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Spatiotemporal flood hazard and flood risk assessment using 

remote sensing techniques 

Case study: Khartoum State, Sudan 

 

ABSTRACT 

The state of Khartoum being the most populated state in Sudan, faces the 

consequences of floods recurrence almost annually during rainy season. Policy 

makers and on ground NGOs need to tackle the hazard of floods in an effective and 

efficient manner. Recent research demonstrated the capabilities and potentials of 

remote sensing in flood hazard and risk mapping. This study aims to map flood 

hazard and assess the risk of floods in state of Khartoum, Sudan. In order to identify 

the flood hazard in state counties, an inundation indicator is used, namely the 

relative frequency of inundation (RFI). 

Flood events that occurred from 1988 to 2018 were mapped using Landsat satellite 

images, and maximum flood extent was then delineated. RFI was obtained using 

maximum flood extent maps and served as the flood hazard map.  We developed a 

Land Cover Land Use (LCLU) map using Landsat 8 to identify affected urban and 

croplands areas in the state of Khartoum. RFI values was used along with LCLU 

map to assess state counties, and to assess the vulnerability of public facilities 

(health and educational facilities) using zonal statistics. It was demonstrated that, in 

terms of average RFI values for LCLU classes per county, croplands had the 

highest flood hazard, and Urban areas carried a relatively moderate flood hazard. 

The results of this study indicate that croplands on the riverbanks are the most 

inundated areas in the state of Khartoum, and the most urbanized counties have the 

highest flood hazard. 
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1. INTRODUCTION 

Floods come as the most frequent natural disaster in the current century. In 

2018, more than 38% of the global natural disasters were accredited to floods, 

causing 24% of total deaths, affecting 34.2 million people, and costing 19.7 billion 

US$ in economic losses (CRED & UNISDR, 2018). The United Nations Office for 

Disaster Risk Reduction (UNDRR), defines risk as the function of hazard, exposure 

and vulnerability (UNDRR, 2019). By following this equation, proper flood risk 

assessment requires identifying flood hazard, exposed elements, and their degree of 

vulnerability (Kron, 2005). Sudan have followed a recurring pattern of flooding 

since the early nineteenths and twentieth centuries (Davies & Walsh, 1997). 

Khartoum state is the most populated state in Sudan, the home of the capital city of 

Sudan, Khartoum city. Recent extreme flood events such as in 2013, has left 78 

casualties, and 499,980 people were affected, most of them in Khartoum state 

(UNOCHA, 2013). The availability of data for areas with flood hazard will help 

policy makers, NGOs and grass-root initiatives to take effective and efficient 

measures in risk assessment and risk reduction. 

1.1. Motivation  

The motivation behind this research, to find alternative sources for flood hazard 

mapping, and to be able to assess flood risk independently from ground data, which 

might not be available in near real time, and in which case satellite images can be of 

great help. The scope time of this research is 30 years, from 1988 to 2018, in the 

state of Khartoum, Sudan. The use of time series satellite images provides an 

insight to flood pattern in an area with very limited ground data to produce maps to 

visualize the flood extent, which is essential to rapid response to disasters. 

1.2. Aim and Objectives 

This research aims to assess flood hazard and risk in the state of Khartoum, 

Sudan, by analysing satellite images for a period of thirty years, to identify flood 

prone areas. This aim will be achieved through the following objectives: 

• Collect LS images for flood events in the period 1988 - 2018. 
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• Classify images to create flood extent maps. 

• Create maximum flood extent maps per flood event from flood extent maps. 

• Calculate the relative frequency of inundation (RFI) indicator from 

maximum flood extent maps and create flood hazard map. 

• Assess flood risk using flood hazard map over (urban areas, croplands, 

educational facilities, and health facilities). 

In order to achieve the above-mentioned objectives, Landsat satellite images 

will be classified to produce flood extent maps, these images will then be integrated 

per flood event to create maximum flood extent maps. Relative Frequency of 

Inundation (RFI) will be calculated from the maximum flood extent maps, then 

flood hazard map will be created from this indicator. The flood hazard map will be 

further analysed over urban areas, cropland areas, educational facilities, and health 

facilities. 

1.3. Thesis Outline 

The thesis is structured as follows. This chapter addresses thesis introduction, 

its relevance, motivation, aim and objectives. The second chapter is dedicated to the 

reviewed literature on flood risk assessment using remotely sensed data and flood 

risk assessment in Africa in general and Sudan in particular. The methods used for 

mapping flood hazard and flood risk assessment are discussed in Chapter 3. Results 

and discussions are presented in Chapter 4. And finally reached conclusions are 

given along with, limitations, and recommendations in Chapter 5. The thesis then 

finishes with bibliographic references and Annexes. 
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2. Literature Review 

The recurrence of floods in a certain location usually indicates a flood hazard, 

and that is usually recognized by flood modelling. Different flood modelling 

methods which discussed with elaboration by (Teng et al., 2017) require intensive 

data about the flood area that are associated with ground observation, such as cross 

sections, water levels and discharge, rainfall data, and elevation and terrain data. 

The output is a flood map for a certain scenario depending on the model inputs. 

These models are used along with exposed elements, and their vulnerability to 

calculate possible loss of life and economic losses (Jonkman et al., 2008). 

Multi-Criteria Analysis methods (MCA) are used widely in research, for 

decision making process in flood hazard mapping and risk assessment. Where some 

research rely on the use of hydraulic modelling, to produce flood hazard maps and 

risk assessment maps (Apel et al., 2009)(Masood & Takeuchi, 2012)(Alaghmand et 

al., 2010), and some use MCA to validate produced maps (Franci et al., 2016; 

Papaioannou et al., 2015). 

2.1. Flood risk assessment using remotely sensed data 

The use of satellite images in mapping rivers and their extent, as well as its use 

in flood monitoring and integration with hydrodynamic models for flood mapping 

have been reviewed extensively by (Marcus & Fonstad, 2008), and (Schumann et 

al., 2009). Marcus & Fonstad review the use of optical remote sensing, using air-

borne and satellites to map rivers at sub-meter resolutions, they discuss the 

applications of river mapping, remote sensing methods, and obstacles rising from 

high resolution mapping, whereas Schumman et. al review recent literature on the 

progress in different techniques for flood mapping using remotely sensed data, 

techniques such as flood extent extraction and water stage modelling, where SAR 

images are used for their abilities to detect floods regardless of cloud cover and day 

time, along with the use of high-resolution topographic data. They then review 

research that strongly suggest that integrating remotely sensed data with hydraulic 

models improve flood modelling significantly, by using remote sensing data for 

model evaluation and calibration. 
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More studies on different range of remotely sensed data have emerged, such as 

the use of Very High Resolution (VHR) images; (Franci et al., 2016) used GeoEye-

1 satellite imagery, along with and MCA process called Analytical Hierarchy 

Process (AHP) to produce a flood hazard map, in which elements like slope, 

distance to channels, drainage texture, geology, and land cover were weighed and 

used as the criteria for a proposed hazard index. 

(Cai et al., 2017; Kumar & Acharya, 2016; Skakun et al., 2014) (Cai et al., 

2017; Kumar & Acharya, 2016; Skakun et al., 2014) used multitemporal satellite 

images of medium resolution. (Kumar & Acharya, 2016) used Landsat images and 

Digital Elevation Model (DEM) for the 2014 flood events in Kashmir Valley to 

derive a flood hazard and risk assessment maps, where Normalized Difference 

Vegetation Index (NDVI) was used to represent vulnerability in land use to further 

identify hazard and assess the risk on standing crops. 

In their work for flood hazard mapping in Namibia, (Skakun et al., 2014) 

studied flood hazard for the Katima Mulilo region between 1989 and 2012, they 

used Landsat satellite images for the extraction of flood extent maps and created a 

flood hazard map. They further produced a flood risk assessment map, calibrating 

the hazard map and a risk assessment report as well as road network and dwelling 

units. 

The flood risk assessment carried by (Cai et al., 2017) in the Barotse floodplain, 

Zambia, used the same framework laid out by (Skakun et al., 2014) for mapping 

maximum flood for 25 years of Landsat images. They created four distinct classes 

in oppose to a binary map. For validation and risk assessment, survey data from 

residents to assess personal livelihood and household damage, in addition to rainfall 

and river gauge data were used. 

Other research looked into the use of remotely sensed data such as precipitation 

and flood extent maps along with topographic data as the input for hydrologic flood 

models, for model calibration and evaluation (Khan et al., 2011). 

The use of Synthetic Aperture Radar (SAR) images for flood monitoring has 

grown in popularity due to the capabilities of SAR images for flood delineation 
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independently of cloud cover (Marcus & Fonstad, 2008; Pulvirenti et al., 2011; 

Scarpino et al., 2018; Schumann et al., 2009), and the availability of SAR images 

thanks to Sentinel mission (Poursanidis & Chrysoulakis, 2017). 

2.2. Flood Risk Assessment in Sudan 

Within the African continent, Sudan is considered to be a flood-prone country 

(Li et al., 2016). As a country associated with floods, it also exhibits a pattern of 

extreme flash floods, following a recurring pattern since the early nineteenths and 

twentieth centuries (Davies & Walsh, 1997). In their study, (Sutcliffe et al., 1989; 

Walsh et al., 1994) had also indicated that extreme flood damage was not only 

caused by the Nile flood in Greater Khartoum area (the main three cities in 

Khartoum State; Khartoum, Khartoum North – also referred  to as Bahri, and 

Omdurman), but also due to the heavy rain storms that lasted for 4-5 consecutive 

days causing a runoff, and the ephemeral watercourses throughout the area. One of 

the earliest analysis of the floods impact over Sudan was carried out by (Sutcliffe et 

al., 1989) for the 1988 flood event, where Meteosat Cold Cloud Duration (CCD) 

measurements were used along with aerial photography. Recent studies conducted 

on flood hazard mapping in Sudan included geo-statistical data analysis using 

Inverse Distance Weighting (IDW) method for rainfall in situ-stations,  as well as 

quantitative interviews to calculate a social vulnerability index for Khartoum State 

for 2013 – 2014 floods (Mahmood et al., 2017), also the opinions of experts on the 

same flood events through a qualitative approach (Horn & Elagib, 2018) which 

suggested a flood management framework, that included flood risk mapping as a 

part of data resource enhancement. The shortage in flood hazard mapping and flood 

risk assessment in Sudan, is the motive behind this research. 

Even though rapid flood mapping has been carried over the last decade by the 

United Nation Institute for Training and Research (UNITAR) program, UNITAR’s 

Operational Satellite Applications Program (UNOSAT) in a semi real-time analysis 

(Sudan maps | UNITAR, n.d.), Khartoum state stills suffers from the consequences 

of flash floods. 
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3. Methods 

Figure 1 illustrates the methodology that was followed during this study. In the 

flow chart flood events are mapped using Landsat 5, Landsat 7, and Landsat 8 

images. Within the flood event, per each Landsat image, a flood extent map was 

produced using image classification, and finally all flood extent maps are used to 

calculate the maximum flood extent map per flood event. In this study the timeline 

for mapping floods starts from 1988 until 2018, spanning 30 years. The maximum 

flood extent maps are then used to produce the flood hazard map using Relative 

Frequency of Inundation RFI Index. For flood risk assessment a Land Cover Land 

Use (LCLU) map is produced, the flood hazard map is analyzed using the LCLU 

map as well as health facilities and educational facilities data from Open Street 

Maps (OSM). The following sections details all the steps of the methodology. 
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Figure 1: Methodology Flow Chart 
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3.1. Study Area 

Sudan is a country located in the northeastern part of the African continent. The 

country is bordered by Egypt, Libya, Central African Republic, Chad, South Sudan, 

Ethiopia, Eritrea, and the Red Sea. 

Khartoum state is the most populated state of the 18 states of Sudan, although 

the smallest in term of area. Its capital is Khartoum city, which is also the national 

capital of Sudan. Khartoum is situated between 31˚E and 35˚E longitude and 15˚N 

and 17˚N latitude. Khartoum state counts for 17% of the total population of Sudan, 

Figure 2 shows the boundary of the state in addition to the state counties. The state 

consists of 7 counties: 

• Khartoum 

• Jebel Awliya 

• Umdurman 

• Oumbada 

• Karrari 

• Bahri 

• Sharg Alneel 

 

Figure 2: Study Area 
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The Nile river, the world’s longest river is formed in the city of Khartoum, by 

the joining of the Blue Nile that originate from Tana Lake in Ethiopia, and the 

White Nile that originate from Victoria lake in Uganda. The state has an arid 

climate, with a rainy season from July to September. Khartoum has a  history of 

recurrent flooding, pluvial and fluvial (Davies & Walsh, 1997), and extremely 

vulnerable due to its high population.   

3.2. Data 

3.2.1. Remotely Sensed Data 

For this research 70 remotely sensed images acquired Landsat different 

missions were freely obtained for the period 1988 – 2018 and downloaded from the 

United States Geological Survey (USGS) EarthExplorer website 

https://www.earthexplorer.usgs.gov, details about spectral band specifications for 

each Landsat sensor used are available in Annex 1. The images were selected based 

on the Dartmouth Flood Observatory’s Active Archive of Large Floods 

(Brakenridge, n.d.). A total of 21 flood events were recorded. When acquiring the, 

images for the flood event on October 1997 were not available on the EarthExplorer 

archive. Table 1 shows more details about acquired images. 

Table 1: Remotely Sensed Images specifications 

Acquisition 

date 
Path/Raw Sensor 

Spatial 

resolution 
Landsat 

Number 

of bands 

25/08/1988 173/049 TM 30 m Landsat 5 7 

02/09/1988 173/049 TM 30 m Landsat 4 7 

10/09/1988 173/049 TM 30 m Landsat 5 7 

18/09/1988 173/049 TM 30 m Landsat 4 7 

18/08/1991 173/049 TM 30 m Landsat 5 7 

05/09/1992 173/049 TM 30 m Landsat 5 7 

23/08/1993 173/049 TM 30 m Landsat 5 7 

10/08/1994 173/049 TM 30 m Landsat 5 7 

26/08/1994 173/049 TM 30 m Landsat 5 7 

16/09/1996 173/049 TM 30 m Landsat 5 7 

02/08/1997 173/049 TM 30 m Landsat 5 7 

18/08/1997 173/049 TM 30 m Landsat 5 7 

03/09/1997 173/049 TM 30 m Landsat 5 7 

https://www.earthexplorer.usgs.gov/
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19/09/1997 173/049 TM 30 m Landsat 5 7 

05/10/1997 173/049 TM 30 m Landsat 5 7 

21/10/1997 173/049 TM 30 m Landsat 5 7 

06/09/1998 173/049 TM 30 m Landsat 5 7 

22/09/1998 173/049 TM 30 m Landsat 5 7 

08/08/1999 173/049 TM 30 m Landsat 5 7 

24/08/1999 173/049 TM 30 m Landsat 5 7 

09/09/1999 173/049 TM 30 m Landsat 5 7 

13/08/2001 173/049 TM 30 m Landsat 5 7 

29/08/2001 173/049 TM 30 m Landsat 5 7 

14/09/2001 173/049 TM 30 m Landsat 5 7 

11/08/2003 173/049 ETM+ 30 m Landsat 7 8 

17/09/2005 173/049 ETM+ 30 m Landsat 7 8 

19/08/2006 173/049 ETM+ 30 m Landsat 7 8 

04/09/2006 173/049 ETM+ 30 m Landsat 7 8 

20/09/2006 173/049 ETM+ 30 m Landsat 7 8 

06/10/2006 173/049 ETM+ 30 m Landsat 7 8 

07/09/2007 173/049 ETM+ 30 m Landsat 7 8 

23/09/2007 173/049 ETM+ 30 m Landsat 7 8 

09/10/2007 173/049 ETM+ 30 m Landsat 7 8 

27/08/2009 173/049 ETM+ 30 m Landsat 7 8 

12/09/2009 173/049 ETM+ 30 m Landsat 7 8 

06/08/2013 173/049 ETM+ 30 m Landsat 7 8 

07/09/2013 173/049 ETM+ 30 m Landsat 7 8 

05/07/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

13/07/2016 173/049 ETM+ 30 m Landsat 7 8 

21/07/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

29/07/2016 173/049 ETM+ 30 m Landsat 7 8 

06/08/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

14/08/2016 173/049 ETM+ 30 m Landsat 7 8 

22/08/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

30/08/2016 173/049 ETM+ 30 m Landsat 7 8 

07/09/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

15/09/2016 173/049 ETM+ 30 m Landsat 7 8 

23/09/2016 173/049 OLI_TIRS 30 m Landsat 8 11 

25/08/2017 173/049 OLI_TIRS 30 m Landsat 8 11 

02/09/2017 173/049 ETM+ 30 m Landsat 7 8 

10/09/2017 173/049 OLI_TIRS 30 m Landsat 8 11 

18/09/2017 173/049 ETM+ 30 m Landsat 7 8 

26/09/2017 173/049 OLI_TIRS 30 m Landsat 8 11 

17/06/2018 173/049 ETM+ 30 m Landsat 7 8 

25/06/2018 173/049 OLI_TIRS 30 m Landsat 8 11 
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03/07/2018 173/049 ETM+ 30 m Landsat 7 8 

11/07/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

19/07/2018 173/049 ETM+ 30 m Landsat 7 8 

27/07/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

04/08/2018 173/049 ETM+ 30 m Landsat 7 8 

20/08/2018 173/049 ETM+ 30 m Landsat 7 8 

12/08/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

28/08/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

05/09/2018 173/049 ETM+ 30 m Landsat 7 8 

13/09/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

21/09/2018 173/049 ETM+ 30 m Landsat 7 8 

29/09/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

08/11/2018 173/049 ETM+ 30 m Landsat 7 8 

16/11/2018 173/049 OLI_TIRS 30 m Landsat 8 11 

24/11/2018 173/049 ETM+ 30 m Landsat 7 8 

3.2.1. Auxiliary Data 

Health facilities and educational facilities across the country were available by 

OSM through United Nations Office for the Coordination of Humanitarian Affairs 

(UNOCHA)’s humanitarian response online portal 

https://www.humanitarianresponse.info. 

OSM provides freely available crowdsourced spatial data, these data though may 

not be comprehensive, yet are regularly updated. 

3.3. Mapping Flood Extent 

In order to produce flood extent maps Landsat images were classified to the 

three categories suggested by (Skakun et al., 2014); water for the three Nile rivers 

and flooded areas, no water for all dry lands, and no data for areas covered with 

clouds, cloud shadows or missing data. The values corresponding to each class is 

illustrated in Table 2, this information is imperative to understanding further work. 

Since images were not cloud free, training samples had to be collected per image 

for the three classes. 

Afterwards, the Train Support Vector Machine Classifier tool was trained 

using Landsat image and training samples shapefile. The output is a Classifier 

Definition file. After that the classifier definition file is used as an input in addition 

https://www.humanitarianresponse.info/
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to the Landsat image for the Classify Raster tool, which output is a classified 

image, that is the flood extent map. The tools are within the Segmentation and 

Classification toolbox in the Spatial Analyst Tools in ArcMap 10.6. 

Table 2: Classes and the corresponding values 

Class Name Value 

Water 0 

No Water 1 

No Data 2 

3.4. Mapping Maximum Flood Extent 

After obtaining a map of flood extent for all the acquired images, a maximum 

flood extent map is produced for every flood event, in which flood extent maps 

within the flood event are used. Every pixel on the map is assigned one of the three 

classes mentioned above. A pixel is assigned water if at least the same pixel was 

assigned water in one of the flood extent maps, it is assigned no water if the same 

pixel was assigned as no water in all the flood extent maps, and finally it is assigned 

no data if it was in all the flood extent maps were assigned no water or no data. 

In order to calculate the maximum flood extent for each flood event, Raster 

Calculator tool in the Map Algebra toolbox was used. A simple multiplication of all 

flood extent maps was performed to obtain an intermediate map with water class, 

no water class and other classes of values multiples of the number 2. The maximum 

flood extent map is finally produced after assigning all other classes to the no data 

class value 2, by using Reclassify tool in the Reclass toolbox. Both the Map 

Algebra toolbox and Reclass toolbox are in the Spatial Analyst Tools in ArcMap 

10.6. 
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3.5. Relative Frequency of Inundation 

In statistics, the frequency of an event is the number of times this event has 

occurred in a dataset, and relative frequency is the ratio of the frequency of an event 

occurring in a dataset to the number of all events occurring in the same dataset. 

From this we can induce that the frequency of inundation is to be calculated per 

pixel from the maximum flood extent maps produced for all flood events. The 

frequency of inundation equals the number of times a pixel was classified as water. 

In order to calculate the relative frequency of inundation, the frequency of 

inundation per pixel is the number of times it was classified as water divided by the 

total number of times the pixel was classified as water and no water. To calculate 

RFI value first a constant raster named Water constant raster with 0 value was 

created, another constant raster was created, named No Water constant raster and its 

value was 1, these two raster files were created using Create Constant Raster tool in 

the Raster Creation Toolbox. After that the tool Equal To Frequency in the Local 

toolbox was used to calculate the Water Frequency Raster and No Water Frequency 

Raster, in each turn one of the constant raster files was used in addition to all 

maximum flood extent maps. A total frequency raster was created using the Raster 

Calculator tool by adding the water and no water frequency raster files to each 

other. In order to calculate the RFI value any pixel in the water frequency file equal 

to 0 was set to null using the Set Null tool in the Conditional Toolbox. Lastly, in 

order to obtain the RFI map the Raster Calculator tool was used one more time to 

divide the water frequency raster by the total frequency raster, all the tools used 

reside in the Spatial Analyst Tools in ArcMap 10.6. The process is illustrated in 

Figure 3. 
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Figure 3: RFI Mapping Process 

3.6. Flood Risk Assessment 

3.6.1. LCLU Map 

Since there were no LULC maps of the study region readily available, 

we produced one as described below. The LULC map of Africa disclosed 

by FAO 

(http://www.fao.org/geonetwork/srv/en/main.search?title=land%20cover; 

retrieved 10 January 2020) is very coarse. (Salman et al., 2008) published a 

LULC map of greater Khartoum-Sudan, but its digital version is not 

available, and the authors did not answer to the request to share it in due 

time. 

The Khartoum state LCLU map was produced to identify flood prone areas, to 

be used later along with the flood hazard map produced from the RFI index. The 

LCLU classes were inspired from (Broxton et al., 2014)’s LCLU Map of Africa. 

The three main classes were Water Bodies, Urban, Cropland and Vegetation, in 

addition to these classes, the remaining un-urbanized areas that are far from the 

rivers’ banks were classified as Barren Land. 

In this step a Landsat 8 image from 28/12/2016 was acquired and clipped into 

the study area extent. In order to obtain high accuracy for classification the 
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Normalized Difference Built-up Index (NDBI) was calculated and combined with 

the original image. NDBI is used to detect urbanization of land cover (Zha et al., 

2003). NDBI is calculated by subtracting the Near Infrared (NIR) band from the 

Short-Wave Infrared (SWIR) band divided by the sum of the two bands, illustrated 

in the formula below: 

NDBI = (SWIR – NIR) / (SWIR + NIR) 

After that, training samples were collected and then the Support Vector 

Machine classifier was trained using these samples along with the clipped image. 

Finally, the image was classified and the LCLU map produced. 

3.6.1.1. LCLU Inundation  

To properly analyze the flood extent in relation to the pre-flood status, a change 

matrix is produced for all maximum flood extent maps, where LCLU map is used 

as the pre-flood reference for the study area. This is done using the Combine tool in 

Spatial Analyst Toolbox in ArcMap 10.6 to create a change map, from which flood 

percentage per class is calculated. 

The output of the tool is a new raster containing all the combination 

possibilities that occurred from combining a maximum flood extent map with the 

LCLU map. The number of pixels changed to maximum flood extent map from 

LCLU class is laid out in the raster’s attributes table, which serves the base for the 

change matrix. The change is calculated from dividing the changed pixels per 

maximum flood extent class by the total number of pixels per LCLU class. 

3.6.2. Zonal Statistics 

The LCLU and RFI maps were clipped into the seven counties of the state. 

Zonal statistics analysis was performed per county for all four classes. The use of 

zonal statistics for each class in each county provides a better understanding since 

counties like Bahri and Sharg Alneel are mostly barren, for which a specific 

measurement of RFI values for urban and cropland and vegetation classes are 

needed for accurate assessment. 
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In addition to analyzing inundation for urban and cropland and vegetations 

areas, health facilities (hospitals, clinics, health centers, and pharmacies) and 

educational facilities (nurseries, kindergartens, elementary schools, high schools, 

colleges, and universities) were analyzed. OSM point shape files for health facilities 

and educational facilities were the source data in this analysis. OSM files were 

clipped for the study area’s boundary then used as an input for zonal statistics along 

with RFI map. For each point the average RFI value was used. 
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4. Results and Discussion 

In this chapter, results obtained from following the methods described in 

chapter 3 are illustrated in the sections below. A discussion of the humanitarian 

response mapping is demonstrated in the final section of this chapter. 

4.1. Flood Extent Maps 

Out of the 70 acquired images, 67 images were processed, the remaining 3 

images were excluded because they were covered with more than 75% cloud. 70% 

of the classified images’ cloud cover was less than 15% and the maximum cloud 

cover recorded was 71%, which was found acceptable to work with.  

4.1.1. Scan-Line Corrector (SLC) problem 

All images acquired from Landsat 7 ETM+ after May 31, 2003 suffered from 

data gap due to the permanent fail of the Scan-Line Corrector (SLC). Due to this 

problem some of the flood extent maps suffered from a false water classification, 

this issue can be noticed in Figure 4, in an image acquired on October 06, 2006 and 

corresponding flood extent map. The scan lines pixels exhibit similar characteristics 

to water class features, hence when collected as No data in training samples, these 

pixels affected the final classified map, and water was misclassified as No data. We 

solved this problem by not including such pixels in the training samples as not to 

confuse the classifier, and as a result some classified images ended up with false 

positive values for water class. Several authors (Chen et al., 2011; Maxwell et al., 

2007; Pringle et al., 2009; Zhang et al., 2007) have investigated methods for filling 

the SLC gap, in spite of their ability to restore the missing scan lines, these methods 

are predictive methods based on the surrounding pixels, and in this case, it was 

concluded that such  approaches can’t be used for flood delineation purposes.  
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Figure 4: An example of an image acquired from Landsat 7 on October 06, 2006 (left), and the SLC 

misclassification problem in classified flood extent map (right) 

 

4.2. Maximum Flood Extent Maps 

21 maximum flood extent maps were created from the flood extent maps, 

beginning with the 1988 flood event, this flood event stands as a reference for one 

of the major floods in Khartoum state (Davies & Walsh, 1997; Mahmood et al., 

2017). Figure 5 illustrate the maximum flood extent map for the year 1988. It can 

be viewed that most of the flooded land is in Jebel Awliya county, followed by 

Umdurman, Bahri, Sharg Alneel counties, and finally Khartoum county. The least 

flooded counties were Karrari and Oumbada. The remaining maps are shown from 

Annex 2 to Annex 21. 
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Figure 5: Maximum Flood Extent Map for 1988 

Table 3 illustrates the flood extent for 1988 flood event. Croplands and 

vegetated areas were the most inundated area, after which comes urban area with 

6.68% inundation value. We must put in mind that this value is in relation to LCLU 

map of 2016, and that urban growth from 1988 to 2016 was not put into calculation, 

hence the inundation ratio is underestimated. 

Table 3: Change matrix for 1988 flood event 

  
1988 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 6.68% 56.27% 37.05% 

Water Bodies 98.35% 1.07% 0.6% 

Cropland/Vegetation 21.38% 41.33% 37.29% 

Barren 0.25% 80.13% 19.62% 

The change matrix was also calculated to all remaining maximum flood extent 

maps and can be seen under each map in the appendices. The highest inundation for 

urban area was recorded in June 2018 flood event with 28.36%, exceeded by 
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Cropland and vegetation, also for the same year with 48.55%. The mean inundation 

percentage value for urban area is 7.85% and for cropland and vegetation area is 

20.12%. It is fair to say that Cropland and vegetation areas suffer the most from 

inundation and the reason behind it is that most croplands are on the banks of the 

three Nile rivers. Because the pre-flood reference map is from 2016 it is fair to say 

that inundation ratio for the 90’s is underestimated due to the urban growth the state 

has witnessed (Schumacher et al., 2009).  

Maximum flood extent maps for the years 2016, 2017 and all three flood events 

of 2018 - from Annex 17 through Annex 21 - exhibit an increase in the water pixels 

due to the SLC-off anomaly. To overcome this misclassification problem two 

approaches were attempted. The first approach was to increase the training samples 

of the misclassified pixels as No Data, this approach led to misclassifying water 

bodies as No Data. The second approach was to calculate the Normalized 

Difference Water Index (NDWI), which was developed by (Gao, 1996) to delineate 

open water. The index was to be combined with the actual image bands to enhance 

classification results. NDWI can be obtained using the formula below: 

NDWI = (NIR – SWIR) / (NIR + SWIR) 

Annex 23 shows the calculated NDWI for Landsat 7 image on 15/09/2016. In 

this image the misclassified pixels exhibit the same NDWI values as the water 

bodies, so it was clear that this approach will lead to the same classification results. 

4.3. Relative Frequency of Inundation Map 

The RFI is used here to indicate flood hazard based on past flood events, this 

indicator is not a prediction for future flood events but can be used for planning and 

risk assessment purposes. The indicator is used in Figure 6 below for the Khartoum 

State Flood Hazard Map. Areas close to the rivers’ banks have the highest values of 

RFI, in addition to natural catchment areas in Sharg Alneel county. 
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Figure 6: Khartoum State Flood Hazard Map using the relative frequency of inundation (RFI) derived 

from Landsat images acquired from 1988 to 2018 

This map, along with the LCLU map for the state, and point features of health 

facilities and educational facilities, are used to assess the degree of hazard in areas 

of Khartoum state in sections below. The significance of this map relies on its use 

as a base for further intensive flood risk assessment for the state. 

4.4. Flood Risk Assessment 

4.4.1. LCLU Map 

In this step the LCLU map and the flood hazard map are used to assess the risk 

of floods on Khartoum State.  The LCLU map is shown in Figure 7. To assess the 

accuracy of the map, Google Earth® was used as the ground truth. The overall 

accuracy of the map is 84.2%. 
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Figure 7: Khartoum State LCLU Map 

Detailed accuracy assessment results are shown in Annex 22. The nature of the 

state’s arid climate and urban structure that can be seen in Figure 8, as well as the 

moderate resolution (30 m) of Landsat images, led to confusion between Urban, 

Cropland/Vegetation, and Barren Land classes. But when compared to Open Street 

Maps OSM data as shown in Figure 9 and Figure 10, the boundaries of urban areas 

of state counties in relation to the road network data were satisfactory. 
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Figure 8: Urban Structure in Aljazeera Eslang, Karrari County (source: Google Earth®) 

 

Figure 9: Khartoum County road network (Open Street Maps OSM) combined with LCLU map 
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Figure 10: Sharg Alneel and Jebel Awlyia counties road network (Open Street Maps OSM) combined 

with LCLU map 

4.4.2. Zonal Statistics 

The results of the zonal statistics for each county is shown in Annex 24, in 

which the LCLU map was used for zoning. With regards to RFI values for Urban 

areas, Umdurman averaged 0.23 ± 0.24 as the highest average between all seven 

counties, Khartoum and Jebel averaged 0.21 ± 0.16 and 0.21 ± 0.15 respectively. 

Ombadah had the lowest average of 0.12 ± 0.06. In areas of cropland and 

vegetations, Umdurman averaged the highest between counties with 0.66 ± 0.32, 

coming after that, Karrari and Khartoum with 0.64 ± 0.27 and 0.52 ± 0.35 

respectively. The lowest RFI average for croplands and vegetations area was also in 

Sharg Alneel with 0.23 ± 0.17. Ombadah county ranked a lower RFI for croplands 

and vegetations area but was not considered because croplands and vegetation 

represent only 1% of county area. 

Since the results of zonal statistics for health and educational facilities were per 

point, the average RFI value for each facility was the used to derive descriptive 

statistics. Out of 715 health facilities in the state of Khartoum, a total of 511 health 
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facilities had RFI value associated with them, averaging 0.19 ± 0.09. As for the 

educational facilities, out of 216 facilities, a total of 165 facilities with RFI average 

value 0.18 ± 0.09 were analyzed. Detailed results are shown in Annex 25. 

4.5. Humanitarian Mapping Response for August 2013 and July 

2016 Flood Events 

In August 2013, heavy rains took on several states of Sudan leading to flash 

floods, along with Nile river flooding. The crisis led to the death of 45 people and 

over 70 injured. The severe damages in infrastructure has affected around 150,000 

people across the country. Khartoum state, being the most populated state in Sudan, 

was the most affected, with more than 84,000 people affected by the floods, 

according to reports by the World Health Organization (WHO) 

(https://www.who.int/hac/crises/sdn/sudanfloods2013sitrep2.pdf ; retrieved 24 

January 2020) and UNOCHA 

(https://disasterscharter.org/documents/10180/13939/OCHASudanFlashUpdateFloo

ds4.pdf/afd50da8-cdac-4d22-a906-073e87e47876?version=1.0; retrieved 24 

January 2020). 

In response to a request by UNITAR/UNOSAT on behalf of UNDP office in 

Sudan, the International Charter Space and Major Disasters was activated to 

provide satellite imagery, in order to assess in relief work. The charter is a 

collaboration between 17 space agencies and space research institutes. In addition 

to the charter members, 19 other entities contribute to the charter in terms of 

disaster monitoring, satellite image provision, and image analysis and maps 

production.  

Along with the charter, the Dartmouth Flood Observatory also contributed in 

delineating the flood event through the analysis of MODIS Terra satellite images. 

Figure 11 illustrates work done by UNOSAT through the charter and the 

observatory. It can be clear that when compared to the maximum flood extent map 

produced using Landsat 7/Landsat 8 for the same flood event in Annex 16, the 

flood extent in urban and croplands and vegetations areas is exceedingly larger than 

what was captured through the Landsat images. This is due to the nature of the 

https://www.who.int/hac/crises/sdn/sudanfloods2013sitrep2.pdf
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different satellites used in the two maps, since Formosat 2 and Radarsat 2 both 

produce SAR images that are cloud free. In addition, the images were within days 

of the flood event. Landsat images used in this study were over 30 days apart, hence 

they were not able to properly detect the maximum flood extent of this event. 

 

Figure 11: UNOSAT Flood Extent for 2013 flood event using images from Formosat 2, Radarsat 2, and 

MODIS Terra 

As can be seen in the figure above, although Sharg Alneel and Bahri counties 

are most inundated counties, yet most of these areas are barren. When overlaying 

barren area on top of the flood extent, the affect with regards urban and cropland 

and vegetation areas, which is illustrated in Figure 12 below. . The maximum flood 

extent map obtained by Landsat images are overlaid the charter and Dartmouth 

Flood observatory flood extent in Figure 13 below.  
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Figure 12: UNOSAT Flood Extent for 2013 flood event with overlaying barren area 

 

Figure 13: UNOSAT Flood Extent for 2013 flood and MODIS Terra with the maximum flood extent for 

august 2013 by Landsat 7, Landsat 8. 
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In 2016 an early rain season started in June with heavy rains affecting 80,000 

people nationwide, causing floods in 13 out of 18 states. During these floods 

Khartoum state was not the most affected area, hence there was no extensive 

mapping for floods for the state. The charter was not activated for the state until the 

9th of August. Images were analyzed by UNOSAT focused on the flood extent on 

the banks of the White Nile and Blue Nile rivers. Satellite images used for mapping 

were TerraSAR-X of 3 m resolution, and SPOT-7 of 1.5 m resolution. Both maps 

are illustrated in Figure 14 and Figure 15 below. The maximum flood extent map 

for 2016 is based on 11 images collected between July 5th and September 23rd. 

Hence, it captures almost the whole event, although its spatial resolution is coarser. 

Because of the extent of the images, a state wise comparison with the maximum 

flood extent map for 2016 (Annex 17) is not possible.  

 

Figure 14: UNOSAT Flood Extent map on 11 August 2016 using TerraSAR-X satellite image 
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Figure 15: UNOSAT Flood Extent map on 15 August 2016 using SPOT-7 satellite image 

UNITAR has an online portal for their flood analysis products under the 

following URL http://floods.unosat.org/geoportal/. The portal is a valuable source 

of geospatial information, with one downside of the exclusion of original images, 

due to copyrights, which does not allow for analysis growth for research purposes.  

  

http://floods.unosat.org/geoportal/
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5. Conclusion 

This study aimed at mapping flood hazard and assessing flood risk using multi-

temporal satellite imagery. Using images from Landsat 4,5,7 and 8, and through 

specific objectives this study was able to identify areas - on county level - that are 

exposed to floods in Khartoum state, Sudan. Areas were analyzed based on their 

use, and were and classified to urban, cropland and vegetation, barren, and water 

bodies using a LCLU map that was produced as a part of the study. 

Flood hazard was identified using the relative frequency of inundation RFI. By 

mapping the RFI indicator, this study went a step forward in flood risk assessment 

for the state of Khartoum, Sudan. A step that was suggested by (Horn & Elagib, 

2018) in their flood management framework for the capital city Khartoum. This 

map can also be used as the hazard factor when calculating flood risk. 

Using zonal statistics, it was found that the greatest hazard was associated with 

croplands, due to their proximity to riverbanks, ranking Umdurman and Karrari 

with the highest RFI values. As for urban areas, Jebel Awlyia and Khartoum 

counties, the most urbanized counties had the highest RFI values. When hazard 

degree was investigated for public facilities such as health and educational 

facilities, these facilities were found to be within the urban areas hazard level. 

Health and educational facilities flood hazard averaged 0.19 and 0.18 

consecutively, which was calculated for 511 health facilities and 216 educational 

facilities with no RFI zero value. 

The absence of a Land Cover Land Use LCLU map with a moderate resolution 

for Khartoum state has led to additional contribution of this study. A LCLU map 

was produced with an overall accuracy of 84%, where the state was classified to as 

urban, croplands and vegetation, barren, and water bodies. This map was an 

essential component in detecting urban and cropland areas with high exposure to 

floods. 

The availability of satellite images with moderate spatial resolution to delineate 

maximum flood extent was an essential component of the study. The quality of 

acquired images, be it the time of acquisition with regards to the flood event or the 



31 

 

cloud cover percentage, both elements contributed significantly to the quality of 

end results. 

When compared, 2013 flood maximum flood extent map and flood delineation 

made by UNOSAT and Dartmouth Flood Observatory, it was seen that the extent of 

flooding was exceedingly larger than the one analyzed by this study. This was due 

to several reasons; the satellite images used in delineation by UNOSAT were not 

affected by cloud cover, temporal resolution of the images was within days of the 

flood event, as well as for the observatory images. 

5.1. Limitations 

Due to the nature of floods, and the fact that Landsat images are obtained every 

16 days, it was not always possible to accurately delineate maximum flood extent. 

Moreover, sometimes there would only be one image available per flood event, and 

in other cases cloud cover would be over 75%. Hence there is a need for freely 

accessible archive SAR images with high temporal resolution to obtain properly 

delineate flood events. The lack of available ground data associated with natural 

events like floods resulted in the lack of accuracy assessment for flood extent 

mapping, except for visual interpretation. 

5.2. Recommendations 

Future work built on the findings of this study can include flood risk assessment 

for future flood events, with the help of the RFI flood hazard map. Another step can 

be taken by integrating data from ground weather stations and river gauges, in order 

to validate satellite data, as well as filling the gap of missing data due to cloud 

cover and temporal resolution, and to interpolate the extent of flash floods. 

Additional studies on infrastructural vulnerability will help in understanding the 

risks associated with floods for mitigation and increase the state resilience. 
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Annex 1: Spectral Specifications for Landsat Images 

Table 1: Landsat 4 - 5 (TM) bands specifications (Source: U.S. Geological Survey) 

Bands Wavelength (µm) Resolution (m) 

Band 1 0.45 – 0.52 30 

Band 2 0.52 – 0.60 30 

Band 3 0.63 – 0.69 30 

Band 4 0.76 – 0.90 30 

Band 5 1.55 – 1.75 30 

Band 6 10.40 – 12.50 120 (30) 

Band 7 2.08 -2.35 30 

 

Table 2: Landsat 7 (ETM+) bands specifications (Source: U.S. Geological Survey) 

Bands Wavelength (µm) Resolution (m) 

Band 1 0.45 – 0.52 30 

Band 2 0.52 – 0.60 30 

Band 3 0.63 – 0.69 30 

Band 4 0.77 – 0.90 30 

Band 5 1.55 – 1.75 30 

Band 6 10.40 – 12.50 60 (30) 

Band 7 

Band 8 

2.09 – 2.35 

0.52 – 0.90 

30 

15 
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Table 3: Landsat 8 (OLI - TIRS) bands specifications (Source: U.S. Geological Survey) 

Bands Wavelength (µm) Resolution (m) 

Band 1 - Coastal aerosol 0.43 – 0.45 30 

Band 2 – Blue 0.45 – 0.51 30 

Band 3 – Green 0.53 – 0.59 30 

Band 4 – Red 0.64 – 0.67 30 

Band 5 – Near Infrared (NIR) 0.85 – 0.88 30 

Band 6 – SWIR 1 1.57 – 1.65 30 

Band 7 – SWIR 2 

Band 8 - Panchromatic 

Band 9 - Cirrus 

Band 10 – Thermal Infrared (TIRS) 1 

Band 11 – Thermal Infrared (TIRS) 2 

2.11 – 2.29 

0.50 – 0.68 

1.36 – 1.38 

10.6 – 11.19 

11.50 – 12.51 

30 

15 

30 

100 

100 
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Annex 2: Maximum Flood Extent Map for 1991 

 

 

Table 1: Change matrix for 1991 flood event 

  
1991 

 

 
Water No Water 

L
C

L
U

 

Urban 0.96% 99.04% 

Water Bodies 95.05% 4.95% 

Cropland/Vegetation 10.00% 90.00% 

Barren 0.35% 99.65% 
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Annex 3: Maximum Flood Extent for 1992 

 

 

Table 1: Change matrix for 1992 flood event 

  
1992 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 1.60% 67.31% 31.09% 

Water Bodies 82.15% 5.77% 12.1% 

Cropland/Vegetation 12.02% 71.61% 16.38% 

Barren 0.54% 63.19% 36.27% 
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Annex 4: Maximum Flood Extent for 1993 

 

Table 1: Change matrix for 1993 flood event 

  
1993 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 1.24% 54.36% 44.40% 

Water Bodies 94.71% 1.40% 3.9% 

Cropland/Vegetation 9.29% 34.74% 55.98% 

Barren 0.86% 83.95% 15.19% 
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Annex 5: Maximum Flood Extent for 1994 

 

Table 1: Change matrix for 1994 flood event 

  
1994 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 4.01% 17.84% 78.15% 

Water Bodies 72.26% 0.19% 27.6% 

Cropland/Vegetation 12.75% 3.66% 83.59% 

Barren 1.05% 19.65% 79.30% 
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Annex 6: Maximum Flood Extent for 1996 

 

Table 1: Change matrix for 1996 flood event 

  
1996 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 2.29% 94.17% 3.55% 

Water Bodies 95.50% 4.36% 0.1% 

Cropland/Vegetation 9.08% 90.49% 0.44% 

Barren 0.13% 99.26% 0.61% 
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Annex 7: Maximum Flood Extent for 1997 

 

Table 1: Change matrix for 1997 flood event 

  
1997 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 1.23% 7.95% 90.83% 

Water Bodies 95.13% 0.26% 4.6% 

Cropland/Vegetation 7.49% 5.01% 87.50% 

Barren 3.88% 17.58% 78.55% 
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Annex 8: Maximum Flood Extent for 1998 

 

Table 1: Change matrix for 1998 flood event 

  
1998 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 7.07% 34.03% 58.89% 

Water Bodies 98.78% 0.57% 0.7% 

Cropland/Vegetation 36.83% 35.17% 28.00% 

Barren 2.05% 58.54% 39.42% 
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Annex 9: Maximum Flood Extent for 1999 

 

Table 1: Change matrix for 1999 flood event 

  
1999 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 13.83% 6.13% 80.05% 

Water Bodies 90.46% 0.16% 9.4% 

Cropland/Vegetation 32.25% 7.61% 60.14% 

Barren 10.40% 16.89% 72.71% 
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Annex 10: Maximum Flood Extent for 2001 

 

Table 1: Change matrix for 2001 flood event 

  
2001 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 1.40% 96.11% 2.49% 

Water Bodies 97.60% 1.25% 1.1% 

Cropland/Vegetation 10.44% 69.13% 20.43% 

Barren 0.03% 92.73% 7.23% 
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Annex 11: Maximum Flood Extent for 2003 

 

Table 1: Change matrix for 2003 flood event 

  
2003 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 5.49% 66.77% 27.74% 

Water Bodies 71.67% 1.85% 26.5% 

Cropland/Vegetation 15.56% 59.00% 25.43% 

Barren 1.90% 71.15% 26.96% 
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Annex 12: Maximum Flood Extent for 2005 

 

Table 1: Change matrix for 2005 flood event 

  
2005 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 2.22% 66.38% 31.40% 

Water Bodies 73.70% 3.03% 23.3% 

Cropland/Vegetation 6.33% 67.70% 25.97% 

Barren 0.80% 69.86% 29.33% 
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Annex 13: Maximum Flood Extent for 2006 

 

Table 1: Change matrix for 2006 flood event 

  
2006 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 13.31% 34.42% 52.27% 

Water Bodies 90.06% 0.18% 9.8% 

Cropland/Vegetation 32.02% 27.54% 40.44% 

Barren 5.16% 47.30% 47.55% 
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Annex 14: Maximum Flood Extent for 2007 

 

Table 1: Change matrix for 2007 flood event 

  
2007 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 11.72% 88.11% 0.17% 

Water Bodies 98.33% 0.43% 1.2% 

Cropland/Vegetation 16.09% 45.50% 38.40% 

Barren 3.02% 59.38% 37.60% 
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Annex 15: Maximum Flood Extent for 2009 

 

Table 1: Change matrix for 2009 flood event 

  
2009 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 13.30% 44.85% 41.85% 

Water Bodies 85.91% 0.39% 13.7% 

Cropland/Vegetation 19.02% 39.21% 41.77% 

Barren 3.02% 63.79% 33.20% 
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Annex 16: Maximum Flood Extent for 2013 

 

 

Table 1: Change matrix for 2013 flood event 

  
2013 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 4.09% 7.87% 88.04% 

Water Bodies 76.90% 0.02% 23.1% 

Cropland/Vegetation 11.24% 7.92% 80.85% 

Barren 0.88% 11.09% 88.03% 
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Annex 17: Maximum Flood Extent for 2016 

 

Table 1: Change matrix for 2016 flood event 

  
2016 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 8.83% 0.50% 90.67% 

Water Bodies 99.93% 0.00% 0.1% 

Cropland/Vegetation 24.92% 0.12% 74.96% 

Barren 4.25% 3.39% 92.36% 
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Annex 18: Maximum Flood Extent for 2017 

 

 

Table 1: Change matrix for 2017 flood event 

  
2017 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 6.93% 30.41% 62.67% 

Water Bodies 99.86% 0.01% 0.1% 

Cropland/Vegetation 26.11% 22.06% 51.83% 

Barren 3.42% 46.99% 49.59% 
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Annex 19: Maximum Flood Extent for June 2018 

 

Table 1: Change matrix for June 2018 flood event 

  
June 2018 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 5.91% 11.99% 82.10% 

Water Bodies 98.57% 0.11% 1.3% 

Cropland/Vegetation 13.87% 16.32% 69.81% 

Barren 4.30% 30.91% 64.79% 

 

 



56 

 

Annex 20: Maximum Flood Extent for August - 

September 2018 

 

Table 1: Change matrix for August 2018 flood event 

  
August 2018 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 10.35% 16.76% 72.89% 

Water Bodies 99.91% 0.01% 0.1% 

Cropland/Vegetation 35.17% 8.32% 56.51% 

Barren 7.01% 23.38% 69.61% 
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Annex 21: Maximum Flood Extent for November 

2018 

 

Table 1: Change matrix for November 2018 flood event 

  
November 2018 

 

 
Water No Water No Data 

L
C

L
U

 

Urban 4.91% 59.54% 35.54% 

Water Bodies 99.54% 0.29% 0.2% 

Cropland/Vegetation 11.83% 59.51% 28.65% 

Barren 2.49% 67.94% 29.57% 
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Annex 22: Error Matrix and Uncertainty and 

Confidence Analysis for LCLU Map 

 

Table 1: Accuracy assessment results for LCLU Map 

 

 

 

 

 

 

 

Table 2: Confidence analysis for accuracy assessment of LCLU Map 

 User’s Producer’s 

Urban 0.7±0.16 0.91±0 

Water Bodies 1±0 1±0 

Cropland/Vegetation 0.9±0.11 0.77±0.14 

Barren Land 0.77±0.15 0.72±0.16 

Overall Confidence 0.84 ± 0.07 

 User’s Producer’s 

Urban 70.0% 91.0% 

Water Bodies 100.0% 100.0% 

Cropland/Vegetation 90.0% 77.0% 

Barren Land 77.0% 72.0% 

Overall Accuracy 84.2% 
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Annex 23: NDWI for 15/09/2016 Landsat image 
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Annex 24: RFI Zonal Statistics for Khartoum State 

counties 

Bahri MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.06 1 0.15 0.10 

Water Bodies 0.08 1 0.95 0.11 

Cropland/Vegetated Land 0.06 1 0.40 0.28 

Barren Land 0.05 1 0.11 0.06 

 

Sharg Alneel MINIMUM MAXIMUM MEAN 
STANDARD 
DEVIATION 

Urban 0.06 1 0.18 0.14 

Water Bodies 0.07 1 0.94 0.14 

Cropland/Vegetated Land 0.06 1 0.23 0.17 

Barren Land 0.05 1 0.12 0.09 

 

Jebel Awlyia MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.06 1 0.21 0.15 

Water Bodies 0.08 1 1.00 0.05 

Cropland/Vegetated Land 0.06 1 0.29 0.21 

Barren Land 0.07 1 0.35 0.25 

 

Khartoum MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.07 1 0.21 0.16 

Water Bodies 0.23 1 0.99 0.05 

Cropland/Vegetated Land 0.06 1 0.52 0.35 

Barren Land 0.08 1 0.40 0.32 

 

Umdurman MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.06 1 0.23 0.24 

Water Bodies 0.15 1 0.99 0.05 

Cropland/Vegetated Land 0.06 1 0.66 0.32 

Barren Land 0.06 1 0.13 0.08 
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Ombadah MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.06 1 0.12 0.06 

Water Bodies 0.10 0.94 0.65 0.27 

Cropland/Vegetated Land 0.06 0.85 0.13 0.07 

Barren Land 0.06 1 0.18 0.13 

 

Karrari MINIMUM MAXIMUM MEAN STANDARD DEVIATION 

Urban 0.06 1 0.15 0.13 

Water Bodies 0.12 1 0.98 0.06 

Cropland/Vegetated Land 0.06 1 0.64 0.27 

Barren Land 0.06 1 0.15 0.11 
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Annex 25: RFI Descriptive Statistics for Health and 

Educational Facilities in Khartoum State 

Health Facilities 

Mean 0.19 

Standard Error 0.00 

Median 0.18 

Mode 0.11 

Standard Deviation 0.09 

Sample Variance 0.01 

Kurtosis 0.53 

Skewness 0.93 

Range 0.47 

Minimum 0.08 

Maximum 0.55 

Sum 97.48 

Count 511.00 

 

Educational Facilities 

Mean 0.18 

Standard Error 0.01 

Median 0.17 

Mode 0.18 

Standard Deviation 0.09 

Sample Variance 0.01 

Kurtosis 2.54 

Skewness 1.33 

Range 0.52 

Minimum 0.08 

Maximum 0.60 

Sum 29.83 

Count 165.00 

 


