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Abstract

With the ever-greater creation of data, new ways to extract information from it in faster
ways is a subject of great interest to the scientific community in general and any entity
that may benefit with the interpretation of data. Virtual reality, although not a recent
discovery only now is becoming broadly available and driving new state of the art designs
and implementations. Nonetheless, already existing results, provide positive feedback of
virtual reality on some cases of data visualization.

One of the scientific areas that may benefit from virtual reality technology visualization
is the scientific field of material sciences. A current project of FCT is the Tomo-GPU system
that was developed to aid the material scientists in processing and visualizing their data.
This work focuses on the integration of a virtual reality visualization on the Tomo-GPU
system to aid material scientist in interpreting their data more efficiently.

Keywords: Virtual reality, data visualization, 3D visualization, Tomo-GPU.
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Resumo

Com a geração de dados aumentando constantemente, novas maneiras de extrair
informação de forma rápida e eficaz é do interesse tanto para a comunidade científica
como para qualquer entidade que beneficie de interpretação de dados. As interfaces de
realidade virtual, apesar de não ser uma descoberta recente, só agora é que estas estão a
ficar facilmente disponíveis ao público e assim fomentando novos estudos sobre a mesma.
No entanto, estudos já efetuados, comprovam a utilidade da nova interface em alguns
casos de visualização de dados.

Uma das áreas científicas que poderão beneficiar com realidade virtual é a área
de ciências dos materiais. Atualmente, existe um sistema, chamado Tomo-GPU, com o
objetivo de processar e visualizar os dados destes especialistas. Este trabalho foca-se no
desenvolvimento e integração de visualização de dados com realidade virtual no sistema
Tomo-GPU para que seja possível interpretar os seus dados de maneira mais eficiente.

Palavras-chave: Realidade Virtual, visualização interativa de dados, visualização 3D,
Tomo-GPU
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1
Introduction

1.1 Context and Motivation

The Tomo-GPU project was funded by FCT/MCTES (PTDC/EIA-EIA/102579/2008 - Am-
biente de Resolução de Problemas para Caracterização Estrutural de Materiais por To-
mografia) to assist Material Science Engineers specialists in the development of new
composite materials, and it’s fabrication methods[14].

A composite material is formed from at least two different materials. One used as
a base/continuous material, while the others are, often, discrete/clustered and used as
reinforcements. The properties manifested by the composite depends not only on the base
materials applied but also, on the relative amounts, formations, distribution, orientation
and many other chemical and physical conditions[2]. The new characteristics obtained
can prove useful in some functionality and then applied in the most varied of industry
fields from the creation of surgical tools to the construction of buildings.

Thus to aid material engineers, a system with the following characteristics was built[2]:

• Sophisticated 3D data visualization.

• Allow computational steering by material experts that usually is not a computer
expert.

• Easy integration of new features, where those can be already existing programs or
special purpose functionalities.

These requirements are currently achieved by using a problem solving environment
tool(PSE) called SCIRun. SCIRun is a graphical tool that consists of a menu that lists all
the available modules that can have input and/or output ports. Besides, it allows the
user to assemble those modules by connecting its ports. This ease of use allows for the

1



CHAPTER 1. INTRODUCTION

non-computer expert to apply powerful functionalities on its data either for processing
or for visualization. The Tomo-GPU system consists of several modules based on SCIRun
framework, that satisfies material engineers tasks.

Although VR isn’t a brand new technology, only recently became broadly available
and consequently stimulating research and development with such technology. However,
some research has already been done, and current literature[4] exposes a vast potential in
VR with data that possess an intrinsic three-dimensional aspect. A part of this potential
is because of natural interaction that VR provides, however such interaction comes great
computations costs.

1.2 Objective

This work has the objective of developing a virtual reality visualization and allow integra-
tion on the Tomo-GPU system currently used by material engineers to handle their data.
Such integration will harness the modular capabilities of SCIRun, however as discussed in
the previous point, VR as a new interface technology it as some peculiar and demanding
characteristics. Such characteristics need not only a real-time render engine tool but also
a VR controller support, to manage the development in a feasible amount of time.

Two independent goals may be extracted from the previous broader objective. Those
are as followed:

• The construction of a prototype system that allows the visualization of the three-
dimensional data processed and stored by the Tomo-GPU system in a VR environ-
ment.

• Full integration with Tomo-GPU system, allowing its use by the non-computer
expert.

1.3 Problem

The main concern of this work is how to integrate the new interface technology, that is
accessible for development, to visualize the data handled by the Tomo-GPU system and
make it available on its workflow. To address such a wide problem, one must break it
apart in several underlying subjects. Those are:

Characterization Visualization Systems: The integration pretended in this work is pri-
marily a visualization system. For that reason, a concise framework allowing to
correctly address such type of systems and also how to properly validate them.

SCIRun architecture: The understanding of Tomo-GPU system, built over SCIRun frame-
work, is fundamental to add a new module to the project. However, a current
limitation of the system used is that it does not provide easy integration with any

2



1.4. APPROACH AND DOCUMENT STRUCTURE

virtual reality equipment. This limitation forced the development of a prototype
system apart from the SCIRun framework. Nonetheless bridging between systems
is fundamental.

Characterization of data: How data is stored, and its meaning is fundamental to allow
understanding of how to handle it for visualization.

Characterization of surfaces: Different ways to define surfaces exist and literature is
extensive on this subject. For this reason only a small portion, that is directly useful
for the development will be considered in this work.

VR usefulness in data visualization: Data visualization is another subject with extensive
literature and considered a scientific area on itself. However, basic knowledge of it
and also about the foundations behind VR technology is required. Such knowledge
will help grasp VR potential in the data visualization.

1.4 Approach and document structure

In this document will start by addressing, in related work chapter, the relevant subjects
derived from the central issue of this work established in the previous point. These
subjects start with a more theoretical approach to establish the required knowledge and
vocabulary to discuss a possible solution. And they end with the explanation of the used
technologies and a description of the intended system to implement.

The work will progress to an explanation of the solution organization achieved with all
gathered knowledge. After, it will be explained the implemented solution and is followed
by the results.

3
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2
Related Work

This chapter has the purpose of gaining background knowledge necessary for the prototype
system implementation 1.2. It will start with a more theoretical approach that will
decompose and characterize the two main concepts. The first is information visualization
systems (InfoVis systems) and the second is virtual reality. Such characterizations will
provide information over the consequences of integrating VR in InfoVis systems and allow
to formulate a conclusion, along with some other research conclusions on the subject, in
the following section.

After the theoretical foundations, it will be addressed the technologies used by this
work, starting with SCIRun framework technology and evolve to the Tomo-GPU system to
conceptualize the development for VR integration. Next, it will be considered the unreal
engine 4 framework that will be required to develop the prototype in a conceivable period
of time.

The last section will gather information about this chapter and apply a framework to
characterize the prototype succinctly.

2.1 Information Visualization Systems

Information Visualization systems or InfoVis systems resort to visualization, by transform-
ing the symbolic into the geometric, and allowing for the user to observe their data. Data
on itself holds little value. It is just when analyzed and used in decision making that its
value manifests.

The use of the visual channel is due to be well characterized and most suited among
the other sensory channels. As visual beings, the majority of information used is obtained
through sight, and InfoVis systems explore this information retrieval "machinery"to es-
tablish communication between system and user [11]. Visualization systems possess one

5



CHAPTER 2. RELATED WORK

other fundamental component, although, with less focus on research [27], it is almost
mandatory in current InfoVis systems. This component is interaction, and it allows the user
to handle complexity better. By establishing communication between user and system,
the user can change the visualization on demand allowing for different perspectives from
data quickly and efficiently. The dialogue established is always mediated by a computer
system with its user interface. This concept is depicted in image 2.1, and this concept is
at the core of current days InfoVis system. However, possible combinations of evolving
factors in this type of systems allows for an infinity of possibilities. The computer field
of interactive data visualization studies these possibilities and literature is vast on the
subject.

Human(s) Computing device Visualization

User-centered Technology-centered Interface-centered

Figure 2.1: Elements of interaction in visualization. Adapted from [15]

2.1.1 Interactive Data Visualization Framework

In this subsection, one possible framework, retrieved from [11], is analyzed. This frame-
work acknowledges three primary components; those are:

Data(What): The data component focuses on the recognition of patterns in data. Each
piece of data as two main characteristics. First its semantic value (ex. is a name or
city?) that must always be taken into consideration by the programmer. The second
is the type of data that focus on the mathematical interpretation(ex. is an attribute or
link?). Differently structured aggregations of different types of data generate a data
set where several well-known patterns exist like tables, graphs, fields and many
more. The recognition of these patterns in data is of paramount importance in the
design and implementation of a data visualization system.

Task(Why): The task component focuses on the recognition of different objectives from
the user. As a component that is extremely influenced by the domain area that
visualization is applied, it is essential to distantiate from domain-specific objective
into the most generic term. This generic term is more concise of what the user
intends from the visualization. This framework recognizes two different aspects of
a task the action and the target. Actions can be to discover, present, summarize and

6



2.1. INFORMATION VISUALIZATION SYSTEMS

many more. Where targets can be trends, outliers, attribute, topology, shape and
others.

Visual/Interaction idiom(How): This component focuses on structuring the vast possi-
bilities in visualization and interaction. It devises into four different groups. The
first, visual encoding that consists of characterizing the elements of one image and
the mapping of the data to such elements. As a fundamental concept in this thesis, it
will be further addressed in 2.1.3. The second is manipulation that classifies how the
visual elements can be interacted either by change, selection or navigation. The third
is facet, that consists in the assembly of more than one image, useful for comparisons.
The last is reduce that describes how data can be filtered, aggregated or embedded
for drill-down operations.

Figure 2.2: Elements of interaction in visualization. Adapted from [11]

As depicted in 2.2, these components are interdependent and are full of trade-offs.
Knowledge gathered over some component should be taken into consideration and start
a refinement loop and evaluate the consequences over the other components.

2.1.2 Interactive Data Visualization System Validation Framework

The framework, addressed in the previous point, allow us how to describe and categorize
some data visualization technique. However, it does not specify a visualization system
on its whole. The new framework consists of four nested levels as is meant to describe the
entire InfoVis system and provide a consistent framework for validation of such systems
[10]. Nonetheless, the previously discussed components make part of this framework and
constitute two of the four layers. The overall structure is depicted on 2.3 and possesses a
nested hierarchy where information in one layer should be passed into the other layers
yet not strictly in a linear way. The layers are as followed:

Domain problem characterization: Evaluates the problems and data of the specific do-
main, where the challenge lies in connecting the concepts between users and design-
ers.

Data and task abstraction: This layer unifies the data and task abstraction, specified in the
previous item, into one single validation step because both consist in the abstraction
of the domain-specific vocabulary into a more generic description. However, one
focuses on data, while the other focuses on domain problems.

7



CHAPTER 2. RELATED WORK

Visual/Interaction technique: The third layer focuses on the design of the visual and
interaction idioms and attempts to maximize user perception of data and minimize
problem-solving times, where the definition of both occurs in the previous layer.

Algorithmic: This last layer focuses on the construction of the algorithms that implement
the previous layer designs automatically.

Figure 2.3: Construction and validation
framework. Adapted from [11]

With each layer possessing different
threats, they also require different forms of
validation. Some threats and validation meth-
ods are listed on image 2.3, and each work
should only approach one or a subset of lay-
ers.

One other distinction must be clarified;
this is between upstream and downstream
parts that correspond to the top half and the
bottom half of validation methods respec-
tively. The upstream validation methods can
only provide us with partial validation over
its layer and should be used for design re-
finement before implementation. The down-
stream counterpart provides the validation
required for some system but it needs to be
fully implemented, as the nested structure
suggests.

2.1.2.1 System Construction Approaches

The four-level design framework possesses two commonly used approaches to start
the construction and aid validation of a visualization system. Those approaches are
problem-driven and technique-driven. The problem-driven method consists of a top-
down iteration of the framework where the visualization designer starts with a real-world
domain problem and analyses the domain users with a field study. Generally, with this
approach, the challenge lies in a good abstraction from the domain situation where it is
usually possible to match to an existing visual encoding idiom.

With a technique-driven approach, that is an opposite approach to problem-driven,
where the iteration made over the framework starts at one of the two bottom levels. If the
starting point is on the third level, it means that the designer possesses some new visual
encoding or interaction idea. If the starting point is on the bottom layer, it means there
exists some new idea in increasing the algorithmic performance of some idiom.

8



2.1. INFORMATION VISUALIZATION SYSTEMS

2.1.3 Visual Encoding Taxonomy

To fully understand VR potential one must first understand the primitives used by human
visual channel. For this, it is addressed one possible taxonomy, from [11], and formalize
visual encoding that makes part of the "How"component on Vis systems framework.

The taxonomy makes a first high-level break down into marks and visual channels.

Marks: There are four possible classes of marks classified according to the number of
spatial dimensions that are required to draw them. Those are points (0D), lines (1D),
areas (2D) and volumes (3D). There are two different applications of these marks.
One is to represent the elements in data the other is to represent connections in
data. However, the latest requires marks at least 1D or higher. This notion is best
summarized with image 2.4.

Figure 2.4: Possible marks. Retrived from [11]

Visual channels: Several visual channels control the appearance of marks, represented
in 2.5, where for each visual channel is possible to encode/map some attribute about
that mark. However, as the image suggests, it possesses two primary groups of
visual channels, the spatial and non-spatial channels where the first is of special
interest in this work.

Spacial Channels Non-Spacial Channels

Position

Horizontal Vertical Depth

1D 2D 3D

Color

Hue Saturation Luminance

Shape

Motion

Orientation

Size

Length Area Volume

Curvature

Figure 2.5: Visual channels for data encoding. Adapted from [11]

2.1.3.1 Spatial Channels

The spatial channels are primitives of particular interest for visual encoding possessing
a category of its own. Such importance is given because only with proper positioning
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of marks is possible to start creating informative images of data. This notion is easily
understood by conceptualizing two possibilities. First, several overlapped marks and
second several marks spread out on screen. The information provided by the overlapped
marks is significantly less than the spread marks, where even readability of other non-
spatial channels reduces drastically.

a ) Front view. Retrived from [26]. b ) Perspective view. Retrived from [24].

Figure 2.6: Ames room optical illusion.

To continue explanation of spatial channels, one last concept of human capabilities is
required. The concept is that humans formulate a mental construction of third dimension
(depth) in their brains. The construction is necessary because the image created in our
cornea is just a two-dimensional image that is a point of view projection of our three-
dimensional world. The brain uses several depth cues, to aid 3D construction, like
stereoscopic vision, the disposition of shadows, occlusion and parallax movement. Such
a process may sometimes lead to miss interpretations of reality. For example, the optic
illusion of the room experience, pictured in figure 2.6a, gives the wrong perception of the
room and the people inside where its true form is more perceptible in figure 2.6b.

a ) Data occlusion. Retrieved from [11] b ) Perspective distortion. Retrieved from [5]

Figure 2.7: Examples of 3D disadvantages.
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For Vis systems, the use of 3D can lead to wrong interpretations of data by the user,
which is a non-desirable effect. Some examples of 3D characteristics that may affect data
visualization negatively are occlusion and perspective distortion. The first is exemplified
in figure 2.7a can be a major concern by hiding crucial information to the viewer. The
second causes distant objects to seem smaller, illustrated in figure 2.7b, where comparison
of some bars sizes can lead to doubts.

All the problems associated with 3D makes 2D more efficient on the majority of
data visualizations. The "power of the plane"is well acknowledged by data visualization
literature, with no distortions then providing a clear interpretation of data. 1D possesses
the same good characteristics of 2D, although with one less possible channel, but it should
not be overlooked if data is simple enough.

Nonetheless, all these disadvantages of 3D visualization are out weighted when the
task is to understand the geometry of an object or scene, having even a greater performance
if using interaction, as it is possible to examine in the study [23].

2.2 Virtual Reality

Broadly considered the next generation of man-machine interfaces, virtual and augmented
reality, brings endless new possibilities for human in the loop systems.

Virtual reality will also be referred by its initials VR several times and also with the
meaning of immersive VR and not non-immersive VR. Non-immersive VR is merely the
display of 3D pictures in a standard monitor, while immersive VR concept was coined in
the ’90s by Jaron Lanier and is explained in the next point.

2.2.1 Immersive VR Foundations

Jaron Lanier made the holodeck analogy as it was a mainstream concept to the public due
to the Star Trek series. This analogy tries to explain the immersive effect in is ultimate
form where, in the holodeck, was possible to create entirely new worlds and interact with
it and its inhabitants as similar as in real life. Decomposition of this analogy is explained
in [16], which defines the perfect immersive experience and derives from it, eight different
themes that are at the core of this effect. However, only those that capture the prerequisites
of the immersive effect will be addressed, and not those that reflect the possibilities that
came alongside being immersed.

These four primary requisites are sensor diversity, spatiality of display, transparency
of medium and natural language. Although in nowadays VR interface models don’t fully
implement these prerequisites, they already provide a significant immersive feeling with
partial implementation. They capture the essence of how we perceive and interact with
the world and became the technical challenges to create VR.
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2.2.1.1 Sensor Diversity

All the sensory systems the human possesses, contribute in some way to the overall
internal construction of our reality/environment. The understanding of how humans
perceive through the senses is fundamental to fool them into creating the pretended
world.

With the vision as the main human sensor, the ability to fully recreate this sense is
fundamental, where a majority of prerequisites for VR involve tampering with vision
directly or indirectly.

Sound is also used, in nowadays VR systems, to contribute to the immersive effect.
With algorithms that spatialize sound, giving a sense of directionality, it is possible to
recreate the way humans perceive sound in the real world.

The exclusive use of vision and sound on VR systems is due to their recording and
reproduction technologies are well developed and cheap.

The gustatory and olfactory senses haven’t been scrutinized by the developers of this
area, mainly due to the affirmation that those senses would not add much more detail
to the environment construction. Although there are several systems where the sense of
smell can be recreated, those are still very rudimentary.

The major gap in today technologies that try to recreate how our senses perceive
the world are those that try to recreate haptic sensations. Haptic senses convey a lot of
information to the observer, and the introduction of such senses in VR systems may cause
a new leap in the immersive effect experienced by the user. However, such technologies
are still in a very primitive state.

2.2.1.2 Transparency of Medium

Another prerequisite of immersiveness is the notion of not perceiving the medium that is
reproducing the information that our senses are gathering.

Since the beginning of the computer age, the trend is to separate machine from man
thought user-friendlier interfaces. However, as much user-friendly the applications might
be, there is usually a clear separation between man and computer. With the display as a
frame description of the computer world, within the real world.

Immersive VR is the technology that tries to eliminate this visibility of the computer,
leaving only the user inside the generated environment. This transparency of medium
is achieved by making the display occupy the user entire field of view so that the user
doesn’t see the screen itself.

Just by fully altering the vision, it is possible to entirely change the awareness state of
the observer and fool it by not perceiving the medium of communication separating men
and machine with the “perfect display”.
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2.2.1.3 Spatiality of Display

So that is possible to enter a world, as three-dimensional beings, this world must be a 3D
too allowing to perceive space. The act of presence, of being in a world, can be divided
into three different components. Those are the sense of depth; the sense of surrounded;
and the possession of a roving point of view.

The invention that best allows the user to perceive depth is the stereoscope that was
created in 1833 by Charles Wheatstone. The invention uses two drawings, one for each
eye, in such way, that fools the brain in unifying the images. These images differ slightly
between them as it happens when visualizing the real world due to the separation of
human eyes.

Combination of different technologies achieves the sense of being surrounded. By
joining the concept of “perfect display” with the stereoscope that contains 3D images, it
is possible to achieve the sensation of surrounded, of insertion in a different world.

The possession of a roving point of view is self-explanatory and allows to change point
the point of view of the world. It is a fundamental mechanism that allows, for example, to
trigger the parallax movement that is one depth cue used by the human brain. However,
such movements in a non-immersive system are encoded, usually through keyboard use,
and something else is required, that something is to navigate in a natural way.

2.2.1.4 Natural Language

As roving beings, we already possess ways to interact with the physical world, such as
movements of limbs, head or even facial expressions. Those are a set of tools that humans
naturally have and used since their existence to explore the real world. This type of
non-symbolic language is crucial for the immersive effect as we are using at all times
navigating through the real world. This fundament is also mentioned as one of the most
exciting possibilities of VR by Jaron Lanier quoting:

"There’s also the ability of communicating without codes. This is a subtle distinc-
tion, but one that is very, very profound. . . . I’m talking about people using their
hands and their mouth, whatever, to create virtual tools to change the content of a
virtual world very quickly and in an improvisational way."[8]

Lanier makes it clear that this natural language doesn’t have the purpose of substituting
symbolic language but to complement it. This is because symbolic language is as part of
the human communication systems as the non-symbolic language in current days.

Nonetheless, the introduction of natural language within the man-machine interface
will facilitate some simple actions, like direct manipulation.

This objective is by no means a simple technological task, and numerous prototypes
have been assembled that track parts of the user body, mainly head and hands. With the
continuous miniaturization of sensors and with the increase in computational power to
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track more sensors at the time, is starting to provide enough precision to allow natural
communication.

2.2.2 3D Interfaces Considerations

With a 3D environment as one of the foundation requirements of VR, the interface
mechanism of such systems must also be 3D. However, the problems adjacent to 3D are
applied and user studies reveal that complex user actions, disorienting navigation and
annoying occlusions can affect overall performance negatively [20]. For these reasons,
a hybrid concept becomes a more modest approach in interface design. This approach
consists of using 2D interfaces in a 3D environment that can be windows that leave
shadows or icons that match real-world objects.

To guide the design of effective 3D interfaces in book [20] is presentment a list of basic
and advanced features that assist the effectiveness of 3D interfaces:

Basic:

1. Use occlusion, shadows, perspective/ and other 3D techniques carefully.

2. Minimize the number of navigation steps for users to accomplish their tasks.

3. Keep text readable (better rendering, good contrast with background, and no
more than 30-degree tilt).

4. Avoid unnecessary visual clutter, distraction/ contrast shifts, and reflections.

5. Simplify user movement (keep movements planar/ avoid surprises like going
through walls).

6. Prevent errors (that is/ surgical tools that cut only where needed and chemistry
kits that produce only realistic molecules and safe compounds).

7. Simplify object movement (facilitate docking/ follow predictable paths, limit
rotation).

8. Organize groups of items in aligned structures to allow rapid visual search.

9. Enable users to construct visual groups to support spatial recall (placing items
in corners or tinted areas).

Advanced:

1. Provide overviews so users can see the big picture (plan view display, aggre-
gated views)

2. Allow teleportation (rapid context shifts by selecting destination in an overview).

3. Offer x-ray vision so users can see into or beyond objects.

4. Provide history keeping (recording, undoing, replaying, editing).

5. Permit rich user actions on objects (save, copy, annotate, share, send).
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6. Enable remote collaboration (synchronous, asynchronous).

7. Give users control over explanatory text (pop-up, floating, or ex-centric labels
and screen tips) and let users select for details on demand.

8. Offer tools to select, mark, and measure.

9. Implement dynamic queries to rapidly filter out unneeded items.

10. Support semantic zooming and movement (simple action brings object front
and center and reveals more details).

11. Enable landmarks to show themselves even at a distance.

12. Allow multiple coordinated views (users can be in more than one place at a
time, users can see data in more than one arrangement at a time).

13. Develop novel 3D icons to represent concepts that are more recognizable and
memorable.

2.3 Vis Systems with VR

As discussed in point 2.1.3.1, the use of 3D in a visualization system has many disadvan-
tages. However, VR interfaces compared to the keyboard, mouse and monitor interface,
introduce more elements that are beneficial for the user perception of a 3D image and may
mitigate several of the disadvantages in Vis VR. Several researches already have positive
feedback of VR technologies on Vis systems. One particular paper,[4], that gathers several
novel VR studies

one of its conclusions fallows quoted:

“VR has been shown to lead to better discovery in domains that whose primary
dimensions are spatial.”

Some of the studies where VR revealed useful are palaeontology, brain tumour, shape
perception, underground cave analysis, only naming few, where the common attribute
is the spatial data attribute. Also, some studies support VR usefulness for collaborative
tasks and remote experiences.

2.4 Problem Solving Environments(PSE)

PSE is a type of system that grants all sorts of computational facilities required to solve
some target audience problems [6]. The system comprises of solution methods, either
automatic or semi-automatic and ways of easily integrate new solution methods. The
system also uses a language that is easily understandable by the target audience and
provides easy access to computer resources without specialized knowledge of them.

Current days PSE usually possess a graphical interface sometimes used to visualize
data and are of great importance in many research fields. This broad search is leading

15



CHAPTER 2. RELATED WORK

to more generalized PSE environments that allow answering the needs of many science
fields.

2.5 SCIRun

SCIRun is a specific PSE framework that allows assembly, debugging and steering of large
scale scientific computations[12]. It is an open-source licensing software primarily funded
by the SCI Institute’s NIH/NIGMS CIBC Center. It provides a high-level control over
parameters, to the non-specialist, efficiently and intuitively using a graphical interface
and scientific visualizations.

The graphical interface provides a menu with a list of modules, depicted in image 2.8
on the left, where each contains its own set of input and output ports. The user may select
them by dragging them on to the grid area an connect the module ports with the mouse
and easily apply complex computations. The scientific visualizations allow the user to
understand its data, and with interactive parameter control, understand the consequences
of input changes.

The framework possesses some features that allow it to fulfil the requirements of PSE
systems and more. In the following points its discussed such features.

Figure 2.8: The interface of the SCIRun system framework. On the left module list, on the
right data flow network on center top a visualization widget and on center down is one
module interface.
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2.5.1 Modular Architecture

SCIRun modular architecture is the heart of this PSE system and is crucial to understand
such methodology for both users and programmers.

Each module represents an algorithm or function that can perform the more diverse
of tasks. Each one, depending on its functionality, may have input and/or output ports or
even be managed dynamically. The four major groups of performed tasks by this system
are data reading, geometric modelling, numerical analysis and scientific visualizations.
By combining such tasks, through the graphical interface, the user can perform diverse
and complex computations. Additionally, each module may possess its how interface
for parameter changing, image 2.8 center down, allowing for even better control of the
system and possibilities of execution.

2.5.2 Data Types, Ports and Connections

The framework possesses a variety of data types that represent a good portion of scientific
data [21]. Besides the more common data types, like Strings, and primary types, like
integers, some of the available complex data types are as follow: (1)Mesh, (2)Surface,
(3)Matrix, (4)ScalarField, (5)VectorField, (6)Geometry (cone, cylinder, point, ...).

For each of the existing data types, there is a correspondent portag that can be used to
assign some data structure into some module input or output port and are colour-coded
to aid visualization. An output port can be connected to an input port by the user and
allow passage of data from one module to another.

2.5.3 Dataflow network

The features addressed on the previous point allow to create a flow network, depicted in
2.8 the right. The network fallows a data-driven policy. Meaning that modules that possess
no input ports (no dependencies) are executed, and modules with dependencies await for
the availability of their data dependencies to start execution.

For each module, a new execution thread is created, and a scheduler manages their
creation along with the management of any interface changes that require re-computation
of modules.

The user must have caution in the creation of dataflow graphs because it may create
cyclic dependencies leading to deadlocks on the execution.

2.5.4 Module Development

The development over this tool uses C++ language, and it requires Qt, Git and Cmake
modules for source code compilation. The system is designed to compile and run on the
three major operating systems(Windows, MacOs, Linux).

A module as four different components although only the first two are required and
they are as follows:
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Module configure: Consists of only one file(modulename.module) and is the root file that
allows registration with the system. The following components must be discrimi-
nated in this file, however, only the next one is mandatory. Also some basic module
information must be written and the relative paths for files used.

Module Source: This element is comprised of two files (modulename.h and modulename.cc).
The main function of it is to declare the module ports. Nonetheless, if implementing
simple functionalities, the required code can all be written here.

Graphic Interface(Dialog): It contains three different files. The UI file(modulenameDialog.ui)
created on Qt tool, where at its core is just a xml file declaring buttons or text-boxes,
along with their id names and several other attributes, on its tag nested hierarchy.
There are other two files (modulenameDialog.h and modulenameDialog.cc) that manage
the mapping of UI variables to other variables declared either on Module Source
and/or Algorithmic component files.

Algorithmic: Is composed of two files (modulenameAlgo.h and modulenameAlgo.cc). Usu-
ally, they are meant to contain all the computation of the module and where the
previous two components are meant for gathering the information needed to process
such computations.

A more detailed explanation over module implementation exist in SCIRun documen-
tation [19] along with example code.

2.5.5 Limitations

The major limitation of this framework, in context with the work, is the unavailability of
an easy way to integrate any virtual reality system. Its interface and visualization widgets
target the standard computer interface comprised of a display, mouse and keyboard, as the
vast majority of human-in-the-loop computer systems does. The significant divergence
between both interfaces in their ways operating and with the much greater complexity of
implementing VR interfaces, forces this work to search a new framework that may lead
to a more feasible development of a system that uses VR.

2.6 TOMO-GPU System

The project Tomo-GPU was founded by FCT/MCTES, and it developed a system with
several modules using SCIRun framework. The objective is to assist material engineers in
the analysis of tomographic images to aid the research of new composite materials.

Tomography is the scanning of some matter through the use of X-rays. The raw data
generated from it corresponds to a 3D-matrix that represents a regular 3D grid of space,
although in memory behaves as a one-directional vector data. In each position is stored
one single value, more specifically a single byte int ranging from 0 to 255.
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The implemented models provide several computations over the described data and
are as follows:

Segmentation: This module possesses two different ways of process, those are segmen-
tation and bi-segmentation and are selectable by its graphic interface. Both of them
have the objective of deriving only three colours from the original dataset, white with
the value of 255, black with the value 0, and grey with value 127. However, segmen-
tation possesses just one input and splits based on that one value. Bi-segmentation
haves two input values splinting the black and white areas with a broader range of
grey values.

Hysteresis: The module functionality consists in transforming all grey cells into black
or white through analysis of its neighbourhood, leading to a fully divided space of
black and white.

Image Labeling: Consists of identifying the reinforcements/objects within the data where
the objects consist of clusters of black cells. With such indentification a new storing
structure is created. Instead of storing each cell with a value, only cells that belong
to objects are stored, creating a more compact file.

Image Cleaning: It requires the objects to be discriminated, and its process is to remove
the reinforcements that possess less than some inputted amount of cells.

VisAttributes: Its a module for visualizing the attributes obtained at the image labelling
module.

The normal use of the implemented modules is sequential one, with the order pre-
sented on the explanation list. Some other native modules of SCIRun must be used for
visualization and data reading purposes. In image 2.9, it is demonstrated such standard
use of TOMO-GPU system.

2.7 Unreal Engine 4 Framework

The unavailability of VR support within the SCIRun framework, see 2.5.5, lead to the
consideration of another framework that could handle VR heavy demands. The first
needed requirement was to allow real-time renderization of an environment to "insert"the
user along with the data to be visualized. The second requirement is an easy integration
with the available virtual reality equipment on campus.

Two frameworks fulfil such demands; those were Unity engine and Unreal Engine
4 (UE4). At initial stages, the unreal engine was chosen because of previous knowledge
of the tool. However, an available study [22] showed some quantitative analyses by
bench-marking the two systems on a simple 3D Pac-man game and formulated some
conclusions. The conclusions that UE4 performed better were: First, with the increasing
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Figure 2.9: Standard execution of Tomo-GPU. Retrieved from [25]

vertex count on the map, it performed better in terms of frame rate. Second, the average
frame time with VR system was lower. Third, by lowering the render setting the relative
speedup was greater. Some negative conclusions were made about UE4. The only one
relevant is: with the increase of projection size for an increased resolution, made frame
rate time rise more.

To be able to develop with Unreal Engine, some concepts and structures used are
essential to understand and are discusses throughout this section.

2.7.1 Architecture Basics

The unreal engine framework provides a wide variety of classes that allow the implemen-
tation of the most varied of functionalities from lighting to mesh insertions. However,
four classes are the building blocks of the architecture:

UObject: The base block of the unreal engine where the vast majority of classes have it at
their root. It registers the class on the system and provides it with some core services:
Reflection properties and methods, serialization of properties, garbage collection,
finding UObjects by name, Configurable values for properties, networking support
and c++ blueprint communication.

AActor: Is a UObject that can be placed. It possesses position, rotation and scale and are
the building blocks of world construction, not only, and where many classes derive
from it. Some examples are AStaticMeshActor, APointLight and ACameraActor.
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UActorComponent: Is a class meant for implementing shared functionalities across actors.
Actors are usually assigned with higher-end tasks, while components are, typically,
for lower-end tasks.

UStruct: Classic c++ structs, for data container construction, that benefit from services
provided by UObject class.

Some additional relevant classes are:

APawns: Are basic classes for implementation of moving objects either controlled by IA
or player controller.

ACharacter: Extends the pawn class and is specially design for user use possessing some
additional functionalities.

UProceduralMeshComponent: A component that allows creation and animation of
meshes on runtime with explicit declaration of vertexes and triangles.

FNonAbandonableTask: A class that allows to easy implementation of async threads
that must terminate.

UInstancedStaticMeshComponent: Its a component with the functionality of replicate
one previously associated static mesh in an efficient way.

UMaterial: Object that possesses reference to a single material. Materials are complex
structures with lots of properties. Those properties may be parameterized to allow
the dynamic creation of materials by affecting such parameters with code.

UMaterialInstanceDynamic: Its a specific instance of a UMaterial.

One specific class that deserves special consideration is called AGameMode. Such
class is where is possible to specify many options, mainly game oriented, like if the
game can be paused or not. Another main feature is the mapping of some classes to
core variables of the engine. Those variables are game session(AGameSession), game
state (AGameState), player controller (APlayerController), HUD(HUD), default pawn
(APawn), spectator (APawn) and spectator controller (AController).

UE4 uses a custom prefix notation. This notation is to identify the inheritance of classes
where the used prefixes are: T for template classes, U object classes, A for actor classes,
I for abstract interfaces, E for enums and F for other types although some subsystems
posses their custom notation.

As mentioned before, UE4 has a reflection system that drives many useful systems. A
reflective system, in computational terms, is a system that can monitor and even change
its elements. A special annotation language exists, called property system, to access and
manipulate some options of the reflection system where UE4 class wizard automatically
generates many of them. Some of the most elemental are: UCLASS(), USTRUCT(),
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GENERATED_BODY(), UPROPERTY() and UFUNCTION(). Every markup has input
parameters that allow changing behaviour, for example, the change policy on editor or if
it is visible on blueprints system.

2.7.2 Development

There are two major ways of developing a system with UE4, and one must be selected on
project creation. Those are editor only or C++ with editor.

The editor is a central part of unreal engine development with its default main inter-
face depicted on 2.10. It is basically a 3D environment builder with a vast amount of
functionalities, and it consists of 5 different panels. The world viewport in the center
where the environment can be inspected and modified. The word outliner on the top
right that hierarchy lists all world instanced objects. The detail panel on the bottom right
that lists the details of a selected object. The content browser on the bottom to manage
all assets and objects created. Finally, the modes panel on the left that contains the most
varied of tools to add and manage the classes that UE4 provides, on some world.

Figure 2.10: Unreal Engine 4 editor interface.

The major bifurcation of development is on logic implementation, where on the editor
can be done using the blueprint system, discussed in the next point, or externally with
Microsoft Visual Studio(VS) editor using c++ code. To use VS, one must specify on project
creation to generate, also, the VS files and it possesses many tools to bridge functionalities
with UE4 editor.

2.7.3 Blueprints

Blueprint is a system that can be used in on unreal engine editor, and an example may
be seen in 2.11. They essentially are tools to aid the non-programmer in introducing
logic on the system. They function through modules with the drag, drop and connect
scheme, very similar to SCIRun dataflow network 2.5.3. The use of such system is almost
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as programming where module functionalities vary from the basic If or For statements,
to complex functionalities of mesh loading, texture mappings and so forth.

Figure 2.11: UE4 blueprint system. Retrieved from [1]

The white line represents flux of execution, where other colour-coded lines represent
data connection with colour representing its type. Each module possesses two types of
ports, for flux lines and for data. At the left of the module, is their input ports, with one
flux and n data ports, at its right is its output ports, with at least one flux and n data ports.

Such high-end system has its costs and processing large quantities of data with
blueprints is inefficient. However, general best practices used them for event triggering
management or bridging information between actors, for example.

2.7.4 Attachment System and World Composition

A typical structure found in real-time renderization engines is the object hierarchy n-ary
tree. This system allows the implementation of many functionalities. A primary func-
tionality is the implementation of relative positioning being very useful in the creation of
environments where to find some object absolute position, one must iterate the transfor-
mations of the object parents until the root is reached. On Unreal Engine isn’t mandatory
to use such relative positioning and such n-ary tree may be used as a list. However
UE4 leverages on such structure in many different ways but the main purpose is for the
reflective system to keep track of all spawned entities in the world.

Figure 2.12: World with four levels.
Adapted from [13]

To use such system the engine denominates
attachment the act of creating a new relationship
in such three. Parent and child objects must be
given, along with some other information like rel-
ative(or absolute) translation, rotation scaling and
some other characteristics depending on the nature
of the object attached.

There are two important concepts to build an en-
vironment, those are level/map and world. A level
is the root component of one hierarchy three, and
the world is a grid of several levels. This system
potential lies in the creation of large environments
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allowing partitioning the amount of objects that need loading depending on user position-
ing on the map. This concept is better explained with the image 2.12 where each yellow
square is a level or map, and all of the squares are the world. Nonetheless, for simple
environments, only one level may be used.

One last concept is that for each world, one AGameMode class must be associated and
as explained in 2.7.1, such class possesses several references of some basic classes that are
required for a world to be "playable".

2.7.5 Execution Flow

In this point is made the distinction of two separate flows, the launch flow and the active
cyclic flow. The launch flow as also two major branches, the launch branch from the
editor and the launch from the standalone version. There are some differences due to
some pre-loaded elements that are required on the editor. Nonetheless, whatever may
be the launch flow the GameMode class is of central interest here. It contains, usually,
the first logic introduced by the developer. Also, important notice is that the launch flow
possesses many stages and such stages must be respected on the system development to
avoid errors.

The initializations made system launch provides the the elements to start actors
and components life cycle. These objects life cycle may start on world creation, or if
spawned, nonetheless these stages are almost the same and can be accessed with some
built-in methods. Some of them are PostActorCreated(), BeginPlay() and BeginDestroy(). The
mention methods are event driven and represent, usually, a small part of the object life
cycle.

The cyclic flow of the unreal engine is at the core of this framework and is the
functionality that, literally makes "time"move forward in the system. Internally it also
works as an event driven method but is called cyclically to update the associated object,
representing most of the object life cycle. Actors and Components can leverage from it
with the use of the built-in method Tick() that it is called at every frame. Inside the engine it
is what triggers all rendering functionalities after all inputs, IA’s, physics and many other
systems have made their changes. Such a demanding process should lead to carefully
consideration, where significant blocks of computation can reduce the system liveness.

2.7.6 VR Support

The unreal engine provides full support for two VR hardware systems. Those are OCulus
Rift and HTC vive head set, where the latest is the available equipment for test and
development.

The management of the SDK of each possible VR set is throght the plugin system.
There are a vast number of native plugins on UE4. Usually they possess functionalities
that are very specific and ain’t required on a majority of projects. Because of it they are
considered plugins and may be added to a project on demand.
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2.8 Prototype Framework Characterization

This section has the purpose of assembling some information gathered through the chapter
and applies the framework assessed in the specific point 2.1.1, to be able to describe the
prototype. Such description will allow to categorize it and examine the current state of
the art for such categories.

First, the system is for integration with TOMO-GPU project, that was design to help
material engineers on the development of new composite materials. The data handled
by the system corresponds to a 3D grid that is a representation of a regular grid of space,
with some additional meta-data extracted. Nonetheless, the geometric element of data is
the key component of this work because it is the one that would benefit the most with VR
visualization. Has mentioned in point 2.3, VR leads to a better understanding of data that
its main characteristic is spacial. However, current TOMO-GPU implementation over the
SCIRun framework didn’t possess support for VR interface leading the development to
use Unreal Engine 4 framework.

With some knowledge over data, task, and development tools involved for visual-
ization it is possible to initialize a prototype description by accessing the three major
components of the Vis framework, with some additional help of current state of the art
literature.

2.8.1 Geometric Data Abstraction(What)

With the focus on geometric data, having a abstract characterization of it will prove useful
to describe design stages of the prototype. One possible characterization is presented on
[18], and classifies geometric data sets as a structure with its associated attributes where
this structure has a topology and a geometry component.

The topology consists of the connections established between vertexes if any. Possible
topologies are depicted in image 2.13 along with exemplary numbered ordination that
can be used to conventionalize vertex order in memory. A particular characteristic of this
abstraction is its invariance under traditional geometric transformations(scale, rotation
and translation).

The other major element, geometry, refers to a particular instance of a topology where
positioning in space is specified.

The two elements describe a cell in its whole and are usually associated with some
attribute data. Some common manifestations of such data are scalars, vectors, tensors,
normal’s and UV’s.

To form a data set, cells must possess some type of organization. Usual structures are
figured in 2.14 and are grouped into two primary categories, structured and unstructured.
Structured means that there is a single mathematical formula to describe the relationship
of cells allowing significant memory savings. Unstructured must be explicitly represented
having higher memory costs.
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Figure 2.13: Geometry topology abstraction. Retrieved from [18]

Figure 2.14: Geometry dataset structures. Retrieved from [18]
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Two different topologies structured into two types of data sets heavily influence this
work. The first combination is the voxel topology structured into image data. Image
data organization refers not only to the easily associated 2D images, but also to 1D lines
and 3D voxels. Such a combination provides the first classification of data used by the
TOMO-GPU system 2.6. The tomography scan provides a regular grid of space(3D voxels)
and is associated with one value(scalar).

The second combination is triangle strips with polygon data organization. Polygon
organization is an unstructured one and falls in the range of UE4 engine structure. Such en-
gines designed for the game industry have the objective of creating realistic environments
where usually no mathematical formula can express all of the cells positioning. Triangle
strip is a type of topology assembled with 2D triangles where those may share vertexes
and edges. Such triangles don’t need to be coplanar and can then be used to describe
complex 3D surfaces. It’s the primary method used in real-time rendering engines to
describe such surfaces because it is more efficient for real-time rendering compared to
other complex surface descriptors like quad strip or poly strip.

2.8.2 Material Engineer Tasks(Why)

The objective of material scientist engineer is the construction of new composite materials
and techniques for such development. Composite proprieties depend not only on the
elemental materials used but also, on the spatial characteristics and other chemical and
physical phenomenons.

This work focuses mainly on the interpretation of the spatial characteristics. Some
work on TOMO-GPU project [3] already provides many geometric meta-data. Those are
centroid, oriented and axis-aligned bounding box, volume, surface area and principal
component analysis. Such information provides only a resume of spatial data not allowing
to perform some of the tasks in the geometrical realm, for example, shape recognition.
Nontheless, SCIRun provides visualization modules for this type of data but is not suitable
to explore the VR potential in 3D visualizations.

2.8.3 Visualization Algorithms of Geometric Data(How)

In this point, a classification algorithms, retrived from [18], used to transform geometric
data will be presented, to establish the useful the ones for this work.

The classification possesses two primary components: structure and type. The algo-
rithm structure is the definition of changes made in topology and geometry. The algorithm
type, is the type of data operated on, and also the type of data generated, if any.

Structural classes are: (1)Geometric transformations, that change only the geomet-
ric part of data; (2)Topological transformations, that change only the topology part of
data; (3)Attribute transformations: that convert attribute from one form to another; (4)
Combined transformations, different combination of the previous three types.
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Type classes are: (1) Scalar algorithms, operate on scalar data; (2) Vector algorithms,
operate on vector data; (3)Tensor algorithms, operate on tensor fields; (4) Modelling
algorithms, that may generate topologies, geometries or attribute data that operate over
more than one previous class and is meant as a catch-all class.

With the knowledge over data, gathered on 2.8.1, and this algorithm classification is
then possible to conclude the class of algorithms needed.

The algorithm structure needs to operate over scalar data and possess topological
transformation from a regular grid(voxels) to an isosurface represented by a triangle strip,
as required by the Unreal Engine framework. Such type of algorithms are well known in
the computer field of graphics and visualization and are usually known as contouring or
modeling algorithms that linearly interpolate the surface cell by cell of the regular grid
using some technique.

With it many possible algorithms, in the following points it will only be addressed
those that are implemented on the final prototype and those that heavily influence this
area of knowledge.

2.8.3.1 Simple Cubes

The concept behind the simple cubes algorithm is to process each voxel by looking at its
six face neighbours and draw a square face between filled and unfilled voxels. A slice
side view of the algorithm behaviour is depicted on 2.15a and a possible resulting mesh of
a 3D sphere mapped on a regular grid on 2.15b. The process creates a squared strip, but
each square may be subdivided into two triangles to formulate a triangle strip required.

a ) Slice view. b ) 3D view of mesh.

Figure 2.15: Simple cubes algorithm.

The advantages of this algorithm are the easy of implementation, the nonexistent
slivers(odd shapes formed on the mesh) and is locally independence, meaning that the
process in each voxel does not account for the process of any other voxel. However, the
produced mesh is rough, and features of its true form may be lost.
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2.8.3.2 Marching Cubes

To understand the marching cubes algorithm first, we will address its simpler 2D version
on a pixel topology denominated marching squares or contouring. The algorithm requires
the scalar values to be attributed to each vertex. The threshold of the scalar value must
be selected, deciding if a vertex belongs inside or outside of the contour. The binary
classification of each vertex results in a 24 = 16 possible combinations in a pixel topology,
depicted on 2.16.

Figure 2.16: Contouring algorithm cases. Retrieved from [18]

The marching cubes algorithm applies the same principle as the marching squares.
However, the possible neighbourhood combination is much larger. By attributing the
scalar value to a voxel vertex and classify each as inside or outside, it totals on 28 = 256
possible cases of a neighbourhood. There are many mirrored cases on these combinations,
and all combinations may be resumed to 15 different topological situations depicted on
image 2.17.

Compared with the previous algorithm, it has a much harder implementation and it
may generate slivers on the mesh. However, it smoothens the object mesh and approxi-
mates to it’s true form and is still a local independent process for each voxel.

Many algorithms derived from this one, the majority reflects one great problem that is
the lack of expressivity [17]. This deficiency leads to the loss of thin features of an object
meaning, if two vertexes of the real object lye inside of a voxel that information is lost.
This problem can be counter by making a finer grain grid. However, that approach can
quickly generate a large number of polygons.

2.8.3.3 Dual Marching Cubes

The dual marching cubes algorithm was developed to resolve the major problem that
exists in the family of algorithms derived from the marching cubes algorithm discussed
in the previous point.

The algorithm uses an octree structure, that is a typical structure used to represent
grided volume where the eight children of each node are the respective octants of the
parent volume and space is recursively subdivided to create a finer grain grid. The dual
marching cubes adaptively samples this structure and allowing a significant reduction
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Figure 2.17: Marching cubes algorithm base cases. Retrieved from [18]

in generated polygons. A more detailed explanation can be explored in [17] however in
image 2.18 is depicted the result of dual marching cubes against marching cubes over
a room with thin walls and it is possible to perceive the greater efficiency in reducing
polygons generated.

Figure 2.18: Results of Marching cubes algorithm to the left and dual marching cubes to
the right. Retrieved from [17]

2.9 Summary

In this chapter, it was gathered the knowledge required for the development of a visual-
ization tool for composite material research.

At first we looked into a possible framework for designing Vis tools. The overall
framework is described in 2.3 and reveals the different layers of abstraction to take into
consideration. Furthermore, such layers are divided into two different parts, the upstream
and downstream parts where only the downstream part can completely validate a system.
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Nonetheless, the upstream part must be taken into consideration for a good design choices
and providing a map of content thought this chapter.

Based on literature an upstream validation on the domain layer is presented in subsec-
tion 2.3 and where the remaining layers are characterized on point 2.8. However before is
possible to fully characterize the framework for the current problem first is necessary to
explore the current used technologies and those are addressed in points 2.4 and 2.5. In this
last point, the lack of support in SCIRun framework for VR interfaces was discussed. For
that reason, it was explored another framework, in point 2.7 that allows easy integration
with VR, however bridging between systems is still fundamental. With all upstream
validation completed is now necessary to proceed with design and implementation to
reach the downstream validation.

With this work only changing the technological medium it only affects the idiom
layer more specifically the interaction idiom, and where the remaining previous layers
and visual encoding were retrieved from literature. However, by changing interaction
idiom layer, has the framework structure suggests, it affects it inner most layer named
algorithm. Nonetheless this work will only proceed with validation on the first layer after
implementation, meaning it will only test the viability of the prototype on an algorithmic
level.
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3
Organization Solution

The introduction of a new framework that supports VR, lead the development of a system
that comprises two complete different processes that exchange information between them.
The first one is the already existing Tomo-GPU system and the second is the UE4 VR
prototype denominated SCIRunVR. They are depicted on the component diagram 3.1
that provides an overview of the interaction and functionality of such components.

Device Hard
Drive 

SCIRun

Tomo-GPU

SCIRun contains the most
diverse of modules from data

readers to visualization
functionalities.

Segmentation Hysteresis Image Labeling

Image Cleaning VisAttributes VR Visualization

Unreal
Engine 4

SCIRunVR

UE4 framework provides many
functionalities for enviroment or
geometry creation and mainly

VR support. 

Writes

Reads

Param: 
 - Data Location

Launch Process

Data I/O Operations Readers Tasks Model

Data Structs StaticLibs BPControl

Figure 3.1: Component diagram for with overall functionality to integrate VR on Tomo-
GPU system.

The intended use case with this system assembly is to allow the material specialist to
use the Tomo-GPU system normally, and when VR visualization is required, the user may
add the VR module. Colour-coded in red, the module is depicted on diagram 3.1. The
use of such a module will initialize the implemented VR prototype with Unreal Engine
technology.
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Communication between components is made through the secondary memory of the
computer. The reason for such approach is its ease of implementation. The used files can
reach considerable dimensions, and if several files are to be transmitted, it can become
quite useful the use of the secondary memory.

On this chapter, it is further analyzed each component separately and existing con-
strictions of the Tomo-GPU current implementation are considered.

3.1 Tomo-GPU VR Module

The module functionality is straightforward. It has to obtain, some way, the data location
on disc and provide it, on launch, to SCIRumVR system. On point 2.5.4, two distinc
ways of providing data to a module were considered: those are through ports or through
module graphic interface, and both must be explored for implementation.

In the following is considered the structure of Tomo-GPU and its data files. There are
two main file types used. First one is the Bruno file type that was specially developed
for the Tomo-GPU system. Such files are organized by objects where each object contains
the index of all its constituent voxels. The second is NRRD file types that are the usual
input file on Tomo system. These files don’t possess the distinction between filled voxels
or empty voxels. They contain scalar values in each voxel, leading to significantly larger
files then Bruno files. Nonetheless, as a standard type of file being able to use them on
SCIRunVR system can prove beneficial, for example, in comparing the initial geometry
inputted on a Tomo process with its final result.

3.2 SCIRunVR Prototype

As a ground-up application, it required many design decisions that need clarification. On
this work, it is only considered a small portion of functionalities that may help material
engineers on their research, compared to huge potential and possibilities that VR systems
may offer. For that reason, all design decisions follow the primary rule of modularity. By
providing reusability of its parts and ease of use for future developers of SCIRunVR it
may lead to further research of this system potential.

Although modularity is a primary concern, efficiency both in terms of execution time
and memory can’t be forgotten. However, the most important performance aspect is
in maintaining the system liveliness. On point 2.7.5 the cyclic flow of unreal engine is
explained including how it triggers all sorts of tasks that update the environment and
render the new image to be displayed. Such cyclic flow gives the system its liveliness
attribute and, to maintain it, the main concern is not time or memory efficiency, but rather
the good management of resources. Such management consists in a parallel approach to
handle chunks of code that would halt the cyclic thread.

On point 2.7.2, two ways of developing with unreal engine were discussed. Only
through the editor, where logic was added through the blueprint system, or with the
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editor and visual studio to add new logic through c++ code. The chosen method is the
c++ version due to its increased time performance compared to the blueprint system.
However, best practices use blueprints for event dispatch and triggering and should be
considered to bridge VR inputs to the intended functionalities.

Subsection 2.8 gives a complete system description, including a first higher component
breakdown into the following components:

Tasks: Are computational chunks of code that may compromise system liveliness and
must be managed in asynchronous way.

Readers: To target the intended files to complete the communication between the Tomo-
GPU and SCIRunVR. Readers should be considered a particular type of task because
they may also compromise system liveliness. However such particular functionality
requires a distinct component of its own.

DataStructs: Should be devised to map appropriately to the two distinct data struc-
tures established on 2.8.1, along with any additional data required for its correct
management.

StaticLibs: To contain simple computations, that don’t compromise system liveliness,
and that are required across several components.

Model: The central component with the main purpose of displaying the geometric in-
formation of a single file by spawning a representative mesh into the word system.
However, to spawn such mesh is necessary to proceed with several computations,
either asynchronously or synchronous, and consequently it must manage them
accordingly.

Blueprint Control Management: Control logic for movement and trigger of functionali-
ties on the model component that allows interaction.

35





C
h
a
p
t
e
r

4
Implementation

In the previous chapter, the two principal components to implement, the Tomo-GPU VR
module and SCIRunVR prototype were identified. The objectives/functionalities for each
one to achive the primary goal of this work were also identified, including the communi-
cation between them. In this chapter, it will proceed with a thorough explanation of the
implementation of each component separately and how such objectives/functionalities
were achieved.

It will start with the Tomo module. It possesses a simple functionality and trivial
implementation. Nonetheless, it is of significant importance providing the foundational
information necessary for SCIRunVR that will be explained right after.

4.1 Tomo-GPU VR module

The objective of Tomo-GPU VR module developed is to initiate SCIRunVR and pass a
path to it with the location of data on the disc. It must be a full path to a specific file
or directory, where the latest allows the transmission of several files. On image 4.1 it is
possible to visualize the module interface, its parameter interface and the position in all
modules list.

4.1.1 Module Implementation

On point 2.5.4, the SCIRun module implementation was explained and four different
components exist but only two are mandatory, where each contains its own files and
functionalities. This module implementation makes use of three components: configure,
source and interface.

Configure: A simple file where it is declared basic information like module name and
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Figure 4.1: VR module with its interface inside SCIRun framework.

development status. It also provides the declaration of components used and their
relative path(source and interface) and, components not used(Algorithmic).

Source: With the overall module possessing such a simple functionality, all needed logic
is coded on this component.

One of the main characteristics of this component is the port declaration. In this case,
there are only two ports. One input and one output, where both consist of a simple
String type. The input port must be a valid path to be transmitted to SCIRunVR
system. The output port echos the used directory that may be the module input
or interface parameter. At the moment, since SCIRunVR build is only available for
windows, the implemented code is only for launching processes on windows too.

Interface(Dialog): The interface component was added to give the user more flexibility
on how he can use the system. The interface possesses a simple folder selection box,
where a path can be written or found on system file explorer. Such functionality
means that the module does not need to be connected to an existing DataFlow
and still can execute and pass information to SCIRunVR. However, if the input is
connected, it will override any interface input.

4.2 SCIRunVR UE4

This section consists of a thorough explanation of SCIRunVR system. As a ground-
up application, it required the development of many functionalities that will allow the
visualization of the geometric data on a VR environment.

On the previous chapter six different components that portrait six different high-
resolution functionalities were identified; these components will be the building blocks
for explaining this system. The first point of explanation will be an overview look
of SCIRunVR architecture and identify all classes of each component and understand
component interaction and available functionalities. After, it will be explained each class
implementation by their respective component. Having all classes defined its then possible
to proceed with the world construction explanation that will allow for the user to enter
on a visual space and visualize the intended data.
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4.2.1 System Architecture

With a system containing lots of parts and to ensure a full understanding of it first, one
will take an overview look through two distinct class diagrams where one pictures the
classes developed on c++, and the other, the ones developed on the blueprint system.

The c++ class diagram is depicted on image 4.2. Within, it is possible to identify five
of the six high-level functionalities that were identified in the previous chapter, where
they also provide organization to the folder structure of the c++ project. In each of them,
we can visualize the existing classes that provide specific functionalities to the system and
are colour-coded according to which class they extend.

One crucial functionality about this architecture can be extracted by observing the
Mesh folder area in the c++ class diagram 4.2. The two classes allow two possible
approaches for mesh spawning/construction. The ATrigStripMesh is a class that handles
the direct input of vertex position and its trig-strip topology. The ACubesMesh class, as
the name implies, uses a cube mesh created and triangulated previously, and replicates it
in each voxel position.

Another crucial characteristic to retrieve is that the Model component, more specifically,
the AModelManager is a central piece of the system that uses all other components directly
or indirectly and manages all processes accordingly. One last characteristic is about
the methods that are colour-coded in blue that means that they are exposed to the
blueprint system using the UE4 special annotation system more specifically the annotation
UFUNCTION().

The class diagram of the blueprint system targets the last of the six high-level func-
tionalities, the Blueprint Control Management. Depicted on 4.3 and where classes are also
colour-coded by their respective class extension.

The main conclusion from the blueprint diagram is the distinction between the classes
that represent the user control, with the VR gear, from the ones that represent the user in-
terface. The user control classes are the MotionControllerPawn and the BP_MotionController.
The remaining ones are the interface classes where classes that extend SWidget consist
in the construction of a widget interface that contains all the possible parameters for the
SCIRunVR system and, the UIDesk class that contains a model of a table and where the
widget is attached to it. Such desk actor is then added to the world system allowing the
user to see it and interact with it.

With the complete overview of the six high-level functionalities required, the expla-
nation of their implementation will begin by the peripheral classes of the c++ diagram,
followed by the model and then the blueprint interface control. After it, it will be explained
all the attachments established on world system along with the results of such world
construction.
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4.2.2 DataStructs

DataStructs component contains three classes to divide data structures according to its
purpose. Two of them are of particular relevance, those are VoxelData and PolygonData.
They are design to contain the two types of data identified on 2.8.1 and the root structs are
named FVoxelGraphData and FPolyObjects respectively. The main concepts to retrieve are
that both structs are organized by objects and also, on the voxel struct, only "filled"voxels
are stored for memory efficiency and are organized by their voxel index. All structs
implemented use the macro UStruct to leverage from all unreal engine features. The third
class, NRRDAux, is a simple auxiliary structure to assist header reading of NRRD files.

4.2.3 Readers

Readers are considered a specif type task because they may compromise system liveness.
For this reason, readers must extend FNonAbandonableTask class to run asynchronously
from the cyclic thread. The two implemented readers target the files used on Tomo,
identified on point 3.1. Those are the FBrunoFileReader and the FNRRDFileReader for
Bruno and NRRD file types respectively. Independent of the file type, both readers
produce one FVoxelGraphData struct and should be a rule to keep for future readers of
voxel data.

In the listing 4.1, it is described a pseudo-code implementation of FBrunoFileReader.
The file already possesses object distinction and at is head, contains information about
data size and the number of existing objects. It is followed by a sequential loop that reads
the object header containing an object ID and the corresponding number of voxels and is
then followed by a parallel loop that reads the voxels of each object. Such implementation
only allows parallelization of voxel reading because the object position is only known
after reading the previous object.

Listing 4.1: FBrunoFileReader
1 //Global scope variables

2 FString filePath;

3 FVoxelGraphData* data;

4 bool * isWorking;

5

6 procedure DoWork()

7 ReadBrunoFile();

8 *isWorking ← false;

9

10 procedure ReadBrunoFile()

11 fh ← openFile(filePath);

12 if(fh = NULL)then error;

13 else

14 //Read file header

15 data.size ← fh.Read()

16 data.nrObjects ← fh.Read()
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17 foreach i from 0 to data.nrObjects

18 data.object[i] ← fh.Read() //Read object header

19 uint8[] tmpBytes ← fh.Read()

20 parallel_for k from 0 to data.object[i].size

21 data.object[i].vox[k] ← tmpBytes[k];

The FNRRDFileReader implementation is described in pseudo-code in the listing 4.2
and is quite similar to the previous reader. However, NRRD files don’t possess object
distinction and neither fill or unfilled voxels. For that reason, an extra value called threshold
must be passed down and will allow to segment between filled and unfilled voxels. All
filled voxels are assumed to belong to only one single object, and its index (not is value)
is stored.

Listing 4.2: FNRRDFileReader
1 //Global scope variables

2 FString filePath;

3 FVoxelGraphData* data;

4 bool * isWorking;

5 int threshold;

6

7 procedure DoWork()

8 ReadNRRDFile();

9 *isWorking ← false;

10

11 procedure ReadNRRDFile()

12 fh ← openFile(filePath);

13 if(fh = NULL)then error;

14 else

15 //Read file header

16 FNRRDHeader tmp ← fh.Read();

17 data.size ← tmp.size;

18 data.nrObjects ← 1;

19 uint8[] tmpBytes ← fh.Read() //read all voxels

20 parallel_for k from 0 to data.object[i].vox.size

21 if(tmpBytes[k]<← threshold)then //segment fill and unfill voxels

22 data.object[0].vox[k] ← k;

One last clarification about the high-level functionality readers is about the class
UReaderDeclaration. It is a simple class that extends the lightweight UObject class because
it isn’t a reader but is where existing readers must be declared. Such class will then be
used to filter the allowed files whenever required.

4.2.4 StaticLibs

This component is designed for implementing simple computations that may be required
across the entire system and by themselves, they don’t compromise system liveness. Every
implemented class here should extend the UObject class, as it’s the lightweight type of
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class, allowing for faster execution times and giving all benefits of registration on the
system.

There are only two implemented classes with simple functionalities. The UCon-
verter_VoxIndexCartesian, provides a simple converter functionality from linear indexing
to 3D Cartesian coordinates and vice versa.

The UComLineInterperter is an auxiliary class that interprets the file path given by
the module created on the Tomo-GPU project. If the file path consists of a directory,
then all the directory is searched for supported files with the auxiliary registration class
UReaderDeclaration. In case of a file, the immediate up directory is searched with the same
conditions. This class possesses one method exposed to the blueprint system to be called
when needed by the user interface.

4.2.5 Tasks

With tasks providing functionalities with the most complexity, they also require to extend
FNonAbandonableTask to run asynchronously from the cyclic thread. The more complex
classes on this component are the ones focused on the implementation of algorithms
addressed in 2.8.3, that focus on the computation of meshes from a voxel mesh structure
to a triangle strip mesh structure. However, it isn’t the only case, and an individual
description follows.

4.2.5.1 FCalculateEdgeVoxels

This task was specially created to use when the mesh being applied is ACubesMesh. This
is due to the extremely high vertex count that is possible to reach with such an approach.
By spawning a cube in every voxel position, including the interior of an object it leads to
unnecessary use of resources that may hinder the liveness of the system. For that reason
was created this task that removes the voxels that are surrounded by others. Meaning that
they reside inside and then cannot be seen.

Within listing 4.3 it is a pseudo-code implementation of the central behaviour of the
algorithm. The removal is achieved by changing the flag isActive to false in the array of
voxels and causes them to be ignored when drawing the cubes. The task loops every
voxel, in parallel, of every object, sequentially, and executes the needed verifications. First
is verified if the voxel is on the border if so it will cause it to be visible from at least
one direction. Second is verified if at least one neighbour doesn’t exist. However, this
verification is not a trivial one because of the way data is stored. By only storing the index
of the filled voxels and not possessing the matrix-like organization, it is not possible to
directly access the neighbouring voxel. However, because voxels are ordered in the voxel
data struct, it is possible to perform a binary search index to speed up considerably the
search. With some arithmetic is possible to obtain the index of all its neighbours and then
search for them and with the first missed searched causes the voxel to be activated. When
all adjacent voxels are found then causes the voxel to be deactivated.
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Listing 4.3: FCalculateEdgeVoxels
1 //Global scope variables

2 FVoxelGraphData* data;

3 bool * isWorking;

4

5 procedure DoWork()

6 CalcEdgeVox();

7 *isWorking ← false;

8

9 procedure CalcEdgeVox()

10

11 foreach i from 0 to data.nrObjects

12 parallel_for k from 0 to data.object[i].vox.size

13 if(CheckIfOnBorder(data.object[i].vox[k])) then

14 data.object[i].vox[k].isActive ← true;

15 else_if(IsNeighborhoodNotFull(data.object[i].vox[k]))

16 data.object[i].vox[k].isActive ← true;

17 else

18 data.object[i].vox[k].isActive ← false;

4.2.5.2 FSimpleCubesAlgo

It is one of the tasks that focus on mesh computation. It implements the simple cubes
algorithm, where general behaviour is explained in 2.8.3. However, implementation is
more complex and requires some attention to detail.

A first concept to retain in mesh computation tasks is that all of them should populate
a FPolyObjects structure, where the mesh spawner can then interpret such structure. The
implemented version accelerates the process with parallelization by object, and its pseudo-
code implementation is on 4.4. The reason behind parallelization by object and not by
voxel is because such an approach would require an intricate locking mechanism that
could handle appropriate access to three separate data structures when adding some
new plane. Those are the vertex, triangular topology and normal arrays and their correct
indexing is essential to produce the desired surface. For this reason, it was selected
parallelization that avoids such intricate solution.

Listing 4.4: FSimpleCubesAlgo
1 //Global scope variables

2 FPolyObjects* meshData;

3 FVoxelGraphData* data;

4 bool * isWorking;

5

6 procedure DoWork()

7 SimpleCubesAlgo();

8 *isWorking ← false;

9

10 procedure SimpleCubesAlgo()
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11 parallel_for i from 0 to data.nrObjects

12 foreach k from 0 to data.object[i].vox.size

13 if(CheckFaceUp(data.object[i].vox[k]))

14 AddFace(data.object[i].vox[k], UP)

15 if(CheckFaceDown(data.object[i].vox[k]))

16 AddFace(data.object[i].vox[k], DOWN)

17 if(CheckFaceLeft(data.object[i].vox[k]))

18 AddFace(data.object[i].vox[k], LEFT)

19 if(CheckFaceRight(data.object[i].vox[k]))

20 AddFace(data.object[i].vox[k], RIGHT)

21 if(CheckFaceFront(data.object[i].vox[k]))

22 AddFace(data.object[i].vox[k], FRONT)

23 if(CheckFaceBack(data.object[i].vox[k]))

24 AddFace(data.object[i].vox[k], BACK)

The central behaviour is to loop each filled voxel, as explain, and verify each of its
six face neighbours independently. For each nonexistent neighbour, add a triangulated
square plane between them. In picture 4.4 is demonstrated the standardization of face
direction with the Cartesian axis along with an example of vertex ordering for the triangle
topology. Such order must be clockwise in the intended direction, that is outward.

Left

Back

Down

Right

Front

Up

Z

X

Y
(0,0,0)

(1,1,1)

0

1

2
0

1 2

Figure 4.4: Voxel direction standard use in simple cube algorithm implementation.

When some direction is checked, it tests first if it is a border case and if not searches for
that particular neighbour. However, it possesses the same limitation as FCalculateEdgeVox-
els task where to find its neighbour is necessary to perform a binary search due to the
nature of our data.
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4.2.5.3 FDualMarchingCubesAlgo

To implement the Dual Marching cubes algorithm, an open-source code was used, re-
trieved from [7]. However, to correctly set up third-party libraries it is required to
recompile the code with the followings restrictions:(1)a 64-bit platform, and (2) Multi-
thread environment, for them to be smoothly linked. For a more detailed explanation see
Unreal Engine 4 official wiki [9].

With the use of the third-party code, the FDualMarchingCubesAlgo focuses in converting
the used structure to store voxels into the structure used by the Dual Marching cubes
algorithm, and to, convert its output into the FPolyObjects struct that can be interpreted
by SCIRunVR. The algorithm is only given the information of each object and is then
possible to parallelize implementation by object.

4.2.6 Model

The model component is a central system, where all management of tasks and functionali-
ties occur. The core class is AModelManager and it manages a single model that is the data
of a single file. On future implementation if one wishes to open more files at the same
time, it is just necessary to create more instances of AModelManager in the world. To easily
spawn the class it extends the AActor class that is designed to easily spawn in the world
with some displacement, rotation or scaling.

There are three primary services that the model is in charge of those are data handling,
mesh spawning and the management of asynchronous tasks. The first service is trivial
where the representation of the original state of data is kept for future operation over it,
like selection of another type of mesh. The second service and third, however, requires a
more thorough explanation.

4.2.6.1 Mesh Spawning

Mesh spawning is the process of registering the mesh in the world, allowing for it be
visible to the Unreal reflection system and consequently can be used for renderization
pipeline if itself is on the user field of view. Such functionality must be executed on the
system cyclic thread and never asynchronously because it may lead to conflicts with the
engine process. For that reason, the mesh spawning is integrated into this component and
easily accessed when required.

With data organized by object, an intermediate class, named AModelObject, was created.
This class was developed to contain all the information about a single object of the model.
Currently, the only information that includes is the mesh information, and the material to
use. Future developments may use it to store additional details of the object, like centroid,
volume, surface area and more.

The mesh currently used by AModelObject can be of two types, ATrigStripMesh or
ACubesMesh and it possess the according methods to implement each type with the
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its respective data. The ACubesMesh is a simpler methodology where it just spawns
a static mesh, that is a simple cube, in each voxel position. To do that it uses the
UInstancedStaticMeshComponent that is a class native to unreal specially created to spawn
several instances of the same static mesh. Such a method is extremely inefficient due to the
majority of vertexes created not being useful for the visualization because they lay inside
the object. For that reason FCalculateEdgeVoxels should be used for better performances.
Nonetheless, either way, is still a viable way of displaying the data.

The ATrigStripMesh is a more efficient method where the direct use of vertexes with
their triangular strip topology define just the surface of the object. What enables such
approach is the use of the UProceduralMeshComponent that is a native class of UE4. The
ATrigStripMesh contains such class and maps the vertexes on FPolyObjects structure into
UProceduralMeshComponent. Currently, there are two implemented surface extractors of
voxel data explained in 4.2.5, that extract vertex information into FPolyObjects struct and
such policy should be maintained for future implementation of surface extractors.

4.2.6.2 System Flux Control

To correctly manage the model, there are two relevant groups of variables, the settings
and task tracking variables. The settings consist of three different enums that are declared
in AModelManager. Those are:

EMeshType: That discerns between the two possible ways of mesh construction. Those
are the cube replication(MT_Cubes) and the direct vertex input with its trig-strip
topology(MT_TrigStrip).

ECubesMode: Within the mesh type cube replication, there are two possible options.
Represent all voxels(CM_All) or to calculate the edge voxels of each object by
cleaning the interior ones(CM_ClearIn).

EMeshAlgorithms: Within the mesh type trig-strip, it is necessary to use some algo-
rithm to extract the surface mesh. There are two implemented surface extractors
the simple cubes algorithm(MA_SimpleCubes), and the dual marching cubes algo-
rithm(MA_DMarchCub).

For each of the previous enums, it was created one global scope variable of the
respective enum type to register the settings to be used. This variables, plus the newFilePath,
can be modified by the exposed methods to the blueprint system in AModelManager, except
the Compute() method.

The second group of variables, the task tracking, consist of just two variables, an enum
named nextTask(NT) and a bool named isWorking(IW). The enum possesses seven different
entrances to track every single state of the AModelManager, those are (1)Idle, (2)LoadFile,
(3)LoadFinalize, (4)CalcEdge, (5)CalcMesh, (6)DrawCubes and (7)DrawTrigStrip.
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This enum is completely handled on AModelManager and is set to the proper state
when the method Compute() is called from the blueprint system. The isWorking flag is
set to true by AModelManager when lunching an async thread but the responsibility of
switching to false lays down with the async task.

The explained variables will allow controlling execution and such control is imple-
mented on the Tick() function of the AModelManager class that is called at every cycle of
the cyclic thread of unreal engine and, usually, representing most of an object life cycle
2.7.5. The objective of this structure is to keep the cyclic thread of unreal engine the mini-
mum time possible processing the AModelManager functionalities by lunching threads to
perform bulks of computation and allow the engine to resume its cyclic thread so that the
entire system can keep its liveness. However, at each "Tick()" it is necessary to verify if
the thread launched has finished, if so, begin the next task. On image 4.5, is depicted the
explained behaviour with all existing states of execution and the flag changing behaviour.

NT = Idle
or

IW = true

Yes

No

NT = LoadFile
Yes

AModelManager.Tick()

Set IW = true Set NT = LoadFinalize FileType

FBrunoFileReader()

FNRRDFileReader()

For more file types,
more file reader taks

NT = LoadFinalize
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No

Check Mesh Type
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Extract required meta
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End
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NT = DrawTrig
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NT = CalcEdge
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Set NT = DrawCubes Set IW = true FCalculateEdgeVoxels() End

No

No

End

Figure 4.5: Flux diagram of AModelManager.

Despite having a system to allow parallelization, three functionalities run on the cyclic
thread. Two of them are mandatory and are the ones mentioned in the previous point. The
draw cubes and draw trig-strip depicted on the last two cases on 4.5 that may compromise
system liveness. The third one is the LoadFinalize, that is a simple process containing
some metadata extractions and will not compromise the system liveness.
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4.2.7 Blueprint Control Management

With the blueprint system consisting of a parallel programming environment, it was
developed a separate class diagram, depicted on 4.3, to distinguish what is implemented
where. This subsection high-level functionality is the only one implemented on the
blueprint system and in 4.2.1 is provided with a further sub-division of such functionality
comprising of the user-related features and the user interface(UI).

The user features consist of classes that represent the user head and hands. The
MotionControllerPawn and BP_MotionController are the classes that respectively map the
user body parts. The former extends the engine native pawn class that primarily allows
easy implementation of movement with some input and is comprised of a camera and
a hitbox to collide with the environment. The latest extends the actor class consisting of
hand mesh and where two instances of it are created to map the right and the left hand of
the user.

UIBase

ScrollBoxFiles
Type:ScrollBoxFiles

CubeModeWidget
Type:CubeModeWidget

SurfaceAlgoWidget
Type:SurfaceAlgoWidget

ModelTypeSelector
Type:RadioButtonLine

RadioButtonLine
Type:RadioButtonLine

RadioButtonLine
Type:RadioButtonLine

Buttuon1
Type:SelectebleButton

ButtuonN
Type:SelectebleButton

Buttuon1
Type:SelectebleButton

ButtuonN
Type:SelectebleButton

FileButtonN
Type:FileButton

FileButton1
Type:FileButton

Buttuon1
Type:SelectebleButton

ButtuonN
Type:SelectebleButton

Built statically on editor

Built dynamically on BeginPlay()

ApplyButton
Type:Button

QuitButton
Type:Button

HorizontalBox
Type:HorizontalBox

VerticalBox
Type:VericalBox

a ) Overall UI layout and respective hierarchy

b ) Instantiated UI over desk mesh, with dynamic elements created

Figure 4.6: Resulting UI to currently manipulate SCIRunVR prototype.

The used classes were retrieved from the Unreal Engine VR base projects. However,
they were slightly changed, and the main modification is to allow interaction with widget
objects. To achieved such functionality, it was added a WidgetInteraction object as a child
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of the hand object. Such an object is a pointer that allows the trigger of click events on
widget class objects.

The user interface consists of several widget classes that have their root on the widget
class UIBase. The UIDesk is simply a textured mesh table with a UIBase object on top of it,
that is then added into the world system.

Due to the lack of radio button like logic in the unreal framework and by being a
very suitable way to select the options available, it was implemented such logic on Ra-
dioButtonLine and ScrollBoxFiles classes using the native selectable button of UE4. Both
of them generate buttons dynamically on creation according to the number of entries
on their names list variable. However, the former possesses such list statically built on
UE4 editor and the latest searches for the files using the auxiliary static lib UComLineIn-
terperter. Furthermore the ScrollBoxFiles haves at its root a vertical scroll panel while the
RadioButtonLine haves a simple horizontal box.

The SurfaceAlgoWidget and the CubeModeWidget were created to wrap one radio button
line with their respective title to easily grey out the entire sub-widget.

The overall widget hierarchy is visible on image 4.6a, and on image 4.6b is depicted
the instantiated UIBase widget with all the settings mapped according to the available
settings of AModelManager. The instantiated widget is also possible to see the grey out
sub-menu cube mode, due to the mode type having the surface mode selected. Finally,
it is possible to visualize the two statically add buttons with name quit and apply. The
quit one exists the SCIRunVR system, and the apply button triggers the execution of the
Compute() function in AModelManager but first it sets the required settings variables that
are currently selected on the UI.

4.2.8 World Hierarchy Tree

10UEm

Room Wall

(0,0)

Y

X

Model Base

Display zone

Ui

Figure 4.7: Room plant.

The constructed world for the user to step in was
created to possess at is center the developed AMod-
elManager that will spawn its mesh dynamically and
confine such space with a room that would not be
distractive. In image 4.7, a plant view of the room
is displayed where the red dot represents the world
and AModelActor center position. However, the data
point of origin is mapped with a blue dot that is lo-
cated on the bottom left corner of the display zone.
Such point will be the root for all AModelObject in-
stances.

As a simple delimited environment, the world only possesses one level tree. The
implemented tree structure is depicted on image 4.8. The majority of the tree construction
was elaborated on the editor. The great majority of objects is attached to the room that is
a blueprint class named BP_DemoRoom, that is one of the many UE4 asset resources. It
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extends the actor class, and it spawns a variety of meshes on construction to build a room.

SCIRunVR_Level
Type:Level

PlayerStart
Type:PlayerStart

Room
Type:BP_DemoRoom

BackGroud_Cue
Type:AmbientSound

ModelBase
Type:StaticMeshActorLamp0 LampN UIDesk

Type:UIDesk RoomMesh0 RoomMeshN

ModelManager
Type: ModelManager

AModelObject1
Type:ModelObject

Mesh1
Type:TrigStrpMesh

 or CubeMesh

AModelObjectN
Type:ModelObject

MeshN
Type:TrigStrpMesh

 or CubeMesh

UIBase
Type:UIBase

DeskMesh
Type:StaticMeshActor

Built dynamically on demand

Built statically on editor

Built dynamically on BeginPlay()

Figure 4.8: Level n-ary tree structure.

To the room, three major groups are attached. The lamps, that consist of two different
lamp meshes where each instantiated four times and provide illumination to the room.
The UIDesk, that is the object that instantiates into the level the UI. And finally the
Model group, that first has a trapezoid like mesh that delineates the area where data will
be placed, and it is attached to the central object AModelManager that possesses all the
implemented logic.

The final aspect of world construction is the association with the created blueprint
class SCIRunGameMode that extends the AGameMode class. The only alteration to such
class was to map the desired pawn to the MotionControllerPawn that will be spawned
attached to the level root and will be "possessed"by the user to control it.

With this world construction, the achieved results can be seen in the next images. First
image 4.9, pictures an NRRD file, distinguishable by the use of only one colour due to
being only one object, using the surface algorithm dual marching cubes. Second image
4.10 using the same NRRD file but using the simple cubes algorithm. The third and
last image 4.11, pictures an exemplary Bruno file type that textures different objects with
different colours.
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Figure 4.9: Prototype running NRRD file with dual marching cubes surface algorithm.

Figure 4.10: Prototype running NRRD file with simple cubes surface algorithm.

Figure 4.11: Prototype running Bruno file type with dual marching cubes surface algo-
rithm.
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5
Evaluation

The performance evaluation will be branched into three major categories. The first one is
dedicated to time execution analyses of all the involved tasks to access the tasks scalability
and general waiting time for data to be computed. The second is for discussion of the
drawing time results. With the drawing functionality not falling into the classification of
task on this project because of not being an asynchronous computation, it requires some
special consideration.

The third and final category will provide the validation necessary to the system. This
is done by verifying the system liveliness characteristic, by measuring frame rate per
second (FPS). By measuring it will allow knowing the viability of the solution and, if
viable, what is the maximum amount of data possible. To access such viability, one first
rule must be established that is the minimum of accepted FPS that will grant the quality of
"alive". Such bottom line will be established on the 30 FPS or the equivalent 30ms between
frames. Such is the number that is required for the image generated not appear delayed
for the user.

5.1 Test Environment

To describe the full test environment first and foremost it is necessary to describe the hard-
ware involved. The tests were executed on a desktop with the following characteristics:

Motherboard: MPG Z390 Gaming Plus (MS-7B51)

CPU: Intel Core(TM) i5-9600 CPU 3.7GHz, 6 cores, 6 logical cores.

Graphic card: NVIDIA GeForce RTX 2070

StaticLibs: 16Gb, 2666MHz
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To complete hardware specs, the used VR gear its the HTC Vive. It consists of a head-
mounted stereoscopic display and two hand controllers. Such gear possesses a crucial
technicality that must be addressed. Such technicality is the FPS locking mechanism that
it contains that, depending on the system liveness, it will lock the system FPS to 90, 45 or
30. Only if less then 30 will decrease frame rate gradually until the 10 FPS are reached.
When 10 FPS are reached it blocks VR renderization.

Another description required is what data was tested. The files tested comprise of
three distinct samples of 100, 200 and 400 voxel grid size. Such samples are initially stored
in three NRRD files and were transformed into Bruno files on the TOMO-GPU project
with a segmentation value of 90. For that reason, the SCIRunVR will use an equal value
on segmentation on the NRRD files. This will allow, for each respective pair of files of the
same size, to posses similar geometry, however, is not completely equal due to cleaning
functionality on the Tomo-GPU system.

To finalize environment test characterization, one last description of how it was made
is required. First, all graphic settings were placed on the level tree. Second, the execution
of tests was realized in the editor environment and not on the stand-alone version. This
means that all executions possess some overhead due to the spending of computation
resources on the editor. Nonetheless, it is possible to consider such characteristic the
worst-case scenario and consequently derive the maximum size of data for the worst-case
scenario.

5.2 Tasks Execution

Such measures must be undertaken with different file sizes, for obvious reasons, and with
different file types where the various parallelization approaches will affect each type of file
differently. Such observation doesn’t possess the focus of validation but instead to check
waiting times for data to be processed and judge if it was correct to employ asynchronous
thread processing.

All the measurements of time in this section are established by averaging the time
spent over three executions where it should be enough due not being expected much
variance.

5.2.1 Load

It is possible to depict load time behaviour on the graphic in 5.1. With time mapped on
the logarithmic scale, it is possible to verify that that time scales exponentially. However,
Bruno file types scale better than NRRD files. With very similar palatalization politics, the
cause of such difference lies in the file structure where Bruno file types, that store just the
filled voxels, are much smaller, allowing for greater scalability. With the graphic is also
possible to conclude that it was a good design decision to establish the loading of files
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as an asynchronous task by observing that such files will easily pass the 30ms execution
time.

Figure 5.1: Execution times of loading tasks with different data size of both supported
files.

5.2.2 Calculate Edges

The edge calculation costs depicted on image 5.2 is also possible to retrieve the exponential
costs with the file size and where Bruno file type execution times scale better then NRRD
files. It is also possible to verify the good design decision of parallelizing such task where
it may easily break liveness of the system when passing the 30ms execution time.

Figure 5.2: Execution time of edge calculation with different data size of both supported
files.

5.2.3 Surface Extraction

In this subsection is aggregated the two surface extractors implemented. Those are the
simple cubes algorithm depicted on image 5.3a and the dual marching cubes depicted on
5.3.
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Within each one, it is possible to derive their exponential behaviour, keeping into
consideration that time is on a logarithmic scale. As the most time-consuming tasks, the
async implementation was of paramount importance avoiding large time gaps where the
image would "freeze".

Generally speaking, the simple cubes algorithm possesses higher execution times
in spite of being a simpler method. This is due to the lack of a matrix-like data struct
where it would be possible to directly access some neighbour, instead of searching for it.
Such an approach would lead to much better efficiency and possibly allow to outperform
the dual marching cubes algorithm. Nonetheless, execution times on Bruno files are
quite acceptable due to two aspects. First, the parallelization approach over each object
and second because by dividing the model into objects reduces the search space for the
neighbour, reducing the time it takes to find it.

The dual marching cubes have an extremely well performance over NRRD files
because they contain just one object allowing for all information to be passed just once
and computed once leading to such results.

a ) Simple cubes algorithm. b ) Dual marching cubes algorithm.

Figure 5.3: Surface extraction time execution.

5.3 Draw Execution

The mesh drawing functionality is one that could not be implemented asynchronously
because it could lead to conflicts with the engine itself. As is possible to determine in 5.4,
some of the executions exceed the 30ms line hindering the system liveness.

The two axis on the image is mapped on a logarithmic scale, and the lines represent a
linear regression of the execution times of each mesh. With them is easily analysed that
trig-strip topology drawing is more costly for the same amount of vertexes. Nonetheless,
it is necessary to remember that to draw the same data with both approaches, results in
considerably more vertexes on the cubes approach. This means that the same model is
not mapped to the same vertex count, consequently not aligned vertically.
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Figure 5.4: Execution times of mesh drawing by the number o displayed vertexes for both
supported mesh techniques.

5.4 Liveness Test

The liveness test will is the one that will provide algorithmic validation over the system. In
real-time renderization engines, the usual measure of liveness is the frame rate per second
or FPS, that counts the number of images produced by the cyclic thread of the engine.
As defined initially in this chapter, the bottom line for FPS count will be established on
30FPS however, was not established how it would be retrieved. Such a method consists
of averaging the FPS count over 30 seconds after all computations have finished.

The FPS rate of the system depends on the number of vertexes that are accounted
and the type of meshed used, when not dealing whit any other logic implemented by the
programmer. For this reason, the mapping of data will be done by the number of vertexes
for each of the mesh types independent of what algorithm or steps were used to archive
the vertex count.

Figure 5.5: FPS average displaying with both types of mesh depending on vertex count.

The results are depicted in 5.5 where it is possible to discern the FPS lock that the
VR gear makes on the 45 and 30 FPS and after it decreases steadily. Other important
information is that it wasn’t possible to test all the Cubes mesh possibilities due to frame
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rate dropping bellow 10FPS on the 200 and 400 file sizes where the interior wasn’t removed.
The remaining conclusions are: that this data fits best a logistic regression, that is

represented by a line due to the logarithmic scaling on the x axis. And that the trig-strip
topology is much better to maintain the FPS count high, allowing a vertex count near the
two million vertexes.
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6
Conclusion

The two primary objectives of this work being the construction of a prototype system
that handles Tomo-GPU data and full integration in Tomo-GPU system were completed.
Following the validation structure accessed on ssec:VisValFram, the system validation was
only on the algorithmic level. However, all upstream validations were discussed in this
work and should influence positively in further down validations.

With results showing the algorithmic viability of SCIRunVR system it has all the
potential to aid material scientist in their studies of composite materials in the particular
case of studying the effects of object geometry on the composites developed. Furthermore,
with implementation of more functionalities, like individual objects possessing further
drill down information, it could lead to even more benefits on knowledge extracted then
just geometry understanding.

6.1 Future Work

With such novice system using a powerful new interface tool the possibilities are huge. It
is possible to divide future work in to distinct sections those are the implementation of
new features or the further down validation levels on the framework in 2.3.

The implementation of new features varies greatly, from the insertion new surface
extraction algorithms, to the supported of more types of files and their respective geometry.
The further down validations comprise mainly of user test cases. There are three possible
user studies those are: (1)Visual encoding idiom layer study that targets the performance in
shape perception with SCIRunVR against the normal used environment on SCIRun.(2) The
interaction idiom study that targets performance on both user control and user interface
with both systems against each other again. (3)Final field study that targets performance
with real users.
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