
i

Ensemble Learning with GSGP

Olivier GAU

Dissertation presented as partial requirement for
obtaining the Master’s degree in Advanced Analytics

ii

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

ENSEMBLE LEARNING WITH GSGP

por

Olivier GAU

Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Métodos

Analíticos Avançados

Orientador: Leonardo Vanneschi

 Fevereiro 2020

Acknowledgements

I would like to thank Professor Leonardo Vanneschi, Professor Mauro Castelli and

Assistant Professor Illya Bakurov for their guidance and help during this project.

v

Abstract

The purpose of this thesis is to conduct comparative research between Genetic Pro-

gramming (GP) and Geometric Semantic Genetic Programming (GSGP), with differ-

ent initialization (RHH and EDDA) and selection (Tournament and Epsilon-Lexicase)

strategies, in the context of a model-ensemble in order to solve regression optimization

problems.

A model-ensemble is a combination of base learners used in different ways to solve

a problem. The most common ensemble is the mean, where the base learners are com-

bined in a linear fashion, all having the same weights. However, more sophisticated

ensembles can be inferred, providing higher generalization ability.

GSGP is a variant of GP using different genetic operators. No previous research has

been conducted to see if GSGP can perform better than GP in model-ensemble learning.

The evolutionary process of GP and GSGP should allow us to learn about the strength

of each of those base models to provide a more accurate and robust solution. The

base-models used for this analysis were Linear Regression, Random Forest, Support

Vector Machine and Multi-Layer Perceptron. This analysis has been conducted using 7

different optimization problems and 4 real-world datasets. The results obtained with

GSGP are statistically significantly better than GP for most cases.

Keywords: GP, GSGP, Model-ensemble, Linear Regression, Random Forest, Support

Vector Machine, Multi-Layer Perceptron

vii

Resumo

O objetivo desta tese é realizar pesquisas comparativas entre Programação Genética

(GP) e Programação Genética Semântica Geométrica (GSGP), com diferentes estraté-

gias de inicialização (RHH e EDDA) e seleção (Tournament e Epsilon-Lexicase), no

contexto de um conjunto de modelos, a fim de resolver problemas de otimização de

regressão.

Um conjunto de modelos é uma combinação de alunos de base usados de diferentes

maneiras para resolver um problema. O conjunto mais comum é a média, na qual

os alunos da base são combinados de maneira linear, todos com os mesmos pesos.

No entanto, conjuntos mais sofisticados podem ser inferidos, proporcionando maior

capacidade de generalização.

O GSGP é uma variante do GP usando diferentes operadores genéticos. Nenhuma

pesquisa anterior foi realizada para verificar se o GSGP pode ter um desempenho

melhor que o GP no aprendizado de modelos. O processo evolutivo do GP e GSGP

deve permitir-nos aprender sobre a força de cada um desses modelos de base para

fornecer uma solução mais precisa e robusta. Os modelos de base utilizados para esta

análise foram: Regressão Linear, Floresta Aleatória, Máquina de Vetor de Suporte e

Perceptron de Camadas Múltiplas. Essa análise foi realizada usando 7 problemas de

otimização diferentes e 4 conjuntos de dados do mundo real. Os resultados obtidos

com o GSGP são estatisticamente significativamente melhores que o GP na maioria

dos casos.

Palavras-chave: GP, GSGP, Model-ensemble, Linear Regression, Random Forest, Sup-

port Vector Machine, Multi-Layer Perceptron

ix

Contents

List of Figures xv

List of Tables xvii

Listings xix

Acronyms xxi

1 Introduction 1

2 Theory 3

2.1 Machine Learning . 3

2.2 Ensemble Learning . 4

2.2.1 Stacked Generalization . 5

2.3 Regression Estimators . 5

2.3.1 Multiple Linear Regression . 6

2.3.2 Random Forest Regression . 6

2.3.3 Support Vector Machine Regression 7

2.3.4 Multilayer Perceptron Regression 7

2.4 Evolutionary Algorithm . 8

2.4.1 Genetic Programming . 8

2.4.2 Geometric Semantic Genetic Programming 10

2.4.3 Initialization . 11

2.4.4 Parent Selection . 15

2.4.5 Fitness Evaluation . 16

2.4.6 Elitism . 16

2.4.7 Semantic Stopping Criterion . 17

2.4.8 Genetic Programming as a Meta-Learning Technique 18

3 Methodology 21

3.1 Proposed approach . 21

3.2 Objectives . 21

3.3 Ensemble hyper-parameters . 22

3.4 Experimental Problems . 23

xi

CONTENTS

3.5 Problem dataset - Train and Test split 25

3.6 Base Learners hyper-parameters tuning 26

3.7 Base Learners dataset - K-Fold data generation 26

3.8 Base Learners dataset - Train and Validation split 27

3.9 Function set and Terminal set . 29

3.9.1 Decision . 29

3.10 Fitness Evaluation . 30

3.10.1 Memoization . 30

3.11 Parent Selection . 31

3.11.1 Tournament . 31

3.11.2 Epsilon Lexicase . 31

3.12 Stopping Criteria . 31

4 Results 33

4.1 Performance Analysis . 33

4.2 Statistical Assessment . 35

4.2.1 Comparison of system’s hyper-parameters - Global 35

4.2.2 Comparison of system’s hyper-parameters - By algorithm and

BLs tuning . 36

4.2.3 Best S-GSGP vs Best S-SGP - By problem type and base learners

hyper-parameters . 39

4.2.4 Comparison of the best performing system vs BLs 40

5 Discussion 43

5.1 Summary . 43

5.2 Interpretation . 44

5.3 Implications . 45

5.4 Limitations . 45

5.5 Recommendations . 45

6 Conclusion 47

Bibliography 49

A Appendix - Ensemble Workflow 55

B Appendix - Performance by dataset 57

C Appendix - Boxplots and Learning curves 61

D Appendix - Tuned Base Learners Hyper-parameters 65

I Annex S-GSGP and Base Learners Graphs 69

xii

CONTENTS

II Annex - Best ensemble solution’s string 73

II.1 Branin - Solution’s string . 73

II.2 Discus - Solution’s string . 73

II.3 Griewank - Solution’s string . 74

II.4 Kotanchek - Solution’s string . 74

II.5 Mexican Hat - Solution’s string . 74

II.6 Rastrigin - Solution’s string . 75

II.7 Weierstrass - Solution’s string . 75

xiii

List of Figures

2.1 Example of a Stacked Generalization consisting of 1 layer of five base-

learners. 6

2.2 Evolutionary Algorithm . 8

2.3 Pseudo-code for a simple version of Evolutionary algorithm. 9

2.4 Pseudo-code for a simple version of Genetic Programming algorithm. . . 9

2.5 Example of a tree-based representation of a GP individual 10

2.6 Pseudo-code for Ramped Half-and-Half initialization method. 12

2.7 Example of functioning of RHH for a population of size 6 and maximum

depth of 3. 13

2.8 Pseudo-code of EDDAm − n% system, in which demes are left to evolve

for m generations. 14

2.9 Pseudo-code for Lexicase Selection (LS) technique. 15

2.10 Illustration of SSC’s functioning. The star in the figure represents the target

vector on training data. 18

3.1 Optimization Problems . 25

3.2 Dataset split representation . 26

3.3 Base Learners dataset generation . 28

3.4 Base Learners predictions data split . 28

3.5 Decision . 29

A.1 Ensemble Workflow . 56

C.1 Branin - BLs not tuned - Boxplots and Learning curves 61

C.2 Parkinson - BLs not tuned - Boxplots and Learning curves 62

C.3 Weierstrass - BLs not tuned - Boxplots and Learning curves 62

C.4 Boston - BLs tuned - Boxplots and Learning curves 63

C.5 Ppb - BLs tuned - Boxplots and Learning curves 63

C.6 Parkinson - BLs tuned - Boxplots and Learning curves 64

I.1 Branin - S-GSGP and Base Learners 3D Graphs 69

I.2 Discus - S-GSGP and Base Learners 3D Graphs 70

I.3 Griewank - S-GSGP and Base Learners 3D Graphs 70

xv

List of Figures

I.4 Kotanchek - S-GSGP and Base Learners 3D Graphs 71

I.5 Mexican Hat - S-GSGP and Base Learners 3D Graphs 71

I.6 Rastrigin - S-GSGP and Base Learners 3D Graphs 72

I.7 Weierstrass - S-GSGP and Base Learners 3D Graphs 72

xvi

List of Tables

3.1 Enumeration of hyper-parameters. It is worth to notice that decision stands

for the decision expression operator proposed in [20], BLs pre-training indi-

cates if the BLs were tuned or not, ε-LS represents the selection algorithm

proposed in [36], P (C) and P (M) indicate the crossover and mutation prob-

abilities, and validation fitness stands for the stopping criteria which oper-

ates upon the fitness calculated from validation partition by estimating the

point from where further induction allows further generalization. 23

3.2 Mathematical formulation of synthetic regression problems used in this

study. The problems are listed in alphabetical order. 24

3.3 Enumeration of search space’s boundaries (the domain) for each function.

It is worth to notice that columns Lower and Upper stand for lower and

upper bounds of two dimensional search space. 24

3.4 Description of real-world regression problems used in the experiments. For

each problem, the name (ID), number of input features (#Features), data

instances (#Instances) and field of application (Field) is presented. 25

4.1 Average performance rank - Top 5 by problem type 34

4.2 Average performance rank - Best system by problem type, base learners

hyper-parameters and algorithm . 34

4.3 Statistical assessment - Global . 35

4.4 Statistical assessment - Without tuned BLs, for all S-GSGP, by hyper-parameter 36

4.5 Statistical assessment - Without tuned BLs, for all S-SGP, by hyper-parameter 37

4.6 Statistical assessment - With tuned BLs, for all S-GSGP, by hyper-parameter 38

4.7 Statistical assessment - With tuned BLs, for all S-SGP, by hyper-parameter 39

4.8 Statistical assessment - Comparison of best S-GSGP vs best S-SGP - By

problem type and base learners hyper-parameters 39

4.9 Statistical assessment - Best performing ensemble system for all problems

and BLs: [Tuned BLs, S-GSGP, EDDA, TS, P(C) 100%] - (Average RMSE by

problem in table B.3) . 41

B.1 Avg RMSE - Top 5 - Synthetic datasets . 58

B.2 Avg RMSE - Top 5 - Real-world datasets 59

xvii

List of Tables

B.3 Avg RMSE - Best performing ensemble system for all problems and BLs:

[Tuned BLs, S-GSGP, EDDA, TS, P(C) 100%] 59

D.1 Random Forest Regression - Tuned Hyper-parameters by problem 65

D.2 Support Vector Regressor - Synthetic Problems - Tuned Hyper-parameters

by problem . 66

D.3 Linear Support Vector Regressor - Real-world Problems - Tuned Hyper-

parameters by problem . 66

D.4 Multi-layer Perceptron Regressor - Tuned Hyper-parameters by problem 66

D.5 Linear Regression - Tuned Hyper-parameters by problem 67

xviii

Listings

3.1 Python code for Train and Test split . 25

3.2 Base Learners Train and Predict pseudo code 27

3.3 Function set variable . 29

3.4 Memoization Pseudo-code . 30

3.5 Memoization Python code . 31

xix

Acronyms

ATA Automatic Threshold Adaptation.

BL Base Learner.

EDV Error Deviation Variation.

EDV-SCC Error Deviation Variation Semantic Stopping.

GP Standard Genetic Programming.

GSC Geometric Semantic Crossover.

GSGP Geometric Semantic Genetic Programming.

GSM Geometric Semantic Mutation.

GSO Geometric Semantic Operators.

LS Lexicase Selection.

not tuned BLs Base Learners whose hyper-parameters were not estimated, instead

kept default.

SC Stopping Criteria.

S-GSGP Stacking with GSGP.

S-SGP Stacking with standard GP.

xxi

ACRONYMS

S-GP Stacking with GP-like techniques (any).

TIE Training Improvement Effectiveness.

TIE-SCC Training Improvement Effectiveness Semantic Stopping.

TS Tournament Selection.

tuned BLs Base Learners whose hyper-parameters were estimated from Grid-

Search Cross Validation.

xxii

C
h
a
p
t
e
r

1
Introduction

Ensemble Learning (EL) is a sub-field in Machine Learning which is inspired on hu-

mans’ natural tendency to seek and weight the opinion of others’ before making any

important decision. Under this perspective, EL consists of combining several individ-

ual models, the base-learners, in a way to produce a model (the ensemble), which is

expected to solve a given task better than any of the base-learners [43]. Stacked Gen-

eralization, or simply stacking, consists of training an ensemble from the combined

predictions of several other, ideally heterogeneous, base-learners. More specifically,

it consists of training the base-learners to solve the underlying task, then it trains a

meta-learner from their predictions [55].

In this paper, we study Genetic Programming (GP) as the meta-learner which

combines four heterogeneous base-learners. More technically, we allow GP to automat-

ically evolve computer programs having as a terminal set the combined predictions

of four heterogeneous base-learners. The objective which drives such an evolutionary

process is ensemble’s generalization ability on a given Supervised Machine Learning

(SML) task. For the sake of simplicity, we will refer to this kind of approaches as

Stacking-GP (S-GP). Our motivation relies upon intrinsic properties of GP. We expect

that, with properly chosen operators and hyper-parameters, GP is capable of combining

base-learners in a highly non-linear fashion which could better exploit their outputs

and achieve superior generalization ability.

In fact, the usage of S-GP is not new in the research-field. To our knowledge, the

first work dates to 2006 [26] where GP was used to combine ten Artificial Neural

Networks into an ensemble. Since then, several other important contributions were

proposed [1, 12, 20, 29]. Nevertheless, we consider that research in S-GP is still much

in demand and we have identified two major reasons for that. First, we have found that

the majority of contributions in S-GP are assessed on classification problems, whereas

1

CHAPTER 1. INTRODUCTION

none of the previous works provides a concise benchmark over regression problems.

The second reason has to do with the recent methodological achievements of the in

the research field: Geometric-Semantic Operators (GSO), Semantic Stopping Criterion

(SSC), ε-Lexicase Selection (ε-LS) and Evolutionary Demes Despeciation Algorithm

(EDDA) are among numerous recent methods which were not broadly studied in the

context of S-GP. In the objective of this paper consists of covering aforementioned gaps

by providing a concise overview of S-GP over 7 synthetic and 4 real-world regression

problems while using state-of-the art achievements in the field of GP.

This thesis is organized as follows: in Chapter 2 we introduce the necessary the-

oretical background. Chapter 3 describes the research hypothesis and the proposed

approach. Chapter 4 presents our experimental framework, results’ exhibition, their

detailed analysis. A critical discussion is made in Chapter 5. Finally, Chapter 6 con-

cludes the work and proposes ideas for future research.

2

C
h
a
p
t
e
r

2
Theory

2.1 Machine Learning

Machine Learning (ML) is a field of artificial intelligence using algorithms and com-

putation power to learn patterns from a given sample of observations called a dataset,

without human interaction. An algorithm is a function composed of sets of rules in

charge of the learning process using a dataset as input data.

The data can be provided in a tabular form composed of instances and features,

corresponding respectively to the rows and columns in a worksheet. This structure

can contain an expected value (target) for each set instance (sample) of the dataset. To

transform data (sample and target) into knowledge, recognizable elements have to be

detected in order to give a prediction for an unseen instance.

If there is no target value the analysis of the data will be unsupervised (e.g. cluster-

ing, dimension reduction, and association).

If there is a target the algorithm can adjust its set of rules to by learning from the

comparison of the result to the target then we talking about supervised learning. When

the target value is a category or numerical, the algorithm’s task will be a classification

for the former or regression for the latter. In this thesis, we will focus on regression.

3

CHAPTER 2. THEORY

2.2 Ensemble Learning

In the field of Machine Learning, one can find numerous methodologies which mimic

biological and social processes of the real world. The Artificial Neural Network (ANN),

for example, is a biologically-inspired computer system which simulates the Biological

Neural Network (BNN) and its bio-chemical processes [25]. As a result, an ANN con-

sists of a set of interconnected layers of neurons (the basic processing units) which, all

together, form a powerful and versatile computer system able to solve numerous com-

plex optimization problems such as automatic speech and image recognition, natural

language processing, bio-informatics, fraud-detection, etc [46]. The Particle Swarm

Optimization (PSO) [19] is another type of biological system - a social system - whose

computational metaphor is the collective behavior of simple individuals interacting

with their environment and each other, like a flock of birds or schools of fishes. The

individual in this algorithm is a particle, which is described by its position and veloc-

ity in the search space. The direction in which each particle moves is influenced by

the behaviour of the other particles in the swarm - the social factor - and individual

memory - the cognitive factor. Such computer system is frequently used in function

optimization, ANNs training, fuzzy system control and other areas.

Ensemble Learning (EL), in this context, is not an exception as it reflects the nat-

ural predisposition of human beings to seek for other opinions before making any

important decision. We tend to weigh several individual opinions, and combine them

through some thought process in order to reach a final decision, which is expected

to be the most appropriate [43]. In this sense, an ensemble combines several indi-

vidual models, the base-learners (BLs), in a way which yields a model whose overall

generalization ability is expected to be better when compared to any of its BLs. In fact,

there is a considerable number of empirical studies showing that in both classification

and regression problems the ensembles are significantly superior than the BLs which

compose them [7, 10, 11, 18, 21, 55], and several theoretical explanations have been

proposed to justify their superiority [55], majority of them based on the so called bias-
variance decomposition of the error. Apart from that, when provided a spectrum of SML

techniques, it is true that the most appropriate is frequently chosen based on some

global approximation measure such as the Root Mean Squared Error (RMSE). Con-

sidering a SML problem and two candidate modelling techniques, a and b, it might

happen that a, from the perspective of some global performance measure, provides

better global approximation on a given problem than b, however b might exhibit better
local approximation than a, i.e., might approximate better than a in a specific region of

the search space. In this context, by wisely using both a and b in an ensemble, one can

combine the most well-approximated regions of the search space allowing for levels

of global approximation which are superior to those provided by a and b when taken

singularly. Another relevant motivation for using ensembles is the difficulty the one

4

2.3. REGRESSION ESTIMATORS

faces when choosing the most appropriate modeling technique when solving a given

problem. In fact, the abundance of conceptually distinct SML techniques, along with a

varied number of adjustable parameters they bring, makes the SML taks laborious and

time-consuming. Under this perspective, using an ensemble can substantially reduce

this complexity to a limited set of models and/or parameters.

2.2.1 Stacked Generalization

The field of EL, although relatively recent, has been extensively researched and several

conceptually different approaches, along with different ways to categorize them, were

proposed so far. In general terms, Ensemble Methods (EMs) differ in the way input

data is represented and manipulated within the system, the procedure to make the

final prediction, whether ensemble’s BLs can be trained independently from each other,

etc. [43, 45, 56].

In this sub-sub-section we will provide an overview of stacked generalization, pro-

posed by David H. Wolpert [55] in 1992, because the approach we propose in this

paper strongly relates to this specific ensemble method. Stacked generalization, or

simply stacking, consists of training a meta-learner from the combined predictions of

two (or more) BLs. In other words, the predictions obtained from the BLs, which are

trained independently from each other, are used as inputs of a meta-learner which

can be any known ML technique. In practice, the system can have several sequential

layers of BLs before using one final meta-learner. In figure 2.1 you can find a visual

representation of stacking consisting of one layer of five BLs.

The approach we present in this paper has a simple although rational motivation -

in the context of stacking, to use GP as the meta-learner from combined predictions

of several conceptually different BLs.

2.3 Regression Estimators

In statistics, one or many independent variables also known as features are used to

describe one dependent variable also known as a target. Regression estimators are

statistical methods (algorithms) which allow us to model either a linear or a non linear

relationship between independent and dependent variables.

In a linear relationship, the proportion between the dependent and independent

variables will remain the same, the plot resulting in a flat line. In a nonlinear relation-

ship, the logic between the dependent and independent variable is unstable, the plot

resulting in a curve.

5

CHAPTER 2. THEORY

input data

base-learner#2

base-learner#3

base-learner#4

base-learner#1

base-learner#5

meta-learner ො𝑦𝑦 input data’ 𝑦

Figure 2.1: Example of a Stacked Generalization consisting of 1 layer of five base-
learners.

2.3.1 Multiple Linear Regression

In supervised machine learning, singular linear regression is a popular method to find

the relationship between one independent variable (the feature) and one dependent

variable (the target). This relationship between variables can be represented by the

equation Y = a + b X with Y the dependent variable and X the independent variable.

The result of this analysis is a predictive model fitting the observed features and corre-

sponding target.

Multiple linear regression works similarly but is using several independent vari-

ables, attributing a slope coefficient to each of them, determining the effect each of

them will have on the dependent variable.

2.3.2 Random Forest Regression

Decision Tree is a predictive model that can be use for classification and regression.

The model uses a tree-like structure composed of decision nodes, branches and leaf

nodes. The decision nodes represent tests with different possibilities represented by

branches. A branch can be followed by a decision node or a leaf node. The leaf

node corresponds to the final outcome. The solution allows to understand visually

the different predictions of the model following a clear logic (tests -> possibilities ->

outcomes) based on the given dataset.

6

2.3. REGRESSION ESTIMATORS

The random forest model is a type of additive model that makes predictions by

combining decisions from a sequence of base learners. More formally we can write

this class of models as: g(x)=f0(x)+f1(x)+f2(x)+... where the final model g is the sum of

simple base learners. Here, each base learner is a simple decision tree. This broad tech-

nique of using multiple models to obtain better predictive performance is called model

ensembling. In random forests, all the base learners are constructed independently

using a different sub-sample of data.

A Random Forest is an ensemble technique capable of performing both regression

and classification tasks with the use of multiple decision trees and a technique called

Bootstrap Aggregation, commonly known as bagging. In the Random Forest method,

Bagging involves training each decision tree on different data samples (sampling with

replacement).

2.3.3 Support Vector Machine Regression

Support Vector Machine (SVM) [9] is an algorithm mainly used for classification pur-

poses where provides good accuracy with less computational power. The goal of SVM

for classification is to find the hyperplane in an n-dimensional space able to separate

classes with the widest margin possible. The support vectors are data points located

at the border of the margin.

SVM can also be used for regression problems, but in this case, it will produce hy-

perplanes in n-dimensional space whereas many data points can fit within the margin

of tolerance ‘epsilon’. Only the data points outside the margin ’epsilon’ will be used to

calculate the error (distance from the border of the margin ’epsilon’). The hyperplane

with the lowest error will be selected.

2.3.4 Multilayer Perceptron Regression

An Artificial Neural Network (ANN) is an algorithm mimicking the structure of the

human brain. It is composed of connected artificial neurons, also known as nodes,

which are mathematical functions similar to biological neurons in their process. A

node can have multiple inputs and outputs as a result of its operation.

A Multi-Layer Perceptron (MLP) is the first and most simple of feedforward type

of ANN, its structure consisting of at least three layers of nodes.

An input layer is in charge of carrying the original data to the network. One or

more hidden layers placed between the input and output layer are computing the

weights attributed to each node in the network. Finally, the output layer, which is the

final layer of the network is producing the output result. Except for the input nodes,

7

CHAPTER 2. THEORY

Initialization

Selection

Termination

Mutation

Crossover

Figure 2.2: Evolutionary Algorithm

each node uses a nonlinear activation function that is able to solve complex problems,

taking a node’s output as input and outputting its interpretation.

2.4 Evolutionary Algorithm

This particular branch of data science relies heavily on the biological principles gov-

erning the natural world. In a nutshell, deoxyribonucleic acid or DNA for short is

a molecule containing the genetic code of all organisms on Earth. Each cell in each

organism contains these bespoke instructions for which proteins should be made by

which cell. It’s the reason why parents and children share certain physical traits. The

passing of the genes is called heredity and a gene is its basic unit. Humans are a unique

blend of their parent’s genetic material which is joined through the process of recom-

bination after a reproductive event. A mutation is what we call a change occurring

in our DNA sequence due to internal (e.g. DNA copying fault) or external (e.g. UV

light, cigarettes) factors without reproduction. In biology, natural selection means that

certain human traits/genes are preferable to others and evolution is more likely to

preserve them in our genetic material over generations to ensure survival by picking

the parents with the most beneficial features for reproduction.

In data science however, Evolutionary Algorithm (Figures 2.2 and 2.3) is a sub-

set of evolutionary computation, based on population and optimization, inspired by

biology or more specifically it’s sub-field of genetics. By mimicking processes such

as reproduction, mutation, recombination, and selection it is able to find a solution

within given limitations. The process follows this pseudo code, the steps of which we

will discuss later on.

2.4.1 Genetic Programming

In the field of Evolutionary Algorithms (EAs), Genetic Programming (GP) is among

the most recent and dynamically growing sub-fields. Introduced and popularized by

8

2.4. EVOLUTIONARY ALGORITHM

1. Create Initial population;

2. Calculate Fitness of all individuals;

3. While Termination condition not met:

a) Select fitter individuals for reproduction;

b) Recombine between individuals;

c) Mutate individuals;

d) Evaluate fitness of all individuals;

e) Generate a new population;

4. Return Best individual;

Figure 2.3: Pseudo-code for a simple version of Evolutionary algorithm.

John Koza [30–34], GP is, in fact, an adaption of Genetic Algorithm (GA) for evolution

of computer programs. In simple terms, GP is a population-based algorithm which

follows principles of Darwin’s Theory of Evolution [17] to evolve computer programs,

among the space of all possible computer programs, which can solve a given opti-

mization problem. The figure 2.4 contains the simple version of the pseudo-code of

GP:

1. generate an initial population P of N individuals by means of an initialization method;

2. repeat until satisfying some termination condition:

a) evaluate the fitness ∀ i ∈ P ;

b) create empty population P ′ ;

c) repeat until P contains n individuals:

i. choose a genetic operator: crossover or mutation with probability pc or 1− pm,
respectively;

ii. by means of a selection method, select two individuals from P if crossover was
chosen, otherwise select one;

iii. apply the variation operator chosen in point 2.3.1 to the individual(s) selected
in point 2.3.2;

iv. insert the individual(s) obtained in point 2.3.3 into P ′ ;

d) replace P with P ′ ;

3. return the best individual

Figure 2.4: Pseudo-code for a simple version of Genetic Programming algorithm.

As we can see from 2.4, evolution of the population starts with individuals’ initial-

ization. Then, by applying selection mechanism and variation operators to the selected

parents, offspring are created and transited to the next generation. This process iterates

until reaching certain stopping criteria (like the maximum number of generations).

In GP, individuals are computer programs composed by specific elements of a

9

CHAPTER 2. THEORY

given programming language arranged in a particular way. Commonly, individuals

are represented in a tree-based structure. For the sake of example, consider the fol-

lowing two sets of program elements, necessary components of a computer program:

terminals = {x1, x2, x3} and f unctions = {+, −, ∗, / }. A possible individual resulting

from composition of such elements is represented in figure 2.5.

Figure 2.5: Example of a tree-based representation of a GP individual

In other words, an individual evolved by means of GP can be a mathematical

function of the form f (x1,x2,x3) = X1 ∗X1 +X2 −X3.

2.4.2 Geometric Semantic Genetic Programming

In the terminology adopted by a considerable part of Genetic Programming (GP) re-

search community [8, 27, 28, 35, 39], the term semantics defines the vector of output

values of a candidate solution, calculated on the training observations. Following this

definition, a candidate solution obtained by means of GP can be seen as a point in

multidimensional space of dimensionality number of observations in the training set.
Let’s call it semantic space.

Geometric Semantic Genetic Programming (GSGP) is a recently introduced variant

of GP where standard crossover and mutation operators are replaced by the so-called

Geometric Semantic Operators (GSOs) [38]. GSOs, gained popularity in the GP commu-

nity [13, 15, 16, 50–53] because of their geometric property of inducing a unimodal

error surface (characterized by the absence of locally optimal solutions) for any Super-

vised Machine Learning (SML) problem. The proof of this property can be found in [38,

50]. In this document, we report the definition of the GSOs, as given by Moraglio et al.

for real functions domains, since these are the operators that we have used in our

experiments. For applications that consider other types of data, the reader is referred

to [38] and [3].

Geometric Semantic Crossover (GSC) generates, as the unique offspring of parents

T1,T2 : Rn→R, the expression: TXO = (T1 · TR) + ((1− TR) · T2), where TR is a random

real function whose output values range in the interval [0,1]. Moraglio and co-authors

show that GSC corresponds to geometric crossover in the semantic space, i.e., the point

representing the offspring stands on the segment joining the points representing the

10

2.4. EVOLUTIONARY ALGORITHM

parents. Consequently, the GSC inherits the key property of geometric crossover: the

offspring is never worse than the worst of the parents.

Geometric Semantic Mutation (GSM) returns, as the result of the mutation of an

individual T : Rn→R, the expression: TM = T +ms · (TR1 − TR2), where TR1 and TR2

are random real functions with codomain in [0,1] and ms is a parameter called the

mutation step. Similarly to GSC, Moraglio and co-authors show that GSM corresponds

to the box mutation on semantic space. Consequently, the operator induces a unimodal

error surface on any SML problem.

As Moraglio and co-authors point out, GSOs create an offspring which is substan-

tially larger than their parents, and the fast growth of the individuals’ size rapidly

makes fitness evaluation very slow, making the system unusable. As a solution to this

problem, Castelli et al. [13] proposed a computationally efficient implementation of

Moraglio’s operators making them usable in practice.

Given fact GSC generates an offspring whose semantics stands on the segment

joining the semantics of the two parents, it can only achieve the global optimum if the

semantics of the individuals in the population “surround” the semantics of the global

optimum. Using the terminology of [14, 41], GSC only has the possibility of generating

a globally optimal solution if it lays within the semantic convex hull identified by the

population. The need for overcoming this drawback has led to several methods to

properly initialize a population of GSGP, like for instance the ones presented in [2, 40,

54].

2.4.3 Initialization

In any Evolutionary Algorithm (EA), population initialization is the very first step in

the evolutionary process [17]. Assuming a tree-based representation, the initialization

of individuals in GP consists of creating almost random trees, such that program

elements, starting from the root node of the tree, are combined one after another

in a specific manner, until reaching a pre-defined tree depth (d). In his work, John

Koza described three initialization methods: Grow, Full and Ramped Half-and-Half

(RHH) [34]. In this experimentation, RHH or EDDA are used.

Following the example related to figure 2.5, let’s consider a tree-based represen-

tation of individuals and a program set divided in two semantically distinct classes:

terminals (T) and functions (F).

Grow Initialization The procedure starts with random selection of a node from F

as the root node of the tree, in order to avoid trees composed by one single terminal.

11

CHAPTER 2. THEORY

Then nodes are selected with uniform probability regardless the set they belong to,

until reaching maximum depth d. Once a given branch contains a terminal node, it is

ended even if d has not been reached. Finally, in order to trim the tree at d, the nodes

of remaining branches are chosen at random exclusively from the set T . By allowing

selection of nodes regardless the set, trees are likely to have irregular shape, i.e. to

contain branches of different lengths.

Full Initialization Unlike Grow, the Full method chooses nodes only from F until

the tree achieves maximum depth d. After reaching d, it chooses nodes at random only

from the set T . The result is that every branch of the tree goes to the full maximum

depth, which results in bushy trees of regular shape.

2.4.3.1 Ramped Half-and-Half

John Koza pointed that population initialized with Grow or Full methods produces

too similar trees, which floors the diversity in GP populations [34]. Correspondingly,

authors in [42] highlight methods’ sensibility towards sizes of the function and ter-

minal sets; as they exemplify, if, the set of program elements has significantly more

terminals than functions, grow method will almost always generate very short trees

regardless of the depth limit.

In order to overcome the drawbacks of previously introduced initialization meth-

ods, John Koza proposed a combination of both called Ramped Half-and-Half (RHH).

The RHH method is summarized my means of pseudo-code presented in figure 2.6.

Let d be the maximum depth parameter and P the population size:

1. divide P in d groups;

2. in each group (gi), set distinct maximum depth equal to 1, 2, (...), d − 1, d;

3. f or(i = 1;c <= n;c+ +):

a) initialize one half of group gi with Full method;

b) initialize one half of group gi with Grow method;

Figure 2.6: Pseudo-code for Ramped Half-and-Half initialization method.

From figure 2.7, the one can visually perceive how RHH works for d = 3 and P = 6.

In the figure, the individuals represented in red were initialized by means of Full

method, whereas those in blue by Grow method.

2.4.3.2 Evolutionary Demes Despeciation Algorithm

Initialization is known to play an important role in any population-based algorithm.

In GP, this aspect plays particular importance since a wide variety of programs of

various sizes and shapes is desirable [34, 42]. With the introduction of GSOs, new

12

2.4. EVOLUTIONARY ALGORITHM

Full initialization: Grow initialization:

Figure 2.7: Example of functioning of RHH for a population of size 6 and maximum
depth of 3.

techniques which take in consideration their particularities, have been developed [2,

40, 54]. In this subsection we will focus on one of these contributions, the Evolutionary

Demes Despeciation Algorithm (EDDA) [54], since it is the initialization technique

used in our experiments.

In Biology, demes are independent populations, or sub-populations, of individuals

that actively interbreed and mature. The term despeciation indicates the combina-

tion of demes of previously distinct species into a new population, where distinct

biological lineage is blended. Although in Nature the despeciation phenomenon is

rare to happen, when it does, it is known to reinforce the population making it more

competitive.

In EDDA, the initial population of GSGP is generated using the best individuals

obtained from a set of independent sub-populations (demes), left to evolve for few gen-

erations and under different evolutionary conditions [54]. For example, some demes

use standard GP operators, while the remaining use GSOs. Besides that, each deme

is being evolved under distinct search parameters such as the mutation and crossover

probability, the mutation step (in the case of GSM), etc.

Although EDDA was introduced in the GP community recently, it was successfully

applied when solving several fundamentally distinct problems [4–6]. GSGP using

EDDA demonstrated its superiority over GP initialized with traditional Ramped Half-

and-Half (RHH) [34] method over six complex symbolic regression applications [54].

More specifically, on all problems, EDDA allowed for generation of solutions with

better or comparable generalization ability and of significantly smaller size than us-

ing RHH. In [5, 6] EDDA demonstrated its utility when evolving PSO-based search

13

CHAPTER 2. THEORY

rules in unknown vector field whereas in [4] it was used to support medical decisions

in the field of rare diseases.

The performance of EDDA depends on two main parameters: the proportion of

GSGP demes in the system (n) and the number of generations to evolve each deme

(m). Using algorithm-specific notation, given two natural numbers n and m, where n

∈ [0,100], EDDAm − n% represents a system where demes are left to evolve for m

generations such that n% of the population was initialized using individuals from GP

demes, while the remaining (100−n)% was initialized using standard GP demes. The

pseudo-code in Figure 2.8 explains the process.

EDDAm −n%:

1. Create an empty population P of size N ;

2. Repeat N ∗ (n/100) times:

a) Create an empty deme;

b) Randomly initialize this deme using a classical initialization algorithm (RHH used
here);

c) Evolve individuals from 2.b) for m generations using GSGP;

d) After finishing 2.c), select the best individual from the deme and store it in P ;

3. Repeat N ∗ (1−n/100) times:

a) Create an empty deme;

b) Randomly initialize this deme using a classical initialization algorithm (RHH used
here);

c) Evolve individuals from 3.b) for m generations using standard GP;

d) After finishing 3.c), select the best individual from the deme and store it in P ;

4. Retrieve P and use it as the initial population of GP

Figure 2.8: Pseudo-code of EDDAm − n% system, in which demes are left to evolve
for m generations.

In the pseudo-code of Figure 2.8, points 2.b), 2.c), 3.b) and 3.c) implement the

phase of demes evolution, such that different demes are left to evolve in an independent

manner. Points 2.d) and 3.d) implement the phase of despeciation where individuals,

coming from different demes and thus from different evolutionary journeys and histo-

ries, are blended into a new population (P in the pseudo-code). To evolve P , GSGP is

preferred over standard GP as the later is known to outperform the former in several

application domains [50, 53]. In order to confirm this evidence, in this study, after

despeciation phase, we have compared the performance of S-GP and S-GSGP systems

to conduct the main evolutionary process (MEP).

The rationale behind EDDA system is that it should generate an initial population

composed of diverse and, at the same time, good quality genetic material. In fact, each

14

2.4. EVOLUTIONARY ALGORITHM

individual in the initial GSGP population comes from a different evolution history,

performed in an independent deme and evolved under different search parameters.

Given that each individual in the initial GSGP population was the best individual in

its deme, good quality is expected.

2.4.4 Parent Selection

The parent selection is the mechanism allowing only the individuals with the best

features for a given problem to become parents and to produce offspring with certain

inherited traits. In this experimentation, the Tournament and ε-Lexicase methods

were used.

2.4.4.1 Tournament

In Genetic Programming, Tournament is the most popular selection method. First,

a defined number (Tournament size) of individuals in the population is randomly

selected. Then, only the individuals with the best fitness in this intermediary group

are picked to become parents. The genetic operator crossover for instance, uses 2

parents, so 2 tournaments need to be done. The selection pressure is the ratio between

the number of individuals in the population and the number of individuals randomly

selected by the tournament method. It measures the chance of any individual to

participate in the tournament.

2.4.4.2 ε-Lexicase Selection for Regression

ε-Lexicase Selection (ε-LS) [36] is a recently introduced improvement upon already

existing Lexicase Selection (LS) of parents in GP [47]. The latter was proposed by Lee

Spector in 2012 to provide a simple, problem and representation-independent way to

solve multimodal problems without interfering with other components of a GP system.

In simple terms, LS is an iterative procedure which consist of the following steps:

Let di be the i-th data instance (a.k.a. fitness case) taken in random order from training dataset
Dtrain and Si the selection pool at iteration i, initially composed by the whole population:

1. f or di in Dtrain :

a) evaluate all candidate solutions in Si on di ;

b) remove those candidate solutions from Si whose fitness is worse than of the best-
found solution;

2. if S contains more than one candidate solution, return one at random.

Figure 2.9: Pseudo-code for Lexicase Selection (LS) technique.

The underlying assumption embedded in LS is that problem’s multi-modality is,

at least partially, a factor of its fitness cases, each of which represents a circumstance

with which a correct solution must deal. As such, different subsets of fitness cases may

15

CHAPTER 2. THEORY

call for different modes of response, i.e., may require the system to respond in a different

manner. Under the light of this assumption, extension of lexicographic ordering to the

fitness cases in randomized order ensures that a good fitness, calculated on a given case

di , will be rewarded independently on solution’s performance on other cases, while, at

the same time, still rewarding the progress on a larger set of fitness cases (up to the

size of training dataset).

By looking at the pseudo-code in 2.9, one can identify technique’s vulnerability

when dealing with regression problems: in regression, exact solutions to fitness cases

can mostly be expected for toy problems, whereas real-world problems are often sub-

ject to noise and measurement error. As such, when applied on real-world regression

problems, the standard LS typically uses only one fitness case for each parent selection,

resulting in poor performance [36]. To deal with this limitation, authors in [36] pro-

posed to relax the passing criteria (from Si to Si+1) by introducing a parameter ε, such

that only individuals inside a predefined ε are selected for Si+1. In their work, authors

proposed four different definitions of ε and assessed their performance, along with

four state-of-the-art techniques, on 3 synthetic and 3 real-world regression problems.

The experimental results allowed to identify the most performing definitions of ε and

proved the effectiveness of proposed technique when compared to state-of-the-art.

Given the results presented in [36], we decided to choose ε-LS with Automatic

Threshold Adaptation (ATA) defined as semi-dynamic. Although authors did not find

a statistically significant difference with another version of ATA, defined as dynamic,

we decided to opt the former as semi-dynamic, as it has been defined as default solution

by the author.

ε semi-dynamic formula: ε = median(abs(error_pop - median(error_pop)))

2.4.5 Fitness Evaluation

The Fitness function is used to evaluate how close a prediction is to the actual value.

The main goal is to drive the algorithm to the optimal solution. In GP and GSGP, when

used for regression, the prediction is a vector of continuous values. The fitness function

compares the individuals of the population in order to find the elite (individual with

the best fitness in the population). During the evolution process, it helps to design the

solution of the algorithm. Since it’s used for each individual and at every step of the

evolutionary process, it has to be fast to save some computation time.

2.4.6 Elitism

The strategy of elitism is to maintain the best element observed so far through all

generations. After the parent selection and the genetic operator variations, a new

16

2.4. EVOLUTIONARY ALGORITHM

population of offspring is created. The fitness evaluation of each offspring allows for

the best individual of the new population to be determined. Best individuals from

the current and previous generation are compared with their fitness for the training

data. The elite of the previous generation will replace randomly an individual of the

new population only if its fitness is better than the best individual of this population.

This way the best solution observed still has a chance to produce offspring in the next

generation.

2.4.7 Semantic Stopping Criterion

If the model’s behavior on unseen data highly differs from the one on training data,

one can say it lacks generalisation. This can be caused by many factors, among them, in

the context of EAs, an inappropriate number of iterations. In fact, after a given point,

further machine learning on available data can potentially make the model overfit, i.e.

memorize the training data instead of generalizing from it.

Semantic Stopping Criterion (SSC) is a recently proposed stopping criterion [23]

which operates in the context of GSOs, described in 2.4.2 and further extended in the

context of neuroevolution [24]. More specifically, to decide when to stop, SSC uses in-

formation gathered from the semantic neighborhood, a set of semantic neighbours of the

current-best solution in terms of training data, which are obtained by means of GSM.

Authors propose two types of SSC: Error Deviation Variation (EDV) and Training Im-

provement Effectiveness (TIE). The first measures the percentage of those neighbors

that, besides being fitter than the current-best, have a lower sample standard deviation

of the absolute errors. The second measures the percentage of times the underlying

semantic variation operator, in our case GSM, is able to produce a neighbor that is su-

perior to the current-best. In both versions, only training data is considered for fitness

calculation. The experimental results proved that the proposed stopping criteria are

able to achieve a competitive generalization on the set of problems considered in their

experiments, however no clear conclusions were provided regarding which of the two

criteria is preferred. For this reason, and because computational effort for computing

EDV nearly implies computation of TIE, we decided to assess both variants.

Figure 2.10 illustrates functioning of both SSC’s variants - EDV in blue and TIE in

red. Consider current-best solution at iteration i represented as a green point in 2D

semantic space. Assuming a neighbourhood size of 10, the points generated within

the gray box represent its semantic neighbors. Those represented in red, regard to

semantic neighbors which are better than the current-best; since they are 5 out of 10,

TIE is 50%. Those represented in red with a blue contour, regard to those neighbors

that, besides being better than the current-best, have a lower sample standard deviation

of the absolute errors; since they are 2 out of 5, EDV is 40%. Assuming the latter was

17

CHAPTER 2. THEORY

chosen as the stopping criterion with a threshold value of 50%, the search would stop

at iteration i.

TIE: 50%
EDV: 40%

n1

n2
𝒕𝒂𝒓𝒈𝒆𝒕

Figure 2.10: Illustration of SSC’s functioning. The star in the figure represents the
target vector on training data.

2.4.8 Genetic Programming as a Meta-Learning Technique

It is known that maximal generalization ability of an ensemble can be achieved through

prudent combination of diverse BLs. Many ensemble methods, however, require their

manual selection, parametrization and combination. This means that full potential of

this combination of search-paradigms in generating synergistic effects might be under-

explored. In this light, GP can be seen as an effective assembling method due to its

flexible representation, high interpretability of evolved solutions and powerful induc-

tive capabilities. To explore GP’s role as a meta-learning technique, one has fulfill a

fundamental requisite: to build the set of terminals from the combined predictions of

several distinct base-learners.

The use of GP as an automatic EL technique is not new in the research field. To our

knowledge, the first evidence comes from 2006 [26], when GP was used to combine

10 ANNs into an ensemble. Through experiments’ analysis, a notorious superiority

of the proposed approach was verified, when evaluated on 22 publicly available real-

world SML problems. In [12], authors compared an equivalent approach against 3

ensemble approaches based on GAs. The experimental results involving 4 synthetic

and 1 real-world symbolic regression tasks confirmed the preeminence of GP-based

ensemble not only against the best BL, which was an ANN, but also the three different

types of GA-based ensembles.

In [20], authors extended the usage of GP to learn ensemble policies by using up

to 6 heterogeneous BLs, some of which ensembles themselves (which was the case of

18

2.4. EVOLUTIONARY ALGORITHM

Random Forest), and assessed system’s performance on 10 synthetic symbolic regres-

sion problems. Additionally, in attempt to increase the synergistic effect of combining

different BLs into an ensemble policy, authors proposed a novel operator entitled as

decision expression, which splits the input space into sub-spaces that can then be han-

dled by different sub-policies. Despite of their expectations, their approach performed

significantly better than the best BL only at one problem. While on the remaining

problems the performance of their system was comparable or worse. In their work,

authors pointed several limitations, namely the overfitting - perceived by the fact GP

simply selects from the BLs instead of learning a complex and meaningful policy - and

the absence of real-world benchmark problems. The latter translates in the absence of

potentially challenging fitness landscapes for the BLs, a scenario which seems suitable

for the method they have proposed. Despite of carrying, in our opinion, an important

contribution, for our surprise, this work was not published neither in a conference or

a journal...

In [44] authors exploited the fact that semantics, defined in 2.4.2 as the vector

of output values of a candidate solution calculated on the training observations, are

independent from the underlying model and proposed an extension to GSGP, called

Universal-GP (U-GP) in which some initial individuals are created by means of exter-

nal programs, i.e., other ML techniques. More specifically, authors proved that, by

producing semantics using fundamentally distinct ML models, in this context seen

as BLs, and including them in the initial population of GSGP’s evolutionary process

along with random initial programs, it is possible to obtain a significant improve-

ment over standard RHH initialization. It is also important to point that, after iden-

tifying system’s sensibility towards overfitting of BLs, authors have introduced the

pre-evolutionary selection procedure, referred as PESP, which attempts to exclude from

the evolution those BLs which are unable to individually achieve good generalization

performance after training and after a short run of GSGP. This approach, which essen-

tially introduces an additional level of cross-validation, allowed the system to achieve

superior performance when compared to standard S-GP on 4 real-world regression

problems.

All aforementioned contributions, except [44], can be categorized as stacking,

where standard GP assumes the role of a meta-learner from the combined predic-

tions of several BLs. For this reason and from this moment on, we will entitle these

kind of approaches as Stacking-SGP (S-SGP). Taking in consideration the information

presented in the next section and to facilitate the reading of this document, we will use

the nomenclature Stacking-GSGP (S-GSGP) for those cases when GSGP assumes the

role of a meta-learner and Stacking-GP (S-GP) for any GP-based approach to combine

the predictions of several BLs.

19

C
h
a
p
t
e
r

3
Methodology

3.1 Proposed approach

As it was mentioned in 2.2.1, in this paper we explore S-GP; nevertheless, this paper

presents several fundamental differences regarding the previous work. Since the first

usage of S-GP [26], the research field in GP has dynamically evolved and several new

approaches have emerged. Geometric-Semantic Operators (GSO), Semantic Stopping

Criterion (SSC), ε-Lexicase Selection (ε-LS) and Evolutionary Demes Despeciation Al-

gorithm (EDDA), the methods appear enumerated in ascending order of their recency,

are among numerous examples of recent achievements of the scientific community in

the research field. The first fundamental difference, hence a scientific contribution,

consists of applying and comparing these novel achievements, assessing their effec-

tiveness on the underlying tasks, as such updating the state-of-the-art in the research

field. The second if related to the fact that none of the previous work provides a con-

cise benchmark over regression problems when using S-GP: in [1, 29] authors study

the effectiveness of their approach under the light of classification problems, whereas

in [20] authors only cover synthetic regression problems. Apart from updating field’s

state-of-the-art, we also provide a concise overview of 7 synthetic and 4 real-world

regression problems, which complements the scientific panorama in the research field.

3.2 Objectives

The experimental environment is built upon 7 synthetic and 4 real-world regression

problems and the experiments were conducted to accomplish the following six objec-

tives:

21

CHAPTER 3. METHODOLOGY

1. Identify and characterize hyper-parameter sets of S-GSGP which exhibit the high-

est performance on all the problems simultaneously, and on real-world and syn-

thetic problems separately;

2. Compare the performance between different GP-based techniques in the con-

text of stacking, namely: RHH initialization, Tournament selection (TS) and

traditional Stopping Criteria with recently introduced EDDA, ε-LS and SSC, re-

spectively;

3. Assess the validity of GSOs, in the context of stacking by comparing them with

standard GP operators;

4. Compare system’s performance against BLs, some of which ensembles them-

selves (which is the case of Random Forest);

It is important to highlight that, in order to assess systems’ generalization ability,

the experiments were conducted involving both training and unseen data instances.

3.3 Ensemble hyper-parameters

Table 3.1 provides an exhaustive enumeration of hyper-parameters that were used

in our experiment for all the problems (both synthetically-generated and real-world).

It is important to notice that during experimental phase we have performed an ex-

haustive search over the following parameter values: Meta-Learner, BLs pre-training,

Initialization, Selection, P (Crossover) and Stopping criteria, while maintaining all other

parameters fixed. This means that a single execution of the benchmark environment,

i.e., one run, implies 128 experiments for each of 11 considered problems (which

yields a total of 1408 experiments per run). Throughout our experiments we guaran-

teed an equal number of fitness evaluations for all the types of S-GP systems studied

- 70000 generations. For a S-GP system which uses RHH initialization technique this

computational resource results in 500 generations for a population size of 140 (i.e.,

500x140 = 70000). Similarly, for a S-GP system where initialization is performed by

means of EDDA technique with maturation of 5 generations and percentage of GSGP

demes equal to 50% (EDDA5 −50%), this computational resource results in 200 gener-

ations for a population size of 100 (i.e., 100x5x100 + 200x100). The stopping criteria

was compared after executing the experiments for the number of generations specified

in the table (see№generations).

Having in mind the stochastic nature of employed algorithms and results’ volatility

upon data partition, i.e., to provide a robust and statistically-consistent analysis of ex-

perimental results, we repeated the experiments 60 times (runs), each with a different

22

3.4. EXPERIMENTAL PROBLEMS

pseudo-random number generator (a.k.a. seed), used for partitioning the data, and

algorithms’ initialization and execution.

Parameters Values

№runs 60
Meta-Learner S-SGP, S-GSGP
№generations 500RHH , 200EDDA5−50%
Population size 140RHH , 100EDDA5−50%
Function set add, sub, mul, avg, min, decision
BLs set LR, SVM, RF, MLP
Tuned BLs True, False
Initialization RHH, EDDA5 − 50%
Selection TS, ε-LS
Crossover Swap, GSC
Mutation Subtree, GSM
P (C) 0, 0.2, 0.8, 1.0
P (M) 1− P (C)
Stopping criteria TIE, EDV, validation fitness,№generations

Table 3.1: Enumeration of hyper-parameters. It is worth to notice that decision stands
for the decision expression operator proposed in [20], BLs pre-training indicates if
the BLs were tuned or not, ε-LS represents the selection algorithm proposed in [36],
P (C) and P (M) indicate the crossover and mutation probabilities, and validation fitness
stands for the stopping criteria which operates upon the fitness calculated from vali-
dation partition by estimating the point from where further induction allows further
generalization.

3.4 Experimental Problems

In this section, the reader can find a detailed characterization of the experimental

problems we used in our experiments. Table 3.2 contains the mathematical formula-

tion for 7 synthetic regression problems used in this study, whereas tables 3.3 and 3.1

complement the latter by specifying their bounds (the domain) and providing a graph-

ical visualisation of the fitness landscapes. It is worth to highlight that these functions

were studied in two dimensional input space. For each of these problems, we have

generated 200 two-dimensional data points under Continuous Uniform Distribution

where parameters for each dimension were chosen from table 3.3. Then, these points

were used as the input for the functions defined in table 3.2 to generate the respective

target vectors. As a result, each synthetic regression problem is defined by 200 data ob-

servations characterized in two-dimensional input feature-space and one dimensional

output.

Table 3.4 summarizes the 4 real-world regression problems. The Boston prob-

lem [48] is from the field of real estate analysis and it consists of predicting the value

of owner-occupied homes in suburbs of Boston, a city in United States of America, as

23

CHAPTER 3. METHODOLOGY

Name f (x1,x2)

Branin a
(
x2 − bx2

1 + cx1 − r
)2

+ s (1− t)cos(x1) + s
Discus x2

1106 + x2
2

Griewank 1 + 1
4000 x

2
1 + 1

4000 x
2
2 − cos(x1) cos(1

2 x2
√

2)

Kotanchek e−(x1−1)2

3.2+(x2−2.5)2

Mexican Hat 1
πσ2 1− 1

2
x2

1+x2
2

σ2 e−
x2

1+x2
2

2σ2

Rastrigin 10d +
∑d
i=1[x2

i − 10cos(2π xi)]

Weierstrass
∑d
i=1

∑kmax
k=1

1
2
k

cos
(
2π3k(xi + 1

2)
)
− d

∑kmax
k=1

1
2
k

cos
(
2π3k 1

2

)
Table 3.2: Mathematical formulation of synthetic regression problems used in this
study. The problems are listed in alphabetical order.

Bound: Lower Upper
Problem x1 x2 x1 x2
Branin -5 0 10 15
Discus -32.786 -32.786 32.786 32.786
Griewangk -600 -600 600 600
Kotanchek -2 -1 7 3
Mexican Hat -5 -5 5 5
Rastrigin -5 -5 5 5
Weierstrass -0.5 -0.5 0.5 0.5

Table 3.3: Enumeration of search space’s boundaries (the domain) for each function. It
is worth to notice that columns Lower and Upper stand for lower and upper bounds of
two dimensional search space.

a function of its geographic, socioeconomic, environmental and housing characteris-

tics. The Diabetes problem [37] contains blood pressure and demographic data of 442

persons who happen to have diabetes and the target value is a quantitative measure of

disease progression one year after the baseline measurement. The PPB problem [22]

comes from the field of pharmacokinetics and consists of predicting the percentage of

the initial drug dose which binds plasma proteins as a function of its 626 molecular

descriptors. Finally, the Parkinson problem [49] is mostly composed of biomedical

voice measurements from 42 people who, at the time of data-collection, happened to

have Parkinson’s disease at its early stage. They were recruited to a six-month trial of a

tele-monitoring biomedical speech recording device for remote symptom progression

monitoring. The objective is to predict Parkinson’s symptom progression measured

through total Unified Parkinson’s Disease Rating Scale (UPDRS).

We considered to include these problems in our study as all of them have been

target of research using several different ML techniques, they are significantly diverse

and, in the case of real-world problems, are considered of high importance in their

respective industries.

24

3.5. PROBLEM DATASET - TRAIN AND TEST SPLIT

Figure 3.1: Optimization Problems

Dataset (ID) #Features #Instances Field
Boston 13 506 Real Estate

Diabetes 10 442 Medicine
PPB 626 131 Pharmacokinetics

Parkinson 20 5876 Medicine

Table 3.4: Description of real-world regression problems used in the experiments. For
each problem, the name (ID), number of input features (#Features), data instances
(#Instances) and field of application (Field) is presented.

3.5 Problem dataset - Train and Test split

In the workflow of the experiment (figure A.1), we can see that each dataset has to

be split into two parts 3.2, the training set used to train the base learners during the

learning process, and the testing set which remains during the training but used for

the final prediction.

Listing 3.1: Python code for Train and Test split

1 from sklearn.model_selection import train_test_split

2 X_train, X_test, y_train, y_test

3 = train_test_split(X, y, test_size=0.3, random_state=run_number)

The function ‘train_test_split’ from Scitkit-Learn shuffle randomly and split the

given arrays ‘X’ and ‘y’ using the common rule of thumb 70/30. Meaning that 70% of

data will be used for the training set, output arrays ‘X_train’ and ‘y_train’, and 30%

the testing set, output arrays ‘X_test’ and ‘y_test’. The random state ensures that at

each run the random distribution will be different.

25

CHAPTER 3. METHODOLOGY

Dataset - 200 points

Training 70% - 140 points Testing 30% - 60 points

Figure 3.2: Dataset split representation

This way the dataset of 200 points is split into two parts, the training set of 140

points and the testing set of 60 points.

3.6 Base Learners hyper-parameters tuning

Hyper-parameter tuning is the fact of finding the right settings of a model for a specific

dataset.

In a separated process from the workflow, only the problem training dataset is

used.

GridSearchCV a module from Scikit-Learn (same library as the base learners) al-

lows trying different parameters for a given model and dataset. A cross-validated score

is given to all combinations of parameters, confirming that the best parameters set will

perform well on different samples of the dataset. For each problem, the best parameter

set is saved and used if the variable Tuned is set at True.

When not Tuned the base learners use their default hyper-parameters values which

are not optimized for the given dataset, resulting in potentially bad performance.

3.7 Base Learners dataset - K-Fold data generation

As shown in the workflow of the experiment (figure A.1), after the problem dataset

split, the base learners are trained with only a part of the training dataset because we

want to output predictions based on unseen data also coming from the same training

set. If the data to be predicted has already been seen during the training, the outputted

predictions will be unrealistic and the ensemble will overfit for unseen data.

Using a K-fold technique, the training set is divided into K parts. For the base

learners, K minus 1 folds are used as inputs during the training, and 1 fold is used as

input for the prediction. We chose to use 10 folds, so the base learners are trained 10

times, to predict the target of 10 different folds.

26

3.8. BASE LEARNERS DATASET - TRAIN AND VALIDATION SPLIT

The combination of predictions of those 10 base learners is the same number of

instances (rows) as the training set. By using 90% of the training set has been used at

each repetition, we ensure that the training is close to the complete training set and by

using unseen data (10% of the training set at each repetition) the prediction is realistic.

Listing 3.2: Base Learners Train and Predict pseudo code

1 # function f(x, y, k=10) perform k-fold data generation

2 # X: independent variables of the training set

3 # y: dependent variable of the training set

4 # K: number of folds, default is 10

5 # base_learners: list containing the base learners used to train and predict

6 # fold_labels: vector with the same length as X, containing the folds labels.

7 # Equal number of instances by folds. Used to filter X and y.

8

9 1: for i = 1 to k:

10 2: for each base_learners:

11 3: Train using X and y, where fold_labels are different from i

12 4: Predict using X and y, where the fold_labels equal i

13 5: concatenate all predictions in one array

The base learners dataset (Figure 3.3) is the concatenation of the prediction of each

base learner for a given dataset. The array ‘y’ will remain the target data, but the array

‘X’ will no longer be used in the ensemble training workflow. Instead, the base learners

predictions will be used as independent variables.

3.8 Base Learners dataset - Train and Validation split

A validation set is used to observe the behavior of the ensemble on unseen data (Vali-

dation stopping criteria 3.12).

The implementation of the split for the ensemble is quite simple because we are

using the fold labels vector. By randomly selecting a fold (in our case a value between

1 and 10) the training set will be the instances with a different label than the one

selected, corresponding to 90%. The rest of the instances will be used as a validation

set.

This base learners prediction split (Figure 3.4) is different from the first split per-

formed on the optimization problems data.

27

CHAPTER 3. METHODOLOGY

Base Learner 1

Optimisation
Problem
Dataset

Base Learner 2 Base Learner 3 Base Learner 3

Prediction 1 Prediction 2 Prediction 3 Prediction 4

Concatenation

Base Learners
Dataset

Figure 3.3: Base Learners dataset generation

Dataset - 200 points

Training 70% - 140 points Testing 30% - 60 points

BL Training 90%
126 points

BL Valid 10%
14 points

Optimization
Problems data

Base Learners
predictions data

Figure 3.4: Base Learners predictions data split

28

3.9. FUNCTION SET AND TERMINAL SET

3.9 Function set and Terminal set

Function Set

Defined as a parameter of the algorithm, the function set is a toolbox of arithmetic

functions used in the tree structure of an individual. A function is selected randomly

during the population’s initialization. Terminals are used as inputs (arity 1 or 2) and

the output will be the mathematical association represented by the function. A big

enough function set also helps to maintain diversity in the individual composition.

Listing 3.3: Function set variable

1 primitive_function_set=(’add’, ’sub’, ’mul’, ’avg’, ’min’, ’deci’)

2 # Add: Addition

3 # Sub: Subtraction

4 # Mul: Multiplication

5 # Avg: Average

6 # Min: Minimum

7 # Deci: Decision

Terminal Set

A feature from the base learners dataset 3.3 can be selected randomly and used as

terminal. A terminal value can also be picked randomly within a defined range of

constant. In our case, the constant range is between -1 and 1.

3.9.1 Decision

The function set is mostly composed of basic arithmetic functions. But it is possible to

add more complex functions like the Decision function.

Each application of decision function splits the search space in two sub-spaces

by randomly selecting a threshold in the range -1 and 1 at a randomly chosen input

feature. Then, each sub-set of the space will be approximated by another sub-policies.

This way, the decision operator looks like the Decision Trees learning but with random

feature and threshold selection.

Figure 3.5: Decision

29

CHAPTER 3. METHODOLOGY

In the figure 3.5, the first feature (position 0) of a base learner dataset 3.3 is ran-

domly selected. The randomly selected threshold 0.23 split the feature vector in two.

All the corresponding values between -1 and 0.23 will use the predictions of the base

learner RF, and all the corresponding values between 0.23 and 1 will use the predic-

tions of the base learner SVM.

3.10 Fitness Evaluation

The fitness evaluation of an individual happens in 2 steps:

At the execution of an individual, a vector is returned representing the semantic

of the individual structure for a given dataset (training, validation or test data).

The fitness function ‘Root Mean Square Error’ returns the error comparing the

predictions (from the execution) to the corresponding target values.

3.10.1 Memoization

Memoization is an optimization technique used to speed up functions by storing values

in the cache. A function using memoization stores the result of an execution the first

time an input parameter occurs. The next time the same input parameter is used, the

result is retrieved from the cache, saving some computational time.

Since the structure of the individuals of the same population shares the same

parentage, memoization is particularly efficient with GSGP. The genotype of each

parent is calculated only once, then called in from the cache for any offspring.

Listing 3.4: Memoization Pseudo-code

1 # Memoization pseudo-code:

2 # Avg: mean of the dataset, use as id of the dataset

3 # Parent_id: ID of the individual

4 memoize(function):

5 Avg = mean(dataset)

6 If tuple (avg, parent_id) in cache:

7 Return result, execution of the individidual for dataset

8 Else

9 Add in cache result, execution of the individual for a dataset

30

3.11. PARENT SELECTION

Listing 3.5: Memoization Python code

1 # Memoization function:

2 def memoize(f):

3 # Add a cache memory to the input function.

4 def decorated_function(*args):

5 avg = np.mean(args[0])

6 if (avg, args[1]) in variables.cache:

7 return variables.cache[(avg, args[1])]

8 else:

9 variables.cache[(avg, args[1])] = f(*args)

10 return variables.cache[(avg, args[1])]

11 return decorated_function

12

13 # Usage:

14 # t: ID of a parent

15 parent_result = lambda data, t: self.find_parent(t).execute(data)

16 parent_result = memoize(parent_result)

3.11 Parent Selection

In the code, the parent selection is used during the initialization (EDDA or RHH) and

at the start of each generation to create the new population. This means that the parent

selection is repeated for the number of individuals necessary in the new population (2

parents for a crossover operator, 1 parent for a mutation operator).

3.11.1 Tournament

The Tournament selection probability is fixed at 20%, meaning that at each Tourna-

ment, for a population of 100 individuals, 20 will be selected randomly. Then from

this intermediary group, the individual with the best fitness is selected as a parent.

3.11.2 Epsilon Lexicase

In this implementation, Epsilon Lexicase treats each instance of the dataset as one case.

So the number of cases is equal to the length of the dataset (number of rows).

3.12 Stopping Criteria

GSGP is prone to learn the examples of a given dataset instead of learning from the

patterns. Using semantic neighborhood it is possible to stop the iterations using TIE

or EDV with a given threshold to limit the overfitting effect of GSGP.

TIE and EDV

31

CHAPTER 3. METHODOLOGY

• Sample size: 100 - Number of semantic neighbors produced before analysis

• Threshold: 25% - For 100 semantic neighbors, if less than 25 of them respect

the criteria of EDV or TIE (success rate < threshold), the evolution process is

stopped.

• In our experimentation, the evolution process is not stopped, but we keep the

corresponding elite for future analysis (edv_elite and tie_elite).

Minimum Validation and№generations

• We also store the elite for the minimum fitness observed using the validation

set and the elite of the last generation using the training set for future analysis

(Validation and№generations).

32

C
h
a
p
t
e
r

4
Results

In this chapter we will present the experimental results obtained on 7 synthetic and 4

real-world regression problems reported in 3.4. The results are exhibited and analyzed

according to objectives exposed in 3.2.

4.1 Performance Analysis

In order to identify the best parametrization for S-SGP and S-GSGP system, we used

the average of the performance ranks, because of the different scale of each problem.

More specifically, first we ranked all the hyper-parameters sets by their average per-

formance (RMSE) on each problem. Then, we computed the average of their ranks on

all the problems simultaneously, and on real-world and synthetic problems separately.

Finally, we have sorted the average ranks in ascending order and analyzed the top 5

hyper-parameter sets. These results can be found in tables [4.1, 4.2]. Notice that, in

this context, the smaller the average rank, the higher the average performance across

a given problem set. There is in total 256 different combinations of hyper-parameters,

called systems in the following sections (2 algorithms x 2 initializations x 2 selections

x 2 BLs tuning x 4 stopping criteria x 4 P(C) = 256 systems). The rank is established

by problem, so from 1 to 256.

From the analysis of the table one can clearly see that, problem-wise, the S-GSGP

achieves the highest performance when the initialization is EDDA, selection is Tour-

nament, the base-learners are tuned and the mutation is not used at all. The latter

observation appears to be a confirmation of our previous speculations about Convex-

Hull and the fact BLs might surround the global optima, so that by means of Geometric

33

CHAPTER 4. RESULTS

Type Algo Initialization Selection Tuned BLs P(C) Stopping Criteria AVG Rank Index
All S-GSGP EDDA TS TRUE 100% TIE 20.55 1

S-GSGP EDDA TS TRUE 100% Validation 25.00 2
S-GSGP EDDA TS TRUE 100% EDV 27.27 3
S-GSGP EDDA TS TRUE 100% №generations 28.09 4
S-GSGP RHH TS TRUE 0% TIE 53.36 5

Synthetic S-GSGP EDDA TS TRUE 100% TIE 24.00 1
S-GSGP EDDA TS TRUE 100% Validation 31.43 2
S-GSGP EDDA TS TRUE 100% EDV 34.86 3
S-GSGP EDDA TS TRUE 100% №generations 35.71 4
S-GSGP EDDA TS FALSE 80% TIE 36.00 5

Real-world S-GSGP EDDA TS TRUE 100% Validation 13.75 1
S-GSGP EDDA TS TRUE 100% EDV 14.00 2
S-GSGP EDDA TS TRUE 100% TIE 14.50 3
S-GSGP EDDA TS TRUE 100% №generations 14.75 4
S-GSGP EDDA TS TRUE 80% TIE 24.25 5

Table 4.1: Average performance rank - Top 5 by problem type

Type Tuned BLs Algorithm Initialization Selection P(C) Stopping Criteria AVG Rank
All FALSE S-GSGP EDDA TS 20% EDV 63.55

S-SGP EDDA TS 100% EDV 111.45
TRUE S-GSGP EDDA TS 100% TIE 20.55

S-SGP EDDA ε-LS 100% EDV 94.82

Synthetic FALSE S-GSGP EDDA TS 80% TIE 36.00
S-SGP EDDA TS 100% EDV 116.00

TRUE S-GSGP EDDA TS 100% TIE 24.00
S-SGP EDDA ε-LS 20% Validation 111.14

Real-world FALSE S-GSGP EDDA ε-LS 0% TIE 86.75
S-SGP EDDA ε-LS 100% EDV 85.00

TRUE S-GSGP EDDA TS 100% Validation 13.75
S-SGP EDDA ε-LS 100% TIE 56.25

Table 4.2: Average performance rank - Best system by problem type, base learners
hyper-parameters and algorithm

Semantic Operators, namely the Geometric Semantic Crossover, one can effectively

approximate their semantics towards the target. Moreover, one can see that the hyper-

parameter set with the smallest average rank uses a SCC, namely TIE. There is one

parameter-set which significantly deviates from the trend in the top 5: S-GSGP initial-

ized by means of RHH with no crossover at all; nevertheless, its average performance

rank is significantly higher from the first 4 sets, which follow the trend.

When looking at the results obtained only on synthetic problems, one can confirm

the trend verified previously. There is one parameter-set which slightly deviates from

the trend in the top 5: S-GSGP which BLs are not tuned, the P (C) = 80% and TIE-SSC.

In this case, one can speculate that, with some mutation, the system is still able to

achieve almost as good results as with no tuned BLs, no mutation and TIE-SSC; this

probably happens because the BLs, although not tuned, provide a fair approximation

on synthetic problems.

34

4.2. STATISTICAL ASSESSMENT

When looking at the results obtained only on real-world problems, one can con-

firm the trend verified in the previous two paragraphs. The S-GSGP achieves the

highest performance when the Initialization is EDDA, Selection is Tournament, the

base-learners are tuned and the mutation is not used at all. Regarding the best perform-

ing hyper-parameter set, the only difference with the previous two types of problems

consists in the stopping criterion ’Validation’, which is not a SCC.

4.2 Statistical Assessment

In this section we provide a statistically-sustained comparison of experimental hyper-

parameters of all systems, namely: S-SGP with S-GSGP algorithms, EDDA with RHH

initialization techniques, Tournament with ε-Lexicase selection procedures, different

stopping criteria and BLs’ pre-training. The statistical assessment was performed

by means of Wilcoxon rank-sum test for pairwise data comparison of the average

RMSE under the alternative hypothesis that the samples do not have equal medians.

Tables [4.3, 4.4, 4.5, 4.6, 4.7] report the test statistic and the respective p-value for the

two samples being compared (in the table, Sample A and Sample B). Moreover, we also

report the average rank of each sample.

4.2.1 Comparison of system’s hyper-parameters - Global
Hyper-Parameter Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
P(C) 0% 20% 129.20 131.52 123993 9.87E-01

0% 80% 129.20 132.35 118485 3.00E-01
0% 100% 129.20 120.93 112162 2.73E-02

20% 80% 131.52 132.35 120118 4.63E-01
20% 100% 131.52 120.93 113771 5.62E-02
80% 100% 132.35 120.93 107040 1.60E-03

Stopping Criteria EDV №generations 122.80 150.41 68068 2.28E-21
EDV TIE 122.80 119.22 111149 3.03E-01
EDV Validation 122.80 121.56 115329 1.34E-01

№generations TIE 150.41 119.22 53839 1.35E-26
№generations Validation 150.41 121.56 47112 7.94E-45

TIE Validation 119.22 121.56 120517 7.35E-01

Tuned BLs FALSE TRUE 140.00 117.00 408558 1.02E-08

Selection ε-LS TS 135.66 121.34 422113 1.30E-06

Initialization EDDA RHH 107.70 149.30 262142 5.36E-53

Algorithm S-SGP S-GSGP 150.90 106.10 303616 1.98E-36

Table 4.3: Statistical assessment - Global

In table 4.3, we are comparing globally the hyper-parameters, without any focus

on a particular hyper-parameter, like it is the case in the following sections. For the

hyper-parameters algorithms, initializations, selections and tuned BLs, each sample

contains 1408 systems (256 systems x 11 problems / 2). For the hyper-parameters P(C)

and stopping criteria, each sample contains 704 systems (256 systems x 11 problems /

4).

35

CHAPTER 4. RESULTS

The crossover probability hyper-parameter P(C) 100% (avg rank 120.93) outper-

forms P(C) 80% (avg rank 132.35) and 0% (avg rank 129.20) in a statistically significant

way. It also outperforms P(C) 20% (avg rank 131.52) but not in a statistically signif-

icantly way. The stopping criteria hyper-parameter,№generations (avg rank 150.41)

is significantly worse than any other stopping criteria. TIE (avg rank 119.22) outper-

forms EDV (avg rank 122.80) and Validation (avg rank 121.56) but not in a statistically

significant way. Regarding the tuning of the Base Learners hyper-parameters, set as

True (avg rank 117) outperforms set as False (avg rank 140) in a statistically signifi-

cant way. The selection TS (avg rank 121.34) outperforms ε-LS (avg rank 135.66) in a

statistically significant way. The initialization EDDA (avg rank 107.70) outperforms

RHH (avg rank 149.30) in a statistically significant way. The algorithm S-GSGP (avg

rank 106.10) outperforms S-SGP (avg rank 150.90) in a statistically significant way.

Based on those results, it seems more beneficial to use: S-GSGP as algorithm, base

learners with tuned hyper-parameters, EDDA as initialization, Tournament as selec-

tion, TIE as stopping criteria and P(C) 100%. This is coherent with global performance

table 4.2 where the best performing system on all problems is the same.

4.2.2 Comparison of system’s hyper-parameters - By algorithm and BLs
tuning

In tables 4.4, 4.5, 4.6 and 4.7, for the hyper-parameters initializations and selections,

each sample contains 704 systems (256 systems x 11 problems / (2 initializations x

2 BLs tuning)). For the hyper-parameters P(C) and stopping criteria, each sample

contains 176 systems (256 systems x 11 problems / (2 initializations x 2 BLs tuning x

4)).

4.2.2.1 For all S-GSGP systems without tuned BLs

Hyper-Parameter Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
P(C) 0% 20% 30.26 33.18 6101 1.27E-02

0% 80% 30.26 35.14 5090 6.72E-05
0% 100% 30.26 31.43 6296 2.75E-02

20% 80% 33.18 35.14 6674 9.98E-02
20% 100% 33.18 31.43 6903 1.91E-01
80% 100% 35.14 31.43 7472 6.41E-01

Stopping Criteria EDV №generations 30.68 40.97 4095 1.17E-05
EDV TIE 30.68 26.83 5357 8.10E-03
EDV Validation 30.68 31.52 6572 7.24E-02

№generations TIE 40.97 26.83 1391 3.01E-15
№generations Validation 40.97 31.52 3268 6.63E-11

TIE Validation 26.83 31.52 7462 6.30E-01

Selection ε-LS TS 38.38 26.63 16873 1.10E-13
Initialization EDDA RHH 27.68 37.32 15946 2.51E-15

Table 4.4: Statistical assessment - Without tuned BLs, for all S-GSGP, by hyper-
parameter

36

4.2. STATISTICAL ASSESSMENT

In table 4.4, only the S-GSGP systems not using tuned BLs are compared. The

crossover probability P(C) 0% (avg rank 30.26) outperforms P(C) 80% (avg rank 35.14),

20% (avg rank 33.18) and P(C) 100% (avg rank 31.14) in a statistically significant

way. The stopping criteria hyper-parameter, TIE (avg rank 26.83) outperforms EDV

(avg rank 30.68) and№generations (avg rank 40.97) in a statistically significant way.

TIE outperforms Validation (avg rank 31.52) but not in a statistically significant way.

The selection Tournament (avg rank 26.33) outperforms ε-LS (avg rank 27.68) in a

statistically significant way. EDDA (avg rank 27.68) outperforms RHH (avg rank 37.32)

in a statistically significant way.

Based on those results, it seems more beneficial to use S-GSGP without tuned base

learners: EDDA as initialization, Tournament as selection, TIE as stopping criteria

and P(C) 0%. This combination differs slightly from the corresponding combination

observed in 4.2 where EDV is used as stopping criteria and 20% for P(C).

4.2.2.2 For all S-SGP systems without tuned BLs
Hyper-Parameter Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
P(C) 0% 20% 35.36 31.98 6471 5.17E-02

0% 80% 35.36 34.56 7449 6.17E-01
0% 100% 35.36 28.10 5524 8.24E-04

20% 80% 31.98 34.56 7420 5.87E-01
20% 100% 31.98 28.10 6442 4.68E-02
80% 100% 34.56 28.10 5455 5.68E-04

Stopping Criteria EDV №generations 30.90 38.03 4851 3.33E-05
EDV TIE 30.90 33.39 6381 6.42E-02
EDV Validation 30.90 27.68 6684 1.63E-01

№generations TIE 38.03 33.39 5385 1.18E-03
№generations Validation 38.03 27.68 2536 3.94E-14

TIE Validation 33.39 27.68 5802 6.51E-03

Selection ε-LS TS 31.79 33.21 28938 2.66E-01

Initialization EDDA RHH 23.34 41.66 14867 2.29E-17

Table 4.5: Statistical assessment - Without tuned BLs, for all S-SGP, by hyper-
parameter

In table 4.5, only the S-SGP systems not using tuned BLs are compared. The

crossover probability P(C) 100% (avg rank 28.10) outperforms P(C) 0% (avg rank

35.36), P(C) 20% (avg rank 31.98) and P(C) 80% (avg rank 34.56) in a statistically

significant way. The stopping criteria Validation (avg rank 27.68) outperforms TIE

(avg rank 33.39) and№generations (avg rank 38.03) in a statistically significant way.

Validation also outperforms EDV (avg rank 30.90) but not in a statistically significant

way. The selection ε-LS (avg rank 31.79) outperforms Tournament (avg rank 33.21)

but not in a statistically significant way. The initialization EDDA (avg rank 23.34)

outperforms RHH (avg rank 41.66) in a statistically significant way.

Based on those results, it seems more beneficial to use S-SGP without tuned Base

Learners: EDDA as initialization, ε-LS as selection, Validation as stopping criteria and

37

CHAPTER 4. RESULTS

100% as crossover probability. This system differs slightly from the one observed in 4.2

where Tournament is used as selection instead of ε-LS, and EDV as stopping criteria

instead of validation.

4.2.2.3 For all S-GSGP systems with tuned BLs
Hyper-Parameter Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
P(C) 0% 20% 30.90 35.14 6906 1.93E-01

0% 80% 30.90 36.63 6085 1.19E-02
0% 100% 30.90 27.34 7557 7.33E-01

20% 80% 35.14 36.63 6855 1.68E-01
20% 100% 35.14 27.34 7073 2.91E-01
80% 100% 36.63 27.34 5259 1.87E-04

Stopping Criteria EDV №generations 30.61 40.82 3937 2.19E-07
EDV TIE 30.61 26.61 5358 1.12E-02
EDV Validation 30.61 31.97 7081 2.96E-01

№generations TIE 40.82 26.61 1286 3.59E-16
№generations Validation 40.82 31.97 3579 8.24E-10

TIE Validation 26.61 31.97 6518 1.27E-01

Selection ε-LS TS 37.63 27.37 16540 2.91E-14

Initialization EDDA RHH 27.24 37.76 14557 5.61E-18

Table 4.6: Statistical assessment - With tuned BLs, for all S-GSGP, by hyper-parameter

In table 4.6 only the S-GSGP systems using tuned BLs are compared. The crossover

probability P(C) 100% and P(C) 0% are statistically significantly better than P(C) 80%

and obtain better results than P(C) 20% without statistical evidence. P(C) 100% offers

better average rank than P(C) 0%. TIE is statistically significantly better than EDV

and№generations, it also offers better average rank than Validation. Tournament is

statistically significantly better than ε-LS. EDDA is statistically significantly better

than RHH.

Based on those results, it seems more beneficial to use S-GSGP with tuned base

learners: EDDA as initialization, Tournament as selection, TIE as stopping criteria and

P(C) 100%. This is the same combination observed in the performance table 4.2 for

S-GSGP with tuned base learners.

4.2.2.4 For all S-SGP systems with tuned BLs

In table 4.7 only the S-SGP systems using tuned BLs are compared. The crossover

probability P(C) 80% (avg rank 30.01) outperforms P(C) 0% (avg rank 35.96) in a

statistically significant way, it also outperforms P(C) 100% (avg rank 31.68) and P(C)

20% (avg rank 32.35) but not in statistically significant way. The stopping criteria EDV

(avg rank 29.27) outperforms№generations (avg rank 39.75) in a statistically signifi-

cant way, it also outperforms TIE (avg rank 31.54) and Validation (avg rank 29.44) but

not in a statistically significant way. The selection ε-LS (avg rank 30.26) outperforms

Tournament (avg rank 37.74) in a statistically significant way. The initialization EDDA

(avg rank 25.15) outperforms RHH (avg rank 39.88) in a statistically significant way.

38

4.2. STATISTICAL ASSESSMENT

Hyper-Parameter Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
P(C) 0% 20% 35.96 32.35 6800 1.44E-01

0% 80% 35.96 30.01 5530 8.51E-04
0% 100% 35.96 31.68 5647 1.56E-03

20% 80% 32.35 30.01 6506 5.82E-02
20% 100% 32.35 31.68 6535 6.42E-02
80% 100% 30.01 31.68 7492 6.62E-01

Stopping Criteria EDV №generations 29.27 39.75 4230 1.47E-07
EDV TIE 29.27 31.54 6995 2.94E-01
EDV Validation 29.27 29.44 7009 2.50E-01

№generations TIE 39.75 31.54 4974 3.22E-05
№generations Validation 39.75 29.44 2629 2.51E-14

TIE Validation 31.54 29.44 7675 8.67E-01

Selection ε-LS TS 30.26 34.74 23529 8.01E-05

Initialization EDDA RHH 25.15 39.88 20592 4.22E-08

Table 4.7: Statistical assessment - With tuned BLs, for all S-SGP, by hyper-parameter

Based on those results, it seems more beneficial to use S-SGP with tuned Base

Learners: EDDA as initialization, ε-LS as selection, Validation as stopping criteria and

80% as crossover probability. This combination differs slightly from the corresponding

one observed in the performance table 4.2 where the crossover probability is 100%

instead of 80%.

4.2.3 Best S-GSGP vs Best S-SGP - By problem type and base learners
hyper-parameters

Type Tuned BLs A - S-GSGP, EDDA B - S-SGP, EDDA AVG Rank A AVG Rank B Test statistic P-Value
All FALSE [TS, 20%, EDV] [TS, 100%, EDV] 63.55 111.45 99153 4.31E-02

TRUE [TS, 100%, TIE] [ε-LS, 100%, EDV] 20.55 94.82 46326 1.57E-37

Synthetic FALSE [TS, 80%, TIE] [TS, 100%, EDV] 36.00 116.00 42703 5.46E-01
TRUE [TS, 100%, TIE] [ε-LS, 20%, Val] 24.00 111.14 11871 1.40E-38

Real-world FALSE [ε-LS, 0%, TIE] [ε-LS, 100%, EDV] 86.75 85.00 13444 3.45E-01
TRUE [TS, 100%, Val] [ε-LS, 100%, TIE] 13.75 56.25 10521 2.54E-04

Table 4.8: Statistical assessment - Comparison of best S-GSGP vs best S-SGP - By
problem type and base learners hyper-parameters

In table 4.8, Sample A corresponds to the best system using S-GSGP as algorithm

and EDDA as initialization, Sample B corresponds to the best performing system using

S-SGP as alogrithm and EDDA as initialization. Each sample contains 660 runs for

all problems, 420 runs for the synthetic problems and 240 runs (60 runs x number of

problems). Each run report the RMSE of the system for a specific problem.

For all problem considered, and without tuned base learners the best S-GSGP sys-

tem (avg rank 63.55), which uses Tournament as selection, P(C) 20% and EDV as

stopping criteria, outperforms in a statistically significant way the best S-SGP system

(avg rank 111.45), which uses Tournament as selection, P(C) 100% and EDV as stop-

ping criteria. Still for all problem considered, and with tuned base learners the best

S-GSGP system (avg rank 20.55), which uses Tournament as selection, P(C) 100% and

TIE as stopping criteria, strongly outperforms in a statistically significant way the best

39

CHAPTER 4. RESULTS

S-SGP system (avg rank 94.82), which uses ε-LS as selection, P(C) 100% and EDV as

stopping criteria.

Regarding the synthetic problems, when the base learners are not tuned, the best S-

GSGP system (avg rank 36.00), which uses Tournament as selection, P(C) 80% and TIE

as stopping criteria, outperforms not in a statistically significant way the best S-SGP

system (avg rank 116.00), which uses Tournament as selection, P(C) 100% and EDV as

stopping criteria. Still with the synthetic problems, when the base learners are tuned,

the best S-GSGP system (avg rank 24.00), which uses Tournament as selection, P(C)

100% and TIE as stopping criteria, strongly outperforms in a statistically significant

way the best S-SGP system (avg rank 111.14), which uses ε-LS as selection, P(C) 20%

and Validation as stopping criteria.

Regarding the Real-world problems, when the base learners are not tuned, the best

S-SGP system (avg rank 85.00), which uses ε-LS as selection, P(C) 100% and EDV as

stopping criteria, outperforms not in a statistically significant way the best S-GSGP

system (avg rank 86.75), which uses ε-LS as selection, P(C) 0% and TIE as stopping

criteria. Still with the Real-world problems, when the base learners are tuned, the best

S-GSGP system (avg rank 13.75), which uses Tournament as selection, P(C) 100% and

Validation as stopping criteria, outperforms in a statistically significant way the best

S-SGP system (avg rank 56.25), which uses ε-LS as selection, P(C) 1000% and TIE as

stopping criteria.

4.2.4 Comparison of the best performing system vs BLs

As shown in table 4.1 and 4.2 our best performing ensemble system for all types of

problems is obtained using tuned base learners, EDDA as initialisation, Tournament

as selection. Its 4 stopping criteria are always in the top 4 for each type of problem.

It has also been statistically assessed in tables 4.3 and 4.6, that the best hyper-

parameters are: S-GSGP as algorithm, tuned base learners, EDDA as initialization,

Tournament as selection. No stopping criterion has been shown as statistically signifi-

cantly better than all the others.

It is important to compare the stopping criteria of our best performing ensemble,

between themselves but also against the base learners feeding the system.

To create the ranking used in table 4.9, the average RMSE (B.3) of each problems for

8 base learners systems (RF Tuned, LR Tuned, SVM Tuned, MLP Tuned, RF Not Tuned,

LR Not Pr-etrained, SVM Not Tuned, MLP Not Tuned) were added to the previous

global rank used for table 4.1 and the rank has been updated. This way the base

40

4.2. STATISTICAL ASSESSMENT

Sample A Sample B AVG Rank A AVG Rank B Test Statistic P-Value
TIE Validation 21.27 25.91 74938 1.74E-01

EDV 21.27 28.09 53572 6.57E-01
№generations 21.27 28.82 32034 1.73E-01

RF 21.27 123.45 48656 6.42E-35
SVM 21.27 174.45 28122 2.72E-61
MLP 21.27 219.18 7293 8.30E-96
LR 21.27 255.73 15652 5.15E-80

Validation EDV 25.91 28.09 85125 4.82E-01
№generations 25.91 28.82 97353 4.35E-01

RF 25.91 123.45 47945 1.05E-35
SVM 25.91 174.45 25571 4.24E-65
MLP 25.91 219.18 5424 2.75E-99
LR 25.91 255.73 16794 2.77E-78

EDV №generations 28.09 28.82 25237 4.07E-01
RF 28.09 123.45 50340 4.31E-33

SVM 28.09 174.45 29214 1.07E-59
MLP 28.09 219.18 6848 1.25E-96
LR 28.09 255.73 15068 3.27E-81

№generations RF 28.82 123.45 48234 2.20E-35
SVM 28.82 174.45 28032 2.00E-61
MLP 28.82 219.18 7074 3.27E-96
LR 28.82 255.73 16723 2.10E-78

RF SVM 123.45 174.45 39506 9.84E-46
MLP 123.45 219.18 15054 4.95E-82
LR 123.45 255.73 86610 4.60E-06

SVM MLP 174.45 219.18 31458 1.72E-56
LR 174.45 255.73 87202 8.13E-06

MLP LR 219.18 255.73 77932 2.11E-10

Table 4.9: Statistical assessment - Best performing ensemble system for all problems
and BLs: [Tuned BLs, S-GSGP, EDDA, TS, P(C) 100%] - (Average RMSE by problem in
table B.3)

learners can be fairly compared to all analyzed ensemble systems.

For table 4.9, since our best performing ensemble systems are using only tuned

base learners, only those ones will be used in that comparison. As in the previous

tables the statistical assessment was performed by means of Wilcoxon rank-sum test

using the RMSE of each run. Each sample contains 660 runs (60 runs x 11 problems).

For the best performing ensemble system, which uses tuned base learners, S-GSGP

as algorithm, EDDA as initialization, Tournament as selection and P(C) 100% as

crossover probability, the stopping criteria TIE (avg rank 21.27) outperforms Vali-

dation (avg rank 25.91), EDV (avg rank 28.09) and№generations (avg rank 28.82) not

in a significant way. This same system with any stoppy criteria strongly outperforms

in a significant way its own base learners, which are tuned RF (avg rank 123.45), tuned

41

CHAPTER 4. RESULTS

SVM (avg rank 174.45), tuned MLP (avg rank 219.18) and tuned LR (avg rank 255.73).

42

C
h
a
p
t
e
r

5
Discussion

5.1 Summary

As seen in table 4.1, the best performing ensemble system for all types of problems

(Synthetic and Real-world) is using: Tuned base learners, S-GSGP as algorithm, EDDA

as initialization, Tournament as selection, 100% as crossover probability and TIE as

stopping criteria which perform better considering all problems. For Real-world prob-

lems, the only difference is Validation used as stopping criteria. The top 5 systems in

the 3 types of problems are all using S-GSGP as algorithm and Tournament as selec-

tion. Differences can be noticed in the fifth position of each type of problem on the

Initialization, pre-training of the base learners and the crossover probability.

In table 4.1, we can also appreciate the performance of the S-SGP systems when

the base learners are tuned or not. S-GSGP systems always perform better than S-SGP,

except for Real-world problems when the base learners are not tuned. We can also

notice that for all type of problems and base learners not tuned, S-GSGP never uses

100% as crossover probability (mutation is always used), which is always the case

when using tuned base learners.

The comparison of the system hyper-parameters table 4.3 statistically confirms the

composition of our best performing ensemble.

When using not tuned base learners and S-GSGP, the most individually beneficial

hyper-parameters are: EDDA as initialization Tournament as selection, TIE as stop-

ping criteria and 0% as crossover probability (Table 4.4). When using not tuned base

43

CHAPTER 5. DISCUSSION

learners and S-SGP, the most individually beneficial hyper-parameters are: EDDA as

initialization ε-LS as selection, Validation as stopping criteria and 100% as crossover

probability (Table 4.5). When using tuned base learners and S-GSGP, the most individ-

ually beneficial hyper-parameters are: EDDA as initialization, Tournament as selection,

TIE as stopping criteria and 100% as crossover probability (Table 4.6). When using

tuned base learners and S-SGP, the most individually beneficial hyper-parameters are:

EDDA as initialization, ε-LS as selection, Validation as stopping criteria and 100% as

crossover probability (Table 4.7).

In table 4.8, we can observe that the best S-GSGP is always statistically significantly

better than the best S-SGP with tuned base learners. With synthetic problems and not

tuned base learners, the best S-GSGP offers a better average rank without statistical

evidence. With real-world problems, the best S-SGP offers a slightly better average

rank without statistical evidence. For all problems and not tuned base learners, the

best S-GSGP is statistically significantly better than the best S-SGP.

Based on the previous performance analysis and statistical assessments, the best

observed ensemble system for all problems is using: tuned base learners, S-GSGP as

algorithm, EDDA as initialization, Tournament as selection and 100% as crossover

probability. TIE offers the best average rank against other stopping criteria without

statistical evidence. All the stopping criteria are statistically significantly better than

any base learners.

5.2 Interpretation

Knowing that the base learners are tuned for the best ensemble system, we can assume

that their predictions are closer to the global optima with a better generalisation.

By using S-GSGP as algorithm, the Geometric Semantic operators induce a uni-

modal fitness landscape (no local optima), which is not the case for S-SGP. The uni-

modal fitness landscape of GSGP provides an adequate environment to combine the

best features that each base learner has to offer and construct an ensemble. The learn-

ing process with GSGP shows a more stable effect on the validation set than GP mean-

ing that what is learned on the training set is relevant (Appendix D).

Geometric Semantic Crossover is more appropriate than Geometric Semantic Mu-

tation since we want to combine different solutions and preserve the original behavior

of base learners. With semantic crossover the structures of the parents are transmitted

to the offspring which will never perform worse than the worst parent.

44

5.3. IMPLICATIONS

In the field of genetic programming, diversity is really important for natural selec-

tion. Where RHH only ensures diversity between the individuals of the population,

EDDA also makes sure to preserve the ones with the bests features.

The tournament selection maintains diversity due to random selection then selects

individuals with the best performance for the complete training set. In comparison,

ε-LS selects individuals based on their expertise on parts/cases of the training set.

That is why it would be harder for ε-LS to preserve individuals that present with low

error throughout the training set during the evolutionary process.

5.3 Implications

Since this is the first time a benchmark on GSGP and GP for ensemble learning (S-

GSGP and S-SGP) is being proposed, it is difficult to relate to previous research mainly

focusing and relying on GP as the ensemble learner.

The experiment presented here provides new insight into the relationship between

initialization, parent selection and genetic operators for both GSGP and GP. It also

demonstrates the possibility of obtaining quality results combining different types of

base learners.

5.4 Limitations

The statistical analysis does not allow to suggest a default stopping criterion as part of

the best ensemble system. During our experimentation TIE gives the best results.

5.5 Recommendations

Feature selection could have an important role for the S-GSGP ensemble if base learn-

ers able to learn from each other can be identified as a initialization step. It would also

make sense for them not to be correlated.

In the boxplots in Appendix D we can clearly see that overfitting base learners have

a negative impact on the ensemble by way of adding confusion to other base learners

with decent generability.

The learning curves show that the ensemble reaches a stable state after only a few

generations after which the learning slows down. In order for the learning to continue

at that speed we would need to include more base learners or expand the number of

individuals in the population.

45

CHAPTER 5. DISCUSSION

It would also be interesting to analyze and compare the behavior of a S-GSGP

ensemble composed of both, tuned and not tuned base learners. For instance, the best

base learner (e.g. random forest, tuned) could learn from a weaker base learner (linear

regression, not tuned) aided by less correlation.

46

C
h
a
p
t
e
r

6
Conclusion

Conclusion

In this thesis, the main questions answered are: By providing a benchmark composed

of S-GSGP and S-SGP systems, what is the best observed ensemble system? What

are the best hyper-parameters for S-GSGP and S-SGP in different context (All, real-

world and synthetic problems)? How does perform S-GSGP against S-SGP in different

contexts (different types of problems, with tuned or not tuned base learners)? How

does the best ensemble performs perform against its own base learners?

By first establishing the benchmark through 11 different datasets with multiple

hyper-parameters and finding the best performing system using S-GSGP we have been

able to show that it performs better than S-SGP under multiple conditions.

The key finding of this thesis was establishing a new benchmark for ensemble

learning using S-GSGP and S-SGP systems. The best performing system found within

this benchmark is using S-GSGP, tuned base learners, EDDA as initialization, Tourna-

ment as selection and crossover as only GSO. It is statistically significantly better than

its own base learners and the best performing S-SGP, for all problems.

Since there was no previous research in this area, we didn’t have any clear ex-

pectations only the goal to try and obtain similar or better results with S-GSGP than

what was previously found using S-SGP. By using S-GSGP we wanted to maintain the

good features of the base learners through the offspring. Such a process was compu-

tationally expensive and time-consuming so optimization was required (3.10.1). The

47

CHAPTER 6. CONCLUSION

methodology used allowed us to explore different techniques and obtain a clear com-

parison guiding us to the best setup for S-GSGP. Our results present S-GSGP as a

viable solution to ensemble learning.

The next step would be feature selection to gain more insight into which base

learners are able to learn from each other. Provided enough computing power, learning

about base learner’s features could further optimize experimentation, in worst case

scenario producing results at least as good as those of the best base learner at any of

the runs.

Additionally, the benchmark suggested using tuned base learners to obtain the best

results, however, adding not tuned base learners could be beneficial to the learning

process.

Thus far, In the field of ensemble learning, no other benchmark has been proposed

using S-GSGP and other recent techniques with a significant number of datasets. This

new approach helps us better understand how base learners can be combined to pro-

duce new solutions by generalizing the relevant features of each base learner.

48

Bibliography

[1] N. Acosta-Mendoza, A. Morales-Reyes, H. J. Escalante, and A. Gago-Alonso.

“Learning to Assemble Classifiers via Genetic Programming.” In: International
Journal of Pattern Recognition and Artificial Intelligence 28 (Dec. 2014). doi: 10.

1142/S0218001414600052.

[2] I. Bakurov, L. Vanneschi, M. Castelli, and F. Fontanella. “EDDA-V2–An Improve-

ment of the Evolutionary Demes Despeciation Algorithm.” In: International Con-
ference on Parallel Problem Solving from Nature. Springer. 2018, pp. 185–196.

[3] I. Bakurov, M. Castelli, F. Fontanella, and V. Leonardo. “A Regression-Like

Classification System for Geometric Semantic Genetic Programming.” English.

In: Germany: Springer Verlag, Sept. 2019.

[4] I. Bakurov, M. Castelli, L. Vanneschi, and M. J. Freitas. “Supporting medical

decisions for treating rare diseases through genetic programming.” English. In:

Applications of Evolutionary Computation. Ed. by P. Kaufmann and P. A. Castillo.

Lecture Notes in Computer Science (including subseries Lecture Notes in Ar-

tificial Intelligence and Lecture Notes in Bioinformatics). Germany: Springer

Verlag, Jan. 2019, pp. 187–203. isbn: 978-3-030-16691-5. doi: 10.1007/978-

3-030-16692-2_13.

[5] P. Bartashevich, I. Bakurov, S. Mostaghim, and L. Vanneschi. “Evolving PSO

algorithm design in vector fields using geometric semantic GP.” In: Proceedings
of the Genetic and Evolutionary Computation Conference Companion, GECCO 2018,
Kyoto, Japan, July 15-19, 2018. 2018, pp. 262–263.

[6] P. Bartashevich, I. Bakurov, S. Mostaghim, and L. Vanneschi. “PSO-Based Search

Rules for Aerial Swarms Against Unexplored Vector Fields via Genetic Pro-

gramming.” In: International Conference on Parallel Problem Solving from Nature.

Springer. 2018, pp. 41–53.

[7] E. Bauer and R. Kohavi. “An Empirical Comparison of Voting Classification

Algorithms: Bagging, Boosting, and Variants.” In: Machine Learning. 1998,

pp. 105–139.

49

http://dx.doi.org/10.1142/S0218001414600052
http://dx.doi.org/10.1142/S0218001414600052
http://dx.doi.org/10.1007/978-3-030-16692-2_13
http://dx.doi.org/10.1007/978-3-030-16692-2_13

BIBLIOGRAPHY

[8] L. Beadle and C. Johnson. “Semantically Driven Crossover in Genetic Program-

ming.” In: July 2008, pp. 111 –116. isbn: 978-1-4244-1822-0. doi: 10.1109/

CEC.2008.4630784.

[9] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal

margin classifiers.” In: Proceedings of the 5th Annual ACM Workshop on Computa-
tional Learning Theory, pp. 144–152.

[10] L. Breiman. “Bagging Predictors.” In: Machine Learning 24.2 (1996), pp. 123–

140. issn: 1573-0565. doi: 10.1023/A:1018054314350. url: https://doi.

org/10.1023/A:1018054314350.

[11] L. Breiman. “Random Forests.” In: Machine Learning 45.1 (2001), pp. 5–32.

issn: 1573-0565. doi: 10.1023/A:1010933404324. url: https://doi.org/

10.1023/A:1010933404324.

[12] V. Bukhtoyarov and O. Semenkina. “Comprehensive evolutionary approach

for neural network ensemble automatic design.” In: July 2010, pp. 1–6. isbn:

978-1-4244-6909-3. doi: 10.1109/CEC.2010.5586516.

[13] M. Castelli, D. Castaldi, I. Giordani, S. Silva, L. Vanneschi, F. Archetti, and D.

Maccagnola. “An efficient implementation of geometric semantic genetic pro-

gramming for anticoagulation level prediction in pharmacogenetics.” In: Por-
tuguese Conference on Artificial Intelligence. Springer. 2013, pp. 78–89.

[14] M. Castelli, L. Manzoni, I. Goncalves, L. Vanneschi, L. Trujillo, and S. Silva.

“An Analysis of Geometric Semantic Crossover: A Computational Geometry

Approach.” In: IJCCI (ECTA). 2016, pp. 201–208.

[15] M. Castelli, L. Vanneschi, and A. Popovic. “Parameter evaluation of geometric

semantic genetic programming in pharmacokinetics.” In: International Journal
of Bio-Inspired Computation 8.1 (2016), pp. 42–50.

[16] M. Castelli, L. Vanneschi, L. Manzoni, and A. Popovic. “Semantic genetic pro-

gramming for fast and accurate data knowledge discovery.” In: Swarm and Evo-
lutionary Computation 26 (2016), pp. 1 –7.

[17] C. Darwin. On the origins of species by means of natural selection. London: Murray,

1859.

[18] T. G. Dietterich. “An Experimental Comparison of Three Methods for Construct-

ing Ensembles of Decision Trees: Bagging, Boosting, and Randomization.” In:

Bagging, boosting, and randomization. Machine Learning. 1998, pp. 139–157.

[19] R. Eberhart and J. Kennedy. “A new optimizer using particle swarm theory.” In:

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and
Human Science. 1995, pp. 39–43. doi: 10.1109/MHS.1995.494215.

[20] O. Flasch, M. Friese, M. Zaefferer, T. Bartz-Beielstein, and J. Branke. “Learning

Model-Ensemble Policies with Genetic Programming.” In: (Jan. 2015).

50

http://dx.doi.org/10.1109/CEC.2008.4630784
http://dx.doi.org/10.1109/CEC.2008.4630784
http://dx.doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
https://doi.org/10.1023/A:1018054314350
http://dx.doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1109/CEC.2010.5586516
http://dx.doi.org/10.1109/MHS.1995.494215

BIBLIOGRAPHY

[21] Y. Freund and R. E. Schapire. “Experiments with a New Boosting Algorithm.” In:

IN PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE
ON MACHINE LEARNING. Morgan Kaufmann, 1996, pp. 148–156.

[22] Genetic Programming and Evolvable Machines (8): Genetic programming for com-
putational pharmacokinetics in drug discovery and development. http://kdbio.

inesc-id.pt/~sara/gptp2013/ppb.txt. Accessed: 05.09.2019. 2007.

[23] I. Goncalves, S. Silva, C. M. Fonseca, and M. Castelli. “Unsure when to Stop?:

Ask Your Semantic Neighbors.” In: Proceedings of the Genetic and Evolutionary
Computation Conference. GECCO ’17. Berlin, Germany: ACM, 2017, pp. 929–

936. isbn: 978-1-4503-4920-8. doi: 10.1145/3071178.3071328. url: http:

//doi.acm.org/10.1145/3071178.3071328.

[24] I. Gonçalves, S. Silva, and C. Fonseca. “Semantic Learning Machine: A Feedfor-

ward Neural Network Construction Algorithm Inspired by Geometric Semantic

Genetic Programming.” In: Sept. 2015, pp. 280–285. isbn: 978-3-319-23484-7.

doi: 10.1007/978-3-319-23485-4_28.

[25] S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall PTR, 1994.

[26] U. Johansson, T. Löfström, R. König, and L Niklasson. “Building Neural Network

Ensembles using Genetic Programming.” In: Jan. 2006, pp. 1260 –1265. doi:

10.1109/IJCNN.2006.246836.

[27] C. Johnson. “Deriving Genetic Programming Fitness Properties by Static Analy-

sis.” In: vol. 2278. Apr. 2002, pp. 298–307. doi: 10.1007/3-540-45984-7_29.

[28] C. Johnson. “Genetic Programming with Fitness Based on Model Checking.” In:

vol. 4445. Apr. 2007, pp. 114–124. doi: 10.1007/978-3-540-71605-1_11.

[29] P. Kordík and J. Cerny. “Building predictive models in two stages with meta-

learning templates optimized by genetic programming.” In: Dec. 2014. doi:

10.1109/CIEL.2014.7015740.

[30] J. R. Koza. Genetic Programming: A Paradigm for Genetically Breeding Populations
of Computer Programs to Solve Problems. Tech. rep. Stanford, CA, USA, 1990.

[31] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
Cambridge, MA, USA: MIT Press, 1994. isbn: 0-262-11189-6.

[32] J. R. Koza. Genetic Programming IV: Routine Human-Competitive Machine Intelli-
gence. Norwell, MA, USA: Kluwer Academic Publishers, 2003. isbn: 1402074468.

[33] J. R. Koza, D. Andre, F. H. Bennett, and M. A. Keane. Genetic Programming III:
Darwinian Invention & Problem Solving. 1st. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1999. isbn: 1558605436.

[34] J. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

51

 http://kdbio.inesc-id.pt/~sara/gptp2013/ppb.txt
 http://kdbio.inesc-id.pt/~sara/gptp2013/ppb.txt
http://dx.doi.org/10.1145/3071178.3071328
http://doi.acm.org/10.1145/3071178.3071328
http://doi.acm.org/10.1145/3071178.3071328
http://dx.doi.org/10.1007/978-3-319-23485-4_28
http://dx.doi.org/10.1109/IJCNN.2006.246836
http://dx.doi.org/10.1007/3-540-45984-7_29
http://dx.doi.org/10.1007/978-3-540-71605-1_11
http://dx.doi.org/10.1109/CIEL.2014.7015740

BIBLIOGRAPHY

[35] K. Krawiec and B. Wieloch. “Analysis of Semantic Modularity for Genetic Pro-

gramming.” In: Foundations of Computing and Decision Sciences 34 (Jan. 2009),

pp. 265–285.

[36] W. La Cava, L. Spector, and K. Danai. “Epsilon-Lexicase Selection for Regres-

sion.” In: July 2016, pp. 741–748. doi: 10.1145/2908812.2908898.

[37] Least Angle Regression, Lasso and Forward Stagewise in R: Diabetes dataset. https:
//www4.stat.ncsu.edu/~boos/var.select/diabetes.html. Accessed:

05.09.2019. 2013.

[38] A. Moraglio, K. Krawiec, and C. G. Johnson. “Geometric semantic genetic pro-

gramming.” In: International Conference on Parallel Problem Solving from Nature.

Springer. 2012, pp. 21–31.

[39] Q. U. Nguyen, N. Hoai, M. O’Neill, R. McKay, and E. Galván-López. “Semantically-

based crossover in genetic programming: Application to real-valued symbolic

regression.” In: Genetic Programming and Evolvable Machines 12 (June 2011),

pp. 91–119. doi: 10.1007/s10710-010-9121-2.

[40] T. P. Pawlak and K. Krawiec. “Semantic Geometric Initialization.” In: Genetic
Programming. Ed. by M. I. Heywood, J. McDermott, M. Castelli, E. Costa, and

K. Sim. Cham: Springer International Publishing, 2016, pp. 261–277. isbn:

978-3-319-30668-1.

[41] T. P. Pawlak, B. Wieloch, and K. Krawiec. “Review and comparative analysis of

geometric semantic crossovers.” In: Genetic Programming and Evolvable Machines
16 (2015), pp. 351–386.

[42] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Programming.

Lulu Enterprises, UK Ltd, 2008. isbn: 1409200736, 9781409200734.

[43] R. Polikar. “Polikar, R.: Ensemble based systems in decision making. IEEE

Circuit Syst. Mag. 6, 21-45.” In: Circuits and Systems Magazine, IEEE 6 (Oct.

2006), pp. 21 –45. doi: 10.1109/MCAS.2006.1688199.

[44] A. Re. “Universal Genetic Programming: a Meta Learning Approach based

on Semantics.” Doctoral dissertation. NOVA Information Management School,

Universidade Nova de Lisboa, 2018.

[45] L. Rokach. “Ensemble-Based Classifiers.” In: Artif. Intell. Rev. 33 (Feb. 2010),

pp. 1–39. doi: 10.1007/s10462-009-9124-7.

[46] S. Samarasinghe. Neural networks for applied sciences and engineering: from fun-
damentals to complex pattern recognition. Auerbach publications, 2016.

52

http://dx.doi.org/10.1145/2908812.2908898
 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
 https://www4.stat.ncsu.edu/~boos/var.select/diabetes.html
http://dx.doi.org/10.1007/s10710-010-9121-2
http://dx.doi.org/10.1109/MCAS.2006.1688199
http://dx.doi.org/10.1007/s10462-009-9124-7

BIBLIOGRAPHY

[47] L. Spector. “Assessment of Problem Modality by Differential Performance of Lex-

icase Selection in Genetic Programming: A Preliminary Report.” In: Proceedings
of the 14th Annual Conference Companion on Genetic and Evolutionary Compu-
tation. GECCO ’12. Philadelphia, Pennsylvania, USA: ACM, 2012, pp. 401–

408. isbn: 978-1-4503-1178-6. doi: 10.1145/2330784.2330846. url: http:

//doi.acm.org/10.1145/2330784.2330846.

[48] StatLib Datasets Archive: Boston house prices dataset. http://lib.stat.cmu.

edu/datasets/boston. Accessed: 05.09.2019. 1980.

[49] A. Tsanas, M. A. Little, P. E. McSharry, and L. O. Ramig. “Accurate Telemonitor-

ing of Parkinson’s Disease Progression by Noninvasive Speech Tests.” In: IEEE
Transactions on Biomedical Engineering 57.4 (2010), pp. 884–893. issn: 1558-

2531. doi: 10.1109/TBME.2009.2036000.

[50] L. Vanneschi. “An Introduction to Geometric Semantic Genetic Programming.”

In: 663 (Aug. 2017), pp. 3–42. doi: 10.1007/978-3-319-44003-3_1.

[51] L. Vanneschi, M. Castelli, L. Manzoni, and S. Silva. “A new implementation of

geometric semantic GP and its application to problems in pharmacokinetics.”

In: European Conference on Genetic Programming. Springer. 2013, pp. 205–216.

[52] L. Vanneschi, M. Castelli, and S. Silva. “A survey of semantic methods in genetic

programming.” In: Genetic Programming and Evolvable Machines 15.2 (2014),

pp. 195–214.

[53] L. Vanneschi, S. Silva, M. Castelli, and L. Manzoni. “Geometric semantic genetic

programming for real life applications.” In: Genetic programming theory and
practice xi. Springer, 2014, pp. 191–209.

[54] L. Vanneschi, I. Bakurov, and M. Castelli. “An initialization technique for geo-

metric semantic GP based on demes evolution and despeciation.” In: Evolution-
ary Computation (CEC), 2017 IEEE Congress on. IEEE. 2017, pp. 113–120.

[55] D. H. Wolpert. “Stacked Generalization.” In: Neural Networks 5 (1992), pp. 241–

259.

[56] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. Vol. 14. Jan. 2012.

isbn: 9781439830031. doi: 10.1201/b12207.

53

http://dx.doi.org/10.1145/2330784.2330846
http://doi.acm.org/10.1145/2330784.2330846
http://doi.acm.org/10.1145/2330784.2330846
 http://lib.stat.cmu.edu/datasets/boston
 http://lib.stat.cmu.edu/datasets/boston
http://dx.doi.org/10.1109/TBME.2009.2036000
http://dx.doi.org/10.1007/978-3-319-44003-3_1
http://dx.doi.org/10.1201/b12207

A
p
p
e
n
d
i
x

A
Appendix - Ensemble Workflow

55

APPENDIX A. APPENDIX - ENSEMBLE WORKFLOW

Problem
Data Generation

Problem
Data

Problem Data
Split

Problem
Train Data - 70%

Problem
Test Data - 30%

Base Learners
K-Fold Data Generation

Base Learners
Data

Base Learners
Data Split

Base Learners
Train Data - 90%

Base Learners
Validation Data - 10%

Population Initialization
(RHH / EDDA)

Population

Parent Selection
(Tournament / Epsilon Lexicase)

Genetic Operators Variation
(S-SGP / S-GSGP)

(Crossover / Mutation)

Offsprings
Population

Fitness Evaluation

Offsprings
Elite

Elitism

New population

for n generations

Elite

Stopping Criteria

Model Model
Computation

Prediction
Result

Ensemble Training Ensemble Prediction

Base Learners
Data Generation

Base Learners
Data

Figure A.1: Ensemble Workflow
56

A
p
p
e
n
d
i
x

B
Appendix - Performance by dataset

57

APPENDIX B. APPENDIX - PERFORMANCE BY DATASET

Problem Algo Initialization Selection Tuned BLs P(Cr) Stopping Crierion RMSE

Branin S-GSGP RHH ε-LS TRUE 0.0 TIE 11.985212
S-GSGP RHH ε-LS TRUE 0.0 №generations 12.111562
S-GSGP RHH TS FALSE 0.8 TIE 12.240556
S-GSGP RHH ε-LS TRUE 0.0 EDV 12.311387
S-GSGP RHH TS FALSE 0.8 EDV 12.381343

Discus S-GSGP EDDA ε-LS TRUE 0.0 EDV 0.275822
S-GSGP EDDA TS TRUE 1.0 Validation 0.275966
S-GSGP EDDA TS FALSE 0.0 EDV 0.277260
S-GSGP EDDA ε-LS FALSE 0.0 EDV 0.277397
S-GSGP EDDA TS TRUE 1.0 TIE 0.277571

Griewank S-GSGP RHH ε-LS FALSE 0.0 TIE 0.512961
S-SGP RHH ε-LS FALSE 1.0 №generations 0.513833
S-SGP RHH ε-LS FALSE 1.0 Validation 0.513895

S-GSGP EDDA TS FALSE 0.0 EDV 0.514111
S-SGP EDDA TS FALSE 1.0 TIE 0.514439

Kotanchek S-GSGP EDDA TS FALSE 0.8 TIE 0.028731
S-GSGP EDDA TS TRUE 1.0 №generations 0.028976
S-GSGP EDDA ε-LS FALSE 1.0 №generations 0.029052
S-GSGP EDDA TS FALSE 1.0 TIE 0.029296
S-GSGP EDDA TS FALSE 1.0 №generations 0.029296

Mexicanhat S-SGP EDDA TS TRUE 1.0 №generations 0.000636
S-SGP EDDA TS TRUE 0.8 №generations 0.000640
S-SGP EDDA TS TRUE 0.8 Validation 0.000643
S-SGP EDDA ε-LS TRUE 0.2 №generations 0.000648
S-SGP EDDA TS TRUE 0.2 №generations 0.000649

Rastrigin S-SGP EDDA ε-LS TRUE 0.0 TIE 8.860859
S-SGP EDDA ε-LS TRUE 0.0 EDV 8.891697

S-GSGP EDDA ε-LS TRUE 0.0 №generations 8.906953
S-SGP EDDA ε-LS TRUE 0.2 EDV 8.907992

S-GSGP EDDA ε-LS TRUE 0.0 TIE 8.913248

Weierstrass S-GSGP EDDA ε-LS FALSE 1.0 TIE 0.428237
S-GSGP EDDA ε-LS FALSE 1.0 Validation 0.428718
S-GSGP EDDA ε-LS TRUE 0.0 TIE 0.429958
S-GSGP EDDA ε-LS TRUE 0.0 EDV 0.429958
S-GSGP EDDA ε-LS FALSE 1.0 №generations 0.431224

Table B.1: Avg RMSE - Top 5 - Synthetic datasets

58

Problem Algo Initialization Selection Tuned BLs P(Cr) Stopping Criteria RMSE

Diabetes S-SGP edda ε-LS TRUE 1.0 TIE 56.456302
S-GSGP edda TS TRUE 0.0 EDV 56.456779
S-GSGP edda TS TRUE 0.0 Validation 56.630922
S-GSGP edda TS TRUE 1.0 Validation 56.699151
S-GSGP edda TS TRUE 0.0 TIE 56.713499

Ppb S-GSGP edda ε-LS FALSE 0.0 Validation 40.141465
S-GSGP edda ε-LS FALSE 0.0 EDV 40.149956
S-GSGP edda ε-LS FALSE 0.0 TIE 40.286283
S-GSGP edda ε-LS FALSE 0.0 №generations 40.318188
S-SGP edda TS TRUE 0.0 EDV 43.314997

Boston S-GSGP edda ε-LS TRUE 0.8 EDV 3.263451
S-GSGP edda ε-LS TRUE 0.8 Validation 3.263568
S-GSGP edda ε-LS TRUE 0.8 №generations 3.266919
S-GSGP edda TS TRUE 1.0 TIE 3.270275
S-GSGP edda TS TRUE 1.0 Validation 3.283117

Parkinson S-GSGP edda TS TRUE 1.0 Validation 18687.751581
S-GSGP edda TS TRUE 1.0 №generations 18711.120370
S-GSGP edda TS TRUE 1.0 TIE 18711.120370
S-GSGP edda TS TRUE 0.8 №generations 18724.871696
S-GSGP edda TS TRUE 0.8 TIE 18724.871696

Table B.2: Avg RMSE - Top 5 - Real-world datasets

Problem TIE Validation EDV №generations RF SVM MLP LR
Boston 3.270275 3.283117 3.298656 3.289512 3.525224 5.710099 4.287523 4.952785
Branin 12.852443 12.795747 12.964059 12.852443 16.205687 44.906725 48.227606 48.408719
Diabetes 57.156454 56.699151 57.121728 57.156454 63.707485 55.312513 60.313119 88.118727
Discus 0.277571 0.275966 0.286831 0.311625 1.450E+13 3.425E+14 4.862E+14 4.895E+14
Griewank 0.516116 0.516346 0.518276 0.517555 11.092327 17.255833 71.999513 38.512383
Kotanchek 0.030122 0.029670 0.029589 0.028976 0.042039 0.076905 0.144288 0.157398
Mexican Hat 0.000851 0.000858 0.000867 0.000860 0.002480 0.000964 0.195627 0.009385
Parkinson 1.871E+04 1.869E+04 1.882E+04 1.871E+04 1.854E+04 1.873E+04 2.176E+04 1.033E+05
Ppb 578.871932 1938.769171 288.064776 578.871936 28.908556 76.618709 136.099117 3.682E+05
Rastrigin 9.061723 9.103786 9.061723 9.061723 8.940424 10.877383 20.944968 14.734824
Weierstrass 0.440366 0.451444 0.449200 0.449200 0.481757 0.592406 0.574611 1.162233

Table B.3: Avg RMSE - Best performing ensemble system for all problems and BLs:
[Tuned BLs, S-GSGP, EDDA, TS, P(C) 100%]

59

A
p
p
e
n
d
i
x

C
Appendix - Boxplots and Learning curves

Figure C.1: Branin - BLs not tuned - Boxplots and Learning curves

61

APPENDIX C. APPENDIX - BOXPLOTS AND LEARNING CURVES

Figure C.2: Parkinson - BLs not tuned - Boxplots and Learning curves

Figure C.3: Weierstrass - BLs not tuned - Boxplots and Learning curves

62

Figure C.4: Boston - BLs tuned - Boxplots and Learning curves

Figure C.5: Ppb - BLs tuned - Boxplots and Learning curves

63

APPENDIX C. APPENDIX - BOXPLOTS AND LEARNING CURVES

Figure C.6: Parkinson - BLs tuned - Boxplots and Learning curves

64

A
p
p
e
n
d
i
x

D
Appendix - Tuned Base Learners

Hyper-parameters

Problems bootstrap max_depth max_features n_estimators
Ackley TRUE 100 sqrt 10
Branin TRUE None auto 50
Discus TRUE 100 auto 100
Griewank FALSE 100 sqrt 100
Kotanchek TRUE 10 auto 100
Mexicanhat FALSE 100 sqrt 100
Rastrigin TRUE 50 sqrt 100
Rosenbrock TRUE 10 auto 100
Sphere FALSE 100 sqrt 100
Weierstrass FALSE 50 sqrt 50
Boston random 412 auto 193
Diabetes random 918 sqrt 581
Ppb best 826 log2 471
Energy best 990 log2 256
Parkinson random 348 sqrt 124
Ld50 random 827 sqrt 437

Table D.1: Random Forest Regression - Tuned Hyper-parameters by problem

65

APPENDIX D. APPENDIX - TUNED BASE LEARNERS HYPER-PARAMETERS

Problems degree epsilon kernel
Ackley 2 0.01 rbf
Branin 2 0.1 rbf
Discus 4 0.001 poly

Griewank 2 0.1 poly
Kotanchek 2 0.01 rbf
Mexicanhat 2 0.001 rbf

Rastrigin 2 0.1 poly
Rosenbrock 4 0.1 poly

Sphere 2 0.01 rbf
Weierstrass 2 0.01 rbf

Boston 2 0.01 rbf

Table D.2: Support Vector Regressor - Synthetic Problems - Tuned Hyper-parameters
by problem

Problems epsilon C loss dual fit_intercept max_iter
Diabetes 0.09949 0.204525 squared_epsilon_insensitive TRUE TRUE 655
Ppb 0.089958 1.901082 epsilon_insensitive TRUE FALSE 243
Energy 0.007113 0.70489 squared_epsilon_insensitive TRUE TRUE 439
Parkinson 0.053021 1.912587 squared_epsilon_insensitive TRUE TRUE 688
Ld50 0.075916 0.962089 squared_epsilon_insensitive TRUE TRUE 911

Table D.3: Linear Support Vector Regressor - Real-world Problems - Tuned Hyper-
parameters by problem

Problems alpha hidden_layer_sizes learning_rate_init
Ackley 0.01 8 0.001
Branin 0.1 6 0.01
Discus 0.001 6 0.1
Griewank 0.0001 4 0.001
Kotanchek 0.01 10 0.01
Mexicanhat 0.0001 9 0.001
Rastrigin 0.01 9 0.001
Rosenbrock 0.0001 10 0.01
Sphere 0.001 10 0.001
Weierstrass 0.0001 8 0.1
Boston 0.067743 21 0.005255
Diabetes 0.01 42 0.01
Ppb 0.01 31 1.00E-05
Energy 0.0001 53 0.01
Parkinson 0.1 15 0.1
Ld50 0.0001 93 0.01

Table D.4: Multi-layer Perceptron Regressor - Tuned Hyper-parameters by problem

66

Problems degree normalize fit_intercept
Ackley 2 TRUE FALSE
Branin 4 FALSE TRUE
Discus 2 TRUE FALSE
Griewank 2 FALSE TRUE
Kotanchek 4 TRUE FALSE
Mexicanhat 4 FALSE TRUE
Rastrigin 2 FALSE TRUE
Rosenbrock 4 FALSE TRUE
Sphere 2 FALSE TRUE
Weierstrass 2 TRUE TRUE
Boston 2 FALSE TRUE
Diabetes 2 TRUE TRUE
Ppb 2 FALSE TRUE
Energy 2 TRUE TRUE
Parkinson 3 FALSE TRUE
Ld50 3 TRUE TRUE

Table D.5: Linear Regression - Tuned Hyper-parameters by problem

67

A
n
n
e
x

I
Annex S-GSGP and Base Learners Graphs

Figure I.1: Branin - S-GSGP and Base Learners 3D Graphs

69

ANNEX I. ANNEX S-GSGP AND BASE LEARNERS GRAPHS

Figure I.2: Discus - S-GSGP and Base Learners 3D Graphs

Figure I.3: Griewank - S-GSGP and Base Learners 3D Graphs

70

Figure I.4: Kotanchek - S-GSGP and Base Learners 3D Graphs

Figure I.5: Mexican Hat - S-GSGP and Base Learners 3D Graphs

71

ANNEX I. ANNEX S-GSGP AND BASE LEARNERS GRAPHS

Figure I.6: Rastrigin - S-GSGP and Base Learners 3D Graphs

Figure I.7: Weierstrass - S-GSGP and Base Learners 3D Graphs

72

A
n
n
e
x

II
Annex - Best ensemble solution’s string

In this annex, few lines of each synthetic problem solution obtained with the best

performing ensemble.

II.1 Branin - Solution’s string

add(mul(lf(sub(mul(add(mlp, mlp), deci[-0.34](svm, -0.433, -0.480)), mul(rf, -0.230))),

add(add(add(add(mul(lf(min(avg(deci[-0.34](sub(0.209, lr), avg(rf, -0.543), mul(rf,

svm)), add(add(mlp, -0.599), mul(-0.683, -0.834))), sub(sub(mul(-0.820, -0.169), deci[-

0.34](lr, rf, 0.549)), min(sub(rf, -0.619), avg(svm, lr))))), avg(avg(min(deci[-0.34](rf,

rf, rf), deci[-0.34](-0.890, mlp, 0.804)), min(avg(-0.624, svm), avg(lr, svm))), deci[-

0.34](avg(mul(-0.364, rf), deci[-0.34](-0.443, rf, mlp)), deci[-0.34](deci[-0.34](mlp, lr,

svm), sub(-0.605, mlp), add(lr, svm)), deci[-0.34](min(svm, svm), min(-0.346, 0.807),

avg(rf, lr))))), mul(sub(1.000, lf(min(avg(deci[-0.34](sub(0.209, lr), avg(rf, -0.543),

mul(rf, svm)), add(add(mlp, -0.599), mul(-0.683, -0.834))), sub(sub(mul(-0.820, -0.169),

deci[-0.34](lr, rf, 0.549)), min(sub(rf, -0.619), avg(svm, lr)))))), sub(avg(lr, lr), min(svm,

0.307)))), ...

II.2 Discus - Solution’s string

add(mul(lf(deci[0.6](mul(mul(rf, deci[-0.14](-0.857, svm, -0.311)), min(svm, avg(svm,

lr))), mul(min(deci[-0.14](0.180, lr, rf), min(rf, svm)), sub(mlp, sub(mlp, mlp))), sub(-

0.577, min(min(lr, rf), -0.600)))), sub(lr, 0.121)), mul(sub(1.000, lf(deci[0.6](mul(mul(rf,

deci[-0.14](-0.857, svm, -0.311)), min(svm, avg(svm, lr))), mul(min(deci[-0.14](0.180,

lr, rf), min(rf, svm)), sub(mlp, sub(mlp, mlp))), sub(-0.577, min(min(lr, rf), -0.600))))),

73

ANNEX II. ANNEX - BEST ENSEMBLE SOLUTION’S STRING

add(deci[-0.14](sub(0.534, -0.567), add(mlp, 0.695), sub(lr, -0.396)), min(mlp, -0.423))))

II.3 Griewank - Solution’s string

add(mul(lf(sub(avg(svm, lr), add(-0.736, svm))), add(add(add(mul(lf(deci[0.68](deci[-

0.42](sub(-0.702, lr), avg(-0.204, 0.646), deci[-0.42](0.461, mlp, -0.757)), mul(mul(lr,

-0.760), min(rf, -0.820)), deci[-0.42](lr, avg(svm, rf), deci[-0.42](rf, -0.074, svm)))),

sub(deci[-0.42](min(rf, svm), lr, lr), mul(min(mlp, 0.733), sub(svm, svm)))), mul(sub(1.000,

lf(deci[0.68](deci[-0.42](sub(-0.702, lr), avg(-0.204, 0.646), deci[-0.42](0.461, mlp, -

0.757)), mul(mul(lr, -0.760), min(rf, -0.820)), deci[-0.42](lr, avg(svm, rf), deci[-0.42](rf,

-0.074, svm))))), deci[0.75](deci[-0.42](avg(mlp, lr), min(mlp, lr), deci[-0.42](mlp, svm,

rf)), sub(deci[-0.42](rf, lr, rf), avg(0.614, -0.756)), deci[-0.42](min(svm, -0.618), min(mlp,

lr), add(lr, 0.805))))), mul(0.181, sub(lf(avg(sub(svm, 0.314), min(rf, mlp))), lf(mul(rf,

avg(mul(mlp, svm), -0.792)))))), mul(0.924, sub(lf(avg(mul(svm, add(svm, svm)), avg(add(lr,

lr), mlp))), ...

II.4 Kotanchek - Solution’s string

add(mul(lf(sub(deci[-0.53](avg(avg(rf, lr), 0.175), mlp, mlp), add(mul(min(-0.692,

0.356), deci[-0.53](svm, -0.760, lr)), min(deci[-0.53](0.963, mlp, 0.055), avg(-0.597,

svm))))), add(mul(lf(deci[0.07](mul(sub(mlp, 0.186), rf), add(svm, avg(0.231, lr)), -

0.063)), add(add(mul(lf(mul(avg(min(svm, sub(-0.259, -0.662)), add(sub(0.936, lr),

mul(0.074, lr))), sub(mlp, avg(rf, 0.659)))), mul(rf, add(svm, 0.785))), mul(sub(1.000,

lf(mul(avg(min(svm, sub(-0.259, -0.662)), add(sub(0.936, lr), mul(0.074, lr))), sub(mlp,

avg(rf, 0.659))))), mul(rf, add(svm, 0.785)))), mul(0.647, sub(lf(mul(sub(svm, -0.534),

deci[-0.22](svm, svm, 0.671))), lf(deci[-0.69](deci[-0.22](min(lr, 0.983), lr, lr), rf, min(sub(-

0.178, -0.362), svm))))))), mul(sub(1.000, lf(deci[0.07](mul(sub(mlp, 0.186), rf), add(svm,

avg(0.231, lr)), -0.063))), add(mul(lf(add(deci[-0.22](deci[-0.22](0.901, -0.300, mlp),

lr, add(svm, rf)), rf)), add(add(mul(lf(sub(mul(add(-0.948, mlp), deci[-0.22](-0.600, rf,

rf)), avg(add(0.956, mlp), ...

II.5 Mexican Hat - Solution’s string

add(mul(lf(deci[0.18](deci[-0.26](deci[-0.26](deci[-0.26](lr, -0.554, mlp), min(-0.543,

0.836), deci[-0.26](-0.609, rf, 0.140)), min(deci[-0.26](-0.946, 0.268, rf), deci[-0.26](mlp,

mlp, 0.139)), 0.612), mlp, add(mlp, rf))), add(mul(lf(avg(svm, sub(avg(rf, 0.445),

avg(lr, rf)))), add(mul(lf(add(svm, svm)), add(mul(lf(deci[0.5](avg(avg(avg(-0.315, 0.568),

deci[-0.49](-0.675, mlp, svm)), sub(lr, -0.105)), rf, sub(deci[-0.49](lr, avg(0.570, mlp),

min(rf, lr)), deci[-0.49](svm, 0.867, add(0.769, lr))))), add(mul(lf(deci[0.39](mul(0.705,

-0.028), add(mlp, svm), min(0.482, svm))), add(mul(lf(deci[-0.32](min(mul(-0.481, lr),

mul(-0.977, lr)), sub(add(svm, rf), mul(mlp, rf)), avg(min(svm, lr), mul(svm, mlp)))),

74

II .6. RASTRIGIN - SOLUTION’S STRING

add(svm, mul(mul(lr, sub(svm, 0.626)), 0.715))), mul(sub(1.000, lf(deci[-0.32](min(mul(-

0.481, lr), mul(-0.977, lr)), sub(add(svm, rf), mul(mlp, rf)), avg(min(svm, lr), mul(svm,

mlp))))), add(avg(lr, svm), svm)))), mul(sub(1.000, lf(deci[0.39](mul(0.705, -0.028),

add(mlp, svm), min(0.482, svm)))), ...

II.6 Rastrigin - Solution’s string

add(mul(lf(sub(min(sub(mul(0.706, rf), add(mlp, 0.198)), mlp), avg(0.649, sub(sub(svm,

mlp), mul(lr, mlp))))), add(mul(lf(add(avg(mul(lr, mlp), sub(svm, svm)), min(avg(lr,

mlp), mul(-0.880, lr)))), add(mul(lf(mul(svm, min(svm, rf))), add(mul(lf(deci[-0.59](avg(mlp,

min(lr, deci[0.38](rf, lr, rf))), mul(deci[0.38](deci[0.38](mlp, mlp, lr), 0.900, min(rf,

lr)), mul(mul(0.419, rf), deci[0.38](rf, 0.614, 0.308))), sub(mul(deci[0.38](rf, lr, 0.901),

min(mlp, rf)), add(add(mlp, lr), min(mlp, lr))))), add(mul(lf(add(deci[0.38](add(deci[0.38](0.466,

-0.545, mlp), add(lr, 0.785)), mul(mul(svm, 0.471), min(svm, svm)), -0.032), 0.705)),

sub(add(deci[0.38](svm, 0.308, -0.111), rf), mlp)), mul(sub(1.000, lf(add(deci[0.38](add(deci[0.38](0.466,

-0.545, mlp), add(lr, 0.785)), mul(mul(svm, 0.471), min(svm, svm)), -0.032), 0.705))),

avg(sub(rf, 0.021), deci[0.38](-0.843, mlp, lr))))), mul(sub(1.000, lf(deci[-0.59](avg(mlp,

min(lr, deci[0.38](rf, lr, rf))), ...

II.7 Weierstrass - Solution’s string

add(mul(lf(min(add(mul(rf, -0.632), avg(mlp, lr)), add(add(svm, 0.658), min(lr, lr)))),

avg(rf, deci[0.25](svm, rf, lr))), mul(sub(1.000, lf(min(add(mul(rf, -0.632), avg(mlp,

lr)), add(add(svm, 0.658), min(lr, lr))))), add(mul(lf(sub(add(mlp, svm), min(mlp,

deci[0.25](0.854, lr, svm)))), add(mul(lf(add(mul(mlp, deci[0.25](mlp, avg(mlp, -0.294),

mul(0.253, -0.650))), min(min(deci[0.25](0.953, lr, svm), mul(-0.653, mlp)), add(add(mlp,

lr), deci[0.25](mlp, rf, svm))))), add(add(mul(lf(mul(add(mlp, min(deci[0.25](rf, -0.295,

rf), sub(mlp, svm))), min(sub(deci[0.25](0.832, lr, lr), deci[0.25](svm, rf, svm)), deci[0.25](deci[0.25](-

0.153, 0.125, mlp), sub(svm, -0.967), -0.237)))), sub(sub(min(rf, mlp), min(0.954,

mlp)), min(avg(-0.067, svm), sub(-0.850, 0.004)))), mul(sub(1.000, lf(mul(add(mlp,

min(deci[0.25](rf, -0.295, rf), sub(mlp, svm))), min(sub(deci[0.25](0.832, lr, lr), deci[0.25](svm,

rf, svm)), ...

75

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Theory
	Machine Learning
	Ensemble Learning
	Stacked Generalization

	Regression Estimators
	Multiple Linear Regression
	Random Forest Regression
	Support Vector Machine Regression
	Multilayer Perceptron Regression

	Evolutionary Algorithm
	Genetic Programming
	Geometric Semantic Genetic Programming
	Initialization
	Parent Selection
	Fitness Evaluation
	Elitism
	Semantic Stopping Criterion
	Genetic Programming as a Meta-Learning Technique

	Methodology
	Proposed approach
	Objectives
	Ensemble hyper-parameters
	Experimental Problems
	Problem dataset - Train and Test split
	Base Learners hyper-parameters tuning
	Base Learners dataset - K-Fold data generation
	Base Learners dataset - Train and Validation split
	Function set and Terminal set
	Decision

	Fitness Evaluation
	Memoization

	Parent Selection
	Tournament
	Epsilon Lexicase

	Stopping Criteria

	Results
	Performance Analysis
	Statistical Assessment
	Comparison of system's hyper-parameters - Global
	Comparison of system's hyper-parameters - By algorithm and BLs tuning
	Best S-GSGP vs Best S-SGP - By problem type and base learners hyper-parameters
	Comparison of the best performing system vs BLs

	Discussion
	Summary
	Interpretation
	Implications
	Limitations
	Recommendations

	Conclusion
	Bibliography
	Appendix - Ensemble Workflow
	Appendix - Performance by dataset
	Appendix - Boxplots and Learning curves
	Appendix - Tuned Base Learners Hyper-parameters
	Annex S-GSGP and Base Learners Graphs
	Annex - Best ensemble solution's string
	Branin - Solution's string
	Discus - Solution's string
	Griewank - Solution's string
	Kotanchek - Solution's string
	Mexican Hat - Solution's string
	Rastrigin - Solution's string
	Weierstrass - Solution's string

