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ABSTRACT 

 

Object recognition is one of the computer vision tasks developing rapidly 

with the invention of Region-based Convolutional Neural Network (RCNN). This 

thesis contains a study conducted using RCNN base object detection technique to 

identify palm trees in three datasets having RGB images taken by Unnamed Aerial 

Vehicles (UAVs). The method was entirely implemented using TensorFlow object 

detection API to compare the performance of pre-trained faster RCNN object 

detection models. According to the results, best performance was recorded with 

the highest overall accuracy of 93.1 ± 4.5 % and the highest speed of 9m 57s from 

faster RCNN model which was having inceptionv2 as feature extractor. The 

poorest performance was recorded with the lowest overall accuracy of 65.2 ± 

10.9% and the lowest speed of 5h 39m 15s from faster RCNN model which was 

having inception_resnetv2 as feature extractor.  
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1. INTRODUCTION 

1.1 An overview of the work 

Identification of tree species presented in the environment has a vital 

importance in assessing biodiversity, monitoring the behavior of invasive 

species, urban planning, agriculture and crop management, forest management 

and monitoring wildlife habitat (Steele, 2016). Among them forests are the most 

precious natural resource on Earth to be managed effectively since their 

contribution in the consistence of the ecological balance (Torahi and Rai, 2011). 

Maintaining forest inventories is a key factor of sustainable forestry management 

where it reveals more information about the forests such as composition of tree 

species, population of trees and health, making it easy to take decisions (Chiang, 

Valdez and Chen, 2016). For an example, forestry officer may need to identify 

invasive tree species and remove them to maintain the health of other trees. Field 

investigations for such purposes often involve time and labor consuming costly 

procedures due to many reasons such as safety issues and forest are located 

remotely making it difficult to access (Chiang, Valdez and Chen, 2016). 

Maintaining reliable and accurate forest inventories is a cost-effective approach 

to handle such situations. On the other hand, not only in forest, surveying to 

obtain tree population in urban planning is also labor intensive and time 

consuming (Perkins, 2016).  

In such cases, it is highly effective to take benefits from remote sensing 

techniques. Classifying trees to identify tree species from remotely sensed images 

would be an ideal solution to above issues.  The concept is being widely applied 

to sustainable management of large-scale crop field with having different types 

of crops. 

Nowadays, remotely sensed images can be acquired by two different ways. 

One is to conduct aerial survey using Unmanned Aerial Vehicles (UAV) with on 
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board camera. The other way is to obtain from satellites. High resolution images 

are more applicable since the main purpose is to identify tree species.  

Since the main target is to detect objects specially trees, the most 

appropriate image processing techniques is Object-Based Image Analysis (OBIA). 

OBIA involves categorization of image objects which are having similar set of 

pixels in terms of spectral properties such as color, size, texture and shape 

(Humboldt State University, 2019). Convolutional Neural Networks (CNNs) are 

fast growing technology among researchers which have the capability of object 

recognition with high accuracy and less human intervention (Guirado et al., 

2017). Guirado et al. (2017) has proven that CNN based image recognition 

methods provides quite promising results over the other OBIA methods. 

Furthermore, CNNs are widely used in object recognition tasks as feature 

extractors aiming to feed those information in machine learning models to 

classify images (Olivares, 2019).   

With the advancement of Artificial Intelligence (AI), plenty of researches 

have been conducted to evaluate the use of Machine Learning (ML) techniques to 

optimize and improve the quality of classification process. In remote sensing, 

labelled data are used to train such ML algorithms so that it can be utilized to 

determine the labels of unclassified data (Shetty, 2018). First and most 

remarkable development in object recognition is the introduction of Region-

based Convolutional Neural Network (RCNN) which connects CNN with Support 

Vector Machine (SVM) by Girshick et al., 2016.    

 This thesis is basically focused on identifying Palm trees in high resolution 

aerial images by identifying trees as objects using pre-trained object detection 

models which are having RCNN architecture. The process is assuming that the 

variation in spectral signatures between species and texture are adequate to 

distinguish Palm trees from other species. This will be an attempt to prove the 

capability of recently developed object detection technique RCNN in agricultural 

field. Unlike the previous methods used to detect trees using expensive 

multispectral images with CNN which requires thousands of training images, the 
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method proposed by this thesis uses only less amount of RGB images with use of 

pre-trained RCNN object detection models.       

1.2 Objectives 

The main objective of the study is to identify single tree species presented 

in high resolution aerial images using RCNN based object detection techniques. 

Following specific objectives are identified to achieve the main objective;  

• Evaluate the performance of pre-trained object detection models to 

identify Palm trees in high resolution images 

• Compare several pre-trained object detection models to find out the best 

model for identifying Palm trees. 

1.3 Dissertation Organization 

The thesis consists of seven chapters. Chapter 1 describes the overview of 

the work including problem, motivation and objectives. Chapter 2 contains the 

summary of related work. Chapter 3 contains the theoretical background of the 

study. Chapter 4 illustrates the data and methodology implemented for 

identifying Palm trees. Chapter 5 explains the results of the experiments 

conducted. Chapter 6 contains a detailed discussion. Chapter 7 summaries and 

concludes on the findings of the research.   
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2. LITERATURE REVIEW  

This section consists of descriptions of high resolution images, previous 

studies carried out using CNN and high resolution images related to agricultural 

and forestry field, introduction to object detection, use of CNN in object detection 

and introduction to RCNN.  

2.1 Identification of Tree Species with High Resolution 

Aerial Images  

Images acquired by digital cameras mounted on UAVs are getting famous in 

forestry and agriculture mapping due to high spatial resolution ranging from 

2.5cm to 90cm (Safonova et al., 2019). Nonetheless, improvements in sensor 

technology in past decades have given earth observation satellites the ability to 

obtain high resolution images ranging from 30cm to 50cm (Id, Leng and Liu, 

2018). Applications of remote sensing technologies in various fields including 

agriculture and forestry industry often get benefits from high resolution aerial 

images since they have a positive impact on the classification accuracy (Id, Leng 

and Liu, 2018). In addition, its ability to link them with recent improvements of 

ML techniques has motivated researches to develop new methods for analysis 

(Safonova et al., 2019). Previous studies attempting to identify tree species using 

high resolution images directs towards agriculture/crop management and 

forestry management.    

2.1.1 Applications in Agriculture and Crop Management 

Training samples derived from high resolution images have the potential 

to increase the accuracy when classifying low resolution satellite images for large 

scale mapping (Nomura, 2018). In Nomura (2018), seven similar crop types were 

identified with 95% accuracy using Sentinel-2 images together with training 

samples derived from high resolution images using Random Forest (RF) 

Classifier. Although, tree types were not clearly distinguishable in Sentinel-2 
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images, high accuracy may be achieved by incorporating all bands in the 

classification (Nomura, 2018).  

More crowded overlapping oil plam tree crowns can be detected and 

counted with  high resolution multispectral satellite images by training a CNN 

using thousands of manually labelled samples (Li et al., 2017). In Li et al. (2017), 

around 9000 samples were used to achieve 96% accuracy of detection with 

optimum parameter settings as number of kernal in two convolution layers as 30 

and 55 and number of hidden units in fully-connected layer as 600. In Csillik et 

al. (2018), similar accuracy was achieved in identifying citrus trees by training 

CNN using thousands of training samples derived from UAV multispectral images. 

Classification accuracy can be improved by applying object-based post 

processing with results from CNN (Csillik et al., 2018).   

In Olivares (2019), it is proposed a method to classify UAV images to 

detect palm trees with reduced number of training samples using pre-trained 

CNN. However, due to the input size constrain in CNN based feature extractor the 

detection of induvial palm trees were not possible (Olivares, 2019). The model 

showed less performance in identifying target tree when it is surrounded by 

other tree types.  

2.1.2 Applications in Forestry Management  

Remote sensing takes advantage when discriminating tree species from 

aerial images from the fact that trees share unique spectral signature depending 

on the type of species they belong to (Lisein et al., 2015). However, spectral 

signature within and between species changes temporally. In Lisein et al. (2015), 

it was discovered that the optimal phenological time window for discriminating 

broadleaved trees lies between late spring and early summer (the end of leaf 

flushing). During this period, the intra-spectral variation within tree species 

minimizes while maximizing inter-spectral variation between species (Lisein et 

al., 2015). In Lisein et al. (2015), tree crowns were manually delineated with help 
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of field mapping to input them in automatic object-based supervised RF classifier 

to identify five tree species based on spectral variation.   

In Onishi and Ise (2018), it has been exposed in their study that deep 

learning can distinguish seven tree species with 89.0 % accuracy using individual 

tree crowns segmented from basic RGB UAV image of forest. This method has 

benefits in both performance-wise and cost-wise over previous methods which 

used expensive multispectral images (Onishi and Ise, 2018). However, his 

model’s accuracy depends highly on the number of training samples per each 

class and the quality of tree crown segmentation. Although DEM and slope 

models have been incorporated with increased number of training samples, 

misclassifications have resulted due to imperfect segmentation.  

In Safonova et al. (2019), it has also been proved that CNN based 

classification models have potential to identify four damage stages of Fir trees 

with an accuracy of 99.7% based on the shape, texture and colour of tree crown 

in UAV RGB images of mixed forest. Increasing the volume of samples by data 

augmentation techniques can substantially improve the accuracy of classification 

when there is relatively small training dataset (Safonova et al., 2019). Although 

candidate selection technique was adopted to find regions of potential crowns in 

the image before feeding them in CNN, some misclassifications were resulted.  

In fact, identifying8 individual tree crowns using only RGB bands is a 

difficult tasks specially in dense foressts which may be requiring more 

information such as multispectral bands, NDVI or other spectral indices and 3D 

LIDAR data  (Safonova et al., 2019).  Combining small amount of hand annotated 

high quality tree crwon training data with a large amount of tree crowns auto-

generated from LIDAR data by unsupervised algorithm can be used to train CNN 

to identify individual trees (Weinstein et al., 2019).   

2.2 Applications of Object Detection   

Object detection is a combination of computer vision tasks image 

classification and object localization to classify and locate the presence of objects 
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in an image (Brownlee, 2019). Image classification comprises of algorithms to 

predict the class of one object in an image. Object localization comprises of 

algorithms to locate one or more objects present in an image by drawing 

bounding boxes around them. Accordingly, object detection comprises of 

algorithms to locate the presence of one or more objects in an image by drawing 

bounding boxes with labels indicating their class or type of category. These three 

computer vision tasks are generally referred to as object recognition (Brownlee, 

2019).  

Applications of object detection techniques are visible in various industries 

such as vehicle detection and counting in transportation industry, building 

detection in urban planning, face detection and people counting in security 

purposes and animal monitoring and counting in livestock management. 

Although ML is widely using in agriculture and forestry industry, a very few 

studies have been focused on using object detection. ML applications in crop 

management are found in yield prediction, disease detection, weed detection and 

species recognition (Liakos et al., 2018).  

In Arsenovic et al. (2019), object detection was applied to identify diseased 

leaves in high resolution images proving its capability for the task over traditional 

ML techniques. Pre-trained object detection models such as Faster RCNN, SSD 

and YOLOv3 can successfully detect diseased leaves even in complex 

backgrounds at high accuracy (Arsenovic et al., 2019).   

2.3 Object Detection with Convolutional Neural Network 

(CNN) 

The most straightforward approach is detecting objects using CNN which is 

widely used deep learning algorithm in image classification (Sharma, 2018). The 

following section explains the CNN based on the Stanford University lecture 

series on CNNs for Visual Recognition (Karpathy, 2019).  

CNN differs from regular neural networks as it explicitly assumes that the 

inputs are images. In this way layers in CNN have neurons arranged in three 
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dimensions (width, height, depth) which are related to the dimensions of the 

image (width, height, number of bands). Similarly, the input layer of the CNN has 

the same dimensions as the input image where width and height are equal to the 

size of the image and depth is the number of bands in the image (Figure 1).  

CNN architecture consists of three types of layers; convolutional layers, 

pooling layer and fully connected layer. Convolutional layers have small spatial 

filters which convolve across the width and height of input volume computing the 

dot product between pixel values of the filter and input image at each position 

during the forward pass resulting a two-dimensional activation map for each 

filter. This filter shifts over the original image by certain number of pixels called 

stride. When the stride is one, then the filter shifts by one pixel at a time. After 

every convolutional operation, non-linear operation called Rectified Linear Unit 

(ReLU) is introduced to replace negatives values in the feature map to zero.  

Pooling layers are inserted in between convolutional layers to reduce the spatial 

size and computational complexity in the network. This is generally done by 

sliding a filter across the width and height of the input while taking the maximum 

within the filter which is called as Max pooling. Fully connected layer has all 

neurons fully connected to the previous layer. It is a Multi-Layer Perceptron using 

a softmax activation function which keeps the output value ranging from 0 to 1.   

Once an image is passed through convolution and pooling layers of CNN, it 

predicts the class of the object in the image as output. Original image is divided 

into small tile and each tile is fed to CNN so that it predicts the class of each input 

tile. Later, classified tiles are combined to obtain the classes of all objects in the 

Figure 1: Layer arrangement of neural network (Karpathy, 2019) 

Left: layer arrangement of regular neural network. Right: layer arrangement of CNN. 
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original image (Sharma, 2018). This kind of straightforward application of CNN 

requires all objects to share a common aspect ratio (Girshick et al., 2016). Hence, 

this approach contains problems as objects in an image has different aspect ratios 

and spatial locations. It is required to utilize thousands of such tiles to overcome 

that problem resulting more computational time (Sharma, 2018). In Girshick et 

al. (2016), it is proposed a method called RCNN to address the above problems.     

2.4 Object detection with R-CNN 

Following section describes the architecture of object detection system 

proposed by Girshick et al., 2016. It has been recognized as the first and most 

successful CNN approach addressing problems related to object localization, 

detection and segmentation (Brownlee, 2019). RCNN consists of three modules. 

They are region proposal, feature extractor and classifier. Region proposals 

generate category independent regions to consider for feature extraction. 

Feature extractor extract fixed length vector from each region using CNN. Third 

module classifies each region into one of the known classes using linear SVM 

model. The Figure 2 illustrates the overview of object detection system proposed 

by Girshick et al., 2016.  

 

 

       

 

 

2.4.1 Region proposals 

In RCNN, category independent region proposals are generated using 

selective search method (Girshick et al., 2016).  Region proposals are bounding 

Figure 2: Overview of object detection system (Girshick et al., 2016)  

(a) It takes image as input. (b) around 2000 region proposals are generated. (c) features are computed for 
each proposal region using CNN. (d) Each region is classified using class specific linear SVM model 

(a) (b) (c) (d) 
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boxes representing potential objects in an image. Selective search technique 

proposes Region of Interest (ROI) by recognizing patterns based on the varying 

scales, colours, textures, and enclosure in the image (Sharma, 2018). Image is 

initially divided into small segments and combined them to obtain large segments 

taking into consideration of similarities of scale, colour and texture etc (Sharma, 

2018).  

2.4.2 Feature extraction 

Features are the crucial factor in ML modelling techniques which are 

responsible for generating effective solution when as much as information is 

extracted from targeted dataset (Dey, 2018). Generally, CNN having architecture 

of convolutional and pooling layers acts as feature extractors which can be used 

to extract features before introducing them into ML models such as SVM, RF, etc. 

(Perone, 2015). Most cases, pre-trained CNNs are utilized as feature extractors 

by removing last output layer where the process is called transfer learning 

(Perone, 2015). The features extracted by pre-trained CNN have potential to train 

ML models to perform classification on very high resolution images (Olivares, 

2019).   

In RCNN, fixed length feature vectors are extracted from each region 

proposal using CNN developed by Krizhevsky, Sutskever and Hinton, 2012. CNN 

accepts fixed size of images as input (Girshick et al., 2016). Therefore, pixels 

surrounded by bounding box of region proposal are warped to get 227 x 227 pixel 

size image before feeding them into CNN. Input images are passed through five 

convolutional layers and two fully connected layers.  

2.4.3 Classifier  

After extracting features, regions are classified into known classes using 

linear SVM. One SVM is trained for each known class by applying extracted 

features with training labels during the training phase. The performance of the 

model becomes higher when involving SVM for classification rather than getting 

the output from last layer of fine-tuned CNN (Girshick et al., 2016).  
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2.4.4 Evolution of RCNN Family 

However, RCNN possesses few drawbacks such as multi-stage training 

process requiring operation of separate models, requiring a storage of hundreds 

of gigabytes and slow object detection due to the extraction of features from each 

region proposal in image (Girshick, 2015).  Fast RCNN was introduced to address 

those issues by reducing training stages to single pipeline. Although, it was fast 

than RCNN it still requires CNN to pass through region proposals for each image 

(Girshick, 2015). Faster RCNN which is described in next chapter, is a further 

improved version to obtain fast and accurate detection model.  
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3. THEORETICAL BACKGROUND 

Previous chapter provides an introduction to RCNN.  This chapter extensively 

explains the faster RCNN architecture and feature extractors used in the method 

proposed in this thesis.  

3.1 Faster RCNN Architecture 

Faster RCNN is an integrated network which shares a deep fully 

convolutional network known as RPN with state-of-the-art object detection 

network known as Fast RCNN (Ren et al., 2017). It comprises of four modules 

namely Pre-trained CNN, RPN, ROI pooling and RCNN as illustrated in Figure 3.    

 

Figure 3: Faster RCNN architecture (Rey, 2018) 

First step is to generate a convolutional feature map from a tensor 

(multidimensional array) of input image which is fed into a pre-trained CNN. In 

RPN, predefined number of regions which contain objects are proposed by using 

fixed sized reference bounding boxes called anchors which are placed on feature 

map. RoI pooling is applied to extract features of relevant objects (bounding 

boxes proposed by RPN) from feature map computed by pre-trained CNN. RCNN 

classifies the object into a class and adjust the bounding box coordinates (Rey, 

2018). 

3.2 Pre-trained CNN (Feature Extractor) 

Faster RCNN originally used output of an intermediate layer of VGG which 

is a CNN trained to classify ImageNet dataset to extract features from input image. 

It takes the output of convolutional layers by learning edges, patterns and shapes 

of objects resulting a convolutional feature map of input image which has smaller 
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spatial dimensions with greater depth than original image (Rey, 2018). Although 

ZF and VGG were considered as deep networks, much deeper networks have been 

invented after them. Such networks known as Inception v2, Resnet 50, Resnet 

101 and Inception resnet v2 which were used in the study are explained below.   

3.2.1 Inception V2 

Inception v2 was presented by improving previous version to increase 

accuracy and reduce computational complexity. Accuracy has been improved by 

avoiding dimension reduction of input which may lead to loss of information and 

computational complexity has been reduced by factorizing 5x5 convolution layer 

to two 3x3 convolution layers (Szegedy et al., 2016). The layer arrangement of 

inception module is illustrated in Figure 4.  

 

Figure 4: Convolutional layer arrangement of inception module (Szegedy et al., 2016)  

 

Inception v2 consists of several convolutional and pooling layers with a 

softmax layer for the final classification (Ioffe and Szegedy, 2015). In faster RCNN 

inception v2 model, end point has been set to inception (4e) layer for inception 

v2 to act as a feature extractor. Architecture of inception v2 feature extractor 

used in the experiment is illustrated in Table 1 assuming input is having spatial 

dimensions of 224x224.  
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Type Patch Size/ Stride Output Size 

Convolution  7×7/2 112×112×64 

Max Pool  3×3/2  56×56×64 

Convolution  3×3/1  56×56×192 

Max Pool  3×3/2  28×28×192 

Inception (3a)   28×28×256 

Inception (3b)   28×28×320 

Inception (3c)  Stride 2  28×28×576 

Inception (4a)   14×14×576 

Inception (4b)   14×14×576 

Inception (4c)   14×14×576 

Inception (4d)   14×14×576 

Inception (4e)  Stride 2  14×14×1024 

Table 1: Architecture of Inception v2 feature extractor (Ioffe and Szegedy, 2015) 

3.2.2 Resnet 50 and Resnet 101 

Residual networks have been developed by inserting shortcut connections 

to the plain networks which were inspired by VGG nets (He, 2015). Shortcut 

connections are inserted at each block as illustrated in Figure 5. Resnet 50 and 

Resnet 101 are built by block of layers consisting of 1x1, 3x3 and 1x1 

convolutional layers. Detail architecture of Resnet 50 and Resnet 101 with 

number of blocks are summarized in Table 2.  

 

 

Figure 5: A block of 3 layers with shortcut connection (He, 2015).  
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Layer name Resnet50 (50-layer) Resnet101(101-layer) Output Size 

conv1 7x7, 64, stride 2 112×112 

conv2_x 3x3 max pool, stride 2 56×56 

conv2_x [
 1 x 1 ,64 
3 x 3 , 64
1 x 1 ,256

] x 3 [
 1 x 1 ,64 
3 x 3 , 64
1 x 1 ,256

] x 3 
56×56 

conv3_x [
 1 x 1 ,128 
3 x 3 , 128
1 x 1 ,512

] x 4 [
 1 x 1 ,128 
3 x 3 , 128
1 x 1 ,512

] x 4 
28×28 

conv4_x [
 1 x 1 ,256 
3 x 3 , 256
1 x 1 ,1024

] x 6 [
 1 x 1 ,256 
3 x 3 , 256
1 x 1 ,1024

] x 23 
14×14 

conv5_x [
 1 x 1 ,512 
3 x 3 , 512
1 x 1 ,2048

] x 3 [
 1 x 1 ,512 
3 x 3 , 512
1 x 1 ,2048

] x 3 
7×7 

 average pool, fc, softmax 1×1 

Table 2: Detail architecture of Resnet 50 and Resnet 101(He, 2015). 

3.2.3 Inception resnet V2 
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(d) 
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(a) Schema for Inception-ResNet-v2; (b) The schema for stem of Inception-ResNet-v2 network; (c) The 

schema for 35 x 35 to 17 x 17 reduction-A module (k=l=256, m=n=384); (d) The schema for 17 x 17 to 8 x 8 

grid-reduction-B module; (e) The schema for 35 x 35 grid Inception-resnet-A module; (f) The schema for 17 

x17 grid Inception-ResNet-B module; (g)  The schema for 8 x 8 grid Inception-ResNet-C module.   

 

Inception resnet v2 has been proposed as a hybrid network which is 

inspired by resnet and inception v4 modules. Detail architecture is illustrated in 

Figure 6. Residual connections have been inserted to add output from 

convolution layers of inception module to the input. 1 x 1 convolution layer has 

been inserted after each inception module as a filter expansion layer to avoid the 

dimensionality reduction occurred in inception block (Szegedy et al., 2017). 

3.3 Region Proposal Network (RPN) 

RPN is a fully convolutional network which takes all the reference bounding 

boxes known as anchors and outputs a set of rectangular object proposals with 

objectness score and bounding box coordinates (Rey, 2018). Objectness score 

represents the probability that an anchor is an object (Rey, 2018).  

RPN is a small network having three convolutional layers as shown in 

Figure 7 (a). 3 x 3 spatial window slides over the convolutional feature map to 

generate region proposals. Then the features from each sliding window are fed 

into two fully connected layers i.e. box regression layer and box classification 

(e) (f) (g) 

Figure 6: Detail architecture of Inception Resnet v2 (Szegedy et al., 2017) 



Chapter 3 | Theoretical Background  

  17 

layer as illustrated in Figure 7 (b) (Ren et al., 2017). Classification layer outputs 

two scores for each anchor box being an object and a background. Regression 

layer outputs four coordinates of bounding box.    

 

Figure 7: RPN architecture (Ren et al., 2017)  

         (a) Convolutional implementation of RPN architecture, where k is the number of anchors (Rey, 2018);     
(b) Sliding window at an anchor location (Ren et al., 2017) 

3.3.1 Anchors 

Anchors are predefined set of bounding boxes placed at each spatial 

position on convolutional feature map  (Ren et al., 2017). Boxes with all possible 

combinations of three sizes i.e. 128px, 256px and 512px and three aspect ratios 

i.e. 1:1, 1:2 and 2:1 are defined per each anchor location (Ren et al., 2017). These 

boxes act as reference boxes to calculate and learn offsets when predicting 

bounding box locations (Rey, 2018).     

3.4 Region of Interest (RoI) Pooling 

RoI pooling takes the set of object proposals resulted from RPN and extracts 

fixed sized feature maps for each proposal so that they can be fed into RCNN to 

classify them into desired classes at the next step (Rey, 2018). This is done by 

cropping the convolutional feature map using each proposal. Cropped feature 

maps are resized into a fixed size usually 14 x 14 pixels and max polling is applied 

with a 2 x 2 kernel. Finally, it is ended up resulting a 7 x 7 feature map for each 

proposal as shown in Figure 8.  

(a) (b) 
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Figure 8: RoI pooling implemented on a proposal (Rey, 2018) 

3.5 RCNN 

Faster RCNN uses fast RCCN as its final module to classify those fixed sized 

feature maps resulted from RoI pooling. Two sibling fully connected layer are 

used to determine the class of the proposal with a score and adjust the bounding 

box coordinates to fit better as shown in Figure 9. One layer which has k+1 units 

outputs k object classes and background using a softmax function. The other layer 

which has 4k units outputs four values for corresponding k object classes to 

predict bounding boxes (Girshick, 2015).   

  

Figure 9: RCNN architecture (Rey, 2018) 

3.6 Training  

RPN and RCNN are trained independently although they are designed to 

share common convolutional layers. RPN is trained by back propagation and 

stochastic gradient descent. All anchor boxes generated are categorized into two 

classes as positive and negative where if it is an object or background 

respectively. Anchor is labelled as positive if it has an IoU with any ground-truth 

boxes greater than 0.7. Anchor is labelled as negative if it has an IoU with all 
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ground-truth boxes lower than 0.3. Anchors do not have a label will not be 

considered for the training purpose. Non-maximum suppression (NMS) is 

applied to remove duplicate anchors that overlaps the same object (Ren et al., 

2017). A batch of 256 samples having equal proportion of negatives and positives 

are randomly extracted from about 2000 anchors generated in RPN to compute 

classification loss and bounding box regression (Ren et al., 2017).  

RCNN is trained similar to RPN. RCNN takes a batch of cropped features 

resulted from RoI pooling layer. A proposal is assigned to a ground-truth box if it 

is having an IoU greater than 0.5 with that ground-truth box. If IoU is between 0.1 

and 0.5 with any ground-truth box, those proposals are labeled as background. 

Offsets of detected bounding boxes with ground-truth boxes are calculated for 

the boxes having a class. A batch of 64 samples are randomly selected to compute 

classification loss and bounding box regression (Rey, 2018). 
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4. DATA AND METHOD 

This chapter contains the description of datasets used in this thesis followed 

by a detail explanation of proposed method to train object detection models and 

obtain metrices for each model.  

4.1 Data Description 

Three different datasets containing high resolution images acquired by 

UAVs were used in this thesis. These three datasets mostly contain palm trees 

and represent three different locations in Nicaragua, Tonga and Zanzibar. Tonga 

and Zanzibar datasets were downloaded from OpenAerialMap which is an open 

source platform for sharing imagery captured by openly licensed satellites and 

UAVs.   

Dataset 1: The dataset prepared by Olivares, 2019 was used as Dataset 1. 

It covers a palm tree plantation with an area of 45 ha. near Loma de Mico village 

in Municipality of Kukra Hill of Nicaragua. The data had been acquired by an 

aerial survey conducted on 27 September 2014. The dataset possessed eleven 

RGB images of 3000 x 4000 pixels at a spatial resolution of 10 cm. Generally, the 

most prominent objects in the images are sparsely located and systematically 

distributed palm trees with the presence of dirt roads, small patches of natural 

forest and grasslands. Although, palm trees present in the images belong to 

different developing stages, only matured palm trees were considered for the 

analysis.  

Dataset 2: The dataset consists of one RGB image covering Ha'akili and 

Kolovai villages in Tongatapu Island of Tonga. It has been captured by Sony ILCE-

6000 sensor mounted on UAV platform on 05 October 2017. The image is having 

dimensions of 17761 x 25006 pixels at a spatial resolution of 9 cm. The image 

comprises of areas where the palm trees are sparsely located as well as densely 

located with the presence of other trees, grasslands, bare land and houses. 
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Dataset 3: The dataset consists of one RGB image covering area between 

Mangapwani and Bumbwini villages on Tanzanian island of Unguja, the main 

island of Zanzibar. It has been captured using UAV platform on 17 November 

2016. The image is having dimensions of 38107 x 42858 pixels at a spatial 

resolution of 7 cm. The image comprises of areas where the palm trees are 

sparsely located as well as densely located with the presence of other trees, 

grasslands, bare land, roads and houses.  

4.2 Method 

This thesis proposed a method to identify and locate palm trees by use of 

RCNN. The entire method consists of four major steps; image pre-processing and 

labelling, training object detection models for thesis datasets, testing trained 

models and accuracy assessment. Figure 10 illustrates complete process in step 

by step.  

 

Figure 10: Methodological Flowchart  
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During pre-processing, original images were subjected to format 

conversion, cropping and objects labelling. Four pre-trained object detection 

models which are being trained to identify various objects were selected from 

TensorFlow object detection model zoo. They were trained using pre-processed 

thesis datasets. Accuracy assessment was conducted by comparing detection 

results from trained models. All steps were repeated for dataset 1, dataset 2 and 

dataset 3 separately. Detail explanation of each step is written in section 4.3 to 

section 4.6.           

4.2.1 Tools 

This section lists out all the software and hardware which were utilized to 

implement the method proposed in section 4.2. The entire methodology was 

developed using open source software and packages.   

• Anaconda is an open source distribution of python aiming to provide 

various packages and package management tools for scientific computing 

in data science and machine learning. Anaconda version 2019.07 was 

installed to manage programming environment for the project. 

• Python is high level programming language which supports procedural, 

object-oriented and functional programming allowing users to write easy 

and logical codes. Python version 3.7.4 was installed inside Anaconda 

environment. 

• TensorFlow is an end-to-end open source library for differentiable 

programming letting users to develop machine learning applications. It 

can be deployed in platforms like CPUs, GPUs, and TPUs. TensorFlow CPU 

version 1.14.0 was installed inside Anaconda environment.  

• TensorFlow Object detection API is an open source framework 

providing explicitly written collection of codes to build, train and deploy 

object detection models. 
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• LabelImg was used to label objects on image tiles. It is a graphical image 

annotation tool written in Python. Annotations are written into XML files 

in PASCAL VOC format used by Imagenet.  

• Jupyter Notebook is an open-source web application that allows users 

interactive programming and visualization for scientific computing and 

data science applications. Jupyter Notebook version 6.0.1 was installed 

inside Anaconda environment.  

• All processes were run on a laptop with an Intel i7-8550U CPU @ 1.99 GHz 

processor, 8 GB RAM and windows 10 64-bit operating system.  

4.3 Pre-processing & labelling 

The purpose of this step was to convert the original images into a form that 

is compatible with feeding them as input of pre-trained object detection models. 

TensorFlow object detection models only accept images in PNG/JPG format with 

three bands i.e. RGB (Huang et al., 2017). Since the original images were in TIF 

format, they were converted to JPG format using a python script which is attached 

in Annex II.  

There is no size limit for the input images of TensorFlow object detection 

models since only intermediate layer (convolution layers) of pre-trained CNN 

feature extractor are being used (Rey, 2018). However, input images are resized 

to 600 x 1024 pixels in faster RCNN models keeping the aspect ratio of images 

constant to avoid the memory issues may arise during process (Ren et al., 2017). 

This size has been tested for NVidia Kepler GPU (Szegedy et al., 2016). 

Nevertheless, faster RCNN expects objects greater than 30 x 30 pixels. Since the 

average size of targeted objects is around 100 x 100 pixels, original images were 

cropped into tiles of 1000 x 1000 pixels to keep the size of objects greater than 

30 x 30 pixels after resizing. Tiles which are not having palm trees were 

discarded. 10% of dataset was separated as test images and remaining dataset 

was split into 70% as train images and 30% as validation images.    
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Preparation of datasets for training: All objects (Palm trees) in train and 

validation images were labelled by drawing bounding boxes using LabelImg. 

Coordinates of bounding boxes and class were recorded in XML file for each 

image in the datasets. XML files together with corresponding images were 

converted to TFRecord format and generated train.record and validation.record 

files in order to feed them object detection models.     

Preparation of datasets for accuracy assessment: All objects (Palm trees) in 

test images were labelled by drawing bounding boxes using LabelImg and 

coordinates were recorded into XML files. XML files were converted to CSV files 

and saved as positive ground truth boxes. Likewise, negative ground truth boxes 

were created by drawing bounding boxes in which palm trees were not 

presented.      

4.4 Training object detection models 

Four object detection models downloaded from TensorFlow object 

detection model zoo namely faster_rcnn_inception_v2, faster_rcnn_resnet50, 

faster_rcnn_resnet101, faster_rcnn_inception_resnet_v2 were trained providing 

train.record and validation.record prepared in section 4.3 as inputs. Training 

process was monitored using Tensorboard and terminated when the total loss 

reached value around 0.1. Inference graph of the model was exported after 

training was completed. This graph contains the weights of the trained model. 

Architecture of each model is described in chapter 3.      

4.5 Testing trained models 

Test images were fed into trained model resulted in section 4.4. Detection 

results were obtained into images in JPG format and coordinates of detection 

boxes were recorded in CSV file per each test image in dataset. The python script 

was run in Jupyter Notebook to test models and is attached in Annex II.  
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4.6 Accuracy assessment 

Detection boxes were compared with corresponding positive ground truth 

boxes and negative ground truth boxes created as explained in section 4.3 to 

derive metrices; precision, Sensitivity, specificity and accuracy. It was based on 

the IoU calculated between detection boxes and ground truth boxes. Following 

definitions were defined for the calculation of metrices; 

True positives (TP): detection boxes having IoU with positive ground truth 

boxes > 0.5  

False positives (FP): detection boxes having IoU ≤ 0.5 or no intersection 

with positive ground truth boxes 

False negatives (FN): ignored ground truth boxes 

True negatives (TN): negative ground truth boxes having IoU ≤ 0.5 or no 

intersection with detection boxes 

Following formulae were considered when computing metrices.  

Precision = 
TP

TP + FP
 × 100  =   

all positives correctly detected by model

all positives detected by model
          

Sensitivity = 
TP

TP + FN
 × 100  = 

all positives correctly detected by model

all positives in actual 
     

Specificity = 
TN

TN + FP
 × 100    =  

all negatives correctly detected by model

all negatives in actual 
   

Accuracy = 
TP + TN 

TP + FP + TN + FN
 × 100   = 

all  correctly detected by model

all in actual 
 

 

 

  



Chapter 5 | Results  

  26 

5. RESULTS  

This chapter consists of the outputs resulted from chapter 4. Only selected 

images are included in this chapter where appropriate. All other results are 

attached in Annex I.  

5.1 Image pre-processing & labelling 

Dataset 1 consisted of 49 tiles after cropping into 1000 x 1000 pixels of 

eleven RGB images of 3000 x 4000 pixels. Dataset 2 consisted of 283 tiles after 

cropping into 1000 x 1000 pixels of RGB image of 17761 x 25006 pixels. Dataset 

3 consisted of 432 tiles after cropping into 1000 x 1000 pixels of RGB image of 

38107 x 42858 pixels. Number of images after splitting dataset into train, 

validation and test data is summarized in Table 3. Example of cropped image for 

each dataset is shown in Figure 11.  

Data Train Validation Test 

Dataset 1 31 images 12 images 6 images 

Dataset 2 179 images 76 images 28 images 

Dataset 3 276 images 118 images 38 images 

 

Table 3: Number of images in train, validation and test data for each dataset 

 

     

Figure 11: Examples of cropped images. 

(a) example of cropped images from dataset 1, (b) example of cropped images from dataset 2, (c) example 
of cropped images from dataset 3 

(a) (b) (c) 
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Example of rectangular bounding boxes drawn using LabelImg is shown in Figure 

12. Coordinates of each box recorded in XML file are in order of xmin, ymin, xmax 

and ymax.   

 

Figure 12: Example of labelled image from dataset 1 

(a) Example of labelled image from dataset 1, (b) showing a bounding box with coordinates  

 
Labels were saved in XML file which contains coordinates of boxes with 

class. XML files were converted to CSV file format. Number of bounding boxes 

extracted are indicated in Table 4. The generated TFRecord files from CSV files 

and corresponding images comprise of numpy array of image with corresponding 

bounding box coordinates.     

 

Data Train Validation Test 

Palm tree Non- palm tree 

Dataset 1 1996 765 441 101 

Dataset 2 6121 2743 1240 517 

Dataset 3 7158 3056 1433 678 

Table 4: Number of bounding boxes extracted from cropped images 

 

(xmin, ymin) 

(xmax, ymax) 

(a) (b) 
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5.2 Training object detection models 

Training process was terminated when the total loss becomes closer to 0.1. 

Total loss vs steps graph of faster_rcnn_inception_v2 model for Dataset 1 is 

shown in Figure 13. Total time durations including training and validation for 

each model with three datasets were recorded in Tensorboard and are 

summarized in Table 5. For dataset 1, frcnn_inceptionv2 model was the fastest 

and frcnn_resnet50 was slightly slower. For dataset 2, frcnn_resnet50 model was 

faster than other models. For dataset 3, frcnn_inceptionv2 model was the fastest. 

The   frcnn_inception_resnetv2 model had the lowest speed for all three datasets. 

Overall, frcnn_inceptionv2 was the fastest model among others. 

Model Dataset 1 Dataset 2 Dataset 3 

frcnn_inceptionv2 19m 57s 29m 44s 9m 57s 

frcnn_resnet50 20m 1s 19m 49s 19m 51s 

frcnn_resnet101 50m 0s 59m 38s 29m 40s 

frcnn_inception_resnetv2 5h 39m 15s 5h 0m 19s 5h 22m 51s 

Table 5: Total time duration for training and validation of each model 

 

 

 

 

 

 

 

 

 

 

5.3 Testing trained models 

Trained model outputs each input image in which all detections are marked 

by rectangles with the name of class that object belongs to and confidence that 

Steps 

T
o

ta
l l

o
ss

 

Figure 13: Total loss vs steps graph of faster_rcnn_inception_v2 model for Dataset 1 



Chapter 5 | Results  

  29 

object belongs to identified class. Images in Test folder for each dataset were used 

to visualize the performance of each model. Such output images from 

faster_rcnn_inception_v2 model per dataset are shown in Figure 14. It can be seen 

that in Figure 14 (a), model was not capable of identifying all the objects (Palm 

trees) in the image. Figure 14 (b) is an example image where shadows of trees 

have been marked as Palm trees.     

   

 

 

Figure 14: Classified images from  faster_rcnn_inception_v2 model  

(a) One of the classified images of Dataset 1; (b) One of the classified images of Dataset 2; (c) One of the 
classified images of Dataset 3 

(a) (b) 

(c) 
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5.4 Accuracy assessment 

Images in the Test folder for each dataset were used to evaluate each model 

by computing precision, Sensitivity, specificity and accuracy. Total number of 

bounding boxes manually extracted to utilize as positive (palm trees) and 

negative (Non-palm trees) ground truth boxes are summarized in Table 4. Figure 

15 (a) is an example image showing evaluation results of one of the images in Test 

folder of dataset 1. Similarly, Figure 15 (b) and (c) illustrate examples for dataset 

2 and 3 respectively.  

  

 

 

Figure 15: Evaluation results of classified images from faster_rcnn_inception_v2 model  

(a) Evaluation results of one of the classified images of Dataset 1; (b) Evaluation results of one of the 
classified images of Dataset 2; (c) Evaluation results of one of the classified images of Dataset 3 

(a) (b) 

(c) 

True positives 

False positives 

False negatives 

True negatives 

Legend 
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Table 6 lists all the evaluation results from faster_rcnn_inception_v2 

model for images in test folder of dataset 1. Values in Table 6 was used to compute 

mean and standard deviation of precision, Sensitivity, specificity and accuracy for 

faster_rcnn_inception_v2 model. Accuracy measures for other models per each 

dataset also calculated in similar manner. Table 7 summarizes the mean and 

standard deviation values of each accuracy measures for all models per each 

dataset. 

Image TP FP FN TN 

image1 59 0 8 34 

Image2 71 2 7 28 

Image3 70 1 3 10 

Image4 71 1 9 5 

Image5 63 2 8 21 

Image6 55 0 17 3 

Table 6: Evaluation results of dataset 1 for faster_rcnn_inception_v2 model 

 

Dataset Accuracy 
measure 

Model 

inceptionv2 resnet50 resnet101 inception_resnetv2 
Dataset 1 Precision 98.6 ± 1.2 98.2 ± 1.4 97.9 ± 2.0 98.3 ± 1.7 

Sensitivity 88.1 ± 5.9 91.1 ± 3.3 90.7 ± 4.4 70.3 ± 10.2 

Specificity 93.1 ± 5.8 89.4 ± 8.2 82.4 ± 20.4 94.1 ± 6.4 

Accuracy 89.0 ± 5.7 91.4 ± 3.3 91.0 ± 3.3 74.2 ± 10.5 

Dataset 2 Precision 96.1 ± 7.8 94.8 ± 7.5 88.8 ± 9.5 94.5 ± 10.2 

Sensitivity 93.0 ± 5.1 86.9 ± 8.9 92.3 ± 5.4 49.9 ± 14.6 

Specificity 94.1 ± 7.8 92.3 ± 8.1 81.7 ± 9.1 95.5 ± 6.1 

Accuracy 93.1 ± 4.5 88.4 ± 7.1 87.9 ± 5.2 65.2 ± 10.9 

Dataset 3 Precision 98.0 ± 3.0 97.8 ± 3.1 95.1 ± 4.9 98.8 ± 2.5 

Sensitivity 83.7 ± 9.2 86.2 ± 8.6 80.7 ± 9.4 80.7 ± 10.5 

Specificity 96.9 ± 4.8 96.7 ± 4.7 93.4 ± 5.5 98.5 ± 2.9 

Accuracy 88.4 ± 6.6 89.9 ± 5.7 85.2 ± 7.0 86.9 ± 6.8 

Table 7: Summary of evaluation results for each model per dataset. The values represent mean ± 

standard deviation 

 

Faster_rcnn_resnet50 model shows highest overall accuracy for both 

dataset 1 and dataset 3 with a value of 91.4 ± 3.3 % and 89.9 ± 5.7 % respectively. 
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Faster_rcnn_inceptionv2 model performance was the best for dataset 2 with an 

overall accuracy of 93.1 ± 4.5 %. However, the three models 

faster_rcnn_inceptionv2, faster_rcnn_resnet50 and faster_rcnn_resnet101 show 

similar performance for three datasets while faster_rcnn_inception_resnetv2 

model depicts considerably lower performance for dataset 1 and dataset 2.   

Figure 16 illustrates the accuracy, precision, sensitivity and specificity 

with standard deviation of each model. In Figure 16 (a) it is visible that dataset 1 

and dataset 2 depict a similar behavior for four models. All four models resulted 

a high precision values for dataset 1 while lower precision values for dataset 2.  

   

 

 

 
 

Figure 16: Graphs visualizes the differences in accuracy measures 

(a) Accuray and standard deviation; (b) Precision and standard deviation; (c) Sensitivity (recall) and 
standard deviation; (d) Specificity and standard deviation 

  

(a) (b) 

(c) (d) 
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6. DISCUSSION 

This chapter contains a detailed explanation of the results and experiments 

conducted. This chapter also describes limitations of the study and 

recommendations for future works.  

   Image classification is one of the primary tasks in remote sensing which is 

vastly evolving with the improvements of machine learning techniques. 

Applications of image classification are mostly found in crop and forestry 

management (Liakos et al., 2018). Some of the applications of CNN in image 

classification tasks have been discussed in section 2.1. Those are few examples 

that proves the capability of deep learning base approaches specially CNN in 

remote sensing context. One of the common limitations of those methods is the 

requirement of a large number of training data to achieve better accuracy. 

Although, Olivares, 2019 proposed a method which requires reduced number of 

training samples, individual tree identification was not possible. Hence, this 

thesis proposed a method addressing the gap of previous methods with the use 

of object detection techniques.  

The proposed method only utilizes high resolution RGB images taken by 

UAVs making it cost effective than using expensive data such as multispectral 

images, surface elevation models etc. All experiments were conducted using open 

source software. Use of pre-trained object detection models allowed to conduct 

image classification with a small number of training data. This justifies that 

transfer learning is feasible method for image classification tasks with small 

amount of data as mentioned by Olivares, 2019. The results of this thesis depict 

the capability of RCNN based object detection techniques to identify target even 

in complex backgrounds. Csillik et al., 2018 and Arsenovic et al., 2019 also 

showed that CNN and RCNN have the ability to perform well in complex 

surroundings.  
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The main reason behind the use of three datasets was to analyze the 

performance of each model for different scenarios. It helped to determine the 

behavior of each model when identifying same tree species in different 

surroundings, textures, sizes, color variations and spatial patterns. Dataset 1 

contains systematically distributed regular sized palm trees with few numbers of 

smaller palm trees. Dataset 2 consists of regular sized randomly distributed palm 

trees with mostly affected by wind. Shadows of palm trees were also visible in 

dataset 2. Randomly distribute palm trees with variation in size indicating 

different growing stages were presented in dataset 3. In dataset 3, palm trees 

were surrounded by other tree types and at some locations palm trees were 

densely packed.    

When carefully examining the detection results, it was found that the 

faster_rcnn_inceptionv2 model was not good at identifying small trees and trees 

located at the edges.  But it performed well in distinguishing shadows of trees 

with target trees than other models. The faster_rcnn_resnet50 model performed 

well when the target trees were presented in different sizes. But it misidentified 

shadows as target trees. The faster_rcnn_resnet101 model produced better 

results when target trees are systematically distributed over the study area. The 

performance of faster_rcnn_resnet101 model became lower when the size of the 

target trees varies, and shadows were presented in the image. The 

faster_rcnn_inception_resnetv2 showed a poor performance when the 

orientation and texture of trees vary between one another. However, it 

performed well when the size of target trees varies.  

 Therefore, for dataset 1 and dataset 3, faster_rcnn_resnet50 model 

achieved higher overall accuracy while for dataset 2 faster_rcnn_inceptionv2 

model achieved the higher value. Regardless of datasets, the highest overall 

accuracy was reached by faster_rcnn_inceptionv2 model and the lowest value 

was resulted by faster_rcnn_inception_resnetv2 model. 

When considering the total time duration recorded for each model per 

dataset in Table 4, it can be decided that the speed of model depends on the 
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dataset. The frcnn_inceptionv2 model indicated the highest speed during the 

training process. This might be a result of computational efficiency of inception 

layers as the speed is directly affected by number of parameters and types of 

layers in the network (Huang et al., 2017).   

  According to the results in Table 6, it can be concluded that the 

performance of models depends on the dataset. The faster_rcnn_inceptionv2 

model indicates high specificity and low sensitivity for dataset 1 and dataset 3 

providing evidence of overfitting. But for dataset 2, it is perfectly fit since the 

specificity and sensitivity values have a slight difference. The 

faster_rcnn_resnet50 model overfits with dataset 2 and dataset 3 indicating high 

specificity and low sensitivity values. However, the model fits well for dataset 1 

resulting almost similar values of specificity and sensitivity. The 

faster_rcnn_resnet101 model underfits for dataset 1 and dataset 2 indicating high 

sensitivity and low specificity values while overfits for dataset 3 showing 

opposite values. The faster_rcnn_inception_resnetv2 model overfits for all three 

datasets resulting a much difference in specificity and sensitivity values than 

other models.  

Considering both speed and accuracy measures of all models, it can be 

concluded that the faster_rcnn_inceptionv2 model outperforms the other models 

and lowest performing model is faster_rcnn_inception_resnetv2. The 

faster_rcnn_resnet50 model has also been capable of achieving similar 

performance to that of faster_rcnn_inceptionv2 model. This agrees with the 

research findings by Safonova et al., 2019. It is obvious that the accuracy was not 

highly affected by increasing the number of layers in feature extractor i.e. 

resnet50 and resnet101.   

The study was limited to the pre-trained object detection models which 

were already built in TensorFlow and their default parameter settings. Although, 

it was able to achieve better accuracies with small amount of data, accuracy could 

be improved with gathering more data. Lack of adequate amount of data for 

representing different growing stages of palm trees during training stage might 
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have affected the classification results. Original images had to be cropped into 

smaller tiles in order to make it possible to work with available hardware. 

Availability of high performing computers can support analyzing large images 

covering bigger areas.     

This study provides insights to the use of object detection techniques in 

remote sensing context. Next step is to train object detection models to detect 

multiple tree species. This method could be extended to analyze different 

growing stages of plants. It is suggested to conduct experiments with models 

written in other libraries not limiting to TensorFlow models.   
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7. CONCLUSIONS 

Crop and forestry management fields often get benefits from a vast range 

of remote sensing applications to maintain sustainable management. Image 

classification is one of the important tasks which reveals more information for 

decision making. Image classification techniques are developing rapidly with the 

advancement of deep learning. Although, a considerable number of researches 

have been carried out using CNN in this field and proven its capabilities, very few 

researches have been conducted to assess the performance of recently developed 

object detection technique RCNN in agricultural field. This thesis evaluates the 

performance of faster RCNN in identifying palm trees which may lead to many 

applications in crop management field. It is also an example of showing the 

application of RCNN to detect individual trees with a smaller number of training 

samples.  

It is evident that pre-trained faster RCNN object detection models can 

achieve better accuracies with only high resolution RGB images. Faster RCNN 

models can perform well in identifying target even in complex backgrounds. 

Object detection models behave differently with different datasets. The speed and 

performance of models depend on the dataset. It also depends on the type of 

feature extractor.  According the research findings, the faster RCNN model which 

was having inceptionv2 as feature extractor performed best by achieving the 

highest overall accuracy and speed. It also well distinguishes shadows from target 

when compared to other models. The faster RCNN model which was having 

inception resnetv2 as feature extractor showed poor performance with lowest 

overall accuracy and speed.       
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ANNEX I  

This section contains results that were not presented in the main text. Only 

the images of detection and evaluation results from faster_rcnn_inception_v2 

model for dataset 1 are attached here for the reference. Results of all three 

datasets can be viewed through this link; 

https://github.com/Chamodi88/MasterThesis .  
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(a) Total loss vs steps graph of faster_rcnn_inception_v2 model for Dataset 1; (b) Total loss vs steps 

graph of faster_rcnn_resnet50 model for Dataset 1; (c) Total loss vs steps graph of faster_rcnn_resnet101 

model for Dataset 1; (d) Total loss vs steps graph of faster_rcnn_inception_resnetv2 model for Dataset 1; (e) 

Total loss vs steps graph of faster_rcnn_inception_v2 model for Dataset 2; (f) Total loss vs steps graph of 

faster_rcnn_resnet50 model for Dataset 2; (g) Total loss vs steps graph of faster_rcnn_resnet101 model for 

Dataset 2; (h) Total loss vs steps graph of faster_rcnn_inception_resnetv2 model for Dataset 2; (i) Total loss 

vs steps graph of faster_rcnn_inception_v2 model for Dataset 3; (j) Total loss vs steps graph of 

faster_rcnn_resnet50 model for Dataset 3; (k) Total loss vs steps graph of faster_rcnn_resnet101 model for 

Dataset 3; (m) Total loss vs steps graph of faster_rcnn_inception_resnetv2 model for Dataset 3 

T
o

ta
l l

o
ss

 

(g) 
Steps 

T
o

ta
l l

o
ss

 

(h) 
Steps 

T
o

ta
l l

o
ss

 

(i) 
Steps 

T
o

ta
l l

o
ss

 

(j) 
Steps 

T
o

ta
l l

o
ss

 

(k) 
Steps 

T
o

ta
l l

o
ss

 

(m) 
Steps 

Figure I.I Total loss vs steps graphs of each model 
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Figure I.II Classified images from faster_rcnn_inception_v2 model for test images in Dataset 1    

 

(a) (b) 

(c) (d) 

(e) (f) 

(a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5; (f) Image 6; 
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Figure I.III Evaluation results for classification from faster_rcnn_inception_v2 model for test images in 
Dataset 1 

 

(a) (b) 

(c) (d) 

(e) (f) 

(a) Image 1; (b) Image 2; (c) Image 3; (d) Image 4; (e) Image 5; (f) Image 6; 
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ANNEX II 

This section contains scripts used to pre-process data and the script used to 

evaluate the model. All scripts have been uploaded in the following link; 

https://github.com/Chamodi88/MasterThesis . 

 

 

Figure II.I The python script used for converting image format from TIF to JPG 

https://github.com/Chamodi88/MasterThesis
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Figure II.II The python script used to crop JPG images into tiles of specified dimensions 
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Figure II.III The python script used to detect palm trees and evaluate the detections 
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