting to parameter
configuration (e.g. lifetime specification); and possible
dynamic reconfiguration mechanisms. Since a session
may comprise geographically dispersed members, this
layer exposes a simple Web service interface intended
to be used by higher-level language APIs.

• Session-Centered High-Level API: provides a high-level
session-centric interface for the cited capabilities.

The remainder of this section will further detail the
Session Management layer, the core of the middleware, and
the Session-Centered API used in the example of Section V.

A. Session Management Layer
A session hosts a single behavior/interaction model to

which all of its clients are automatically bound. This
behavior must be defined when the session is created but
may also change in time, as a response to a reconfiguration
action. The client that creates a session is titled its owner
and is the sole with permissions to perform reconfiguration
actions that have a session-wide impact. The other members
must comply with the session's current configuration, and
adapt to any consummated reconfiguration or leave. The
composition of one or more structural patterns with a
behavioral pattern provides the framework upon which
sessions are implemented, as described in Section III.B.

Pattern-based Dynamic Reconfiguration
The reconfiguration mechanisms featured in the

middleware have the purpose of adapting, in the context of a
session, the way a particular client or a set of clients (the
session’s members) interacts with a set of Web services.

The separation of the session, structure, and behavior
concepts, and the way they are combined to support session
execution, cleanly evidences the responsibility of each one.

Session Centred High-Level API

Session Management

Data Acquisition

WSN WSN WSN

Topic-based API

Session-centred API
low-level access

Web enabled WSNs

Fig. 4. Overall architecture.

 Session

SessionId: Session2
Owner: Client3
Users: Client3, Client4
Topic: Precipitation > 132
Lifetime: illimited

Structure (Façade)
Behaviour

(Publish/Subscribe)

Client3 Client4

Subscribe
Notify

Service

Session

Structure (Façade)
Behaviour

Structure (Façade)

Aggregation
function

Aggregation process

Dissemination process

a) b)

Fig. 3. Session's Interaction Models implemented as the composition of
structural and behavioral patterns.

5

For instance, the session contextualizes the overall
interaction; a new client joining an existing session is
captured as a structural reconfiguration independent from
the behavior (i.e. the new client has the same behavior as the
other existing clients in the same session); the replacement
of the session's interaction model in use is captured as a
behavior reconfiguration independent from the structure (all
clients in the session are notified of a new behavior ruling
data dissemination).

Additionally, the reconfiguration actions can be
characterized as implicit (automatically triggered by the
middleware) and explicit (requested by a client).
Orthogonally, their scope may be confined to the tuning of
the current interaction model, or have a session-wide
impact, replacing the current model altogether. The
conjunction of all the reconfigurations supported by the
middleware defines a state machine whose description
follows.

Explicit Reconfigurations
Valid reconfiguration requests may be issued by any

member of any session, at any moment in time. Their
purpose is twofold: to tune or to replace the current
interaction model. Tuning requests are model dependent,
and must conform to the currently active reconfiguration
interface. For instance, setting the data rate is only available
in the Streaming and Producer/Consumer models.

The remainder requests have a broader impact and thus
have their semantics bound to the role of the client in the
session. Only a reconfiguration request issued by the
session's owner may encompass the entire session. The other
members are notified of such reconfiguration and will have
to adapt to the new configuration or leave the session.
Requests issued by some other member than the owner do
not affect the target session. It is the client that is moved to
another session fulfilling the required parameters. If no such
session exists at the time, it is created on the fly.

Fig. 5 illustrates the transitions of the state machine that
are triggered by explicit requests. The ones that actually
perform a state transition have been divided into three
categories:
• Explicit: an explicit reconfigure request.
• Automatic: reconfiguration actions that, when in the

scope of a Publish/Subscribe model, can be
programmatically associated to a particular topic
subscription. As soon as the middleware receives a
notification on that topic it automatically reconfigures

the client, according to its role in the session (owner or
regular member).

• Add interaction: addition of new data sources to the
session. This reconfiguration forces the interaction
model to become an aggregation, being that the
dissemination model is inherited from the current
configuration, e.g. adding a new source to a stream will
result in the aggregation of two streams.

Implicit Reconfigurations
These constitute responses to changes in the context of

the client, the service, or their communication channel.
Their purpose is to ensure that the data flow between a
session's sources and clients is adjusted according to the
session configuration parameters and the ability of the
sources to meet these requirements.

Fig. 6 presents the transitions of the state machine
dedicated to this type of reconfigurations. Three scenarios
are handled:
• Session out of reach: this transition is triggered whenever

the data source is no longer reachable. The session's
clients are notified of the incident and from that point
on they will only able to interact with the source
through the Client/Server model. Naturally, as long as
the source is out of reach, any request will return an
error message.

• No data: when in the context of the Stream and
Producer/Consumer interaction models, the absence of
new data items causes the session to be reconfigured to
Publish/Subscribe. Clients are notified of both the data
stream’s interruption and resuming.

• Lower the rate: the Producer/Consumer interaction model
enables clients to consume data-streams at their own
pace, which may be significantly slower or faster than
their production rate. To support such feature, the
middleware buffers data items on both ends of a client
connection. In this context, the Lower the rate transition
is triggered whenever the buffer that resides on the
client end detects that it is no longer able to consume
the data at the current pace. As the name implies, the
reconfiguration lowers the rate to which the data items
are sent to that particular client. Thereby, this
reconfiguration targets a single connection, and not the
whole session.

B. The Java Session-Centered API
A high-level session-centric API has been developed for

the Java language. It exposes all of the middleware's
features, providing the means for applications to create,
destroy, join and reconfigure existing sessions. Moreover, it

Client/
Server

Publish/
Subscribe

Aggregation

Producer/
ConsumerStream

Explicit

Aggregation

Automatic
Add interaction

Set rate Set rate

Edit subscription

Fig. 5. Reconfiguration state machine: explicit reconfigurations.

Client/
Server

Publish/
Subscribe

Aggregation

Producer/
ConsumerStream

No data

Source out
of reach Lower the rate

No data

Fig. 6. Reconfiguration state machine: implicit reconfigurations.

 6

specifies how an application can process incoming data
items and react to consummated reconfigurations. Fig. 7
showcases a simplified version of the API’s class diagram.

Creating and Joining Sessions
Session are instances of the Session class that can be

parameterized with the topic(s) of the data sources, an
interaction model (the default is Client/Server), a listener to
handle incoming data (more on this ahead), and a duration
in minutes (the default is unbound). All interaction models
share a common interface (InteractionModel) but provide
specific reconfiguration interfaces (the methods of each
class). The ability to join existing sessions is provided by
the join() method. It requires the identifier of the session to
be joined and the listener to handle incoming data. The
inquiry of which sessions and topics are currently active is
possible through methods getActiveSession() and
getAvailableTopics(), respectively.

Reconfiguration Requests
Three methods are provided for requesting explicit

reconfigurations: reconfigureCurrent(), reconfigure() and
addInteraction(). The first empowers the tuning of the
current interaction model, while the remainder two
instantiate the explicit and add interaction transitions of Fig.
5, respectively.

Handling Incoming Data and Notifications
A special handler that we refer as listener must process all

the data received in the scope of a session. This handler
must subtype abstract class NotificationListener and
implement methods to process the reception of new
application data items (processMessage()) and of all
possible exceptions and reconfiguration notifications (the
remainder methods).

V. APPLICATION SCENARIO

The application scenario chosen to illustrate some
capabilities of our proposal belongs to the domain of the

Data Driven Applications and Systems (DDDAS) [21].
These applications are characterized by the need to
dynamically incorporate sensing data into a running
simulation. Inversely, the simulation should also be able to
dynamically parameterize how such sensing data is
collected (e.g. restricting data acquisition to the most
affected areas in order to reduce data processing). Our
example describes only a partial scenario in the context of a
fire monitoring and simulation application, as introduced in
section II. Namely, a session contextualizes the dynamic
aggregation of sensing data collected in a critical area, and
typical clients to this session are fire workers and a fire
evolution simulation. These clients may hence share the
same context both in terms of collected data and the used
interaction model for that data dissemination; additionally,
all clients in the session are notified of the same dynamic
reconfiguration events. The example in the next sub-section
describes only the perspective of the fire workers.

A. Wildfires notification application
Consider a fire detection application supporting a fire

department responsible for a critical geographical area prone
to recurrent wild fire events. The department is interested on
receiving a notification whenever the temperature in the area
rises to values above 50º Celsius. Furthermore, when this
happens, a dynamic reconfiguration should cause a switch
from an alert state scenario to a critical state contemplating
the raise of the temperature above 80º. Based on this last
notification indicating a probable imminent fire ignition, the
next step requires on-line (almost real time) data acquisition
on wind-speed and direction, besides temperature. Such
different data types should also be aggregated according to
user’s defined criteria.

In case a secondary fire department is appointed to fight a
fire in the same area, the application should provide them
with access to the same data as the main fire department.
Furthermore, if during the fire fighting period the main fire
department decides to add another source of data, e.g.
"Humidity", in order to gain more precise information about

Session(String topic, InteractionModel m, NotificationListener l, int duration)
Session(String[] topic, InteractionModel m, NotificationListener l, int duration)
boolean join(String SessionId, NotificationListener l)
void start()
void finish()
DataItem query()
void setListener(NotificationListener l)
boolean reconfigure(String topic, InteractionModel m, Listener l)
boolean reconfigure(String topic, InteractionModel m)
boolean reconfigure(InteractionModel m, Listener l)
boolean reconfigure(InteractionModel m)
boolean reconfigureCurrent(String operation, String[] parameters)
boolean addInteraction(String[] topics, NotificationListener l, String aggrFunctionClass)
boolean addInteraction(String[] topics, NotificationListener l)
String getClientId()
String getSessionId()
InteractionModelId getCurrentInteractionModel()
List<String> getAvailableTopics()
List<String> getActiveSessions()

Session
InteractionModelId getId()
List<String> getTopics()
NotificationListener getListener()

InteractionModel

PubSub()
void onNotification(String[] topics,
 InteractionModel m, NotificationListerner l)

Pubsub

Stream(int rate)
Stream()
boolean setRate(int rate)

Stream

ProdCons(int rate)
ProdCons()
boolean setRate(int rate)

ProdCons

<uses>

Aggregation(InteractionModelId disseminationModel, String aggrFunctionClass)
Aggregation(InteractionModelId disseminationModel)

Aggregation

NotificationListerner()
void processMessage()
void sessionTerminated()
void sourceOutOfReach()
void noData()
void sessionReconfiguration()
void interactionModelReconfiguration()
void addedInteraction()

NotificationListener
<uses>

Client/Server()
DataItem query()

Client/Server

Fig. 7. API's simplified class diagram.

7

the conditions in the terrain, this has to be acknowledged by
the secondary fire corporation as well. Fig. 8 represents such
modifications in the context of a session capturing this
application scenario.

B. System dynamic evolution
The first image in Fig. 8 (on the left-hand side) depicts a

session created by the middleware including:
1) The interaction context between the session clients,

namely the Main Fire Department (the session's owner)
and the Secondary Fire Department (the auxiliary
corporation).

2) The available data sources accessible in the session, i.e.
a Web enabled WSNs acquiring temperature data.

3) The interaction model in use is the Publish/Subscribe
being the subscription topic: temperature values above
50, which defines an alert state.

4) The dynamic reconfiguration rules.
Namely, if such temperature value of 50 is observed, a

user-defined dynamic reconfiguration takes place (First
reconfiguration in 8) modifying the subscription topic. The
fire departments are now interested in being notified when
the temperature reaches 80º or above which indicates a
critical situation. Note that the interaction model is left
unaltered, and thus both departments are notified of this
event.

On such scenario, another automatic dynamic
reconfiguration (Second reconfiguration) is triggered to
build an aggregation of multiple data sources. In the face of
a critical situation, temperature data inspection is not
enough, and new data sources on wind speed and direction
are dynamically added to the session context. Data collected
from different types of Web enabled WSNs may hence be
aggregated in the context of the session and processed
according to a user-defined aggregation function. Moreover,
for a precise evaluation of the fire situation (e.g. if a fire
ignition is imminent or has already occurred), a continuous
data flow from the sensor devices monitoring the area is
now mandatory. Such is also depicted in the new
configuration, where the interaction model used for both the
aggregation and dissemination stages is the Streaming
model.

Finally, the case when additional data sources are still
needed, e.g. on humidity values, is illustrated by the Third
reconfiguration. The aggregation model remains as the
underlying interaction model but a new Web service

interfacing WSNs has been added, allowing the definition of
a different aggregation function for processing all the types
of incoming data.

//	
 Listeners	

Listener	
 ownerListerner1	
 =	
 new	
 TemperatureListener50();	

Listener	
 ownerListerner2	
 =	
 new	
 TemperatureListener80();	

Listener	
 ownerListerner3	
 =	
 	

new	
 TemperatureWindSpeedWindDirectionListener();	

//	
 Interaction	
 models	

Aggregation	
 fire	
 =	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 new	
 Aggregation(InteractionModel.STREAM,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 "fire.HPAggregationFunction");	

PubSub	
 critical	
 =	
 new	
 PubSub();	

critical.onNotification({"Temperature",	
 "WindSpeed",	
 	

"WindDir"},	
 fire,	
 ownerListerner3);	

PubSub	
 alert	
 =	
 new	
 PubSub();	

alert.onNotification(
 "Temperature>80",	
 critical,	
 	

ownerListerner2);	

//	
 Session	
 creation	

Session	
 s	
 =	
 new	
 Session("Temperature",	
 alert,	
 	

ownerListerner1);	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

s.start();	

…	

	

//	
 Later,	
 during	
 the	
 fire	
 fighting	

Listener	
 ownerListerner4	
 =	
 new	
 HumidityListener();	

s.addInteraction("Humidity",	
 ownerListerner4);	

Listing 1: Main Fire Department’s session

Note that this session's context captures the

subordination, in the field, of the Secondary Fire
Corporation to the Main Fire Department in terms of
relevant collected data and the associated response. For
instance, Listing 1 sketches the creation of a session with a
Publish/Subscribe interaction model used to notify
temperature values. When those values exceed a minimum
threshold, the above critical situation is established and a
pre-defined dynamic modification takes place ("Second
reconfiguration" in Fig. 8). This reconfiguration is defined
by the session owner (Main Fire Department) and consists
on an Aggregation of streams on temperature, wind
direction, and wind speed values, as depicted in Listing 1.

To share the same session context and subsequently be

 Session

Temperature > 50

Publish/Subscribe

Main Fire
Department

Secondary
Fire

Department

Notification:
 Temperature > 50

WSN
Temperature

Notification:
 Automatic
 Reconfiguration

Notification:
 Temperature > 50

Notification:
 Automatic
 Reconfiguration

Notification:
 Temperature > 50

 Session

Temperature > 80

Publish/Subscribe

Main Fire
Department

Secondary
Fire

Department

Notification:
 Temperature > 80

WSN
Temperature

Notification:
 Automatic
 Reconfiguration

Notification:
 Temperature > 80

Notification:
 Automatic
 Reconfiguration

Notification:
 Temperature > 80

Session

Stream

Aggregation
function

Main Fire
Department

Secondary
Fire

Department

WSN
Temperature

WSN
Wind
speed

WSN
Wind

direction

Aggregated
 data

Aggregated
 data

Session

Stream

Aggregation
function

Main Fire
Department

Secondary
Fire

Department

WSN
Temperature

WSN
Wind
speed

WSN
Wind

direction

Aggregated
 data

Aggregated
 data

WSN
Humidity

First
Reconfiguration

Second
Reconfiguration

Third
Reconfiguration

Fig. 8. Dynamic reconfigurations in a session context.

 8

notified of the same events as the owner - including
dynamic reconfigurations - the Secondary Fire Corporation
has to know this session's identifier and join it as specified
in Listing 2.

Session	
 s	
 =	
 Session.join(sessionId,	
 new	
 ClientListener1());	

Listing 2: A new fire corporation joins the session

In order to acknowledge and handle the events occurring
in the context of the session, the above Secondary Fire
Corporation (or other novel clients joining the session at
some point in time) has to implement the ClientListener1	

handler as it is sketched in Listing 3. The disclosed methods
handle the reception of data items, displaying them in a user
interface (gui), and define a new listener able to process the
reconfigurations possible in a new session's state.
	

public	
 class	
 ClientListener1	
 extends	
 AbstractListener	
 {	

	
 	
 	

	
 	
 public	
 void	
 processMessage(DataItem	
 msg)	
 {	

	
 	
 	
 	
 gui.display(msg.getTopic()	
 ,msg.getContents());	

	
 	
 }	

	
 	
 public	
 void	
 InteractionModelReconfiguration(

ReconfException	
 n)	
 {	

	
 	
 	
 	
 gui.displayNotification(n.getTopic(),	
 n.getReason());	

	
 	
 	
 	
 getSession().setListener(new	
 ClientListerner2());	

	
 	
 }	

}	

Listing 3: Sketching	
 the	
 implementation	
 of	
 ClientListener1	

C. Example output
In the context of the previous particular scenario Figs. 9

and 10 illustrate the reception, on both fire departments, of
the data values and notifications disseminated in the context
of the session. The display of data values complies with the
following format:

Topic: subscribed_topic | Value: received_value

while the display of notifications adheres to format:
Topic: subscribed_topic | Value:NOTIFICATION:reason

Reconfiguration notifications are disseminated to all

members of a session, including its owner, which pre-
defined the reconfiguration request. This approach entails a
uniform way to react to a given notification, regardless of
the member’s role in the session.

Fig. 10 also shows the situation when the Main Fire
Department requests a novel stream on humidity values
(third reconfiguration on Figure 7) but an aggregation
function is not supplied in the invocation of addInteraction()
(last line of Listing 1). As a consequence, the messages are
no longer aggregated by the middleware, who simply
forwards them. Such behavior can be observer on both
figures from the point the fourth listener takes action.

VI. RELATED WORK

To the best of our knowledge, existing middleware
platforms for Web enabled WSNs do not address client-
WSN interaction model’s dynamic reconfiguration concerns
nor provide a session abstraction to capture and reuse such
dynamicity. Among those platforms we highlight:

52º North [12], the most known implementation of the
Sensor Web Enablement (SWE) [3], a set of models and
Web service interfaces proposed by the Open Geospatial
Consortium for the Web integration of sensor systems. The
models focus on the description of sensor systems and their
capabilities to collect and process observations, while the
services address the collection, storing, and dissemination of
sensor reading and alerts (notifications).

Global Sensor Network (GSN) [20], which aims at
building a sensor Internet by connecting virtual sensors,
abstracting data-streams originating from either a WSN or
from another virtual sensor. SQL queries can be performed
on top of these virtual sensors.

Fig. 9. Output of the main fire department - owner.

Fig. 10. Output of the second fire department - participative user.

9

SenSer [4], a generic middleware for the remote access
and management of WSNs, being the latter virtualized as
Web services, in a way that is programming language and
WSN development platform independent. Its distinguishable
properties include the ability to filter the acquired data and
to submit WSN reprogramming requests.

As for the presence of the pattern concept on system’s
dynamic adaptations, the work in [17] presents one solution
for self-adaptability of service-generated data streams
targeting problems such as data loss or delays associated
with communication networks disruptions. However,
interaction models are not present as explicit configuration
options considering service interactions as described in our
proposal. Although the cited approach does implement a
(sophisticated) Producer/Consumer interaction model, such
is restricted to the support system (i.e. it is not explicitly
visible at the point-to-point interaction level between a
service and its user). Furthermore, in [17] there is no
reference to the possibility of dynamically adding new data
flow consumers or additional data sources, as we proposed
in the session's context.

Some other works use reconfigurable Architectural
Patterns for adaptable system’s definition [18]. The
architecture of the Publish/Subscriber pattern, for instance,
allows the reconfiguration of publishers, subscribers, and
subscribed events. The Master/Slave pattern also allows the
addition of new slaves to optimize task execution [19]; such
is also incorporated in our solution within the context of a
session. In spite of such reconfigurable system architecture
definition, these works do not provide a session capturing an
interaction's context, nor a pattern-based system evolution
based on pre-defined rules conform to those pattern's
semantics.

Finally, our solution is based on the work by [16] which,
however, does not provide a session abstraction to
contextualize and reuse dynamic interaction models, nor
implements a state machine for pattern-based system
evolution.

VII. CONCLUSIONS AND FUTURE WORK

Current applications relying on WSNs for large-scale
environment monitoring require adequate abstractions for
network access and parameterization, and sensing data
acquisition. However, applications also increasingly request
the seamless integration of WSNs in heterogeneous and
dynamic complex systems, what is possible via the service
concept. Moreover, the access to sensing data requires richer
interaction models besides the traditional synchronous
request/reply model, for example the Publish/Subscribe and
Streaming models. Based on such Web enabled WSNs this
work proposes a session abstraction in order to capture,
contextualize, and reuse diverse richer dynamic interaction
models to those services.

A session embodies the common interaction
characteristics relating a set of users accessing the same
service at some point in time, and all perceive the same
events occurring meanwhile in the session's context. A
session also contextualizes the possible dynamic adaptations
both in terms of the service, the communication medium, or
the clients' contexts. For instance the sensing data, the data

transfer rate, or a client's mobile device autonomy, may all
trigger the modification of the interaction model.
Furthermore, both the interaction models and the rules for
their dynamic adaptation rely on the pattern concept and
depend on individual pattern semantics. The system’s
evolution is captured in a state machine based on pre-
defined pattern-based rules. Being well defined, such per-
pattern reconfigurations allow adaptation automation and
contribute to limiting, to some extent, the impact of the
dynamic reconfiguration upon the overall system.

The performance evaluation in terms of the overhead of
one additional middleware layer between a Web enabled
WSN and its users (SenSer platform [4]) is one point that
unfortunately is missing in this paper but which will be
studied in the near future. Likewise, more application
scenarios are needed in order to evaluate the expressiveness
of the model.

Nevertheless, it is our opinion that such novel session-
based abstraction opens several interesting further
developments concerning the inclusion and aggregation of
diverse WSNs sensing data in different domains. For
instance the aggregation of session-based interactions may
be captured in the form of workflow dependencies and be
used in ambient intelligence contexts and participatory
sensing applications. Furthermore, the proposed
middleware’s deployment in a Cloud computing platform
may provide clients a ubiquitous and reliable access to
sessions. These cases are already under development.

ACKNOWLEDGMENT

The authors would like to thank Professors Omer Rana
and José Cardoso e Cunha for the initial ideas on pattern and
service abstractions, which ultimately conduced to this
work.

REFERENCES
[1] C. F. García-Hernández, P. H. Ibargüengoytia-González, J. García-

Hernández, and J. A. Pérez-Díaz, “Wireless sensor networks and
applications: a survey,” International Journal of Computer Science
and Network Security, vol. 17, no. 3, pp. 264 –273, 2007.

[2] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A.
Peterson, H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn,
“The rise of people-centric sensing,” IEEE Internet Computing, vol.
12, pp. 12–21, July 2008.

[3] M. E. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC Sensor
Web Enablement: Overview and high level architecture,” in
GeoSensor Networks, Second International Conference, GSN 2006,
Revised Selected Papers, Lecture Notes in Computer Science, S.
Nittel, A. Labrinidis, and A. Stefanidis, Eds, vol. 4540, Springer,
2008, pp. 175–190.

[4] H. Paulino and J. R. Santos, “A middleware framework for the Web
integration of sensor networks,” in Sensor Systems and Software -
2nd International ICST Conference, S-CUBE 2010, Revised Selected
Papers, Lecture Notes of the ICST, Springer-Verlag, 2011, pp. 75–90.

[5] T. Kindberg, J. J. Barton, J. Morgan, G. Becker, D. Caswell, P.
Debaty, G. Gopal, M. Frid, V. Krishnan, H. Morris, J. Schettino, B.
Serra, and M. Spasojevic, “People, places, things: Web presence for
the real world,” MONET, vol. 7, no. 5, pp. 365–376, 2002.

[6] ITU, “ITU Internet report 2005: The Internet of Things,” International
Telecommunication Union, Tech. Rep., 2005 [Online]. Available:
http://www.itu.int/osg/spu/publications/internetofthings/

[7] L. Badger, T. Grance, R. Patt-Corner, and J. Voas, “Cloud computing
synopsis and recommendations (draft), NIST special publication 800-
146,” Recommendations of the National Institute of Standards and
Technology, Tech. Rep., 2011 [Online]. Available:
http://www.nist.gov/itl/csd/20110512_cloud_guide.cfm

 10

[8] A. Baptista, M. C. Gomes, and H. Paulino, “Session-based dynamic

interaction models for stateful Web services,” in Exploring Services
Science - Third International Conference, IESS 2012, Lecture Notes
in Business Information Processing, Springer-Verlag, 2012.

[9] M. Creeger, “Cloud computing: An overview,” ACM Queue, vol. 7,
no. 5, p. 2, 2009.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia, “A view of cloud computing,” Commun. ACM, vol. 53, pp.
50–58, April 2010.

[11] T. Kobialka, R. Buyya, C. Leckie, and R. Kotagiri, “A Sensor Web
middleware with stateful services for heterogeneous sensor
networks,” in Intelligent Sensors, Sensor Networks and Information,
2007, ISSNIP 2007, 3rd International Conference, 2007, pp. 491–496.

[12] C. Stasch, A. C. Walkowski, and S. Jirka, “A geosensor network
architecture for disaster management based on open standards.” in
Digital Earth Summit on Geoinformatics 2008: Tools for Climate
Change Research, 2008, pp. 54–59.

[13] I. F. at al., “Modeling stateful resources with web services v. 1.1,”
Computer Associates International, Inc., Fujitsu Limited, Hewlett-
Packard Development Company, International Business Machines
Corporation and The University of Chicago, Tech. Rep., 2004
[Online]. Available:
http://www-106.ibm.com/developerworks/library/wsresource/ws-
modelingresources.pdf

[14] OASIS, “Oasis web services resource framework (WSRF) TC,”
[Online]. Available: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsrf

[15] F. Darema, “Dynamic data driven applications systems: New
capabilities for application simulations and measurements,” in
International Conference on Computational Science (2), 2005, pp.
610–615.

[16] C. Gomes, O. F. Rana, and J. Cunha, “Extending grid-based
workflow tools with patterns/operators,” Int. J. High Perf. Comput.
Appl., vol. 22, pp. 301–318, August 2008.

[17] V. Bhat, M. Parashar, M. Kh, N. K, and S. Klasky, “A self-managing
wide-area data streaming service using model-based online control,”
in in Proc. 7th IEEE Int. Conf. on Grid Computing, 2006, pp. 176–
183.

[18] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing degrees, models, and applications,” ACM Comput. Surv.,
vol. 40, pp. 2–25, August 2008.

[19] M. Aldinucci, M. Danelutto, and P. Kilpatrick, “Towards hierarchical
management of autonomic components: A case study,” in
Proceedings of the 17th Euromicro International Conference on
Parallel, Distributed and Network-Based Processing, PDP2009, IEEE
Computer Society, 2009, pp. 3–10.

[20] K. Aberer, M. Hauswirth, and A. Salehi, “A middleware for fast and
flexible sensor network deployment,” in Proceedings of the 32nd
International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, 2006, pp. 1199– 1202.

[21] F. Darema, “Dynamic data driven applications systems: A new
paradigm for application simulations and measurements,” In Int.
Conf. on Computational Science, volume 3038, Springer LNCS,
2004.

Dr. Maria Cecília Gomes, PhD, is an Assistant Professor at the
Departamento de Informática (Computer Science Department) of the
Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa. She is a
member of the Research Center for Informatics and Information
Technologies (CITI), and member of the management committee and
national PI of ARTS: Towards Autonomic Road Transport Support Systems
(COST Action TU1102). Her current research interests include autonomic
systems particularly applied to road transportation support systems, service-
oriented computing, and models, abstractions, and workflow systems for
distributed and parallel programming.
Dr. Hervé Paulino, PhD, is an Assistant Professor at the Departamento de
Informática (Computer Science Department) of the Faculdade de Ciências e
Tecnologia/Universidade Nova de Lisboa. He is a member of the Research
Center for Informatics and Information Technologies (CITI), on which he
is the principal investigator of the SABLE (Service Abstractions for
Parallel Computing) research team, and also a collaborator member of the
Research Center for Research in Advanced Computing Systems (CRACS).
His current interests are on the fields of service-oriented computing and,
concurrent and parallel programming.
Adérito Baptista, MsC, was a computer science master student at
Faculdade de Ciências e Tecnologia/Universidade Nova de Lisboa. He is
currently a software developer at Novabase, Portugal.

Filipe Araújo, MsC, was a computer science master student at Faculdade
de Ciências e Tecnologia/Universidade Nova de Lisboa. He is a record
management systems and R&D developer at Quidgest, Portugal.

