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ABSTRACT

This thesis consists in designing and testing the payload of a TubeSat low-cost satel-
lite, called CTSAT-1. Instead of spend large quantities of money to space research, this
picosatellite offers a very low-cost solution to provide answers for institutions investiga-
tions.

Designing and assembling a picosatellite of this size represents a big challenge due
to packing of a lot electronics and equipments inside TubeSat low dimensions, therefore
providing a unique efforts in reaching a complete small spacecraft.

To keep the budget of the project low as possible, maintaining TubeSat specifications
and space flight requirements, for intensive testing will be used homemade techniques

to achieve satisfactory results without spending too much on expensive equipment.

Keywords: TubeSat, picosatellite, low-cost satellite, design, experimental testing
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REsumMmo

Esta dissertacao consiste em projetar e testar a carga de um TubeSat, satélite de baixo
custo, designado CTSAT-1. Em vez de se gastar grandes quantidades de dinheiro para
a pesquisa espacial, este picosatélite oferece uma solucao de baixo custo para fornecer
respostas para investigacoes institucionais.

Projetar e montar um picosatélite deste tamanho representa um grande desafio devido
ao empacotamento de muitas pegas eletronicas e equipamentos dentro das dimensoes
reduzidas de um TubeSat, fornecendo consequentemente um esforco tnico em alcangar
um aparelho espacial pequeno.

Para manter o or¢amento do projeto o mais baixo possivel, mantendo as especifica-
coes do TubeSat e as exigéncias de voo espacial, para testes experimentais intensivos
serao utilizadas técnicas caseiras para obter resultados satisfatorios sem gastar muito em

equipamentos caros.

Palavras-chave: TubeSat, picosatélite, satélite de baixo custo, projecto, testes experimen-

tais
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CHAPTER

INTRODUCTION

1.1 Motivation

For a long time mankind has always wanted to go beyond the surface of the Earth.
Missions such as Sputnik or Apollo have become a reference for space exploration. In
recent years, due to the dizzying evolution of technology, it is possible to achieve new
goals using fewer resources.

The use of small and low-cost satellites has been increasing, which translates into an
opportunity for students and researchers to develop missions with lower budgets.

This thesis will evaluate one of the most important phases in a space project, the
payload development process. It will also contribute to a solid and ambitious project that
is to build a small space device.

According Interorbital Systems (IOS), Universidade Nova de Lisboa is the only por-
tuguese university belonging to the launch manifest of TubeSats [30]. Considering that is
listed only one TubeSat kit for this university, that means this project, at the time of this

writing, is the only portuguese TubeSat.

1.2 Thesis Organization

This thesis is presented into six chapters, including the present introduction, the

remainder can be summarized as follows.

* Chapter 2 : State of the Art : in this chapter is presented a bibliographical review
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CHAPTER 1. INTRODUCTION

of the work about space related concepts. Is introduced the concepts of space en-
vironment, low-cost satellites and its applications. There is also information about

testing technics of satellites.

* Chapter 3: CTSAT-1 - Design and Implementation : in the third chapter, there is
the description of the low-cost satellite used including its structure and main stages.

Also is described a detailed implementation of the payload system.

* Chapter 4 : Testing Procedures : this chapter includes the testing methods that are
used to test the TubeSat.

* Chapter 5: Measurement Results and Analysis : it is a chapter that includes with-

drawn results from the testing phase. After that, the results are analysed.

* Chapter 6 : Conclusions and Future Work : here are the final considerations about
the work, with a summary of the main conclusions to be drawn. It also has prospects

for future work in order to improve the work done.
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2.1 Orbital Conditions

Some satellites usually operate in the Low Earth Orbit (LEO) that is located at an
altitude between 150 km and 600 km. This is the region that also has the the International
Space Station (ISS) and several science and communication satellites.

LEO is in the part of the atmosphere called the Thermosphere, and the Thermosphere
contains the region called the Ionosphere, layer that is composed mainly of electrically
charged atoms (ions) and electrons, due to the ultraviolet radiation from the Sun, that
also coincides with some of the Earth’s magnetic field.

The Earth’s magnetic field shields us from the Sun’s most activity. High-energy parti-
cles, flare emissions, and coronal mass ejections get shunted by the magnetic field before
they can reach ground. Where the magnetic field lines dip near the poles, this energy
expresses itself as the aurora (Figure 2.1) [13].

Above the ionosphere, the space environment can be hostile because of solar activity.
Below it, the radiation risks are much lower thats why most satellites are kept in LEO
region. Below the altitude of 150 km it is impossible to maintain a stable orbit.

A typical LEO orbit has a period of 90 minutes, in other words, an object inside LEO
rotates around the Earth once every 90 minutes, doing about 16 orbits per day, each time

with position shifting a bit.
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Figure 2.1: Low Earth orbit view of an aurora by ISS [18].

2.1.1 Temperature

The temperature in LEO can vary between —170°C and 123°C [15], depending on the
rotation speed of the satellite and the time that the satellite passes towards the Sun.

Since the satellite it is spinning around itself, due to rocket satellite launch mechanism,
this range is fortunately smaller, which means that the heat has time to distribute and
dissipate. An complete orbit has approximately half its time in sunlight and the other
half in Earth shade [13].

Some sensors are only guaranteed to —40°C, since most electronics have trouble below
—40°C, so if in any event, past below that range, the rest of the satellite electronics may
have trouble.

Due to that temperatura range, in the 90 minute orbit, it is possible to cycle through
three ranges, one is the sensor is too cold to register, other is a transition region where
the sensor returns valid, slowly changing data, and the other is a possibly over saturating
at the high end [13].

Even so, there is some on-board heating of satellite components due to being in use,
these can achieve a temperature range of —30°C to 90°C. Those values are often the limits
from the off-the-shelf electronics components. The design of a satellite must have take

into account this factor to keep the temperature controlled to work properly.

2.1.2 Luminosity

The light coming from the Sun, could be used to measure its level of intensity, but

since the spiral movement of the satellite, it could only measure the timing of when the
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Sun is in view, because most function of the light sensors will return a binary value and
no sensor will be able to register the value off the luminosity when it is directed directly
to the Sun.

Therefore these light sensors will provide a basic measure the satellite’s movement
cycles and also record the overall day/night cycles during the period in which it is oper-
ating.

If the mission objective was to measure actual light levels, there was necessary a

special detectors design ensuring the Sun doesn’t saturate the light detector.

2.1.3 Magnetic Field

The ionosphere has a magnetic field strength between 0.3 - 0.6 Gauss, with variations
of 5% [13].

A common Hall effect sensor, which is based on the Hall effect, tends to be designed
for Earth work and could measure tens of gauss, so for satellites it is need to ensure that
the sensor is calibrated for the space environment, not Earth’s surface.

Because of the background noise generated by internal magnetic field of the Hall
effect sensor, this sensor it is not capable to measure fields with an intensity less than
0.63 Gauss.

However, a Hall effect sensor plus an op-amp could measure variations down to as

low as 0.06 Gauss if there’s no large external magnetic field [15].

2.1.4 Outgassing

The Outgassing or sublimation, is the vaporization of a solid going to a gas state due
to low pressure.

With values of pressure of 107! t0 101> Pa of LEO, many materials that are stable
in the Earth surface will outgas in space. This process occurs at an increasing rate as
temperature rises.

This phenomenon has two problems, it can erode the material that is outgassing, but
the outgassed material may condense on and then coat other surfaces. This can change
their conductance for some components or, for detectores and optics, coat them so they
no longer work properly.

For this reason, lubricants used on the ground are clearly not appropriate to space
operation, because lubricants have a high vapor pressure and outgas quickly, which makes
them to evaporate off moving parts and they can coat near surfaces [23].

The atmospheric composition indicates that in LEO has about 96 % atomic oxygen. In

the early days of National Aeronautics and Space Administration (NASA) space shuttle
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missions, the presence of atomic oxygen caused problems, so it became apparent that
atomic oxygen provides an aggressive environment for materials used on space vehicles
in LEO [17].

2.1.5 Space Debris

Since the launch of Sputnik I in 1957 the space activities have created an orbital debris
environment that create an increasing impact risks to existing space systems.

The major source of the current population of debris objects larger than about 1 cm
are fragmentations. Most causes for these fragmentation are aerodynamic, deliberate,
explosion, propulsion related, electrical and collision [7].

The current debris population in the LEO region has reached the point where the
environment is unstable and collisions will become the most dominant way to generate
more debris in the future. Even without new launches, over the next 200 years collisions
will continue to occur in the LEO environment [33], but in reality, the situation will be
worse because spacecraft objects will continue to be launched.

Capturing space debris is a problem that some institutions are trying to solve, because
it’s not just launch a rocket and command it to fly faster, cause any change in speed also

changes rocket’s altitude.

Figure 2.2: Simulated image showing debris in LEO [52].
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2.1.6 Radiation

In space, the radiation originated by solar activity can damage satellites. The primary
source of damage is due to highly energetic electrons, protons, and ions emitted by the
Sun.

The shape of the Earth’s magnetic field also can lead to dips in the field that cause a
higher hazard in certain geographic areas, like near Brasil, where is the South Atlantic
Anomaly (SAA), that is a region where the Earth’s magnetic field lines dip lower and thus
increase the electron/proton flux experienced in orbit and exposes orbiting satellites to
higher than usual levels of radiation. These charged particles can cause temporary and
permanent damage to satellites in space, causing single event upsets that make random
signals appear in electronics of the satellite. LEO satellites can pass through during one
or more orbits each day and satellites with sensitive detectors often decide to shut down
or cease collecting data during the passage on this location [26].

Particles of low energy will be shielded by the body of the picosatellite (Figure 2.3).

The particles with very high energy will be slowed by the small satellite and will
typically pass straight through the satellite and electronics (Figure 2.4). However, there
is a probability of some of this particles penetrate inside the satellite and deposit some
energy on the components.

The damaging particles are the particles with a specific energy. They have enough
energy to pass through the satellite’s surface to get into the electronics, but not so much
energy to pass through the satellite. Instead, they deposit their energetic charge into the
electronics, causing damage or single event upsets (Figure 2.5). It can also degrade the
solar panels and other sensitive components [14].

Shielding can help protect electronics, but can also increase the risk of damage, be-
cause shielding attenuates all particles. These means that the low energetic particles are
slowed down so much they are completely blocked. The particles with right amount of
energy that without shielding could cause damage, with shielding they can be blocked
by satellite’s surface. The particles that have high energy, they lose some energy passing
through the shielding, but still continue to move to inside the satellite leading to possibly

cause more damage.
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Figure 2.3: Effects on a picosatellite of low energetic particles.

—
—>

Figure 2.4: Effects on a picosatellite of high energetic particles.

Figure 2.5: Effects on a picosatellite of particles with the right amount of energy.

oo
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2.2 Low-Cost Satellites

2.2.1 Miniaturized Satellites

Until recent years, the space exploration were limited to big corporations with high
budget. These corporations are responsible for creating heavier satellites that require
larger rockets with greater thrust and very complex and expensive equipment to perform

space missions.

Miniaturized satellites are small satellites with low weights and small sizes, usually
under 500 kg. While such satellites can be referred just as small satellites, different

classifications are used to categorize them based on mass.

Definition Size

Minisatellite | 100 - 500 kg
Microsatellite | 10 - 100 kg
Nanosatellite 1-10kg
Picosatellite 0.1-1kg
Femtosatellite | 0.01 - 0.1 kg

Table 2.1: Classifications that are used to categorize miniaturized satellites based on mass
[31].

The main reason for miniaturizing satellites is to reduce the cost of development and
launch to provide researchers and even students an equipment for making experiments
on space. Smaller and lighter satellites require smaller and cheaper launch vehicles, and

are often suitable for launch in multiples.

One advantage of picosatellites is after operating for a several weeks or months, they
will safely re-enter the atmosphere and burn-up not contributing to the long-term build-
up of orbital debris.

But small satellites also have some technical challenges as they usually require inno-

vative propulsion, attitude control, communication and computation systems.

The first launch of a picosatellite was realized on 30 June 2003 with the launch of
6 CubeSats [22]. Since then the market of miniaturized satellites is registering a fast
growth.

Picosatellites must be powered off at the time of delivery until their deployment in
orbit. Therefore, they cannot radiate radio frequency emission, either as radio signal or

electronics noise.
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2.2.2 CanSat

The CanSat is a representation of a real satellite, integrated within the volume and
shape of a soft drink can (330 ml). Since the maximum mass allowed of the CanSat is

limited to 350 grams, it can be considered as a picosatellite.

CanSats offer a opportunity for students to have a first practical experience of a real
space projects. They are responsible for selecting its mission, designing the CanSat,
integrating the components, programming the on-board computer, testing, preparing for

launch and then analysing the data.

There are some importante rules to to accomplish like the CanSat should have a
recovery system, such as a parachute and the total budget of the model should not exceed
500 €. This device must be powered by a battery and/or solar panels, because explosives,
detonators, pyrotechnics, and inflammable or dangerous materials are strictly forbidden
[60].

Unlike other picosatellites, the CanSat operates in the troposphere, which means that
will never reach orbit. This layer contains about 80% of the total mass of the atmosphere,
and stretches to about 10 kilometres altitude [10].

The CanSat is launched by a rocket to a previously defined altitude (approximately
1000 meters) so that during the descent it is possible to carry out a scientific experiment,

capture the signals emitted and ensure a safe landing.

) =
e

Figure 2.6: Portuguese ENTA team SAT 2, winner of the 2016 ESA’s European CanSat
competition [24].
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2.2.3 CubeSat

The CubeSat is a type of miniaturized satellite belonging to the genre of picosatellites
used primarily by universities for space exploration and research, typically in low Earth
orbit.

The design standard was created in 1999 by two university professors Jordi Puig-
Suari and Bob Twiggs of the universities of California Polytechnic State University and
Stanford University, respectively. The main purpose of the project is to provide a standard
for design of picosatellites to reduce cost and development time, increase accessibility to
space, and sustain frequent launches to universities and educational institutions, but also
private firms and government organizations. A typical CubeSat launch cost is estimated
at 40,000 $ [13].

The picosatellite CubeSat 1U is a 10 cm cube with a mass up to 1.0 kg [4]. It is possible
to group several identical devices in order to increase the size and number of necessary
components to carry out the different missions, such as, the CubeSat 2U which measures
10x10x 20 cm.

Figure 2.7: AAUSat, Cubesat 1U developed by students of Aalborg University [1].

The constitution of CubeSat is based on multi-layers design: the antenna, the con-
troller layer, the communication layer, the power management layer and the payload area.
The structure is made with an aluminum frame.

This kind of satellites are launched and deployed using a common deployment system
called a Poly-Picosatellite Orbital Deployer (P-POD) developed and built by California
Polytechnic State University.

Only few of CubeSats are equipped with a propulsion system that enables orbit cor-
rection or attitude control, such as, the CubeSat built by the University of Illinois, which

was loaded with an array of small ion thrusters [31].
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2.2.4 TubeSat

The TubeSat is a hexadecagon shaped picosatellite and is the low-cost alternative to
the CubeSat and it was designed by 10S, which sells a kit, including some main hardware
components and launch for the price of 8,000 $, which is much lower than the CubeSats
costs. The first TubeSat kits reached the market in 2009 [29].

This picosatellite has 12 cm in length with a mass up to 0.75 kg, but maintaining the
Cubesat volume. As CubeSats, the TubeSats can also group several identical devices to
meet the necessary mission.

They are designed to operate for up to 2 months, depending on the solar activity veri-
fied during the orbit. After that they are placed into self-decaying orbits 310 kilometers
above the Earth’s surface [58].

Figure 2.8: TubeSat with a sample ejection cylinder [59].

This picosatellite is also based on multi-layers design but it’s structure is assembled
from a set of printed circuit boards (PCBs), instead of having an aluminum frame, like
CubeSats.

The TubeSats are launched into orbit on an IOS Neptune three-stage modular rocket.
These rockets designed to place between 30 and 1,000 kg into low Earth orbit. The 30
kg payload capacity allows formations of 24 TubeSats to be launched per orbital mission
with each TubeSat in its own dedicated deployment unit [58].

The first assembled TubeSats were launched in late January, 2017, with the TANCREDO-
1 and OSNSAT being the first picosatellites of this type to reach LEO [29].

12
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2.2.5 Picosatellite Constellations

With the increase of projects using low-cost satellites, the complexity of the objectives
has also increased, making it clear that it would be impossible to developing missions
using only one equipment. Therefore constellations of picosatellites could prove to be a
low-cost and efficient solution to carry the proposed missions.

The benefits of several satellites in different orbits working in a network are the in-
creased temporal and spatial resolution of observations and measurements. Additionally,
with a larger number of less-expensive satellites involved, a mission is less affected by
single-satellite failures.

There are several common constellation architectures [36]:

Geosynchronous - Worldwide coverage using three to five satellites.
* Ellipso - Several satellites with an elliptical orbits.
* Polar Non-symmetric - Satellites in polar orbits with varying rotational spacing.

» Walker/Rosette - Satellites in individual rotationally symmetric orbital planes with

identical altitudes and inclinations.
* String of Pearls - Multiple satellites in the same orbit plane.

* Streets of Coverage - polar orbits with satellite right ascensions of ascending node
(RAAN) spread evenly across one hemisphere

Through these constellations, it is possible to increase the complexity of the missions,
since there is the possibility of optimize coverage over a specific region to improve the
measurements in certain applications, such as Earth observation, communications, re-
mote sensing or reconnaissance.

One of the projects using picosatellite constellations is the QB50 that has the objective
to demonstrate the possibility of launching a network of 50 CubeSats built by universities
teams all over the world, to perform atmospheric research within the lower thermosphere,
between 200 - 380 km altitude [41].

2.3 Picosatellite Application Areas

With the accessibility of low-cost satellites, there is several fields with projects that

enable a vast array of research possibilities and applications.
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Some of fields are education, earthquake detection, Earth observation, military, biol-
ogy, communication, technology demonstration, propulsion experiments, events monitor-
ing, radio, management of disasters, environmental, re-entry material testing, inspection
of larger satellites, navigation, scientific research between many others [21].

In the following subsections there are some information about some of fields men-

tioned earlier.

2.3.1 Earth Observation

The mission of the AUUSat (Figure 2.7) was to photograph several areas around the
globe from the LEO.

To accomplish this objective , this CubeSat satellite was equipped with Kodac CMOS
image sensor that provided a resolution of 1280x1024 pixels (1.3 megapixels) with a
color depth of 24bit colors. From a height of 900 km this optics provide an on ground
resolution of approximately 150x120 m. The structure in which the lenses were placed
were made from Titanium [8].

Once in orbit, this satellite started to have failures due to battery problems.

Flock-1 is a constellation of CubeSats started to be launched from the ISS in January
2014. This constellation is developed by Planet Labs and initially consisted in 28 satellites
capable of providing medium to high resolution imaging of the entire planet with a
ground resolution of 3 to 5 m.

Most of the Flock 1 satellites were RGB imaging systems, but some containing differ-
ent optical spectral bands and camera firmware [5].

After the launch of these 28 satellites, Planet Labs still continue to launch new Flock-1

satellites.

Figure 2.9: Twenty-eight satellites from Planet Labs ready for launch [2].
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Figure 2.10: Valle de la Luna in Argentina. Image acquired on 19 July 2016 by a recent
Flock-1 satellite [48].

2.3.2 Earthquake Detection

The QuakeSat was a miniturized satellite that is size of a triple CubeSat developed
by the Space Systems Development Laboratory (SSDL) at Stanford University and the
QuakeFinder Team. It was launched on June, 2003 last more than a year in orbit. It

carried a very sensitive magnetometer.

His mission objectives were to detect, record, and downlink the ELF magnetic data to
verify the results. In addition, it was hoped that investigating the ELF data can ultimately
lead to the prediction of earthquakes of magnitude 6.0 or higher.

During an earthquake, theory states that fracturing of the rock creates the Extremely
Low Frequency (ELF) magnetic waves. These signatures radiate from the earthquake
hypocenter region, through the earth to the Ionosphere, and are propagated up the Earth’s
magnetic field lines to the satellite altitude (600-900 km) [9].

QuakeSat records ELF magnetic field data in the 1-1000 Hz range in 4 bands, one
band at a time [11].
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Figure 2.11: Assembled QuakeSat satellite [3].

2.3.3 Biology

PharmaSat was small satellite developed by NASA’s Ames Research Center and Santa
Clara University and it was launched on May 2009. It has the constitution of 3 CubeSats
1U, meaning that is a 3U CubeSat.

The mission of the PharmaSat was to investigate the efficacy of anti-fungal agents in
the spaceflight environment [6].

The satellite contains a controlled environment micro laboratory with sensors and
optical systems that can perform the necessary experiences and transmit that data to

scientists for analysis on Earth. PharmaSat is equipped with some subsystems [45]:

* An optical sensor system that is able to detect the growth, the health and size of the

yeast populations;
* A miniature environmental controller to monitor the experiences;

* A micro-fluids system consisting of 48 small holes, which house four different sam-
ple groups of yeast, and a network of small tubes to feed the yeast with a sugar

solution and dose them with an anti-fungal agent.
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Figure 2.12: PharmaSat ready for testing [44].

2.4 Testing Environment

One of the most important phases of a technological project is the testing phase. In the
space industry this phase is extremely important because physical access to equipment is

not possible while it is in operation.

A rocket that provides satellite’s launch will apply intense g-forces, it will vibrate and
shake at different rates as it goes through different stages and the satellite is ejected on
the final stage. To withstand these different stages a satellite and its component parts

undergo extensive testing during the various phases of its development.

Some companies in the space industry are using low-cost satellites to perform the nec-
essary tests and collect information on the parameters that characterize the environment

in which their new technologies will operate.

For CubeSats, NASA has one document titled “Program Level Dispenser and CubeSat
Requirements Document” that gives a set of NASA specifications on the requirements for
CubeSat and PPOD. They include vibration, shock, and thermal requirements as well as

power limits during phases of launch.
NASA has several facilities to perform spacecraft tests.

The majority of European Space Agency (ESA) spacecraft are tested in the European
Space Research and Technology Centre (ESTEC). This test centre is the largest centre of

its kind in Europe, and one of the largest in the world.
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2.4.1 Clean Rooms

Clean rooms are like operating rooms in hospitals, they are usually kept as free as
possible of contaminants that could interfere with delicate technology. That way is main-
tained by having filtered air pumped in and maintaining positive pressure so no other
outside air can enter. Some clean rooms can fit a satellite and the team needed to build it.

Anyone that works in a clean room, such as engineers and scientists, have to wear
sterile bodysuits, head covers, gloves, boots, and face masks. Before entering the clean
rooms theres is a space where employees receive a forced air shower to blow away loose
debris from hair, skin and clothing.

It takes about 10 to 15 minutes to get dressed before entering the clean room, and
it’s important because even a little of dust or a fingerprint could severely damage the
sensitive components and instruments, so the clean room must filter out these harmful
contaminants.

In Goddard Space Flight Center there is a clean room with a Class-10,000 according
with US FED STD 209E standard. That means any cubic foot of air in the clean room has

no more than 10,000 particles floating around in it larger than 0.5 microns.

Figure 2.13: Clean room at the NASA’s Goddard Space Flight Center [25].

2.4.2 Thermal Vacuum Testing

Thermal vacuum testing is crucially important for spacecraft because it represents
the closest possible replication of space conditions capable of being reproduced on the
terrestrial surface.

There is no conduction or convection in space, because there is there is absence of air
and no material to conduct heat. Only radiative heating and cooling occurs in space. In
orbit the satellite will heat rapidly, or cool rapidly, without having any buffer between the

two states.
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Vacuum testing also ensures that soldered links are stable, and aren’t going to break
due to air pockets, air conducting where there should be solder, and similar problems. If
there are air bubbles in a component due to poor manufacturing, will cause it to break
when it hits vacuum [14].

The Johnson Space Center have a thermal vacuum chamber (Figure 2.14) capable of

reaching temperatures between —260°C and 150°C. This chamber has a pressure range
of 1x107° to 760 Torr.

Figure 2.14: Thermal vacuum chamber A at the Johnson Space Center[20].

The Phenix thermal vacuum chamber (Figure 2.15) is inside the ESTEC’s facilities. It
have a inner box called the the thermal tent that is made of copper plates with brazed
copper pipes which use liquid and gaseous nitrogen to produce the range of temperatures
desired, from 100°C to less than —170°C.

Figure 2.15: Phenix thermal vacuum chamber with thermal tent from ESTEC Test Centre
(47].
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2.4.3 Vibration Testing

A rocket vibrates with high level of intensity during launching moment, due to engine
throttling and wind resistance. Each stage of the rocket will induce changing vibrations

from stage shutdowns and stage separations.

Each rocket has its own vibration profile of the range of frequencies and amplitudes

that a payload on that rocket will suffer.

The space industry demands the most rigorous vibration testing in the world.The
first two minutes of a satellite’s space flight are the hardest, as it experiences the extreme
vibration at launch. Therefore is essential to test a satellite under similar conditions to

ensure that satellite will survive this phase until reaching the orbit.

In NASA’s Goddard Space Flight Center, their shaker table (Figure 2.16) can reach
vibration with a frequency range of 5 - 2,000 Hz.

Figure 2.16: James Webb Space Telescope is positioned in the shaker table [46].

The ESTEC Test Centre’s Hydra is a hydraulic multi-axis shaker (Figure 2.17) test
facility that provides vibration testing. It is capable of generating vibrations equivalent
to an earthquake of 7.5 on the Richter scale. Hydra can perform mechanical vibration

tests at frequencies between 1 - 100 Hz in all axes of motion simultaneously.
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Figure 2.17: Envisat satellite on Hydra [27].

2.4.4 Acoustic Testing

During the launch of a rocket, the release of high velocity engine exhaust gases, the
resonant motion of internal engine components, and the aerodynamic flow field asso-
ciated with high speed vehicle movement through the atmosphere generates elevated
amount of noise [14], even when standing several kilometres from the launch pad. A
satellite on top of its rocket launcher is exposed to a lot more higher levels of acoustic

noise.

That’s why engineers have to ensure that the the satellite can withstand that levels of

sound pressure.

The Reverberant Acoustic Test Facility (RATF) is located at NASA Glenn Research
Center (Figure 2.18). The frequency range is from 25 Hz to 10 kHz and the maximum
acoustic overall sound pressure level is 163 dB. The chamber can be operated as a class
100,000 clean room. As similar rooms, while in operation, it is forbidden to be presented
inside the chamber, which have thick walls and doors to ensure that there is no sound

leakage out of the room.
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Figure 2.18: Reverberant Acoustic Test Facility [51].

The largest european facility to make acoustic tests is the ESA’s Large European Acous-
tic Facility (LEAF) (Figure 2.19). The noise generation system consists of four different
horns with different cut-off frequencies and three high frequency noise generators. It is

possible to achieve a maximum overall noise level up to 156 dB.

B 1l 3 ; —-— 3 il

Figure 2.19: ESA’s Rosetta satellite during acoustic testing at LEAF [32].

2.4.5 G-Force Testing

With the launch of powerful rockets satellites and astronauts experience huge values

of g-force. Satellites can achieve up to 10 G during launch [14].
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With this forces it is important to make some tests trying to replicate the stress expect
the equipment will go through during launch.

The NASA Ames Research Center have a 20 G centrifuge (Figure 2.20), meaning that
is capable of producing forces up to 20 times that of terrestrial gravity, rotating at 50 rpm.
This machine was designed in the 1960s. Multiple payloads can be placed along the arms
to simultaneously obtain data from hardware at multiple g levels.

Figure 2.20: Ames Research Center 20 G centrifuge [12].

In the ESTEC facilities, theres is a centrifuge called Large Diameter Centrifuge (Figure
2.21) that can spin at 67 rpm and create gravity up to 20 G.

Figure 2.21: Large Diameter Centrifuge at ESTEC [28].
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3.1 Structure

As mentioned earlier, a TubeSat is a low-cost satellite. It has a total weight of 750 g,
with 250 g being reserved for the additional load associated with the material needed to
carry out the experiments.

It’s light weight is due to the picosatellite structure, made from a set of printed circuit
boards with hexadecagonal shape.

There are in total five levels, four basic levels plus one for the payload (figure 3.1).
The satellite has a length of 12.7 cm and outer diameter of 8.94 cm.

In the kit provided by IOS, it includes PCB Gerber files for the four basic levels,
microcontroller Arduino Mini, Radiometrix transceiver and amplifier, solar cells, battery,
antenna sections and structural hardware like bearings, screws, washers and nuts.

Although IOS provides the some PCB files, these can be changed if necessary.

To understand the complexity of its structure, IOS recommended building a mock-up
with blank PCBs, fiberglass and aluminium sheets. However, it was made one using recent
3D printing technologies (figure 3.2). The plastic used in this structure demonstration
was PLA (Polylactic Acid), which is cheap, widely available, easy to print and environment
friendly. As demonstration purpose, the side panels were not totally built to better show
the inside of the picosatellite.

The dimensions of this mock-up are provided in the annex I.

Its important to mention that the rings in this mock-up were made for M3 screws size,

and not the screws provided by 10S.
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Payload PCB

Solar Cells PCB
Space for the Payload

Microcontroller PCB

Transceiver PCB

Power Management PCB

—

Antenna

Anlenna PCB

Antenna

Figure 3.1: TubeSat structure with the five levels and other components.

Figure 3.2: TubeSat mock-up using a 3D printer.
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The picosatellite uses two rings that secure the solar panels PCBs to the main structure.
Although 10S provides indications of materials and dimensions, a reinforced one was
made using ABS(Acrylonitrile Butadiene Styrene) in a 3D printer plus a metal mounting
system.

As different of IOS procedure, that uses only screws to secure the panels to these rings,
this version uses screws and nuts, which these nuts are locked inside the plastic rings.

The screws provided by IOS were in the imperial system, so they were replaced by
the closest measure in the metric system to be able to buy the nuts, which was M1.6.

The rings were first made with nuts hole open, then the nuts were placed in the rings
and later on those holes were chemically welded with more ABS to secure the nuts.

The dimensions of the rings are provided in the annex L.

Figure 3.3: TubeSat rings using a 3D printer.

3.1.1 First Level - Antenna

The first level is the Antenna Printed Circuit Board (PCB). Attached to the Antenna
PCB are two lengths of antennas made from a steel measuring tape, measuring 33 cm.
On one side of the board there is coaxial connector to connect the dipole antenna, and via
coaxial cable, connect to the communication level.

Also in the PCB, there is a jumper that must be removed before flight and a switch
that activates the satellite after it has been deployed to orbit. The jumper keeps the
tubesat turned off, even if the microswitch is activated. Before the picosatellite be put
inside a launch cylinder, the jumper is removed as microswitch is not activated because
it is pressed against the cylinder walls. When it is launch in orbit the microswitch will
activate and turn on the tubesat.

In the Annex II, there is the PCB layout, the circuit schematic and the list of materials.
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Figure 3.4: First level - Antenna PCB [59].

3.1.2 Second Level - Power Management

The second level is the Power Management PCB. In this board it’s included the battery,
the solar cell PCB cable connectors, the battery charging circuit, the voltage regulators,
and the power connection points for the various satellite systems.

The battery provided is a Li-ion 3.7V with 5200 mAh capacity.

This level is responsible for charging the battery through the energy received by the
48 photovoltaic cells, the battery to power the whole satellite and the management of
power connections for other levels.

In the Annex II, there is the PCB layout, the circuit schematic and the list of materials.

Figure 3.5: Second level - Power Management PCB [59].
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3.1.3 Third Level - Communications

The third level is the Transceiver PCB. Here are the transceiver Radiometrix TR2M
and the transceiver amplifier Radiometrix AFS2. This board is also connected to the
Microcontroller PCB and Antenna PCB.

The output power is about 500mW, and the working frequency is 435 MHz.

The transceiver is a device that is able to transmit and a receive signals in the same
package. In the TR2M is possible to reconfigure the entire communication system using
the RS232 interface.

The amplifier has a mission to increase the power of the signal sent by the transceiver.

In the Annex II, there is the PCB layout, the circuit schematic and the list of materials.
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Figure 3.6: Third level - Transceiver PCB [59].

3.1.4 Fourth Level - Control

The fourth level is the Microcontroller PCB. In this board there is the main controller
of the TubeSat, the Arduino 5 Mini.

This Arduino have inside a ATMEL microprocessor, which represents a very low
energy consumption solution, while maintaining an affordable price.

The objective of this level is process of the collected data and the send them to the
communications level.

In the Annex II, there is the PCB layout, the circuit schematic and the list of materials.
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3.1.5 Fifth Level - Payload

The space between the Microcontroller PCB and the Payload PCB is reserved for the
experiment or application.

Even, if the experiment doesn’t require the Payload PCB, it must always be present as
a blank PCB, because this board is part of the TubeSat structure.

The payload for the CTSAT-1 satellite is based on a reprogrammable system capable
of adapting to the environmental conditions found.

This payload is based on Carlos Loura master thesis titled "Sistema de Aquisicao de
Sinal para um satélite de baixo custo do tipo Tubesat"[34].

The Payload’s block diagram developed for this tubesat is illustrated in figure 3.7.

RTC
DS3231 ‘ﬁl 3.7V Battery H Switch
From Power Management PCB To Microcontroller PCB Module
l T 12C —|I2Cr
| [ e e
Voltage Battery — — |
Step-up —=| Charger = Wl LSM9DS0
Module Module N Module
PSoC 5LP
A 1| McPgsos
1 I\ . 12C ) Sensor
Wheatstone ‘C— ' | Module
Bridge N

T §ISP|
MLB511 UV g

Sensor
Module

A I ‘ Toshiba
SPI | FLASH |«
V| Memory

Logic Level
Converter

Voltage
Regulator

Figure 3.7: Payload’s block diagram.

Since one of objectives is to reduce the number of components, it will be used the
microprocessor Programmable System-on-Chip (PSoC) CY8C5868AXI-LP035, belonging
to the family PSoC5-LP, developed by the company Cypress. This chip has an Advanced
RISC Machine (ARM) core, Cortex-M3 CPU, which is a 32-bit processor, with a clock
signal frequency up to 67 MHz. This core also has 256 KB of Flash memory, 64 KB
of Static Random Access Memory (SRAM), 2 KB of Electrically Erasable Programmable
Read-Only Memory (EEPROM). The microprocessor has other features like 20-bit Delta-
Sigma analog to digital converter (ADC), 12-bit successive approximation register (SAR)
ADC, 4 digital to analog converters (DAC), 62 general purpose input/output (GPIO), etc
[49].

As the data keeps reaching from the sensors, it needs to be stored in a memory circuit
to send later to Earth station, when the communication channel is available. The memory
integrated circuit chosen was TC58CYGOS3HQAIE from Toshiba. This device is based
on flash NAND tecnology which is better than the NOR for this application due high-

density data storage, low cost-per-bit, write speed and erase speed [43] and these features
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qualifies better for storage needs. This memory has 1Gb of memory clocked at maximum
of 104 MHz. By default, this integrated circuit provide error-correcting code (ECC) logic
internally [54]. The communication interface available in this ic is Serial Peripheral
Interface (SPI).

As this ic request a power supply from 1,7 V to 1,95V, it was included a voltage
regulator MIC5225-1.8 from Micrel. This regulator provides a fixed 1,8 V with up to
150 mA output current and features low dropout voltage, wide input voltage range, low
ground current. Also has protections against reverse battery, against reverse leakage,
thermal shutdown and current limit [40].

Furthermore, due to this fact of 1,8 V power supply, the memory integrated circuit
need a level shifter between his communicating pins and the communicating pins on
the PSoC. It is used the MAX3378 from Maxim Integrated to accomplish this voltage
translation. This device allows bidirectional level shifting at maximum of 16 Mbps. There
are also features like +15 kV ESD protection, low quiescent current, low supply current
in three-state output mode and thermal short-circuit protection [37].

To provide a timebase for the data acquisition, it was added a Real-Time Clock (RTC)
module from Adafruit which relies on the integrated circuit DS3231 from Maxim Inte-
grated. This integrated circuit features a real-time clock with an integrated temperature-
compensated oscillator (TCXO) and a crystal. The inclusion of a crystal resonator inside
the package enhances the long-term accuracy. The accuracy varies from +2 ppm to +3.5
ppm, depending on temperature conditions [19]. This communicates with the PSoC
through I2C. The backup battery of the payload is connected to the battery backup input
of this device.

The main power supply for the payload PCB comes directly from the 3,7 V Li-Ion
battery on the power management PCB. So there is a need to increase this voltage to
5V to provide power to the payload devices. In this case is used the module POWER-
BOOST 1000 BASIC from Adafruit which includes the boost converter chip TPS61030
from Texas Instruments. This integrated circuit can provide up to 96% efficiency and up
to a maximum of 4,5 A while having a low quiescent current [56].

To charge the payload battery, is used the module POWERBOOST 1000C from Adafruit.
This module is based on the integrated circuits TPS61090 from Texas Instruments and
MCP73871 from Microchip Technology. The chip TPS61090 is a boost converter that can
achieve delivery current up to 2,5 A, features low quiescent current and high efficiency
[57]. The chip MCP73871 is a system load sharing and Li-Ion / Li-Polymer battery charge
management controller. The load sharing feature means that the chip can simultaneously
power a load and charge the Li-Ion battery. There also other features as voltage propor-
tional current control (VPCC) to ensure the load has priority over Li-Ion battery charge
current, constant current / constant voltage (CC/CV) charging algorithm, high accuracy
charge voltage, etc [38].

During the picosatellite launch into space, all electronics must be turned off and that

is ensured by a deployment switch present in the power management board. However,
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the backup battery on the payload is not turned off, so its necessary a switch to ensure
a properly disconnection from the rest of the payload devices. That is ensured by the
integrated circuit STMPS2171 from STMicroelectronics. This switch features 1000 mA
maximum continuous current, thermal, short-circuit and reverse current protections as
well as low R,,, [53].

The backup battery used in this payload is the GSP 532248 Li-Polymer 3,7 V 500 mAh
from Nimo Electronic with dimensions 53 x 22 x 4,8 mm.

As one of the objectives is to collect some data from space, namely temperature, uv
radiation, magnetic fields information, various sensors were chosen to accomplish that
tasks.

For ultraviolet (UV) light radiation measurements was chosen a module from Spark-
Fun Electronics which contains the ML8511 UV sensor from Lapis Semiconductor. This
sensor is equipped with an internal amplifier , which can convert the photo-current to
voltage depending on UV intensity, to be able to interface with an ADC. Also provides
sensitivity to UV-A and UV-B radiations with low supply current and low standby current.
It can detect wavelength from 280 to 390 nm most effectively [42]. The characteristic be-
tween output voltage and UV intensity can be found on figure 3.8. This sensor is powered
by a 3,3 V power supply, which is taken from other sensor that have a regulator with this
voltage.

The UV radiation is part of the electromagnetic spectrum that reaches the Earth
from the sun. This radiation is invisible to naked eye, due the lower wavelength than
visible light. Most of this UV radiation that penetrates the atmosphere, divides into
UV-A (tanning rays) with a wavelength of 320 - 400 nm and UV-B (burning rays) with a
wavelength of 280 - 320 nm [16].
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Figure 3.8: Output voltage - UV intensity characteristics of ML8511 sensor [42].
To capture the magnetic field information is used a module from Adafruit that have
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the integrated circuit LSM9DSO0 from STMicroelectronics. This chip has included a 3D
accelerometer sensor, a 3D magnetometer sensor and a 3D gyroscope sensor, that means
there are 3 acceleration channels, 3 magnetic field channels and 3 angular rate channels.
The linear acceleration, the magnetic field and the angular rate have various selectable
scales. There are programmable interrupt generators and the sensors can be set in power-
down mode separately to save power [35]. The communication between the PSoC and this
ic is done through I?C serial bus interface. As this module has the MIC5225-3.3 regulator
to provide power to the integrated circuit also has an output pin from this regulator,
which in this payload will power the UV sensor.

The temperature measurements relies on two different methods, one is through a
digital temperature sensor integrated circuit the other is an analog temperature sensor.
The objective of having an analog sensor is to evaluate its precision versus a digital
integrated circuit.

For the digital temperature sensor ic, is used a module from Adafruit that integrates
the MCP9808 from Microchip Technology. The accuracy of this ic is typically +0,25°C
from —40°C to +125°C. The are various selectable measurement resolutions, with its best
resolution as +0,0625°C, as well as a programmable temperature alert output [39]. This
integrated circuit will communicate with PSoC through I°C.

For RTD device, it was chosen a platinum SMD flat chip PTS1206M1B1K00P100 from
Vishay manufacturer. This component provide short reaction times and great stability of
temperature characteristic over time [50]. The datasheet of RTD gives the information
for how the data can be handled. Its possible through the provided equations or through
the table (table 3.1).

In the equations method, temperatures between -55°C and 0°C is applied the Callendar-
Van Dusen equation 3.1 and for temperatures between 0°C and +175°C the equation 3.1
can be simplified to equation 3.2 [55]. At 0°C, the value is the nominal resistance of the
RTD at this temperature which is 1000 Q.

Rr=Ryx(1+AxT+BxT?+Cx(T—-100)xT?) (3.1)

Ry =Ryx(1+AxT+BxT?) (3.2)

T represents the temperature in °C. Ry is the resistance as function of temperature
and R is the nominal resistance value at 0°C.

A, B and C are coefficients that have following values:

A=3,9083x10"3 °c!
B=-5,775x10"7 °C~?
C=-4,183x10712 °c™*

The linearity of this temperature sensor can be verified on figure 3.9.
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Figure 3.9: Ratio RT/RO as a function of temperature of RTD from Vishay [50].

NOMINAL RESISTANCE VALUE
TEMPERATURE NOMINAL RESISTANCE in Q TOLERANCE in K

in°C Ro=100 0 Rq= 5000 Ro = 1000 O CLASS F0.3 CLASS F0.6
55 78.319 391.50 783.19 + 058 +1.15
50 80.306 401.53 803.06 + 055 +1.10
25 90.192 450.96 901.92 + 043 +0.85
0 100.00 500.00 1000.00 £ 0.30 = 0.60
25 100.73 548.67 1097.35 + 043 +0.85
50 119.40 596.99 1193.97 + 0.55 +1.10
75 128.99 644.94 1289.87 = 0.68 +1.35
100 138.51 692.53 1385.06 +0.80 +1.60
125 147.95 739.76 1479.51 + 093 +1.85
150 157.33 786.63 1573.25 +1.05 +2.10
175 166.63 833.13 1666.27 418 +2.35

Table 3.1: Nominal Resistance Value vs Temperature of RTD from Vishay [50].

Instead of putting the RTD directly to an ADC on PSoC, it is used a configuration
called Wheatstone bridge (figure 3.10).

To found the value of RTD, it is necessary to resolve the equation 3.3.

R1 R3
Doing some simplification:
R1xVCC
RTD X R1 (3.4)

" VRTD-VNRTD + &= xVCC

The values for R1, R2 and R3 where chosen to match the RTD value at 25 °C, that
trough the table 3.1 is 1097,35 (), which is close to 1,1 k(). Prior to soldering, the
resistances of resistors were measured. R1 have the value of 1,095 k(Q), R2 have the value
of 1,092 kQ) and R3 have the value of 1,094 kQ.
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Figure 3.10: Wheatstone bridge used in the payload.

This components were chosen to accomplish wide temperature range and special
conditions to fulfil space adverse conditions. Also some packages were chosen had in
mind an easy soldering process, which could be done by hand.

To design the board’s layout is necessary to choose where each component will be
located.

On the top side of the PCB, which is the outer side, is located the sensor modules,
such as the UV sensor module, the inertial module, and the digital sensor module. The
board also has other modules, such as the RTC module, the voltage step-up module, the
battery charger module. The temperature analog sensor is also on this side of the board
with the Wheatstone bridge (figure 3.11).

On the bottom side, is located the microprocessor, the flash memory, the logic level
converter for the flash memory, the voltage regulator for the flash memory, the switch
for the battery, the battery, and passive components such as resistors and capacitors.
There are also some smd jumpers as well as the headers for connecting the battery, the
I?C communication header, the main power supply header for the board, the power
control header which allows the microcontroller PCB to shutdown the payload and the
programming/debugging header (figure 3.12).

The decoupling capacitors on this board, were placed as close as possible to the mi-
croprocessor and the flash memory voltage regulator.

As there are no huge power supply requirements for the modules, most of the traces
on the board are 0,25 mm width. However there are also 0,4 mm and 0,6 mm width traces
for the power supply connections. Around the microprocessor it was created a copper

pour to make a ground plane.
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In the Annex II, there is the PCB layout, the complete circuit schematic and the list of

materials.
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RTC MoODULE

WHEATSTONE BRIDGE

Figure 3.11: Fifth level - Payload PCB - Top view.

PSoC
FLAsSH MEMORY
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FOR FLASH MEMORY

BATTERY SWITCH

Figure 3.12: Fifth level - Payload PCB - Bottom view without battery.
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3.1.6 Solar Cells PCB

As other satellites of its kind, the power source to maintain autonomy is the photo-
voltaic cells.

TubeSat has a total of 48 cells divided into 8 PCBs. Each solar cell is a triple junction
Triangular Advanced Solar Cell (TASC) made by Spectrolab with 2.52 V and 31 mA and
its efficiency is around 27 %.

All the photovoltaic cells are connected in parallel and connected to the power man-
agement level, which will then distribute to the other levels of the picosatellite.

In the Annex II, there is the PCB layout and the circuit schematic.

Figure 3.13: Solar Cells PCB [59].
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3.2 System Implementation

3.2.1 Startup

After the picosatellite’s launch into space, the device turns on with the activation of
a mechanical switch. From that time the Arduino’s system and PSoC’s system begin to

start the first proceedings.
The startup of PSoC relies on figure 3.14, that represents the method for that startup.

The RTC synchronisation is very important for data, but not mandatory if the system
can’t acquired a proper time definition. After some time the system moves to data reading

with periodical tries to sync time with main controller and Earth station.

Start |

l l

Send every 10 minutes: Waiting for Signal
CTSAT-1 reception

4/. .-\'

Signal ~. No
received 7 5 i

les

Rt

Py S
P RTC
" Configuration
received 7

-
. e
%, .

l Yes
Send back the RTC

configuration to confirm
reception

Figure 3.14: CTSAT-1 startup process.
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3.2.2 Data Format

After the PSoC is fully functional, the data can be acquired from the sensors. This
data needs to have a way to structure the information to save later. The data is first
acquired and then is applied the data format of figure 3.15. This format is ready for the

I2C transmission when available.

Item |Start - # ID 1D Year | Month Day Hour | Minute BTD RTD End - #
Complement Resistance| Temp.
Bytes 1 5 1 2 2 2 2 2 6 5 1
D Digital uv
item |start-#| D '8! | Accel. x [ Accel. ¥ | End - #
Complement| Temp. |Intensity
Bytes 1 5 1 5 3 7 7 1
Item |Start-# ID 1D Accel.Z | Mag. X | Mag.Y | End- #
Complement
Bytes 1 5 1 7 7 7 1
Item |Start-# ID 1D Mag.Z | Gyro.X | Gyro. Y | End- #
Complement 3. yro. yro.
Bytes 1 5 1 7 7 7 1
D Error
Item |Start-# ID Gyro.Z End - #
Complement Y Code
Bytes 1 5 1 7 3 1

Figure 3.15: Data format to register readings.

To understand better this data format, below there is an example.

Example:

ID: 2520

Year: 19

Month: 2

Day: 19

Hour: 16

Minute: 30

RTD Resistance = 1097,31 Q)
RTD Temperature = 26,81 °C
Digital Temperature = 26,82 °C
UV = 0,39 mW/cm?
Accelerometer X = 2,45 m/s?
Accelerometer Y = 1,32 m/s?
Accelerometer Z = 2,64 m/s?

Magnetometer X = 1,02 G
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Magnetometer Y = 1,38 G
Magnetometer Z = 1,15 G
Gyroscope X = 35,93 °/s
Gyroscope Y = 2,55 /s
Gyroscope Z =11,13 °/s
Error Code = 100 -> No Error

In the data format that reading is the following;:
#025201190219163010973102681#
#0252020268203900002450000132#
#025203000026400001020000138#
#025204000011500035930000255#
#0252050001113100#

The flash memory has space for 125 MB, which is sufficient for one reading every 5
minutes. That reading occupies 135 bytes, in one day of readings takes 38,880 KB of
memory space and in 5 months of possible that readings will occupy 6,026400 MB. Also
in five months is possible to have 44640 readings on the memory.

The number of total readings is enough to the five bytes of the identification block
(ID). As the information of each reading is separated by five strings, an ID complement

block was created to differentiate them.

3.2.3 Commands

The Arduino, main controller of the picosatellite, needs to send commands to PSoC to
accomplish different functions, such as send a request of data, send a time configuration.

Some commands can be summarised in table 3.2.

Commands

Code Description

320 Send Data

Send Data on Specific Date and Time
325 followed by:
325YYMMDDHHMM

Configure Clock
340 followed by:
340YYMMDDHHMMSS

375 Send Error Code List

Table 3.2: Some commands codes implemented.
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Without these commands it was not possible to send requests to the payload and

consequently not receive any data from it.

3.2.4 Communication

The communication between Arduino (main controller) and the PSoC (payload) starts
with the startup process through I°C protocol.

When the PSoC is communicating with the Arduino is doing it in a slave mode, with
Arduino being the master.

However when the PSoC starts to reading time and sensors, this controller change its
mode of operation to be master in the I>C protocol.

In the payload there is one more communication protocol, that is the SPI. This com-

munication protocol is used to establish a connection with the flash memory.

3.2.5 Error Handling

Although the system was designed to be simple, errors can happen, like every systems.
This errors can appear in the form of sensors and modules malfunction, communica-
tions with Arduino fails, memory communications fails, as other fails.

In the table 3.3 there is some error codes.

Errors

Code Description

410 Error Reading Digital Temperature Sensor

411 Error Reading Intertial Module

412 Error Reading UV Sensor

413 Error Reading RTD sensor

414 Error Reading Clock

420 Error Writing to Flash Memory

421 Error Reading from Flash Memory

Table 3.3: Some error codes implemented.
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CHAPTER

TEsTING PROCEDURES

The testing phase accomplishes the payload components tests with an Arduino and a
PSoC as well as other modules tests. Also the complete payload system is tested in this

chapter.

To demonstrate a correct operation of a sensor or device, they were first tested with
Arduino, because there are already made libraries available. Arduino is one of the most
known electronic prototyping platforms. Most of their boards have a programmable
microcontroller inside and a built-in programmer to connect directly to Universal Serial

Bus (USB) port of computer.

The most important factor of this first tests approach is that almost all of the modules

used in this payload have already some libraries ready for Arduino environment.

After testing with the Arduino platform, the testing advanced to a more versatile
solution which was the PSoC 5LP CY8CKIT-059. This board provides the same PSoC
family as the one that is used in the payload. In this case, it was necessary to create

individual libraries for each module under testing.

4.1 Testing Payload Components with Arduino

For this bunch of tests, it was created a testing platform around the Arduino Uno
board (figure 4.1). Besides the Arduino UNO, this platform still as a red led, a yellow led,

a green led, three input buttons and an alphanumeric LCD 16x2.

For some tests, the main power supply used was a 12 V power supply, for other tests

it was used power from USB port.

The complete schematic of this testing platform can be found on annex III.
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BUTTON1 | — & L= LEDRED
ARDUINO
BUTTON2 | — & I —»| LEDYELLOW
UNO
BUTTON3 | — & I — | LEDGREEN
LCD 16x2

Figure 4.1: Block diagram of testing platform using Arduino.

Figure 4.2: Testing platform using Arduino.

4.1.1 RTD Temperature

For the RTD tests built around the Wheatstone bridge, it was chosen two types of
experiments due to impact of USB voltage in the system under test.

Also for this test, it was created a small homemade PCB to implement the Wheatstone
bridge (RTD plus three resistors).

The first experiment uses the USB connection to provide power for the board and to

establish a data transmission between the Arduino and the computer.
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The second experiment removes the USB connection as the power comes from 12 V

power supply and the data is recorded into a SD Card.

The complete schematics and the source codes of this two experiments can be found

on annex III.

4.1.1.1 Experiment 1 - USB

On this experiment, only two wires goes to Arduino testing platform (figure 4.3). The

data recording is guaranteed by UART communciation with the computer. The code

process diagram is found on figure 4.4.

ARDUINO
TESTING
PLATFORM

<10

_NRTD

Figure 4.3: Block diagram of RTD experiment 1 test using Arduino.

Wheatstone
Bridge

This experiment follows the procedures presented below.

Procedures:

1. Turn on the power. Run the python script. Leave it for about 3 minutes to sensor

stabilise at room temperature.

2. Grab a ice cube in a plastic bag involved in a piece of cloth and put over the sensor.

Leave it there for 3 minutes.

3. Remove the piece of cloth and put the ice cube over the sensor for 2 minutes.

4. Spray the sensor with freezing spray for no more than 5 seconds, leave it rest for 5

minutes.

5. Start heating (Thot air = 150°C low speed) the sensor at a distance of 15 ¢cm and

slowly towards the sensor for 4 minutes.

6. Leave it rest for 13 minutes.

After this procedure, the data (RTD values) registered into a file, needs to be converted

in temperatures. It is necessary to launch a Matlab script to convert those values. The

new values will be stored in a new file.
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l Start |
Initialization +—=| Read RTD, nRTD and Vin  |g—

*—1

Gonvert readings to

voltages
|
v L
Method 2:
Method 1: Calculate RTD values and
Calculate RTD values map the values to
temperatures
| |
v
ook Prntio LD tre
temperatures from method | temperatureefrcm methad
2
s Delay

Figure 4.4: Code process of RTD experiment 1 test using Arduino.

4.1.1.2 Experiment 2 - SD Card

For this experiment, although its similarity with experiment 1, it changes the way
how data is handled. As said previously, the data is recorded into a SD Card. However
the SD Card requires a 3.3 V power supply, and the Arduino can supply this required
voltage but the Arduino’s data lines are only 5 V capable. That why it is necessary to add
a logic level converter between the SD Card module and the Arduino (figure 4.5) .
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o B0 | ymeatstone
ARDUINO QRTD | Bridge
] [ TESTING
PLATFORM
SD Card
Module

Figure 4.5: Block diagram of RTD experiment 2 test using Arduino.

Iy l“\.
[ Start ]
\ )
Initialization —=| Aead RTD, nRTD and VN |og—
Convert readings to
voltages
|
\ L
Method 2:
Method 1: Calculate RTD values and
Calculate RTD values map the values to
temperatures
| |
\
Print to SD Card the )
Frint to LCD the
values of RTD of method 1
and the temperatures from —=| temperature 2frc:m method
method 2

55 Delay

Figure 4.6: Code process of RTD experiment 2 test using Arduino.

The code process is similar to experiment 1 and the procedures are equal.
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4.1.2 Digital Temperature Sensor

The digital temperature sensor test contemplate the Arduino testing platform, the
sensor and the SD Card record system which is the SD Card module and the logic level
converter (figure 4.7). The digital temperature sensor communicates with the Arduino

testing platform through I2C.

The complete schematic and the source code of this test can be found on annex III.

Logic Level I_r
Converter |V
ARDUINO A 1| MGP9808
i TESTING (12" ) sensor
PLATFORM
SD Card
Module

Figure 4.7: Block diagram of digital temperature sensor test using Arduino.

The code process of this test is located in figure 4.8.

The procedures are the same of RTD Tests.
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[ Start :l

Initialization

!

Read the temperature
sensor value

Reqgister the temperature
to the SD Card

Display the temperaturs to
the LCD

!

1z Delay

Figure 4.8: Code process of digital temperature sensor test using Arduino.

4.1.3 UV Sensor

For this test, the Arduino testing platform receives only the output voltage from the
sensor (figure 4.9). As this sensor is powered by Arduino’s 3.3 V pin, the maximum
voltage that the sensor can output is 3.3 V which is in range of Arduino’s analog to
digital converter, and that allows for direct connection between the sensor module and

the Arduino. The code process diagram is on figure 4.10.

ARDUINO ML8511 UV
LOUT|  gengor
PLATFORM

Figure 4.9: Block diagram of UV sensor test using Arduino.
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5 "

| Stant |

S S

Initialization
-l
/z/ ."\\\
: : ~"Check Button 1™
Mo 4 - Yes
B nat cha;_;:a dispiaying -q—-"' Stafe. Is it “———= change displaying state
# . pressed? 7
" v
\\ z,—’z
R
| Read UV sensor and Vin |-

Convert readings to
voltages

Map the values to UV
intensity

|
A ¥

if displaying state == 1:

Print the UV intensity to
LCD

if displaying state == 2 :

Print the UV sensor
voltage to LCD

1s Delay

Figure 4.10: Code process of UV sensor test using Arduino.

The complete schematic and the source code of this test can be found on annex III.

The procedures for this test are presented below.
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Procedures:

1.

After power on the system, put the platform or only the sensor in a dark place. Take

3 values from the sensor 30 seconds from each other.

. Put the system on a normal environment without direct sun light, register 3 values

at 30 seconds from each other.

. Put the sensor in direct sun light. Make 14 measurements at 30 seconds from each

other.

4.1.4 Magnetometer, Accelerometer and Gyroscope

This inertial module is connected to the Arduino testing platform though I°C (figure

4.11).

The complete schematic and the source code of this test are located on annex III.

ARDUINO e LSMoDS0
TESTING v——/| Module
PLATFORM

Figure 4.11: Block diagram of magnetometer, accelerometer and gyroscope test using
Arduino.

In figure 4.12 is presented the code process diagram for this test.

Below are the procedures for this test.

Procedures:

1.

In a stable base (as a table) (figure 4.13 - A), turn on the system wait 30 seconds to

sensor stabilise.

. Accelerometer: Register 5 measurements every 10 seconds.

. Accelerometer: From the starting point, tilt based on the figure 4.13 - B and register

5 measurements every 10 seconds.

Accelerometer: From the starting point, tilt based on the figure 4.13 - C and register

5 measurements every 10 seconds.

. Accelerometer: From the starting point, tilt based on the figure 4.13 - D and register

5 measurements every 10 seconds.

. Repeat for magnetometer and gyroscope.
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N

| Stant |

. /
Initialization

Figure 4.12: Code process of magnetometer, accelerometer and gyroscope test using

Arduino.

Y
il // . \\\
; : ~"Check Button 1™
Mo / . Yes
Da-nox chastngte dispiaying ’“ State. Is it “——= change displaying state
= ~.  pressed? 7
e -
- %
- Read the sensor -
] L
it displaying sfate ==1: it displaying state == if displaying state == 3 :
Print to the LCD the Print to the LCD the :
Print to the LCD the
accelerometer X, Y, Z magnetometer X, Y, Z ayroscope X, Y, Z values
values values
| | |
v
5s Delay

Figure 4.13: Steps for testing the magnetometer, accelerometer and gyroscope. The object

represents the testing platform with sensor attached
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4.1.5 RTC

An IC communication is stablished between Arduino testing platform and the RTC.
The RTC module requires a 3 V battery for maintaining the clock working even if it
loses the main voltage (figure 4.14). It was chosen the CR2032 battery that meets that

requirement.

The diagram with the code process is at figure 4.15.

The complete schematic and the source code of this RTC test are located on annex III.

ARDUINO
TESTING
PLATFORM

Figure 4.14: Block diagram of RTC test using Arduino.

Below are the procedures for this test.

Procedures:

1. Turn on the system and with a chronometer, register the initial time. After 5 minutes

register the time again.

2. Turn off the main power supply and turn on the chronometer for 10 minutes. After

the time has passed turn the system back on again and register the time.

A RTC
2c | DS3231
| /| Module
&
3V Battery

3. Compare the values of RTC vs. chronometer.
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|'I'r Start \II
b )ll
o —
Initialization
Configure RTC time
L= Read time
Print the date (day, month,
year) and the time (hour,
minute, second) to the
LCD
15 Delay

Figure 4.15: Code process of RTC test using Arduino.
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4.2 Testing Payload Components with PSoC

In this tests, it was created a testing platform similar the one that was built for Arduino
but with PSoC as the main controller (figure 4.16). This platform has a red led, a yellow
led, a green led, three input buttons and an alphanumeric LCD 16x2.

Due this board not having a power supply regulation, the testing platform accommo-
date a power supply regulation circuit from 12 Vto 5V and 5V to 3.3 V. This is useful

for some tests which were not tested via USB connection.

The complete schematic of this testing platform can be found on annex IV.

5V 3.3V
Regulator = Regulator
Circuit Circuit
BUTTON1 — ——=| LEDRED
PSoC 5LP
BUTTON2 — ——| LED YELLOW
CY8CKIT-059
BUTTON3 — ——| LED GREEN
LCD 16x2

Figure 4.16: Block diagram of testing platform using PSoC.
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4.2.1 RTD Temperature

The RTD temperature sensor test with the PSoC testing platform is very similar to

RTD experiment 2 test with an Arduino. However, to use the only Sigma-Delta ADC on

sV NENYYREY, L

Figure 4.17: Testing platform using PSoC.

PSoC for three input signals, it is necessary to add a multiplexer.

The code process (figure 4.19) is similar to the test with Arduino testing platform.

The complete schematic and the source code can be found on annex IV.

Logic Level
Converter

1L

5D Card
Module

PSoC
TESTING
PLATFORM

4nF{TD

Wheatstone
Bridge

Figure 4.18: Block diagram of RTD test using PSoC.
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| Start |

Initialization

o

Select 1st entry from . | Read RTD value from 4
multiplexer | ADC
|
\]
Select 2nd entry from Read nRTD value from AZ
multiplexer ADC
|
\]
Select 3rd entry from | Read Vin value from AZ
multiplexer ADC
|
v v
Method 2:
Method 1: Calculate RTD values and
Calculate RTD values map the values to
temperatures
|
L
Print to 5D Card the :
Print to LCD the
values of RTD of method 1
and the temperatures from —= temperature 2frc:m method
method 2
5s Delay

Figure 4.19: Code process of RTD test using PSoC.

In PSoC Creator it was created the following blocks that are necessary to this test.

The procedures are equal to procedures of RTD experiment 2 test with the Arduino

testing platform.
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emFilel
emFile
LCD1
Character LCD (e} LED_Green
Button [ [+ LED_Yellow
['m LED_Red
ADC_DelSig1
RTD_Pin (s AM”\’“ ADC_DelSig
o
nRTD_Pin =1
Y (e
Vee_Pin (=1
eoc|s
16-bit

Figure 4.20: PSoC Creator blocks for RTD tests.

4.2.2 Digital Temperature Sensor

This test consists on the same implementation that was done with Arduino, changing

only the controllers. The procedures and the code process are equal to the test with the
Arduino testing platform.

The complete schematic the source code can be located in annex IV.

Logic Level 1—'
Converter |\
PSoC A \| MCP9808
] [ TESTING (2C ) Sensor
PLATFORM
SD Card
Module

Figure 4.21: Block diagram of digital temperature sensor test using PSoC.

58



4.2. TESTING PAYLOAD COMPONENTS WITH PSOC

emFile1
emFile
LCD1 [#] LED Green
Character LCD
Button? [ss] [ LED - Yellow
[ LED_Red
12C1
12C
sdaj————ai SDA1
sclf———f=f SCL1
Master

Figure 4.22: PSoC Creator blocks for digital temperature tests.

4.2.3 UV Sensor

The test with the UV sensor is based on the same test with the Arduino testing plat-
form. The procedures and the code process are similar. Due to only one input to the ADC
there is no need to add a multiplexer. The Vin input is not used here because the compo-
nent Delta-Sigma ADC of PSoC creator has already a function to convert automatically
the data read to Volt.

In annex IV, there are the schematic and the source code of this test.

PSoC ML8511 UV
LOUT|  gengor
PLATFORM

Figure 4.23: Block diagram of UV sensor test using PSoC.
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LCD1 .
Button1 [u] Characier LCD 5| LED Green
Button2 [u] w LED_Yellow
Button3 [u| w| LED_Red

ADC_DelSig1

ADC DelSig

UV_Sensor @7@
eoc|]

16-bit

Figure 4.24: PSoC Creator blocks for UV sensor tests.

4.2.4 Magnetometer, Accelerometer and Gyroscope

Like other tests, this test also has the same procedures and code process as the one

that was made with the Arduino.

The complete schematic and the source code of this inertial module test can be found

on annex IV.

PSoC JA—— | LSMIDS0
TESTING 26/ Module
PLATFORM

Figure 4.25: Block diagram of magnetometer, accelerometer and gyroscope test using
PSoC.
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Button [us] LCD1 sl LEd_Green
Character LCD
Button2 [ = LED_Yellow
Button3 [ m LED_Red
12C1
12C
sdaj|——=1 SDA1
scll— ..-;-..||>;|:1: SCL1
Master

Figure 4.26: PSoC Creator blocks for magnetometer, accelerometer and gyroscope tests.

4.2.5 RTC

The implementation, the procedures and the code processes are equal to the test that
was created with the Arduino testing platform.

The complete schematic and the source code of this test are located on annex IV.

.| _RTC
pSoc (o osm
TESTING ]
PLATFORM
3V Battery

Figure 4.27: Block diagram of RTC test using PSoC.
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Button1 [-=)
Button2 [w]

Button3 [«

Figure 4.28: PSoC Creator blocks for RTC tests.

LCD1 b= LED_Green

Character LCD

[= LED_Yellow

i LED_Red

12C1

12C

sdal——fxi SDA1
scll——f SCL1

4.3 Other Payload Tests

Master

4.3.1 PSOC and Arduino Communication

The communication between Arduino (main controller) and PSoC (payload) is I*C.

This test aims to test the Arduino as a master, controlling when its necessary to have

communication and the PSoC as a slave, listening and being prepared to send data when
requested. This test includes the Arduino testing platform, the PSoC 5LP CY8CKIT-059

and 3 leds connected to PSoC (figure 4.29). Both codes features a time interrupt running

every 1 ms.

On figure 4.30 there is the code process diagram of this test.

The complete schematic and the source codes of this test from both controllers are

located on annex V.

ARDUINO
TESTING
PLATFORM

12C

PSoC 5LP

CY8CKIT-059

LED RED

LED YELLOW

LED GREEN

Figure 4.29: Block diagram of I?C communication between Arduino and PSoC.
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Arduino . Start PSoC
L o Mote:
Every second
data is changed
Initialization
5s Standby time
|
¥
Request received
Send “MeedData” - - Green led on for 3s
- Send “ok”
“ok” received
- Red led on for 3s =) sty saa ]
Receive data 1
- Green led unn f:'.‘r‘l' as “ok” received
= Send "ok *|  _Redled onfor 3s
- Display in UART the data
received
|
L
155 Standby time
|
¥
Request received
Send “MoreData” - - Green led on for 3s
- Send “ok”
“ok” received
- Red led on for 3s * PGk OIS
FReceive data 2
- Green led “c:n fﬂur a= “ok” received
= Send "ok ™ _Redled onfor 3s
- Display in UART the data
received
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Figure 4.30: Code process of I2C Communication testing between Arduino and PSoC.
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12C0
12C

sda|—sf=] SDA
scl——=| SCL

=) Led_Red
Slave

Timer0 =4 Led_Yellow

Timer

=l Led _Green

tof- —===lisr1

interrupt =)

BUS_CLK@L—{>clock
#MTg —reset

16-bit (Fixed)

Figure 4.31: PSoC Creator blocks for I?’C Communication testing between Arduino and
PSoC.

4.3.2 Voltage Step-up and Battery Charger

The voltage step-up and the battery charger test represent a crucial part of the payload
zone. Therefore a test was built with payload similarity which was the step-up connected
to battery charger (figure 4.32). The batteries for this test include a backup battery equal
to the one found in the payload and other battery as the main power supply with the
same chemistry technology (Li-Ion).

The complete schematic of this test is located in annex V.

Main Battery Backup
3.7V Battery 3.7 V
Voltage Step-Up
Module —| Battery Charger

Figure 4.32: Block diagram of Step-Up and Charger test.

This test follows the procedures presented below.

Procedures:

1. Connect the backup battery and then the main battery.
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2. Turn on the system and start the chronometer. Register the input, output, backup
battery voltages as well as the output voltage of the first module which is the input
for the charger.

3. Keep watching the circuit until the charger’s orange led turn off and the green led
turn on. In that moment register the voltages mentioned above and register the time
it takes to charge if the backup battery is different from 4.2 V (battery charged).

4. Repeat all process for different main voltages (3.6, 4.2, 3.0) and different backup
battery voltages (3.7, 4.2, 3.0)

4.4 Payload Board Tests

4.4.1 Operation

The CTSAT-1’s payload board test presents the compilation of every module and
sensor tested before with the inclusion of some more electronics components, like the
flash memory and associated components (logic level translator and voltage regulator),
and the backup battery.

The schematic can be found on annex VI, although the source codes will not be pro-

vided due to thousand of lines of code.

ARDUINO e\ CTSAT-1
TESTING ,ﬂ| payload
PLATFORM
3.7 V Battery

Figure 4.33: Block diagram of CTSAT-1 payload test.

For this test, it was only tested the ability of sending messages and data to the Arduino
testing platform.

So the procedures it’s somehow similar with the procedures of I?C communication

test, but without some transmission flags that could make the communication fail.
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4.4.2 Power Consumption

On figure 4.34 is the block diagram for the power consumption test, that will evaluate
the current energy spent by the payload board.
The procedures for this test are not very specific, but the test measurements must

follow the following configurations.
1. Standby.
2. Sensors / Modules reading.
3. Sending data through I2C.

4. Receive data through I2C.

ARDUINO LN crear
TESTING 2 payload
PLATFORM
:‘ A _:
!
3.7 V Battery

Figure 4.34: Block diagram of CTSAT-1 payload power consumption test.
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CHAPTER

MEASUREMENT RESULTS AND ANALYSIS

The measurement results provided by the mentioned tests of chapter 4 are exposed
here in this chapter.

5.1 Testing Payload Components Results

For the payload components tests, the results represented a step to validation of the

component’s operations.

5.1.1 RTD Temperature

For the RTD temperature tests, almost 360 measurements were retrieved from each

RTD individual tests during half an hour each test.

The ice and the hot air allowed to watch the sensor responsiveness through the high

temperature variations.

5.1.1.1 Experiment 1 - USB

From this experiment, only done with the Arduino testing platform (figure 5.1), the
data was picked up through UART. After having a file with all the data, a part of the file
is converted to temperature with the help of equations provided on chapter 3. The other

part of the file have the temperatures acquired through mapping inside Arduino.

The generated chart (figure 5.2) overlaps this two methods results.
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Figure 5.1: RTD experiment 1 testing on Arduino.

Comparation between Temperature Measurements on Arduino Platform with RTD using equations
e and using mapping function

— Enjusations

Temperature (#C)

= Mapaing

-40
00:00 05:00 10:00 15:00 20:00
Time (min}

25000 30:00 35000

Figure 5.2: Chart of comparation between temperature measurements on Arduino plat-
form with RTD using equations and using mapping function - experiment 1.
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Equations Mapping | Mapping - Equations |
Tmax (2C) | Tvun (2C) | Tmax(2C) | Tmin (2C) Tmax (2C) Tmin (2C)
119,65 -24,97 121,11 -24,04 2,01 0,93

Table 5.1: Table with maximums and minimums of RTD experiment 1 test on Arduino

platform using equations and using mapping function.

The two methods, equations and mapping, produce almost all the same data values

with slight variation. Despite having this variation, this proves the linearity of the sensor

which is present in the component’s datasheet.

The temperature test produced a maximum of 2,01 °C between the two methods. That

difference can be explained with the approximation of the mapping function.

5.1.1.2 Experiment 2 SD Card

On this experiment the data maintained the same data format that the with USB con-

nection. On the SD Card, it was recorded the resistance of the RTD plus the temperature

that was converted through mapping inside the controller.

Figure 5.3: RTD experiment 2 testing on Arduino.
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Figure 5.4: RTD testing on PSoC.

Comparation between Temperature Measurements on Arduino Platform with RTD and SD Card
i using equations and using mapping function

m— Eryuations

Temperature [2C)

— Mapging

-4
0000 05:00 10:03 15:00 20:00 25:00 0o 35:.00
Time {mim}

Figure 5.5: Chart of comparation between temperature measurements on Arduino plat-

form with RTD and SD card using equations and using mapping function - experiment
2.
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Equations Mapping | Mapping - Equations |
Tmax (2C) | Tavun (2C) | Tmax (2C) | Tmin (2C) Tmax (2C) Tmin (2C)
123,01 -24.36 124,40 -23,42 2,01 0,94

Table 5.2: Table with maximums and minimums of RTD experiment 2 test on Arduino
platform using equations and using mapping function.

On the figure 5.5, it can be seen that with SD Card the shape of the chart remains

practically the same.

Comparation between Temperature Measurements on PSoC Platform with RTD and SD Card using
equations and using mapping function

=——Fpuations

Temperature [20)

— M g

edev] 0500 100 15:00 20000 2500 30:00 a5:00
ime {min})

Figure 5.6: Chart of comparation between temperature measurements on PSoC platform
with RTD and SD card using equations and using mapping function.

Equations Mapping | Mapping - Equations |
Tmax (2C) | Tvun (2C) | Tmax(2Q) | Tamin (2C) Tmax (2C) Tmin (2C)
118,08 -29,96 115,57 -29,17 2,00 0,79

Table 5.3: Table with maximums and minimums of RTD test on PSoC platform using
equations and using mapping function.

The Arduino and PSoC produced similar results, even in the difference between the
method of equations and method of mapping.

The sharp peak in the negative temperatures seen in all charts are due to the direct
ice contact (without the cloth) with the RTD.
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5.1.2 Digital Temperature

In the digital temperature sensor tests results, the SD Card was used again to store

the temperature values.

Figure 5.7: Digital temperature sensor testing on Arduino.
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Figure 5.8: Digital temperature sensor testing on PSoC.

Temperature Measurements on Arduino Platform with Digital Sensor

140
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00:00 D5:00 4300 1500 00 25:00 3000 35:00
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Figure 5.9: Chart of temperature measurements on Arduino platform with digital sensor.
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Temperature Measurements on PSoC Platform with Digital Sensor

Temperature (20}
& o
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Figure 5.10: Chart of temperature measurements on PSoC platform with digital sensor.

In the figures 5.9 and 5.10 is showed the testing with the Arduino testing platform
and the PSoC testing platform, respectively.

This tests followed the same procedures as the ones for the RTD, as such resulting in
the same graphical data response.

With the Arduino the temperature reached a maximum of 124,06 °C and a minimum
of -25,12 °C, with the PSoC the temperature achieved a maximum of 128,88 °C and a
minimum of -33,44 °C.

5.1.3 UV Sensor

The UV sensor tests(figures 5.11 and 5.12) were only possible one days without to
much clouds in the sky and without rain, the day must have moments of sun direct light.

When the UV sensor test was done with Arduino testing platform, the UV index max-
imum for that day was 8 with a temperature maximum of 34 °C. On the test with PSoC
the UV index maximum was 6 with a maximum temperature of 28°C. This information
was provided by the Instituto Portugués do Mar e da Atmosfera (IPMA).
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Figure 5.11: UV sensor testing on Arduino.

) Intensity
A, 149 muwsom™2

Figure 5.12: UV sensor testing on PSoC.
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UV Intensity Measurements on Arduino Platform

LW intensity [mWiom®

0000 0200 D400 0§00 800

Time [min]

Figure 5.13: Chart of UV intensity measurements on Arduino platform.

Output Voltage as a Function of UV Intensity on Arduino Platform

Output Volage (V)
o

o4
0 1 H L} 4 5 [ 7
UV Intensity [mW/iocm? )

Figure 5.14: Chart of output voltage as a function of UV intensity on Arduino Platform
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UV Intensity{mW /cm?) | Output Voltage (V)
MAX MIN MAX MIN
6,13 0,31 1,75 1,03

Table 5.4: Table with maximums and minimums of output data from UV sensor test on
Arduino platform using equations and using mapping function.

UV Intensity Measurements on PSaC Platform
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Figure 5.15: Chart of UV intensity measurements on PSoC platform.
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Output Voltage as a Function of UV Intensity on PSoC Platform
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Figure 5.16: Chart of output voltage as a function of UV intensity on PSoC Platform

UV Intensity(mW/em?) | Output Voltage (V)

MAX MIN MAX MIN
3,50 0,26 1,41 1,03

Table 5.5: Table with maximums and minimums of output data from UV sensor test on
PSoC platform using equations and using mapping function.

As it is possible to watch on figures 5.13 and 5.15 the graph shape is similar where
is possible to see the highlighted areas of shadow zone and zone without direct sunlight

until the minute three and areas of ultraviolet radiation reception.

In terms of sensor’s linearity. on the Arduino (figure 5.14) the sensor proves to have a
very good linearity, which confirms the sensor’s datasheet. On the PSoC (figure 5.16) in
the beginning the sensor showed a good linearity but towards the end of the test the data
showed a slightly deviation from a good linearity.

Due to the Arduino’s test was made in a hotter day and consequently more ultraviolet
radiation reached to Earth’s surface, the maximum UV intensity was 6,13 mW/cm? versus
3,50 mW/cm? on the PSoC testing platform (tables 5.4 and 5.5).
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5.1.4 Magnetometer, Accelerometer and Gyroscope

The tests with the inertial module were made following the positions of figure 4.13.
This tests were initially made with the raw data from the sensor, but later they were

changed to the correct form of treated data to be easier to understand.

Figure 5.17: Magnetometer testing on Arduino.
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Figure 5.18: Accelerometer testing on Arduino.

Figure 5.19: Gyroscope testing on Arduino.
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Figure 5.20: Magnetometer testing on PSoC.

Figure 5.21: Accelerometer testing on PSoC.
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Figure 5.22: Gyroscope testing on PSoC.

Accelerometer
Position Average (m/s?) Maximum (m/s?) Minimum (m/s?)
X Y Z X Y Z X Y P
A -0,50 0,28 9,55 -0,89 -0,26 9,57 -0,92 -0,32 9,51
B -0,92 9,76 1,11 -0,90 9,82 1,14 -0,95 9,71 1,09
o -10,43 1,37 035 -10,36 1,40 0,40 -10,49 1,33 0,31
D 0,89 0,45 9,55 093 0,48 9,62 0,87 0,43 9,49

Table 5.6: Table with the averages, maximums and minimums of accelerometer test on
Arduino platform in the different positions tested.
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Magnetometer
Position Average (G) Maximum (G) Minimum (G)
X Y Z X Y Z X Y Z
A -0,30 0,18 0,34 -0,29 0,20 0,35 -0,31 0,17 0,33
B 0,32 0,15 0,10 -0,29 -0,14 0,11 -0,34 -0,16 0,07
C 0,11 0,09 0,26 0,14 0,12 0,29 0,07 0,08 0,23
D 0,23 0,38 0,20 -0,21 0,42 0,22 -0,24 0,35 0,18

Table 5.7: Table with the averages, maximums and minimums of magnetometer test on
Arduino platform in the different positions tested.

Gyroscope
Position Average (°/s) Maximum (°/s) Minimum (°/s)
X Y Z X Y Z X Y Z
A 1,62 2,60 -1,91 1,65 2,62 -1,89 1,59 2,56 -1,93
B 1,73 2,50 -1,85 1,75 2,54 -1,82 1,71 2,45 -1,89
C 1,83 3,46 -1,60 1,84 3,49 -1,58 1,81 3,43 -1,63
D 2,78 2,47 1,83 2,80 2,57 1,85 2,72 2,40 1,80

Table 5.8: Table with the averages, maximums and minimums of gyroscope test on Ar-
duino platform in the different positions tested.

Accelerometer
Position Average (m/s?) Maximum (m/s?) Minimum (m/s?)
X Y Z X Y Z X Y z
A -0,76 -0,12 953 -0,72 -0,09 9,61 -0,79 -0,16 9,36
B -0,94 9,39 2,19 -0,86 9,44 2,24 -0,99 9,32 2,12
C -10,45 1,97 054 -10,38 2,03 0,58 -10,52 1,91 0,49
D 0,87 0,76 956 093 0,81 9,60 0,81 0,72 9,51

Table 5.9: Table with the averages, maximums and minimums of accelerometer test on
PSoC platform in the different positions tested.
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Magnetometer
Position Average (G) Maximum (G) Minimum (G)
X Y Z X Y Z X Y Z
A -0,14 0,06 014 -0,12 0,09 0,18 -018 0,02 0,11
B -0,15 -0,09 0,04 -0,10 -0,05 0,07 -0,17 0,13 0,02
C 0,07 0,05 012 0,09 0,08 0,15 0,04 0,02 0,09
D -0,07 0,16 012 -0,05 0,19 0,17 -0,08 0,14 0,08

Table 5.10: Table with the averages, maximums and minimums of magnetometer test on
PSoC platform in the different positions tested.

Gyroscope
Position Average (°/s) Maximum (°/s) Minimum (°/s)
X Y Z X Y Z X Y Z
A 1,76 2,07 -1,67 181 2,14 -1,62 1,69 2,01 -1,73
B 1,88 2,26 -1,59 192 2,30 -1,56 1,84 2,21 -1,64
C 1,38 3,07 -1,86 141 3,21 -1,81 1,37 2,97 -1,92
D 2,10 2,48 192 2,25 2,51 1,99 1,98 2,44 1,83

Table 5.11: Table with the averages, maximums and minimums of gyroscope test on PSoC
platform in the different positions tested.

After analysing the output data from the module, it was produced tables with only
the averages, the maximums and minimums of the values.

On the accelerometer test, both testing platforms produced similar results (tables 5.6
and 5.9).

On the magnetometer test, also the results obtained were practically similar on the
Arduino testing platform and on the PSoC testing platform (tables 5.7 and 5.10).

On the Gyroscope test, although they have similar results on both testing plaforms, it
is a sensor that changes his data very quickly (tables 5.8 and 5.11).

It’s important to mention, that the magnetometer test was done without any magnet

around, that could affect the sensor readings.
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5.1.5 RTC

The RTC test was made to observe if the clock, even with rest of electronics shut down,
would keep working and register correct data.
Although it’s not a testing with days or moths to test effectively the accuracy of the

module, it can represent a approximation of a good functionality.

Figure 5.23: RTC testing on Arduino.
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Figure 5.24: RTC testing on PSoC.

After the test were finished on both platforms, it can be concluded that the module
works very accurate, compared to chronometer of a smartphone, and even when without
the main power supply, powered only by the 3 V coin battery.

5.2 Other Payload Tests

5.2.1 PSOC and Arduino Communication

The communication between PSoC and Arduino through I?C allowed to establish a

communication channel, so the data could be transferred from PSoC to Arduino.

The test demonstrated that the data was always transferred to Arduino by the PSoC
(figure 5.26). Although the data is not transferred every second, the PSoC performs data
change every second.

It was observed that this test can failed if one of the controllers is reseted in the middle

of information transmission, as this test was designed with transmissions flags to ensure

the correct information was sent or received.
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Figure 5.25: I2C communication testing between Arduino and PSoC.

eCe [deve

Arduine Request 1: NeedData

P50C Answer: ok

Data Received from PSoC: #64,160@,576#
Arduino Request Z: MoreData

P50C Answer: ok

Data Received from PSoC: #126,24.85#

Arduine Request 1: NeedData

PSoC Answer: ok

Data Received from PSoC: #96,240,576#
Arduino Reguest Z: MoreData

P50C Answer: ok

Data Received from PSoC: #171,32.35#

Autoscroll || Show timestamp

Figure 5.26: I°C received data on Arduino in communication test between Arduino and
PSoC.
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5.2.2 Voltage Step-up and Battery Charger

The voltage step-up and battery charger test provided the useful information of when

it is necessary to charge the back battery or if it is safe to charge that battery.

i

BT RB LRI

6 SR SR

Figure 5.27: Voltage step-up and Battery Charger testing.

Main Battery Li-lon |Backup Battery Li-Polymer|Out from Step-up|Out from Charger Time un:;lc:aacr:l;: i
Ref. (V) | Start (V) | End (v) | Ref. (V) | Start(v) | End(v) | Start(v) | End(v) |Start (v)| End(v)
3,13 1,65 3,00 3,09 3,54 4,74 4,06 5,33 515 After 30 min: Not Fully Charged
3,00 3,09 g 7 3.7 3,71 3,78 4,79 4,03 5,31 5,14 After 1h: Not Fully Charged
3,06 - 4,10 4,14 - 513 - 5,19 - -
3,62 3,42 3,00 3,03 4,15 5,16 5,13 5,36 5,15 01h 14min 33sec
3,60 3,59 3,45 3,70 3,72 4,13 5,15 5,14 5,31 515 43min 55sec
3,61 - 4,10 4,12 - 5,14 - 5,18 - -
4,15 3,94 3,00 3,05 4,10 517 5,14 5,42 5,16 01h 11min 05sec
4,10 4,09 3,95 3,70 3,71 4,14 512 5,14 5,28 515 47min 22sec
4,07 - 4,10 4,12 4,10 515 - 5,16 - -

Table 5.12: Chart of comparation between temperature measurements on arduino plat-
form with rtd using quations and using mapping function.

Through the table 5.12 is possible to observe that when the backup is charged, there

is no charging to occur, so there is only charging movement when it’s needed.

The output voltage from the step-up is almost the same for all cases (except when the

main voltage is 3 V). The output of the charger module that also have a step-up built-in,

maintains practically the same voltage on all cases.
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The situations where it is mentioned that the backup battery was not fully charged
means that the main Li-Ion battery was not delivering energy due to low battery voltage
produced by the high voltage drop originated by the necessity of transferring energy
to the backup battery. The low battery voltage from the main battery (reference of 3 V)
means that the battery is fully discharged and can’t take the operation of charging another
battery. Also when the battery is in this case, any voltage drop could provoke a cut-off of
the battery itself.

5.3 Testing Payload Board Results

The payload board was tested to accomplish a final stage test where is encompassed

all the modules and sensors tested previously.

Figure 5.28: CTSAT-1 payload board test.

In figure 5.29 is represented one batch of data sent by the payload board to Arduino.
The data shown, it’s not Arduino’s job to decode the information, as the Arduino
will re-transmit the information data to the Earth’s ground station, where will be later

deciphered.
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@0 @ fdevfcu.u

Data Request Sended

Data Received:
#000151270719174511059702907#
#000152029070440000241000022 7
#0001530000195000008 70000099
#000154000008100001450000123#
#0001550000111100%

Data Request Sended

Data Received:
#000161270719175011103303020#
#0001620302004100002310000215#
#000163000019700000850000106#
|#000164000007 300001 7300001624
|#0001650000128100

\Data Request Sended

Data Received:
#000171270719175511103603021#
#000172030220290000244000021 64
#0001730000201000008400000984
#0001740000033000013700001544#

FHATAA 7 CIATATATAIACY 7 (AT

Autoscroll Show timestamp

Figure 5.29: CTSAT-1 sent data and received by Arduino.

In the table 5.13 is shown the power consumption measurements during various
situations.
The current measurement was higher than expected, but it’s because some modules

have integrated leds to show some signal states of that same module.

Averages (mA)

Standb Sensors / Sending Data | Receive Data
Y [ Modules Reading | Through I12C | Through 12C
51,07 53,23 53,73 52,17

Table 5.13: CTSAT-1 power consumption.
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CHAPTER

FINAL CONSIDERATIONS AND FUTURE WORK.

6.1 Conclusions

This work consisted on a payload development for a picosatellite of tubesat type.
That consisted in choose components, design PCB layout, test the components, soldering,
testing and developing the software.

The mock-up of the picosatellite made with 3D printing technologies proven very
useful, as to understand its structure and as to provide a base for the payload PCB layout.
The components chosen provided the measurements requirements for this project.

The payload system designed architecture is responsible for the management of data
reading of the sensors and modules, the communications lines priorities between PSoC,
Arduino and modules, the timing events and the errors handling.

Under sensor’s individuals tests with Arduino, every sensor worked as aspected with
big help of already made libraries for the modules used in the payload.

Changing the Arduino for the PSoC revealed more work to be done than initially ex-
pected, regarding the communications with modules and sensors. Components datasheets
usually details how can data be handled but sometimes, the information is not very ex-
plicit. This bunch of tests also ended to work as aspected.

For the payload complete PCB tests, the system behaved normally at the registering

data and sent it to the controller Arduino.

6.2 Future Work

This project is not ready for a space flight as there are still many things to do. Until
the moment of flight, is necessary to ensure that everything works as expected.
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From the payload point of view, as the picosatellite is powered by batteries, it is nec-
essary to built-in a power sleep mode into the PSoC to minimise the power consumption
when there aren’t communications and when there aren’t any measurements being re-
ceived from the sensors. Also to minimise the payload’s consumption it is necessary to
remove the integrated leds present in some modules. As there are no physical access in
space, a better error handling could be made to ensure a superior approach with more er-
rors being detected and some being corrected. It is necessary to proceed to the activation
of the Flash memory implementation present in the payload. Moreover, it is necessary to
prevent infinite cycles can occur during operation.

In order to have a better management of available resources, there may be a migration
of other components present on the other picosatelite layers to this payload layer.

In the other stages, it is necessary to build them and test, with special attention to
radio level. A suitable Software Defined Radio must be chosen to provide a simple and
reliable communications between the picostallite and the Earth station.

In the end, a resistance and environmental conditions tests must be done to ensure a

proper working the in the LEO region.
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ANNEX I.

CTSAT-1 STRUCTURE - TECHNICAL FILES

I.L1 Mock-up PCBs
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Figure I.1: CTSAT-1 PCBs dimensions used in the mock-up.
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[.2. MOCK-UP SOLAR PANELS PCB

1.2 Mock-up Solar Panels PCB
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Figure I.2: CTSAT-1 solar PCB dimensions used in the mock-up.
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I.3 Mock-up Aluminium Strips
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Figure I.3: CTSAT-1 aluminium strip dimensions used in the mock-up.
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I[.4. MOCK-UP RINGS
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Figure I.4: CTSAT-1 rings dimensions used in the mock-up.
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[.5. RINGS
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

II.1 Antenna

I1.1.1 Schematic
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Figure II.1: Antenna schematic.
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II.1.

ANTENNA

I1.1.2 PCB Layout

I1.1.2.1 Top Layer
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Figure II.2: Antenna PCB top layout.

I1.1.2.2 Bottom Layer

Figure II.3: Antenna PCB bottom layout.
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II.1.3 List of Materials

PCB Ref Value Footprint Part Number
K1 CONN_3 Farnell 973-1083
P1 CONN_2 Farnell 973-1601
SW1 SWITCH_INV| Taush SSP-050A
u4 SMA Farnell 124-890 or 124-8989

Table II.1: List of materials for the antenna PCB.
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POWER MANAGEMENT

I1.2.

I1.2 Power Management

I1.2.1 Schematic
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

I1.2.2 PCB Layout

I1.2.2.1 Top Layer

Figure II.5: Power management PCB top layout.

I1.2.2.2 Bottom Layer

Figure II.6: Power management PCB bottom layout.
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II.2. POWER MANAGEMENT

I1.2.3 List of Materials

PCB Ref Value Footprint Observations Part Number
B1 BATTERIE LI-lon Propel 3.7V 2700mA
C1 220pF 1206 Farnell 940-6468
C2 4.7uF 1206[16V Farnell 922-7946
C4 22uF 1206(16V Farnell 952-7800
C5 4.7uF 1206(16V Farnell 922-7946
C6 4.7uF 1206(16V Farnell 922-7946
Cc7 100nF SM0805 50V Farnell 940-6387
Cc8 1uF 1206(25V Farnell 922-7873
Cc9 1uF 1206|25V Farnell 922-7873
Cc10 100nF SM0805 Farnell 940-6387
D1 CRS06 SOD-323 Farnell 130-0795
D2 CRS06 SOD-323 Farnel 130-0795
D3 CRS06 SOD-323 Farnel 130-0795
D4 CRS06 SOD-323 Farnel 130-0795
D5 CRS06 Farnel 130-0795
D6 CRS06 SOD-323 Farnel 130-0795
D7 CRS06 SOD-323 Farnel 130-0795
D8 CRS06 SOD-323 Farnel 130-0795
D9 CRS06 SOD-323 Farnel 130-0795
L1 10uH 10x10 shielded HFarnell 742-9444
P1 CONN_2 Farnell 973-1601
P2 CONN_2 Farnell 973-1601
P3 CONN_2 Farnell 973-1601
P4 CONN_2 Farnell 973-1601
P5 CONN_2 Farnell 973-1601
P6 CONN_2 Farnell 973-1601
P7 CONN_2 Farnell 973-1601
P8 CONN_2 Farnell 973-1601
P9 CONN_2 Farnell 973-1075
P10 CONN_2 Farnell 973-1075
P11 CONN_2 Farnell 9731199
P12 CONN_2 Farnell 973-1075
P13 CONN_3 Farnell 973-1083
P18 CONN_5 Farnell 973-1105
P29 CONN_2 Farnell 973-1075
R1 1,5[SM0805 Farnell 933-3959
R2 1,5/SM0805 Farnell 933-3959
R3 1,5/SM0805 Farnell 933-3959
R4 1,5/SM0805 Farnell 933-3959
R5 1,5/SM0805 Farnell 933-3959
R6 1,5/SM0805 Farnell 933-3959
R7 1,5/SM0805 Farnell 933-3959
R8 1,5/SM0805 Farnell 933-3959
R9 470K SM0805 Farnell 933-4602
R12 12K SM0805 Farnell 933-3835
R13 39K SM0805 Farnell 933-4491
R16 15K SM0805 Farnell 933-3932
RV1 5K POT-H Farnell 514-822
RV2 50K POT-H Farnell 514-858
U1 ZXCT1086 |SOT23-5 Farnell 190-4029
U2 ZXCT1086 |SOT23-5 Farnell 190-4029
U3 ZXCT1086 |SOT23-5 Farnell 190-4029
U4 ZXCT1086 |SOT23-5 Farnell 190-4029
us ZXCT1086 |SOT23-5 Farnell 190-4029
ue ZXCT1086 |SOT23-5 Farnell 190-4029
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

u7 ZXCT1086 [SOT23-5 Farnell 190-4029
us ZXCT1086 [SOT23-5 Farnell 190-4029
U9 LT3021 S08-narrow Farnell 127-3637
U11 LM2731 SOT23-5 Farnell 818-1640
U12 MAX1112 SSOP-20maxim Farnell 137-9848

Table II.2: List of materials for the power management PCB.
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TRANSCEIVER
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

I1.3.2 PCB Layout

I1.3.2.1 Top Layer

Figure I1.8: Transceiver PCB top layout.

I1.3.2.2 Bottom Layer

Figure II.9: Transceiver PCB bottom layout.
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I1.3. TRANSCEIVER

I1.3.3 List of Materials

PCB Ref Value Footprint | Observations Part Number
C1 22uF 1210|16V Farnell 952-7800
C2 4.7uF 1206|16V Farnell 922-7946
C3 4.7uF 1206|16V Farnell 922-7946
Cc4 100nF 1206 Farnell 940-6557
P1 CONN_5 Farnell 973-1105
P2 CONN_2 Farnell 973-1075
P3 CONN_6 Farnell 973-1113
P4 CONN_2 Farnell 973-1075
P5 CONN_2 Farnell 973-1075
R1 470K SM0805 Farnell
R2 22K SMO0805 Farnell
R3 470K SM0805 Farnell
R4 22K SM0805 Farnell
R5 82K SM0805 To be ajusted to get 5.5V
R6 180K SM0805 To be ajusted to get 5V
R7 10K SM0805 Farnell
R8 1K SMO0805 Farnell
R9 1K SM0805 Farnell
R10 1K SM0805 Farnell
R11 1K SMO0805 Farnell
R12 1K SM0805 Farnell
R13 1K SM0805 Farnell
u2 AFS2 Radiometrix
U3 SMA Farnell 116-9631
us LT3021 Farnell 127-3637
§]3) LT3021 Farnell 127-3637
U7 TR2M Radiometrix

Table I1.3: List of materials for the transceiver PCB.
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CTSAT-1 PCBS - TECHNICAL FILES

ANNEX II.

II.4 Microcontroller
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MICROCONTROLLER
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

I1.4.2 PCB Layout

I1.4.2.1 Top Layer

Figure II.12: Microcontroller PCB top layout.

I1.4.2.2 Bottom Layer

Figure I1.13: Microcontroller PCB bottom layout.
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I1.4. MICROCONTROLLER

I1.4.3

List of Materials

PCB Ref Value Footprint Observations Part Number
C1 4.7uF SM1206 16V Farnell 922-7946
C3 18pF SMO0805 50V Farnell 721-992
C4 18pF SMO0805 50V Farnell 721-992
C6 100nF SMO0805 100V FARNELL 1740681RL
C7 100nF SMO0805 100V FARNELL 1740681RL
C9 100nF SMO0805 100V FARNELL 1740681RL
C10 39pF SMO0805 50V Farnell 722-030
C11 100nF SMO0805 100V FARNELL 1740681RL
C12 4.7uF SM1206 16V Farnell 922-7946
C14 100nF SM0805 100V FARNELL 1740681RL
C15 100nF SM0805 100V FARNELL 1740681RL
C16 100nF SM0805 100V FARNELL 1740681RL
C17 100nF SMO0805 100V FARNELL 1740681RL
C18 100nF SMO0805 100V FARNELL 1740681RL
C19 4.7uF SM1206 16V Farnell 922-7946
C20 10nF SMO0805 100V Farnell 1414661RL
C21 4.7uF SM1210L 16V Farnell 119-0116
C22 4.7uF SM1210L 16V Farnell 119-0116
C23 18pF SMO0805
C24 18pF SMO0805
D1 LED Farnell 198-9923
D2 LED LED-3MM
D3 LED LED-3MM
K1 CONN_3 Farnell 973-1083
K2 CONN_3 Farnell 973-1083
K3 CONN_3 SIL-3
P1 CONN_5 Farnell 973-1105
P2 CONN_4 Farnell 973-1091
P3 CONN_5 Farnell 973-1105
P5 CONN_2 Farnell 973-1601
P7 CONN_2 Farnell 973-1601
P8 CONN_2 Farnell 973-1601
P9 CONN_2 Farnell 973-1601
P10 CONN_2 SIL-2
P17 CONN_2 SIL-2 Farnell 973-1601
P22 CONN_4 SIL-4 Farnell 973-1091
Q1 10MHz QZ-cms sparkfun COM-00541
Q2 MMBT2222A SOT23EBC |Farnell 9846700
Q3 3.579545MHz QZ-cms Farnell 153 8756 |Farnell 164 0858
Q4 MMBT2222A SOT23EBC |Farnell 9846700
R5 10K SMO0805 Farnell 933-3720
R6 100K SMO0805 Farnell 933-3738
R7 10K SMO0805 Farnell 933-3738
R13 10K SMO0805 Farnell 933-3720
R14 10K SM0805 Farnell 933-3720
R15 1K SM0805 Farnell 933-3711
R16 10K SM0805 Farnell 933-3720
R17 10K SMO0805 Farnell 933-3720
R18 10K SMO0805 Farnell 933-3720
R19 1K SMO0805 Farnell 933-3711
R20 1K SMO0805 Farnell 933-3711
R21 3.9K SMO0805 Farnell 933-4483
R22 8.2K SMO0805 Farnell 933-4904
R23 220K SMO0805 Farnell 933-4165
R24 1K SMO0805 Farnell 933-3711
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R25 1K SMO0805 Farnell 933-3711
R26 10K SMO0805 Farnell 933-3720
R27 10K SMO0805 Farnell 933-3720
R28 1K SMO0805 Farnell 933-3711
R29 10K SMO0805 Farnell 933-3720
R30 10K SM0805 Farnell 933-3720
R31 10K SM0805 Farnell 933-3720
R32 82K SM0805

R33 1K SM0805 Farnell 933-3711
R34 100K SM0805 Farnell 933-3738
R35 R SM0805

R36 R SM0805

R37 R SMO0805

R38 1K SMO0805 Farnell 933-3711
R39 1K SMO0805 Farnell 933-3711
R40 0 ohm SMO0805

R41 10K SMO0805 Farnell 933-3720
R42 39K SMO0805

R43 10K SM0805 Farnell 933-3720
R44 0 ohm SMO0805

R45 0 ohm SM0805

RV3 10K POT_CMS Farnell 1141362
RV4 10K POT_CMS Farnell 1141362
T1 FDV304P SOT23GDS Farnell 9846123
T2 FDV303N SOT23GDS Farnell 984-5020
U4 MX614

U6 PIC16F627-04/P Farnell 976-0288
u7 PIC16F628A Farnell 9760423
us LM258N Farnell 1750142
U9 LTC1153 SO8E Farnell 1273503
u10 LP2981AIM5-5.0 S0OT23-5 Farnell 9779957
U11 ARDUINO-MINI 04

Table I1.4: List of materials for the microcontroller PCB.

120



PAYLOAD

I1.5.

II.5 Payload

I1.5.1 Schematic
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Figure I1.14
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

I1.5.2 PCB Layout

I1.5.2.1 Top Layer

FCT - UNL
BRUNO NUNES

Figure I1.15: CTSAT-1 payload PCB top layout.

I1.5.2.2 Bottom Layer

BATTERY

Figure I1.16: CTSAT-1 payload PCB bottom layout.
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I1.5. PAYLOAD

I1.5.3 List of Materials

PCB REF VALUE MANUFACTURER PART NUMBER
Ul - Cypress CY8C5868AXI-LP035
U2 - Toshiba TC58CYGOS3HQAIE
U3 - Microchip MIC5225-1.8YM5-TR
U4 - Maxim MAX3378EEUD+
us - STMicroelectronics STMPS2171STR
RTD1 1K Vishay PTS1206M1B1K00P100
R1 1K11% Vishay CRCW12061K10FKEA
R2 1K11% Vishay CRCW12061K10FKEA
R3 1K11% Vishay CRCW12061K10FKEA
R4 10K 5% Vishay CRCW120610K0OJNEA
R5 OR Vishay CRCW12060000Z0EAHP
R6 OR Vishay CRCW12060000Z0EAHP
R7 OR Vishay CRCW12060000Z0EAHP
R8 OR Vishay CRCW12060000Z0EAHP
R9 4K7 5% Vishay CRCW12064K70JNEA
R10 4K7 5% Vishay CRCW12064K70JNEA
Cc1 1uF Murata GRM31CR71H105KA61L
Cc2 0.1uF Murata GCM319R71H104KA37D
Cc3 0.1 uF Murata GCM319R71H104KA37D
C4 0.1 uF Murata GCM319R71H104KA37D
C5 1uF Murata GRM31CR71H105KA61L
C6 0.1uF Murata GCM319R71H104KA37D
Cc7 1uF Murata GRM31CR71H105KA61L
Cc8 0.1 uF Murata GCM319R71H104KA37D
Cc9 0.1uF Murata GCM319R71H104KA37D
Cc10 1uF Murata GRM31CR71H105KA61L
Cl1 0.1 uF Murata GCM319R71H104KA37D
C12 0.01 uF Murata GRM319R71H102KA01J
C13 1uF Murata GRM31CR71H105KA61L
Cl4 0.01 uF Murata GRM319R71H102KA01J
C15 1uF Murata GRM31CR71H105KA61L
Cl6 0.01 uF Murata GRM319R71H102KA01J
Cc17 1uF Murata GRM31CR71H105KA61L
C18 0.01 uF Murata GRM319R71H102KA01J
C19 1uF Murata GRM31CR71H105KA61L
C20 0.01 uF Murata GRM319R71H102KA01J
Cc21 1uF Murata GRM31CR71H105KA61L
C22 1uF Murata GRM31CR71H105KA61L
C23 0.1 uF Murata GCM319R71H104KA37D
C24 0.1 uF Murata GCM319R71H104KA37D
C25 1uF Murata GRM31CR71H105KA61L
J1 - JST B2B-PH-SM4-TB(LF)(SN)
12 - JST B2B-PH-SM4-TB(LF)(SN)
13 - JST B2B-PH-SM4-TB(LF)(SN)
14 - JST B3B-PH-SM4-TB(LF)(SN)
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ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

J5 - Molex 878980526

Al - Adafruit 2030

A2 - Adafruit 2465

A3 - Adafruit 1782

Al - Sparkfun SEN-12705

A5 - Adafruit 3013

A6 - Adafruit 2021
BATTERY 3.7V 500mAh - Nimo GSP 532248

Pin Headers for Modules - Samtec TLW-140-06-T-S

Table II.5: List of materials for the CTSAT-1 payload PCB.
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SOLAR CELLS

II.6.

= | i I z c
T/7 _PI] (1201 3-072P6E@Pe) PUaUo533  § 0 3 Peoly
S nay | pig2 uel 2 :a3eq [ vy ®z15
qEGagNL S[190 Je[0S B1q1L
/18845
Uos gTs 1180 ue [0S 8114
SEECE]
vs2 Aous1o1 443
YU TE 31000130 JU04sS 3B JusSJun]
ABT 2 :usmod wnwixel e abediop -

A2s'2 ¢ sBejlon pepeoiun

(JSUL ) S118] 2|05 psouepy we|nBuelul

el
pGs

PSpEOUN AT/

II.6 Solar Cells
I1.6.1 Schematic

1C.

e
&

Solar Cells schemat
125

Figure I1.17




ANNEX II. CTSAT-1 PCBS - TECHNICAL FILES

I1.6.2 PCB Layout

I1.6.2.1 Top Layer
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Figure I1.18: Solar Cells PCB top layout.

I1.6.2.2 Bottom Layer

Figure I1.19: Solar Cells PCB bottom layout.
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ANNEX III. TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL
FILES

III.1  Arduino Testing Platform

I11.1.1 Schematic
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Figure III.1: Arduino testing platform schematic.

128



II1.2. RTD TEMPERATURE SENSOR

III.2 RTD Temperature Sensor

I11.2.1 Schematic

II1.2.1.1 Experiment 1- USB
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Figure III.2: Arduino RTD experiment 1 - USB schematic.
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ANNEX III. TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL
FILES

II1.2.1.2 Experiment 2 - SD Card
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Figure II1.3: Arduino RTD experiment 2 - SD Card schematic.
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II1.2. RTD TEMPERATURE SENSOR

I11.2.2 Source Code
I11.2.2.1 Arduino

I11.2.2.2 Experiment 1 - USB

/%

» RTD TEST — USB CONNECTION
« Created : 27/06/2017

« Modified: 10/04/2018

* Version: 1.2

#include <LiquidCrystal.h>

int RTD_pin = AOQ;
int nRTD_pin = Al;
int Vin_pin = A2;

float RO = 1000.0;

//Exact values taken before soldering
float RI1 1095.0;
float R2 1092.0;
float R3 = 1094.0;

int Bl_pin = 6;

int B2_pin = 7;

int B3_pin = §;

int LED_Green_pin = 9;
int LED_Yellow_pin = 10;
int LED_Red_pin = 13;

LiquidCrystal led(12, 11, 5, 4, 3, 2);

void setup () {
Serial .begin(9600); // Serial communication at 9600 bits per second
led.begin(16, 2); //(columns, rows)
pinMode (RTD_pin, INPUT);
pinMode (nRTD_pin, INPUT);
pinMode (Vin_pin, INPUT);

pinMode (B1l_pin, INPUT);
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ANNEX III. TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL
FILES

pinMode (B2_pin, INPUT);
pinMode (B3_pin, INPUT);

pinMode (LED_Green_pin, OUIPUT);
pinMode (LED_Yellow_pin, OUTPUT) ;
pinMode (LED_Red_pin, OUIPUT);

void loop () {

int RTD_level = average_analogRead (RTD_pin);
int nRTD_level = average_analogRead (nRTD_pin) ;
int Vin_level = average_analogRead(Vin_pin);

//Convert vcc reading to voltage
float vec = Vin_level » 5.0; // VCC +/- 5 Volts
vee = vee / 1023.0; // 2710 (10 bits ADC)

//5V power pin as a reference
float output_voltageRTD = 5.0 / Vin_level » RTD_level;
float output_voltagenRTD = 5.0 / Vin_level » nRTD_level;

//From Wheatstone bridge circuit

float RTD = ((Rlxvcc)/(output_voltageRTD-output_voltagenRTD +((R3/(R2+R3) )=
vce)))-R1;

float RTD_methodl = RID;

float ratio_RT_RO RTD/RO;

//Maps the value received by the sensor to the range described in datasheet
float temperature_method2 = mapfloat(ratio_ RT_RO, 0.78319, 1.66627, -55.0,
175.0);

Serial . print (RTD_methodl) ;
Serial.print(",");
Serial . println (temperature_method2);

Icd.clear();

lcd .setCursor (0,0);

led . print ("RTD Temperature: ");
lcd.setCursor (6, 1);

led . print (temperature_method2);

lcd .setCursor(12,1);

lcd . print(char(223)); //print degree Symbol
lcd.setCursor(13,1);

led. print ("C");
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120
121

II1.2. RTD TEMPERATURE SENSOR

delay(5000);

/%

+ Function to take the average of reading on a given pin
*/

int average_analogRead (int pin_ToRead)

{

byte number_of_readings = 8;
unsigned int current_value = 0;
for(int x = 0 ; x < number_of_readings ; x++)

current_value += analogRead (pin_ToRead);

current_value /= number_of_readings;

return (current_value);

/%

+ Function for mapping a value from one range to another range

%/

float mapfloat(float x, float in_min, float in_max, float out_min, float

out_max)

return (x — in_min) x (out_max — out_min) / (in_max - in_min) + out_min;

Listing III.1: Arduino RTD Experiment 1 Test Code

I11.2.2.3 Experiment 2 - SD Card

/
+ RTD TEST - SD CARD

« Created : 12/10/2017
« Modified: 14/04/2018

+ Version: 1.3

*

%/

#include <SPI.h>

#include <SD.h>

#include <LiquidCrystal.h>

const int chipSelect = 4;
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ANNEX III. TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL
FILES

17 int RTD_pin = AO0;
18| int nRTD_pin = Al;
19/int Vin_pin = A2;
21| float RTD = 0.0;

23int RO = 1000.0;

25| //Exact values taken before soldering

26| float R1 = 1095.0;
27| float R2 = 1092.0;
28| float R3 = 1094.0;

30 int Bl_pin = 8; //button
32 int LED_Green_pin = 9;

34| float vece = 0.0;
35/ float voltage = 0.0;
36| float voltagebridge = 0.0;

38| LiquidCrystal led (10, 7, 5, 6, 3, 2);
39
40
41| void setup () {
42
43| lcd.begin(16, 2); //(columns, rows)

45 pinMode (RTD_pin, INPUT);
46| pinMode (nRTD_pin, INPUT);
47| pinMode (Vin_pin, INPUT);

49|  pinMode (B1_pin, INPUT);

51 pinMode (LED_Green_pin, OUTPUT) ;

53 //To make sure that the sd card is found

54 if (!SD.begin(chipSelect)) f{

55 digitalWrite (LED_Green_pin, HIGH); // Lights up if the card failed or is

not present

56 return;

62| void loop () f{

64 int RTD_level = average_analogRead (RTD_pin);
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66
67
68

69

80
81
82
83
84

90

91

93
94
95

96

97

II1.2. RTD TEMPERATURE SENSOR

int nRTD_level = average_analogRead (nRTD_pin) ;
int Vin_level = average_analogRead(Vin_pin);

//Convert vcc reading to voltage
float vec = Vin_level = 5.0; // VCC +/- 5 Volts
vee = vee / 1023.0; // 2710 (10 bits ADC)

//5V power pin as a reference
float output_voltageRTD = 5.0 / Vin_level » RTD_level;
float output_voltagenRTD = 5.0 / Vin_level » nRTD_level;

//From Wheatstone bridge circuit
float RTD = ((Rlxvcc)/(output_voltageRTD—-output_voltagenRTD +((R3/(R2+R3) )=
vce)))-R1;

float RTD_methodl = RID;
float ratio_RT_RO = RTD/RO;

//Maps the value received by the sensor to the range described in datasheet
float temperature_method2 = mapfloat(ratio_RT_RO, 0.78319, 1.66627, -55.0,
175.0);

File dataFile = SD.open("outputSD.txt", FILE_WRITE);

//Check if the file is available
if (dataFile) {
dataFile. print (RTD_methodl);
dataFile.print(",");
dataFile. println (temperature_method2);
dataFile.close();
J
else {
digitalWrite (LED_Green_pin, HIGH); // Lights up if there was an error
opening the file

J

lcd.clear ();

lcd .setCursor (0,0);

led. print ("RTD Temperature: ");
Icd.setCursor (6, 1);

led. print (temperature_method2);
lcd.setCursor(12,1);

lcd. print(char(223)); //print degree Symbol
led.setCursor(13,1);

led. print ("C");

delay(5000);
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114| /%

115/ + Function to take the average of reading on a given pin
16| */

117| int average_analogRead (int pin_ToRead)

18| {

119  byte number_of_readings = 8;

120 unsigned int current_value = 0;

121

122 for(int x = 0 ; x < number_of_readings ; x++)
123 current_value += analogRead (pin_ToRead);

124  current_value /= number_of_readings;

126 return (current_value);

130] /*

131 « Function for mapping a value from one range to another range

132 */

133| float mapfloat(float x, float in_min, float in_max, float out_min, float
out_max)

134| {
135 return (x — in_min) * (out_max — out_min) / (in_max — in_min) + out_min;

136/ }

Listing III.2: Arduino RTD Experiment 2 Test Code

I11.2.2.4 Python

|| HEHHHFHHHAHHHH

2| ## Script listens serial port and writes contents into a file
S| HAHHAHHH#HHHAH

4| ##

5| ## Created : 09/10/2017

6| ## Modified: 16/05/2018

7| ##

8| ## Version: 1.2

9| ##

I1|import serial;

13| serial_port = "/dev/cu.usbmodemFA131";

14| baud_rate = 9600; #In arduino, Serial.begin(baud_rate)
15| write_to_file_path = "output.txt";

16
17| output_file = open(write_to_file_path, "w+");
18| ser = serial.Serial(serial_port, baud_rate);
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n=1;

while n <= 360:
line = ser.readline();
line = line.decode("utf-8"); #ser.readline returns a binary, convert to
string

print(line);
output_file.write(line);

n=n+ 1;

output_file.close ();

Listing III.3: Script for Serial Communication

I11.2.2.5 Matlab

%
% RID TEST - Convert RTD resistance values into degrees Celsius

% Created : 19/09/2017
% Modified: 01/06/2018

% Version: 1.2

M = csvread (’output.txt’);

[rows, columns] = size (M);
n = 1;

j = rows;

RO = 1000;

A = 3.9083+10/(=3);

los]
|

_3)
= —5.775x107(-7)
C = -4.183x10~(-12

);
S = zeros(rows,1);
while n <= j
if M(n) < 1000 %Temperature from -55C to 0C
RT = M(n);

syms T_neg

eq = RO » (1 + A+T_neg + Bx(T_neg”2) + C+(T_neg — 100) » T_neg”3) ==
RT;

S(n) = vpasolve(eq,T_neg, [-100 100]);
elseif M(n) == 1000 %Temperature is 0C
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S(n) = 0;
else %Temperature from 0C to +175C

RT = M(n);

S(n) = (- A+ sqrt((Ar2) — 4 » (B » ((1 — RT/RO))))) / (2%B);
end
n=n+1;

end

fileID = fopen(’results.txt’,’'w’);

3| fprintf (fileID , %f\n’,S);

fclose (fileID);

Listing I1I.4: Script for Convert RTD Values into Temperatures
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I11.3. DIGITAL TEMPERATURE SENSOR

II1.3 Digital Temperature Sensor

I11.3.1 Schematic
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Figure II1.4: Arduino digital temperature sensor test schematic.
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ANNEX III. TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL
FILES

I11.3.2 Source Code

/%
+ DIGITAL TEMPERATURE SENSOR TEST - Adafruit MCP9808 — SD CARD VERSION

« Created : 27/06/2017
« Modified: 23/04/2018

+ Version: 1.6

+ based on https://learn.adafruit.com/adafruit-mcp9808—precision—i2c—
temperature—sensor—guide/wiring

*/

#include <SPI.h>

#include <SD.h>

#include <LiquidCrystal.h>

#include "Adafruit_MCP9808.h"

Adafruit_MCP9808 temp_sensor = Adafruit MCP9808();

const int chipSelect = 4;

int Bl_pin = 8; //button

int LED_Green_pin = 9;

LiquidCrystal led (10, 7, 5, 6, 3, 2);

void setup () {
led.begin(16, 2); //(columns, rows)
pinMode (B1l_pin, INPUT);
pinMode (LED_Green_pin, OUIPUT);

//To make sure that the sensor is found

if (!temp_sensor.begin()) {
digitalWrite (LED_Green_pin, HIGH); // Lights up if the sensor couldn’t be
found
while (1);

//To make sure that the sd card is found

if (!SD.begin(chipSelect)) f{
digitalWrite (LED_Green_pin, HIGH); // Lights up if the card failed or is
not present
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46 return;

52| void loop () f
54/ float temperature = temp_sensor.readTempC();
56 File dataFile = SD.open("outputSD.txt", FILE_WRITE);

58 //Check if the file 1is available
59 if (dataFile) {

60 dataFile. println (temperature);

61 dataFile.close();

62 }

63 else {

64 digitalWrite (LED_Green_pin, HIGH); // Lights up if there was an error

opening the file
65 }

66
67 Icd.clear ();

68 lcd .setCursor (0,0);

69 led.print("Temperature: ");

70 lcd.setCursor (6, 1);

71 led . print (temperature);

72 Icd.setCursor(12,1);

73| led.print(char(223)); //print degree Symbol
74 lcd.setCursor(13,1);

75 led. print("C");

77 delay(5000);

Listing III.5: Arduino Digital Temperature Sensor Test Code
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II1.4 UV Sensor

I11.4.1 Schematic
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Figure II1.5: Arduino UV sensor test schematic.
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I11.4.2 Source Code

/x

+ UV SENSOR TEST - Sparkfun ML8511

+ Created : 26/06/2017
+ Modified: 19/04/2018

+ Version: 1.4

+ based on https://learn.sparkfun.com/tutorials/ml8511-uv-sensor—hookup-—

guide
*/
#include <LiquidCrystal.h>

int UV_OUT_pin = A0Q; // Output

int REF_3V3_pin = Al; // Reference

int Bl_pin 6;

int B2_pin 7;

int B3_pin 8;

int LED_Green_pin = 9;
int LED_Yellow_pin = 10;
int LED_Red_pin = 13;

int state = 1;
int button_state = 0;

LiquidCrystal led(12, 11, 5, 4, 3,

void setup () {

led.begin(16, 2); //(columns, rows)

pinMode (UV_OUT _pin, INPUT);
pinMode (REF_3V3_pin, INPUT);

pinMode (B1l_pin, INPUT);
pinMode (B2_pin, INPUT);
pinMode (B3_pin, INPUT);

pinMode (LED_Green_pin, OUTPUT);
pinMode (LED_Yellow_pin, OUTPUT);
pinMode (LED_Red_pin, OUTPUT);
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50| void loop () f{

51

52 button_state = digitalRead (Bl_pin);
53

54 if (button_state == HIGH) {

55 state ++;

56 }

57

58 if (state == 3){

59 state = 1;

60 }

62 int uv_level = average_analogRead (UV_OUT_pin) ;
63 int ref_level = average_analogRead (REF_3V3_pin);

65 // 3.3V power pin as a reference to get a accurate output value from sensor

66 float output_voltage = 3.3 / ref_level » uv_level;

68 //Maps the value received by the sensor to the range described in datasheet
69| float uv_intensity = mapfloat(output_voltage, 0.99, 2.9, 0.0, 15.0);

70
71 led.clear ();

72

73 if (state == 1){

74 lcd.setCursor (0,0);

75 led. print ("UV Intensity: ");
76 led.setCursor (3, 1);

77 led. print (uv_intensity);

78 lcd .setCursor (9,1);

79 led. print ("mW/cm”2") ;

80 }

81

82 if (state == 2){

83 lcd.setCursor (0,0);

84 led. print ("Out Voltage: ");
85 lcd.setCursor (3, 1);

86 led. print (output_voltage);
87 lcd.setCursor (9,1);

88 led. print("V");

89 }

90

91 delay (1000);

92

93| }

94

95] /%

96| * Function to take the average of reading on a given pin

97 x-/
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int average_analogRead (int pin_ToRead)

{
byte number_of_readings = 8;

unsigned int current_value = 0;

for(int x = 0 ; x < number_of_readings ; x++)
current_value += analogRead (pin_ToRead);
current_value /= number_of_readings;

return (current_value);

/%

+ Function for mapping a value from one range to another range

*/

float mapfloat(float x, float in_min, float in_max, float out_min, float

out_max)

return (x — in_min) * (out_max — out_min) / (in_max — in_min) + out_min;

Listing II1.6: Arduino UV Sensor Test Code
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II1.5 Magnetometer, Accelerometer and Gyroscope

I11.5.1 Schematic
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Figure II1.6: Arduino Magnetometer, Accelerometer and Gyroscope test schematic.
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ITI.5. MAGNETOMETER, ACCELEROMETER AND GYROSCOPE

I11.5.2 Source Code

/%
*  MAGNETOMETER, ACCELEROMETER AND GYROSCOPE SENSOR TEST - Adafruit LSM9DS0

« Created : 26/06/2017
« Modified: 07/05/2018

+ Version 1.3

+ based on https://learn.adafruit.com/adafruit-Ism9dsO—-accelerometer—-gyro—
magnetometer—9-dof-breakouts/arduino-code

>

*/

#include "Adafruit_LSM9DS0.h"
#include <LiquidCrystal.h>

Adafruit_LSM9DS0 sensor = Adafruit_LSM9DSO0 () ;

int Bl_pin = 6;
int B2_pin = 7;
int B3_pin = §;
int LED_Green_pin = 9;

int LED_Yellow_pin = 10;
int LED_Red_pin = 13;
int state = 1;

int button_state = 0;

LiquidCrystal led(12, 11, 5, 4, 3, 2);

void configure_sensor ()

{
// 1.) Set the accelerometer range
sensor.setupAccel (sensor .LSMIDSO_ACCELRANGE_2G) ;
//sensor.setupAccel (sensor .LSMIDSO_ACCELRANGE_4G) ;
//sensor.setupAccel (sensor .LSMIDSO_ACCELRANGE_6G) ;
//sensor.setupAccel (sensor .LSMIDSO_ACCELRANGE_8G) ;
//sensor.setupAccel (sensor .LSMIDSO_ACCELRANGE_16G) ;

// 2.) Set the magnetometer sensitivity

sensor .setupMag(sensor .LSMIDSO_MAGGAIN_2GAUSS) ;
//sensor .setupMag(sensor .LSMIDSO_MAGGAIN_4GAUSS)
//sensor .setupMag(sensor .LSMIDS0O_MAGGAIN_8GAUSS )
//sensor .setupMag(sensor .LSMIDSO_MAGGAIN_12GAUSS

);
// 3.) Setup the gyroscope
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48 sensor .setupGyro(sensor .LSMIDS0_GYROSCALE_245DPS) ;
49 //sensor .setupGyro(sensor .LSMIDS0_GYROSCALE_500DPS) ;
50 //sensor.setupGyro(sensor .LSMIDS0_GYROSCALE_2000DPS) ;

54| void setup () {
56 led.begin(16, 2); //(columns, rows)

58| pinMode (Bl_pin, INPUT);
59 pinMode (B2_pin, INPUT);
60| pinMode (B3_pin, INPUT);

62 pinMode (LED_Green_pin, OUTPUT);
63 pinMode (LED_Yellow_pin, OUTPUT) ;
64| pinMode (LED_Red_pin, OUTPUT);

66 //To make sure that the sensor is found

67 if (!sensor.begin())

68 {

69 digitalWrite (LED_Red_pin, HIGH); // Lights up if the sensor couldn’t be
found

70 while (1);

71 }

72

73| }

74

76| void loop () {
78 sensor.read () ;
80 button_state = digitalRead (Bl_pin);

82 if (button_state == HIGH) {

83 state ++;

84 }

85

86 if (state == 4){
87 state = 1;

88 }

90 led.clear ();

92 if (state == 1){

93 led .setCursor (0,0);

94 led. print ("Accel X: ");

95 led.setCursor (8,0);

96 led . print (((sensor.accelData.xx0.061F)/1000)%x9.80665F) ;
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led .setCursor (0, 1);

led. print("Y: ");

lcd.setCursor (2,1);

led. print (((sensor.accelData.yx0.061F)/1000)%9.80665F);
led.setCursor (9,1);

led. print("Z: ");

lcd.setCursor(11,1);

led. print (((sensor.accelData.zx0.061F)/1000)%9.80665F) ;

if (state == 2){
lcd.setCursor (0,0);
led. print("Mag X: ");
lcd.setCursor (8,0);
led. print (( sensor .magData.xx0.08F)/1000);
led.setCursor (0, 1);
led.print("Y: ");
led.setCursor (2,1);
led. print ((sensor.magData.yx0.08F)/1000);
lcd.setCursor (9,1);
led. print("Z: ");
led.setCursor(11,1);
led. print ((sensor.magData.z+0.08F)/1000);

if (state == 3){
lcd.setCursor (0,0);
led. print ("Gyro X: ");
lcd.setCursor (8,0);
led. print(sensor.gyroData.xx0.00875F);
led.setCursor (0, 1);
led.print("Y: ");
lcd .setCursor (2,1);
led. print(sensor.gyroData.y+0.00875F);
lcd.setCursor (9,1);
led. print("Z: ");
led .setCursor(11,1);
led. print(sensor.gyroData.zx0.00875F);

delay (1000);

Listing III.7: Arduino Accelerometer, Magnetometer and Gyroscope Test Code
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III.6 RTC

I11.6.1 Schematic
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Figure II1.7: Arduino RTC test schematic.
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I11.6.2 Source Code

/%
+  RTC TEST - Adafruit DS3231

+ Created : 01/07/2017
+ Modified: 02/05/2018

+ Version: 1.5

+ based on https://learn.adafruit.com/adafruit—-ds3231—-precision—-rtc—breakout
/arduino-usage

>

*/

#include "RTClib.h"
#include <LiquidCrystal.h>

RTC_DS3231 rtc;

int Bl_pin 6;

int B2_pin 7;

int B3_pin 8;

int LED_Green_pin = 9;
int LED_Yellow_pin = 10;
int LED_Red_pin = 13;

LiquidCrystal led(12, 11, 5, 4, 3, 2);

void setup () {
led.begin(16, 2); //(columns, rows)

pinMode (B1l_pin, INPUT);
pinMode (B2_pin, INPUT);
pinMode (B3_pin, INPUT);

pinMode (LED_Green_pin, OUTPUT);
pinMode (LED_Yellow_pin, OUTPUT) ;
pinMode (LED_Red_pin, OUIPUT);

//To make sure that the rtc is found
if (! rtc.begin()) {

digitalWrite (LED_Red_pin, HIGH); // Lights up if the rtc couldn’t be found
while (1);

if (rtc.lostPower()) |
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TESTING PAYLOAD COMPONENTS WITH ARDUINO - TECHNICAL

rtc.adjust (DateTime (F(__DATE__), F(__TIME__)));

date & time this sketch was compiled

//rtc.adjust (DateTime(2014, 1, 21, 3, 0, 0)); // sets the RTC with an
explicit date & time, for example January 21, 2014 at 3am

void loop () {

DateTime now = rtc.now();

lcd

lcd.
lcd.

lcd

Icd.
led.
Icd.
Icd.
Icd.
Icd.
lcd.
Icd.

lcd

lcd.
lcd.

lcd

Icd.
Icd.
Icd.
Icd.
Icd.
Icd.
led.
Icd.
Icd.

.clear ();

setCursor (0,0);
print ("Date: ");
.setCursor (6,0);
print (now.day () );
setCursor (8,0);
print("/");
setCursor (9,0);
print (now.month () );
setCursor(11,0);
print("/");
setCursor(12,0);
.print (now.year());
setCursor (0, 1);
print ("Time:");
.setCursor (6, 1);
print (now.hour());
setCursor(8,1);
print(":");
setCursor (9,1);
print (now.minute () );
setCursor(11,1);
print(":");
setCursor(12,1);
print (now.second () );

delay (1000);

Listing II1.8: Arduino RTC Test Code
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FILES

IV.1 PSoC Testing Platform

IV.1.1 Schematic
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Figure IV.1: PSoC testing platform schematic.
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IV.2 RTD Temperature Sensor

IV.2.1 Schematic
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Figure IV.2: PSoC RTD test schematic.
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IV.2.2 Source Code

/x

*

*

*/

PSoC
RTD TEST - SD CARD

Created : 12/01/2018
Modified: 21/11/2018

Version: 1.6

#include "project.h"
#include "stdio.h"
#include <FS.h>

float mapfloat(float x, float in_min, float in_max,

out_max) ;

int main(void)

{

CyGloballntEnable; /+ Enable global interrupts.

/+ Start the components x/
LCD1_Start();
ADC_DelSigl_Start () ;
AMux1_Start () ;

/+ Initialize file system x/
FS_Init();

int32 fromADC[3];

int32 RO = 1000;

//Exact values taken before soldering
float32 R1 1095.0;

float32 R2 = 1092.0;
float32 1094.0;

=~
W
Il

float32 vcc = 0.0;
float32 RTD_voltage = 0.0;
float32 nRTD_voltage = 0.0;

char str_RTD_voltage[15];
char str_nRTD_voltage[15];
char str_vec[15];

char str_temperature_methodl[15];
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48 char str_temperature_method2[15];

49

50 char sdFile[11] = "Output. txt";

51

52 FS_FILE = pFile;

53

54

55 for (5;)

56 {

57 AMux1_FastSelect (0);

58 ADC_DelSigl_StartConvert () ;

59 ADC_DelSigl_IsEndConversion (ADC_DelSigl_WAIT_FOR_RESULT) ;

60 fromADC[0] = ADC_DelSigl_GetResult32() ;

61 ADC_DelSigl_StopConvert () ;

62

63 RTD_voltage = ADC_DelSigl_CountsTo_Volts (fromADC[0]) ;

64 sprintf (str_RTD_voltage ,"%.3f" ,RTD_voltage) ;

65

66 AMux1_FastSelect(1);

67 ADC_DelSigl_StartConvert () ;

68 ADC_DelSigl_IsEndConversion (ADC_DelSigl_WAIT_FOR_RESULT) ;

69 fromADC[1] = ADC_DelSigl_GetResult32();

70 ADC_DelSigl_StopConvert () ;

71

72 nRTD_voltage = ADC_DelSigl_CountsTo_Volts (fromADC[1]) ;

73 sprintf (str_nRTD_voltage ,"%.3f" ,nRTD_voltage) ;

74

75 AMux1_FastSelect(2);

76 ADC_DelSigl_StartConvert () ;

77 ADC_DelSigl_IsEndConversion (ADC_DelSigl_ WAIT_FOR_RESULT) ;

78 fromADC[2] = ADC_DelSigl_GetResult32 () ;

79 ADC_DelSigl_StopConvert () ;

80

81 vee = ADC_DelSigl_CountsTo_Volts (fromADC[2]) ;

82 sprintf (str_vcc,"%.3f" ,vecc);

83

84 float32 RTD = ((Rlxvcc)/(RTD_voltage—nRTD_voltage+((R3/(R2+R3))=vcc)))
-R1;

85

86 float32 RTD_methodl = RTD;

87 sprintf (str_temperature_methodl,"%.3f" ,RTD_methodl) ;

88

89 float32 ratio RT_RO = RTD/RO;

90

91 //Maps the value received by the sensor to the range described in
datasheet

92 float32 temperature_method2 = mapfloat(ratio_RT_RO, 0.78319, 1.66627,
~55.0, 175.0);

93 sprintf (str_temperature_method2,"%.3f" ,temperature_method2);

94
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- />F

pFile = FS_FOpen(sdFile, "a");
if (pFile)
{
FS_Write (pFile , str_temperature_methodl, 8u);
FS_Write (pFile ,"," ,1u);
FS_Write ( pFile , str_temperature_method2,7u);
FS_Write (pFile ,"\r\n" ,4u);
FS_FClose ( pFile);
J
else
{
LED_Red_Write(1u);// Lights up if there was an error opening the
file
J
/+ Clear LCD x/
LCD1_ClearDisplay () ;
LCD1_Position(0,0);
LCD1_PrintString ("RTD Temperature: ");
LCD1_Position(1,6);
LCD1_PrintString (str_temperature_method2);
LCD1_Position(1,12);
LCD1_PutChar(223);
LCD1_Position(1,13);
LCD1_PrintString ("C");
CyDelay(5000u) ;
}
J
/%
+ Function for mapping a value from one range to another range
%/
float mapfloat(float x, float in_min, float in_max, float out_min, float
out_max)
{
return (x — in_min) % (out_max — out_min) / (in_max — in_min) + out_min;
J
[] END OF FILE «/

Listing IV.1: PSoC RTD Test Code
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IV.3 Digital Temperature Sensor

IV.3.1 Schematic
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Figure IV.3: PSoC digital temperature sensor test schematic.
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IV.3.2 Source Code

/x

* PSoC
+ DIGITAL TEMPERATURE SENSOR TEST - Adafruit MCP9808

« Created : 05/02/2018
+ Modified: 11/01/2019

+ Version: 1.8

%
*/
#include "project.h"
#include "stdio.h"
#include <FS.h>

/+ The I2C Slave address by default in a PSoC device is 8 =/
#define MCP9808_12C_ADDRESS (0x18)

/+ Set the write buffer length to be 16 bits or 2 bytes =/
#define MCP9808_BUFFER_SIZE (2u)

#define MCP9808_REG_AMBIENT TEMP_ADRESS (0x05)
#define MCP9808_REG_MANUF_ID_ADRESS (0x06)
#define MCP9808_REG_DEVICE_ID_ADRESS (0x07)

#define MCP9808_MANUFACTURER_ID (0x0054)
#define MCP9808_DEVICE_ID (0x0400)

int mcp9808_begin () ;
float32 get_temp(void);

int main(void)
{
CyGloballntEnable; /+ Enable global interrupts. =/
/+ Start the components x/
LCD1_Start();
I2C1_Start();

/+ Initialize file system x/
FS_Init();

char str_temperature[15];

char sdFile[11] = "Output. txt";
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FS_FILE + pFile;
float32 temperature = 0.0;

//make sure the sensor is found

if (!mcp9808_begin())

{
LED_Yellow_Write(lu); // Lights up if the sensor couldn’t be found
while (1) ;

for (;;)
{

temperature = get_temp();

sprintf (str_temperature,"%.3f" ,temperature);

pFile = FS_FOpen(sdFile, "a");

if (pFile)

{
FS_Write (pFile, str_temperature, 7u);
FS_Write (pFile ,"\r\n" ,4u);

FS_FClose (pFile);
J
else
{
LED_Red_Write(1u);// Lights up if there was an error opening the
file

/+ Clear LCD x/
LCD1_ClearDisplay () ;

LCD1_Position(0,0);
LCD1_PrintString ("Temperature: ");
LCD1_Position(1,6);
LCD1_PrintString(str_temperature);
LCD1_Position(1,12);
LCD1_PutChar(223);
LCD1_Position(1,13);
LCD1_PrintString ("C");

CyDelay(5000u) ;
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/*

Function to make sure that the mcp9808 is found

*/

int mcp9808_begin(void)

{
int8_t buffer [MCP9808_BUFFER_SIZE |;
uint8_t upperByte;
uint8_t lowerByte;
intl6_t manufacturerlD;
intl6_t devicelD;

//Initialize Transaction for Writing
I12C1_MasterSendStart (MCP9808_I2C_ADDRESS,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to
[2C1_MasterWriteByte (MCP9808_REG_MANUF_ID_ADRESS) ;
I2C1_MasterSendRestart (MCP9808_I2C_ADDRESS,12C1_READ_XFER_MODE) ;

//Read from Register (2 Bytes, last byte NAKed)
buffer [0] = I2C1_MasterReadByte (I2C1_ACK_DATA);
buffer[1] = I12C1_MasterReadByte (I2C1_NAK DATA) ;

//End Transaction
I12C1_MasterSendStop () ;

upperByte = buffer[0];

lowerByte = buffer[1];

manufacturerID = upperByte;
manufacturerID <<= §;

manufacturerID |= lowerByte;

//Initialize Transaction for Writing
I12C1_MasterSendStart (MCP9808_I2C_ADDRESS,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to
I2C1_MasterWriteByte (MCP9808_REG_DEVICE_ID_ADRESS) ;
12C1_MasterSendRestart (MCP9808_I2C_ADDRESS,12C1_READ_XFER_MODE) ;

//Read from Register (2 Bytes, last byte NAKed)
buffer [0] I2C1_MasterReadByte (I12C1_ACK_DATA) ;
buffer[1] I12C1_MasterReadByte (I2C1_NAK_DATA) ;

//End Transaction
I12C1_MasterSendStop () ;
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}
/

upperByte
lowerByte

devicelD =

buffer [0];
buffer[1];

upperByte;

devicelD <<= 8;

deviceID |= lowerByte;

if (manufacturerID != MCP9808 MANUFACTURER ID)

return 0;

if (devicelD != MCP9808_DEVICE_ID)

return 0;

return 1;

Function to return the temperature

«/

float32 get_temp(void)

{

float32 temperature;
int8_t buffer [MCP9808_BUFFER_SIZE |;
uint8_t upperByte;

uint8_t lowerByte;

//Initialize Transaction for Writing
I12C1_MasterSendStart (MCP9808_I2C_ADDRESS,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to
I[2C1_MasterWriteByte (MCP9808_REG_AMBIENT_TEMP_ADRESS) ;
I12C1_MasterSendRestart (MCP9808_I2C_ADDRESS,12C1_READ_XFER_MODE) ;

//Read from

buffer[0]
buffer[1]

Register (2 Bytes, last byte NAKed)
I12C1_MasterReadByte (I12C1_ACK_DATA) ;
I12C1_MasterReadByte (I2C1_NAK_DATA) ;

//End Transaction
12C1_MasterSendStop () ;

upperByte
lowerByte

upperByte

buffer [0];
buffer[1];

&= 0x01F; //Clear flag bits

if ((upperByte & 0x10) == 0x10) //Temperature < 0 C

{

upperByte &= 0x0F; //Clear SIGN bit

163




ANNEX IV. TESTING PAYLOAD COMPONENTS WITH PSOC - TECHNICAL
FILES

float32 upperByte2 = upperByte;

float32 lowerByte2 = lowerByte;

temperature = —(256 —((upperByte2 x 16) + (lowerByte2 / 16)));
J

else //Termperature >= 0 C

{
float32 upperByte2 = upperByte;

float32 lowerByte2 = lowerByte;
temperature = (upperByte2 x 16) + (lowerByte2 / 16);

return temperature;

}
/+ [] END OF FILE +/

Listing IV.2: PSoC Digital Temperature Sensor Test Code
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IV.4 UV Sensor

IV.4.1 Schematic
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Figure IV.4: PSoC UV sensor test schematic.
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IV.4.2 Source Code

/x
%

+  PSoC

» UV SENSOR TEST - Sparkfun ML8511

« Created : 19/01/2018
+ Modified: 03/12/2018

%
+ Version: 1.3

%

*/

#include "project.h"

#include "stdio.h"

float mapfloat(float x, float in_min, float in_max, float out_min, float

out_max) ;

int main(void)

{
CyGlobalIntEnable; /+ Enable global interrupts. =/

/+ Start the components x/
LCD1_Start();
ADC_DelSigl_Start () ;

uint8_t state = 1;
int32 fromADC;
float32 uv_intensity = 0.0;

float32 uv_voltage = 0.0;

char str_uv_voltage[15];

char str_uv_intensity[15];

for (5;)
{
if (Buttonl_Read())
state ++;
if (state == 3){
state = 1;

ADC_DelSigl_StartConvert () ;

ADC_DelSigl_IsEndConversion (ADC_DelSigl_WAIT_FOR_RESULT) ;
fromADC = ADC_DelSigl_GetResult32() ;
ADC_DelSigl_StopConvert () ;
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48

49 uv_voltage = ADC_DelSigl_CountsTo_Volts (fromADC) ;

50 sprintf (str_uv_voltage ,"%.3f" ,uv_voltage);

51

52

53 //Maps the value received by the sensor to the range described in
datasheet

54 uv_intensity = mapfloat(uv_voltage, 0.99, 2.9, 0.0, 15.0);

55 sprintf (str_uv_intensity ,"%.3f" ,uv_intensity);

56

57 /+ Clear LCD «/

58 LCD1_ClearDisplay () ;

59

60 if (state == 1)

61 {

62 LCD1_Position(0,0);

63 LCD1_PrintString ("UV Intensity");

64 LCD1_Position(1,3);

65 LCD1_PrintString(str_uv_intensity);

66 LCD1_Position(1,9);

67 LCD1_PrintString ( "mw/cm”2");

68

69 }

70

71 if (state == 2)

72 {

73 LCD1_Position(0,0);

74 LCDI1_PrintString ("Out Voltage: ");

75 LCD1_Position(1,3);

76 LCD1_PrintString(str_uv_voltage);

77 LCD1_Position(1,9);

78 LCD1_PrintString("V");

79

80 }

81

82 CyDelay(3000u) ;

83

84 }

85| }

86

87 /*

88| * Function for mapping a value from one range to another range

89 %/

90| float mapfloat(float x, float in_min, float in_max, float out_min, float
out_max)

911 {

92 return (x — in_min) * (out_max — out_min) / (in_max — in_min) + out_min;

93| }

94

95| /« [] END OF FILE «/
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Listing IV.3: PSoC UV Sensor Test Code
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IV.5 Magnetometer, Accelerometer and Gyroscope

IV.5.1 Schematic
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Figure IV.5: PSoC Magnetometer, Accelerometer and Gyroscope test schematic.
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IV.5.2 Source Code

| #define LSM9DS0_OUT_Z_H_G_ADRESS

/x

* PSoC
+  MAGNETOMETER, ACCELEROMETER AND GYROSCOPE SENSOR TEST - Adafruit LSM9DS0

« Created : 15/03/2018
+ Modified: 09/02/2019

+ Version: 2.1

%
*/
#include "project.h"
#include "stdio.h"
#include "string.h"

/+ The 12C Slave addressx/
#define LSM9DS0_ADDRESS ACCELMAG (0x1D)
#define LSM9DS0_ADDRESS_GYRO (0x6B)

//Gyroscope

#define LSM9DS0_OUT_X_L_G_ADRESS ( )

#define LSM9DSO_OUT_X_H_G_ADRESS  ( )

#define LSM9DS0_OUT_Y_L_G_ADRESS ( )

#define LSM9DSO_OUT_Y_H_G_ADRESS (0x2B)
( )
( )

#define LSM9DS0_OUT_Z_L_G_ADRESS

//Accelerometer

#define LSM9DS0_OUT_X_L_A_ADRESS (0x28)
#define LSM9DS0_OUT_X_H_A_ADRESS (0x29)
#define LSM9DSO0_OUT_Y_L_A_ADRESS (0x2A)
#define LSM9DSO_OUT_Y_H_A_ADRESS (0x2B)
#define LSM9DS0_OUT_Z L_A_ADRESS (0x2C)
#define LSM9DS0_OUT_Z_H_A_ADRESS (0x2D)
//Magnetometer

#define LSM9DS0_OUT_X_L_M_ADRESS (0x08)
#define LSM9DSO_OUT_X_H_M_ADRESS (0x09)
#define LSM9DSO_OUT_Y_L_M_ADRESS (0x0A)
#define LSM9DSO_OUT_Y_H M_ADRESS (0x0B)
#define LSM9DS0_OUT_Z_L_M_ADRESS (0x0C)
#define LSM9DS0_OUT_Z H M_ADRESS (0x0D)

//Registers

#define LSM9DS0_CTRL_REG1_XM ( )
#define LSM9DS0_CTRL_REG5_XM ( )
#define LSM9DS0_CTRL_REG7_XM (0x26)
#define LSM9DSO_CTRL_REGI1_G ( )

void get_data();
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49| void data_analyser () ;
50| void init_LSM9DSO0 () ;

52| char str_gyro_x|[15];

v
@

char str_gyro_y[15];
54| char str_gyro_z[15];
55| char str_accel_x[15];
56| char str_accel_y[15];
57| char str_accel_z[15];
58| char str_mag x[15];
59| char str_mag_y[15];
60| char str_mag_z[15];

62| uintl6_t gyro_buffer[6];
63l uintl6_t accel_buffer[6];
64| uintl6_t mag_buffer[6];

66| uint8_t state = 1;

67| uint8_t button_state = 0;

70/ int main(void)

71 {

72 CyGloballntEnable; /x Enable global interrupts. x/
73

74 /+ Start the components x/

75 LCDI1_Start();

76 [2C1_Start();

77

78 init_ LSM9DSO0 () ;

79

80 for (;;)

81 {

82 get_data () ;

83

84 button_state = Buttonl_Read();
85

86 if (button_state == 1)

87 state ++;

88

89 if (state == 4)

90 state = 1;

91

92 /+ Clear LCD x/

93 LCD1_ClearDisplay () ;

94

95 if (state == 1)

96 {

97 LCD1_Position(0,0);

98 LCD1_PrintString("Accel X: ");
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99 LCD1_Position(0,8);

100 LCD1_PrintString(str_accel_x);
101 LCD1_Position(1,0);

102 LCD1_PrintString ("Y: ");

103 LCD1_Position(1,2);

104 LCD1_PrintString(str_accel_y);
105 LCD1_Position(1,9);

106 LCD1_PrintString("Z: ");

107 LCD1_Position(1,11);

108 LCD1_PrintString(str_accel_z);
109 }

110

111 if (state == 2)

112 {

113 LCD1_Position(0,0);

114 LCD1_PrintString ("Mag X: ");
115 LCD1_Position(0,8);

116 LCD1_PrintString(str_mag_x);
117 LCD1_Position(1,0);

118 LCDI1_PrintString ("Y: ");

119 LCD1_Position(1,2);

120 LCD1_PrintString(str_mag_y);
121 LCD1_Position(1,9);

122 LCD1_PrintString("Z: ");

123 LCD1_Position(1,11);

124 LCD1_PrintString(str_mag_z);
125 }

126

127 if (state == 3)

128 {

129 LCD1_Position(0,0);

130 LCD1_PrintString("Gyro X: ");
131 LCD1_Position(0,8);

132 LCD1_PrintString(str_gyro_x);
133 LCD1_Position(1,0);

134 LCDI1_PrintString ("Y: ");

135 LCD1_Position(1,2);

136 LCD1_PrintString(str_gyro_y);
137 LCD1_Position(1,9);

138 LCD1_PrintString("Z: ");

139 LCD1_Position(1,11);

140 LCDI1_PrintString(str_gyro_z);
141 }

142

143 CyDelay(1000u) ;

144 }

145| }

146

147| void init_LSM9DSO () {

148
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//setup Accel for continous mode

I12C1_MasterSendStart (LSM9DS0_ADDRESS_ACCELMAG, 12C1_WRITE_XFER_MODE) ;
12C1_MasterWriteByte (LSM9DSO_CTRL_REG1_XM) ;

I12C1_MasterWriteByte (0b01100111); // 100Hz data rate
[2C1_MasterSendStop () ;

12C1_MasterSendStart (LSM9DS0_ADDRESS_ACCELMAG,I2C1_WRITE_XFER_MODE) ;
I12C1_MasterWriteByte (LSM9DSO_CTRL_REG5_XM) ;
[2C1_MasterWriteByte(0b11110000) ;

I12C1_MasterSendStop ()

’

//setup Mag for continous mode

12C1_MasterSendStart (LSM9DS0_ADDRESS_ACCELMAG, 12C1_WRITE_XFER_MODE) ;
I12C1_MasterWriteByte (LSM9DSO_CTRL_REG7_XM) ;

I2C1_MasterWriteByte (0b00000000) ;

[2C1_MasterSendStop ()

’

//setup Gyro for continous mode

I2C1_MasterSendStart (LSM9DSO_ADDRESS_GYRO,I2C1_WRITE_XFER_MODE) ;
[2C1_MasterWriteByte (LSM9DSO_CTRL_REG1_G) ;

I2C1_MasterWriteByte (0b00001111);

I12C1_MasterSendStop ()

’

void get_data ()

{

int end = 1;

while (end != 7)
{

//Initialize Transaction for Writing
I12C1_MasterSendStart (LSMIDSO_ADDRESS_ACCELMAG, I2C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to
switch (end)

{

case 1: I2C1_MasterWriteByte (LSM9DSO_OUT_X_L_A_ADRESS); break;
case 2: I2C1_MasterWriteByte (LSM9DSO_OUT_X_H_A_ADRESS); break;
case 3: I2C1_MasterWriteByte (LSM9DSO_OUT_Y_L_A_ADRESS); break;
case 4: I2C1_MasterWriteByte (LSM9DSO_OUT_Y_H_A_ADRESS); break;
case 5: I2C1_MasterWriteByte (LSM9DS0_OUT_Z_L_A_ADRESS); break;
case 6: I2C1_MasterWriteByte (LSM9DS0_OUT_Z H_A_ADRESS); break;

I2C1_MasterSendRestart (LSM9DSO_ADDRESS_ACCELMAG, 12C1_READ_XFER_MODE) ;

//Read from Register (last byte NAKed)
switch (end)

{
case 1: accel_buffer[0] = I2C1_MasterReadByte (I2C1_NAK DATA) ;

break;
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case 2: accel_buffer[1]
break;
case 3: accel_buffer[2]
break;
case 4: accel_buffer[3]
break;
case 5: accel_buffer (4]
break;
case 6: accel_buffer[5]
break;
J
//End Transaction
I12C1_MasterSendStop () ;
CyDelay(10);
end++;
}
end = 1;

while(end != 7)
{

I12C1_MasterReadByte (I2C1_NAK_DATA) ;

[2C1_MasterReadByte (I2C1_NAK_DATA) ;

[2C1_MasterReadByte (I12C1_NAK_DATA) ;

I2C1_MasterReadByte (I2C1_NAK_DATA) ;

I2C1_MasterReadByte (I2C1_NAK_DATA) ;

//Initialize Transaction for Writing
I12C1_MasterSendStart (LSMIDSO_ADDRESS_ACCELMAG, I2C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to

switch (end)

{

case 1: I2C1_MasterWriteByte (LSM9DSO0_OUT_X_L_M_ADRESS); break;
case 2: I2C1_MasterWriteByte (LSM9DS0_OUT_X_H_M ADRESS); break;
case 3: I2C1_MasterWriteByte (LSM9DSO_OUT_Y_L_M_ADRESS); break;
case 4: I2C1_MasterWriteByte (LSM9DS0_OUT_Y_H _M_ADRESS); break;
case 5: I12C1_MasterWriteByte (LSM9DSO_OUT_Z_L_M_ADRESS); break;
case 6: I2C1_MasterWriteByte (LSM9DS0_OUT_Z H_M_ADRESS); break;

[2C1_MasterSendRestart (LSM9DSO_ADDRESS_ACCELMAG, 12C1_READ_XFER_MODE) ;

//Read from Register (last byte NAKed)

switch (end)

{

case 1: mag_buffer[0]
case 2: mag_buffer[1]
case 3: mag_buffer[2]
case 4: mag_buffer[3]
case 5: mag_buffer[4]
case 6: mag_buffer[5]

I12C1_MasterReadByte (12C1_NAK_DATA
I[2C1_MasterReadByte (I12C1_NAK_DATA

[2C1_MasterReadByte (12C1_NAK_DATA
I2C1_MasterReadByte (I2C1_NAK_DATA

(

(
I2C1_MasterReadByte (I12C1_NAK_DATA

(

(

(

[2C1_MasterReadByte (12C1_NAK_DATA
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//End Transaction
I12C1_MasterSendStop () ;

CyDelay(10);
end++;

end = 1;

while (end != 7)

{

//Initialize Transaction for Writing
I2C1_MasterSendStart (LSM9DS0_ADDRESS_GYRO,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to

switch (end)

{

case 1: I2C1_MasterWriteByte (LSM9DSO_OUT_X_L_G_ADRESS); break;
case 2: I2C1_MasterWriteByte (LSM9DS0_OUT_X_H_G_ADRESS); break;
case 3: I2C1_MasterWriteByte (LSM9DS0_OUT_Y_L_G_ADRESS); break;
case 4: I12C1_MasterWriteByte (LSMIDSO_OUT_Y_H_G_ADRESS); break;
case 5: I2C1_MasterWriteByte (LSM9DS0_OUT_Z L_G_ADRESS); break;
case 6: I2C1_MasterWriteByte (LSM9DSO_OUT_Z H_G_ADRESS); break;

[2C1_MasterSendRestart (LSM9DS0_ADDRESS_GYRO,I12C1_READ_XFER_MODE) ;

//Read from Register (last byte NAKed)

switch (end)

{
case 1: gyro_buffer[0]
case 2: gyro_buffer[1]
case 3: gyro_buffer[2]
case 4: gyro_buffer[3]

case 5: gyro_buffer[4]

case 6: gyro_buffer[5]

//End Transaction
I12C1_MasterSendStop () ;

CyDelay(10);
end ++;

I12C1_MasterReadByte (I2C1_NAK_DATA) ;
I12C1_MasterReadByte (12C1_NAK_DATA) ;
I12C1_MasterReadByte (I12C1_NAK_DATA) ;
I12C1_MasterReadByte (I2C1_NAK_DATA) ;
I12C1_MasterReadByte (I2C1_NAK_DATA) ;

I12C1_MasterReadByte (12C1_NAK_DATA) ;
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287 }

288

289 data_analyser();
2901 }

291

292/ void data_analyser ()

293 {

294 uint8_t accel_x_low, accel_y_low, accel_z_low;

295 intl6_t accel_x_high, accel_y_high, accel_z_high;

296 uint8_t mag _x_low, mag_y_low, mag_z_low;

297 intl6_t mag_x_high, mag_y_high, mag_z_high;

298 uint8_t gyro_x_low, gyro_y_low, gyro_z_low;

299 intl6_t gyro_x_high, gyro_y_high, gyro_z_high;

300 float accel_x, accel_y, accel_z;

301 float mag x, mag_y, mag_z;

302 float gyro_x, gyro_y, gyro_z;

303

304 accel_x_low = accel_buffer[0];

305 accel_x_high = accel_buffer[1];

306 accel_y_low = accel_buffer[2];

307 accel_y_high = accel_buffer[3];

308 accel_z_low = accel_buffer[4];

309 accel_z_high = accel_buffer[5];

310

311 accel_x_high <<= 8; //shift 8 bytes to the left

312 accel_x_high |= accel_x_low; //concatenate low byte to high byte
313 accel_y_high <<= 8; //shift 8 bytes to the left

314 accel_y_high |= accel_y_low; //concatenate low byte to high byte
315 accel_z_high <<= 8; //shift 8 bytes to the left

316 accel_z_high |= accel_z_low; //concatenate low byte to high byte
317 accel_x = ((accel_x_highx0.061F)/1000)%9.80665F;

318 accel_y = ((accel_y_high=x0.061F)/1000)%9.80665F;

319 accel_z = ((accel_z_highx0.061F)/1000)%9.80665F;

320 snprintf(str_accel_x, sizeof(str_accel_x), "%.2f", accel_x);
321 snprintf (str_accel_y, sizeof(str_accel_y), "%.2f", accel_y);
322 snprintf(str_accel_z, sizeof(str_accel_z), "%.2f", accel_z);
323

324 mag_x_low = mag_buffer[0];

325 mag_x_high = mag_buffer[1];

326 mag_y_low = mag_buffer[2];

327 mag_y_high = mag_buffer[3];

328 mag_z_low = mag_buffer[4];

329 mag_z_high = mag_buffer [5];

330

331 mag_x_high <<= 8; //shift 8 bytes to the left

332 mag_x_high [= mag_x_low; //concatenate low byte to high byte
333 mag_y_high <<= 8; //shift 8 bytes to the left

334 mag_y_high |= mag_y low; //concatenate low byte to high byte
335 mag_z_high <<= 8; //shift 8 bytes to the left

336 mag_z_high |= mag_z low; //concatenate low byte to high byte
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mag_x = (mag_x_highx0.08F)/1000;
mag_y = (mag_y_highx0.08F)/1000;
mag z = (mag_z_highx0.08F)/1000;
snprintf (str_mag_x, sizeof(str_mag x), "%.2f", mag x);
snprintf (str_mag_y, sizeof(str_mag_y), "%.2f", magy);
snprintf (str_mag_z, sizeof(str_mag_z), "%.2f", mag z);

gyro_x_low = gyro_buffer[0];
gyro_x_high = gyro_buffer[1];
gyro_y_low = gyro_buffer[2];
gyro_y_high = gyro_buffer[3];
gyro_z_low = gyro_buffer[4];
gyro_z_high = gyro_buffer[5];

gyro_x_high <<= 8; //shift 8 bytes to the left
gyro_x_high |= gyro_x_low; //concatenate low byte to high
gyro_y_high <<= 8; //shift 8 bytes to the left
gyro_y_high |= gyro_y_low; //concatenate low byte to high
gyro_z_high <<= 8; //shift 8 bytes to the left
gyro_z_high |= gyro_z_low; //concatenate low byte to high
gyro_x = gyro_x_highx0.00875F;

gyro_y = gyro_y_highx0.00875F;

gyro_z = gyro_z_highx0.00875F;

snprintf (str_gyro_x, sizeof(str_gyro_x), "%.2f", gyro_x);
snprintf (str_gyro_y, sizeof(str_gyro_y), "%.2f", gyro_y);
snprintf(str_gyro_z, sizeof(str_gyro_z), "%.2f", gyro_z);

J
/+ [] END OF FILE x/

byte

byte

byte

Listing IV.4: Arduino Accelerometer, Magnetometer and Gyroscope Test Code
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IV.6 RTC

IV.6.1

Schematic
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Figure IV.6: PSoC RTC test schematic.
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IV.6.2 Source Code

/x

* PSoC
* RTC TEST - Adafruit DS3231

« Created : 21/02/2018
+ Modified: 03/02/2019

+ Version: 2.1

%
*/
#include "project.h"

#include "stdio.h"

#include "string.h"

#include "math.h"

/+In Creator go to Project —> Build Settings —> Linker —> General
Add "m" (without the quotes) into Additional Libraries.

*/

/+ The I2C Slave addressx/
#define DS3231_ADDRESS (0x68)

#define DS3231_SECONDS_ADRESS  (0x00)
#define DS3231_MINUTES_ADRESS  (0x01)
#define DS3231_HOURS_ADRESS (0x02)
#define DS3231_DAY_ADRESS (0x04)
#define DS3231_MONTH_ADRESS (0x05)
#define DS3231_YEAR_ADRESS (0x06)

void get_time ();
void configure_time () ;
void data_analyser ();

int convertBinaryToDecimal(long n);

uint8_t buffer_seconds;
uint8_t buffer_minutes;
uint8_t buffer_hours;
uint8_t buffer_day;
uint8_t buffer_month;
uint8_t buffer_year;

char str_day[15];
char str_month[15];
char str_year[15];
char str_hours[15];
char str_minutes[15];
char str_seconds|[15];
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49| int main(void)

50| {

51 CyGloballntEnable; /+ Enable global interrupts. =/
52

53 /+ Start the components x/

54 LCD1_Start();

55 I2C1_Start();

56

57 //configure_time (); //run only once
58

59 for (;;)

60 {

61 get_time () ;

62

63 /+ Clear LCD =/

64 LCD1_ClearDisplay () ;

65

66 LCD1_Position(0,0);

67 LCD1_PrintString ("Date: ");
68 LCD1_Position(0,6);

69 LCD1_PrintString(str_day);
70 LCD1_Position(0,8);

71 LCD1_PrintString("/");

72 LCD1_Position(0,9);

73 LCD1_PrintString (str_month);
74 LCD1_Position(0,11);

75 LCD1_PrintString("/");

76 LCD1_Position(0,12);

77 LCD1_PrintString(str_year);
78

79

80 LCD1_Position(1,0);

81 LCD1_PrintString ("Time:");

82 LCD1_Position(1,6);

83 LCD1_PrintString (str_hours);
84 LCD1_Position(1,8);

85 LCD1_PrintString(":");

86 LCD1_Position(1,9);

87 LCD1_PrintString(str_minutes);
88 LCD1_Position(1,11);

89 LCD1_PrintString(":");

90 LCD1_Position(1,12);

91 LCD1_PrintString (str_seconds);
92

93 CyDelay(1000u) ;

94 }

951 }

96

97| void get_time ()

98] {
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int end = 1;

while(end != 7)

{

//Initialize Transaction for Writing
I12C1_MasterSendStart (DS3231_ADDRESS,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to

switch (end)

{

case
case
case
case
case

case

AN G = W N

[2C1_MasterWriteByte (DS3231_SECONDS_ADRESS) ; break;
I12C1_MasterWriteByte (DS3231_MINUTES_ADRESS) ; break;
I12C1_MasterWriteByte (DS3231_HOURS_ADRESS) ; break;
I12C1_MasterWriteByte (DS3231_DAY_ADRESS); break;
I12C1_MasterWriteByte (DS3231_MONTH_ADRESS) ; break;
I12C1_MasterWriteByte (DS3231_YEAR_ADRESS); break;

I2C1_MasterSendRestart (DS3231_ADDRESS,12C1_READ_XFER_MODE) ;

//Read from Register (2 Bytes, last byte NAKed)

switch (end)

{

case

case

case
case
case

case

A G = W

buffer_seconds

I12C1_MasterReadByte (I2C1_NAK _DATA); break

buffer_minutes I12C1_MasterReadByte (I2C1_NAK_DATA); break
buffer_hours = I12C1_MasterReadByte (I2C1_NAK_DATA); break;
buffer_day = I2C1_MasterReadByte (I2C1_NAK DATA); break;
buffer_month = I2C1_MasterReadByte (I2C1_NAK_DATA); break;
buffer_year = I2C1_MasterReadByte (I2C1_NAK _DATA); break;

//End Transaction
I12C1_MasterSendStop () ;

CyDelay(10);

end++;

data_analyser();

void configure_time ()

{

int end = 1;

//Time will be configure to 03/02/2019 16:36:0

uint8_t config_seconds = 0b00000000; //0
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uint8_t config_minutes = 0b00110110; //36

uint8_t config_hours = 0b00010110; //16

uint8_t config_day = 0b00000011; //3

uint8_t config_month = 0b00000010; //2

uint8_t config_year = 0b00011001; //19

while(end != 7)

{

//Initialize Transaction for Writing
12C1_MasterSendStart (DS3231_ADDRESS,12C1_WRITE_XFER_MODE) ;

//Indicate Register to Write to
switch (end)

{

case 1: I2C1_MasterWriteByte (DS3231_SECONDS_ADRESS); break;
case 2: I2C1_MasterWriteByte (DS3231_MINUTES_ADRESS); break;
case 3: I2C1_MasterWriteByte (DS3231_HOURS_ADRESS) ; break;
case 4: I2C1_MasterWriteByte (DS3231_DAY_ADRESS); break;
case 5: I2C1_MasterWriteByte (DS3231_MONTH_ADRESS) ; break;
case 6: I2C1_MasterWriteByte (DS3231_YEAR_ADRESS); break;

//Write in BCD format
switch (end)

{

case 1: I2C1_MasterWriteByte(config_seconds); break;
case 2: I2C1_MasterWriteByte (config_minutes); break;
case 3: I12C1_MasterWriteByte (config_hours); break;
case 4: I2C1_MasterWriteByte(config_day); break;
case 5: I12C1_MasterWriteByte (config_month); break;
case 6: I2C1_MasterWriteByte(config_year); break;

//End Transaction
I12C1_MasterSendStop () ;

CyDelay(10);
end++;

void data_analyser ()

{

uint8_t
uint8_t
uint8_t
uint8_t

uint8_t

buffer_seconds_copy, seconds_decl, seconds_dec2, seconds;
buffer_minutes_copy, minutes_decl, minutes_dec2, minutes;
buffer_hours_copy, hours_decl, hours_dec2, hours;
buffer_day_copy, day_decl, day_dec2, day;
buffer_month_copy, month_decl, month_dec2, month;
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uint8_t buffer_year_copy, year_decl, year_dec2;
uintl6_t year;

buffer_seconds_copy = buffer_seconds;

buffer_seconds &= 0xF; //clears bit 4, 5, 6 , 7
buffer_seconds_copy &= 0x70; //clears bit 0, 1, 2, 3 and bit 7
buffer_seconds_copy >>= 4; //shift 4 bits to the right

seconds_decl = convertBinaryToDecimal (buffer_seconds);
seconds_dec2 = convertBinaryToDecimal (buffer_seconds_copy);
seconds = ( seconds_dec2 x 10 ) + seconds_decl;

snprintf (str_seconds, sizeof(str_seconds), "%d", seconds);

buffer_minutes_copy = buffer_minutes;

buffer_minutes &= 0xF; //clears bit 4, 5, 6 , 7
buffer_minutes_copy &= 0x70; //clears bit 0, 1, 2, 3 and bit 7
buffer_minutes_copy >>= 4; //shift 4 bits to the right
minutes_decl = convertBinaryToDecimal(buffer_minutes);
minutes_dec2 = convertBinaryToDecimal (buffer_minutes_copy);
minutes = ( minutes_dec2 % 10 ) + minutes_decl;

snprintf (str_minutes, sizeof(str_minutes), "%d", minutes);

buffer_hours_copy = buffer_hours;

buffer_hours &= O0xF; //clears bit 4, 5, 6 , 7
buffer_hours_copy &= 0x30; //clears bit 0, 1, 2, 3 and bit 6, 7
buffer_hours_copy >>= 4; //shift 4 bits to the right

hours_decl = convertBinaryToDecimal (buffer_hours);
hours_dec2 = convertBinaryToDecimal (buffer_hours_copy);
hours = ( hours_dec2 % 10 ) + hours_decl;

snprintf (str_hours, sizeof(str_hours), "%d", hours);

buffer_day_copy = buffer_day;

buffer_day &= OxF; //clears bit 4, 5, 6 , 7

buffer_day_copy &= 0x30; //clears bit 0, 1, 2, 3 and bit 6, 7
buffer_day_copy >>= 4; //shift 4 bits to the right

day_decl = convertBinaryToDecimal(buffer_day);

day_dec2 = convertBinaryToDecimal (buffer_day_copy);

day = ( day_dec2 » 10 ) + day_decl;

snprintf (str_day, sizeof(str_day), "%d", day);

buffer_month_copy = buffer_month;

buffer_month &= 0xF; //clears bit 4, 5, 6 , 7
buffer_month_copy &= 0x10; //clears bit 0, 1, 2, 3 and bit 6, 7
buffer_month_copy >>= 4; //shift 4 bits to the right

month_decl = convertBinaryToDecimal (buffer_month);

month_dec2 = convertBinaryToDecimal (buffer_month_copy);

month = ( month_dec2 x 10 ) + month_decl;

snprintf (str_month, sizeof(str_month), "%d", month);

buffer_year_copy = buffer_year;
buffer_year &= 0xF; //clears bit 4, 5, 6 , 7
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int

/%

buffer_year_copy &= 0xF0; //clears bit 0, 1, 2, 3
buffer_year_copy >>= 4; //shift 4 bits to the right
year_decl = convertBinaryToDecimal (buffer_year);
year_dec2 = convertBinaryToDecimal (buffer_year_copy);
year = 2000 + ( year_dec2 x 10 ) + year_decl;

snprintf (str_year, sizeof(str_year), "%d", year);

convertBinaryToDecimal (long n)

int decimal = 0;
int 1 = 0;

int remainder;

while (n!=0)
{
remainder = n %10;
n /= 10;
decimal += remainderxpow(2,i);
++1;
}

return decimal;

[] END OF FILE «/

Listing IV.5: Arduino RTC Test Code
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V.1 PSOC and Arduino Communication

V.1.1 Schematic
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Figure V.1: Arduino <-> PSoC I2C communication test schematic.

186




40
41
42
43
44
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V.1.2 Source Code

V.1.2.1 Arduino

/x

« 12C Communication TEST - Arduino — PSoC

« Created : 16/01/2018
+ Modified: 20/02/2019

+ Version: 1.5

*

*/

#include <LiquidCrystal.h>
#include <Wire.h>
#include <TimerOne.h>

int Bl_pin = 6;
int B2_pin = 7;
int B3_pin = §;

int LED_Green_pin = 9; //receive led
int LED_Yellow_pin = 10;

int LED_Red_pin = 13; //send led
LiquidCrystal led(12, 11, 5, 4, 3, 2);

int led_red_state = 0; // led
int led_green_state = 0;

unsigned long currentMillis;

unsigned long previous_red_Millis = 0;
updated

unsigned long previous_green_Millis = 0;

unsigned long previous_comm_Millis = 0;

unsigned long previous_init_comm_Millis =

state used to set

// will store

0;

const long interval = 3000; //Led ON time

the LED

last time LED was

const long interval_comm = 15000; //delay between 1st and 2nd transmission
const long interval_init_comm = 5000; //initial communciation delay
int state = 0; //state 1 — send request; state 2 — receive data; state 3 —

send request; state 4 — receive data
char req_confirm[3];

char datainl[32];
char datain2[32];
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46| int 1 = 0;

48| void setup () {

50 led.begin(16, 2); //(columns, rows)
52| pinMode (Bl_pin, INPUT);

53 pinMode (B2_pin, INPUT);

54 pinMode (B3_pin, INPUT);

56 pinMode (LED_Green_pin, OUTPUT);

57  pinMode (LED_Yellow_pin, OUIPUT);

58 pinMode (LED_Red_pin, OUTPUT);

60| Wire.begin () ;
61 Serial .begin(9600);

63| Timerl.initialize (1000); //1 ms
64| Timerl.attachInterrupt(time_interrupt);

66 led.clear ();

70| void time_interrupt () {

72 currentMillis = millis ();

73

74 if (currentMillis — previous_red_Millis >= interval) ({

75 previous_red_Millis = currentMillis; //save the last time

76 if (led_red_state == 1) { //Turn the Led Off

77 digitalWrite (LED_Red_pin ,LOW) ;

78 led_red_state = 0;

79 }

80 }

81

82 if (currentMillis — previous_green_Millis >= interval) {

83 previous_green_Millis = currentMillis; //save the last time
84 if (led_green_state == 1) { //Turn the Led Off

85 digitalWrite (LED_Green_pin ,LOW) ;

86 led_green_state = 0;

87 }

88 }

89

90 if (currentMillis - previous_comm_Millis >= interval_comm) {
91 previous_comm_Millis = currentMillis; //save the last time
92 if (state == 5) { //send next data request

93 state = 3;

94 }
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J
if (currentMillis - previous_init_comm_Millis >= interval_init_comm) {
previous_init_comm_Millis = currentMillis; //save the last time
if (state == 0) { //start all again
state = 1;
}
J
J
void loop () {
if (state == 1 || state == 3){
for (i = 0; i <= strlen(req_confirm); i++)

req_confirm[i]=0;

Wire.beginTransmission (8); // transmit to device #8

if (state == 1)
Wire. write ("NeedData") ;
if (state == 3)

Wire. write ("MoreData" ) ;

()

Wire.endTransmission // stop transmitting

if (state == 1)

Serial . println ("Arduino Request 1: NeedData");
if (state == 3)

Serial . println ("Arduino Request 2: MoreData");

Wire.requestFrom (8, 2); // request 2 bytes from slave device #8

i = 0;

while (Wire.available()) { // slave may send less than requested
char ¢ = Wire.read(); // receive a byte as character
req_confirm[i] = c;
1++;

if (req_confirm[0]=="0" && req_confirm[1l]=="k") {
digitalWrite (LED_Red_pin, HIGH);
led_red_state 1;

previous_red_Millis

currentMillis ;
Serial.print ("PSoC Answer: ");
Serial . print(req_confirm);

Serial.println("");

}

if (state == 1)
state = 2;

if (state == 3)
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state = 4;

if (state == || state == 4){

for(i = 0; i <= strlen(datainl); i++)
datainl[i]=0;

for(i = 0; i <= strlen(datain2); i++)
datain2[i]=0;

Wire.requestFrom (8, 32); // request 32 bytes from slave device #8
i = 0;

while (Wire.available()) { // slave may send less than requested

char ¢ = Wire.read(); // receive a byte as character
if (state == 2)
datainl[i] = ¢;
if (state == 4)
datain2[i] = ¢;
i++;
}
if (datainl1[0] == '#’ || datain2[0] == "#’){
digitalWrite (LED_Green_pin, HIGH);
led_green_state = 1;
previous_green_Millis = currentMillis;

Serial . print("Data Received from PSoC: ");

if (state == 2){
Serial . print(datainl);
state = 5;

}

if (state == 4){
Serial.print(datain2);

state = 0;
previous_init_comm_Millis = currentMillis;
}
Serial . println("");
}
led.setCursor (0, 0);
if (state == 2){
led. print("Data 1 Received");
}
if (state == 4){
led. print("Data 2 Received");
}

Wire.beginTransmission(8); // transmit to device #8
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Wire. write ("ok");

Wire.endTransmission (); // stop

delay (200);

Listing V.1: Arduino -> PSoC I2C Communication Test Code

V.1.2.2 PSoC

/*

* PSoC
+ 12C Communication TEST - Arduino — PSoC

+ Created : 19/01/2018
+ Modified: 23/02/2019

+ Version: 1.9

*
*/
#include "project.h"
#include "stdio.h"
#include "stdlib.h"
#include "string.h"

void data_collector ();
CY_ISR(MY_ISR) ;

void sendData () ;

/+ Set the write buffer length to be 32 bites or 4 bytes x/

#define RD_BUFFER_SIZE (32u)
uintl6 ms_count = 0;
uintl6 ms_count2 = 0;
uintl6 ms_count3 = 0;
uintl6 ms_count4 = 0;

uintl6 sensorl = Ou; //’u’ to signify that they are unsigned meaning strictly
positive integers.

uintl6 sensor2 = Ou;

uintl6 sensor3 Ou;
uintl6 sensor4 = Ou;

float sensor5 = 3.85;

char sample_data [RD_BUFFER_SIZE |;
char sample_data2 [RD_BUFFER_SIZE |;
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char str[32];
char str2(32];

int red = 0;
int green = 0;

int nsends = 0;
int state = 1; //state 1 — receive request 1; state 2 — send datal; state 3 —
request 2; state 4 — send data2; state 5 — transmission confirmation

int req = 0; //request

int sendconfirm = 0;

char confirm[] = "ok";

int main(void)
{
TimerO_Start(); // Configure and enable timer
isr1_StartEx (MY_ISR); // Point to MY_ISR to carry out the interrupt sub-
routine
CyGlobalIntEnable; /+ Enable global interrupts. =/

for (uint i = 0; i <= RD_BUFFER_SIZE; i++)
str[i] = 0;

for (uint i = 0; i <= RD_BUFFER_SIZE; i++)
str2[i] 0;

char i2c_receive[9];
/+ Set up slave write data buffer =/
I2C0_SlavelnitWriteBuf ((uint8 x) i2c_receive, 9);

char i2c_send [RD_BUFFER_SIZE |;
/+ Set up slave read data buffer =/
12C0_SlavelnitReadBuf ((uint8 x) i2c_send , RD_BUFFER_SIZE);

I12C0_Start () ;

for (;;)
{
if (12C0_SlaveStatus () & I2CO_SSTAT_WR_CMPLT) {
[2C0_SlaveClearWriteBuf () ;
12C0_SlaveClearWriteStatus () ;

if (state == || state == 3)
{
if(i2c_receive[0]=="N’ && i2c_receive[l]=
e’ && i2c_receive[3]=="d’
&% i2c_receive[4]=="D’ && i2c_receive[5]=="a ' && i2c_receive[6]=="
t’ && i2c_receive[7]=="a’

‘e’ && i2c_receive[2]=="

192




93

V.1. PSOC AND ARDUINO COMMUNICATION

&& state == 1)

{
Led_Green_Write(lu);

ms_count2 = 0; // reset ms counter
state = 5;
req = 1;

if (i2c_receive[0]=="M" && i2c_receive[l]=="0" && i2c_receive[2]=="

r’ && i2c_receive[3]=="e’

&& i2c_receive[4]=="D’ && i2c_receive[5]=="a’  && i2c_receive[6]=="

t’ && i2c_receive[7]=="a’

&& state == 3)

{
Led_Green_Write(1lu);

ms_count2 = 0; // reset ms counter
state = 5;
req = 2;
J
}
if (state == 2 || state == 4)

{

for (uint i = 0;i<=RD_BUFFER_SIZE;i++)
i2c_send[i] = 0;

for (uint i = 0;i<=RD_BUFFER_SIZE;i++)
i2c_receive[i] = 0;

if (state == 2)
strcpy (i2c_send ,str);
if (state == 4)

strcpy (i2c_send ,str2);

while (! sendconfirm)

{
sendData () ;

if (I2C0_SlaveStatus () & I2CO_SSTAT WR_CMPLT) {
I12C0_SlaveClearWriteBuf () ;
[2C0_SlaveClearWriteStatus () ;

if(i2c_receive[0]=="0" && i2c_receive[l]=="k"){

sendconfirm=1;
Led_Red_Write(1u);
ms_count = 0; // reset ms counter
if (state == 2)
state = 3;
if (state == 4)
state = 1;
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132 }

133 }

134 }

135 sendconfirm =0;

136 }

137

138 if (state == 5)

139 {

140 for (uint i = 0;i<=RD_BUFFER_SIZE;i++)
141 i2c_send[i] = 0;

142

143 strcpy (i2c_send , confirm);
144

145 nsends=0;

146 ms_count4=0;

147 while (! nsends)

148 sendData () ;

149

150 Led_Red_Write(1u);

151 ms_count = 0; // reset ms counter
152 if (req==1)

153 state = 2;

154 if (req==2)

155 state = 4;

156 }

157 }

158] }

160| void data_collector ()
161 {

162 sensorl += 2;

163 sensor2 += 5;

164 sensor3 = 576;

165 sensor4d += 3;

166 sensor5 += 0.5;

167

168 /+ Float to string:

169 — set Heap Size (bytes) to 0x200 in System

170 — Project —> Build Settings —> ARM GCC —> Linker:

171 Set use newlib—nano Float Formatting to True

172 */

173 snprintf(str, sizeof(str), "#%d,%d,%d#", sensorl, sensor2, sensor3);
174 snprintf(str2, sizeof(str2), "#%d,%.2f#", sensor4, sensor5);
175| }

176| void sendData ()

1771 {

178 /+ Check if the slave buffer has been read x/
179 if (I2C0_SlaveStatus () & I2C0_SSTAT_RD_CMPLT)
180 {

181 12C0_SlaveClearReadStatus () ;
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J

[2C0_SlaveClearReadBuf () ;

CY_ISR(MY_ISR)

{

/x

ms_count++;
if (ms_count == 3000) // 3 second
Led_Red_Write(Ou); // Toggle LED

ms_count2++;
if (ms_count2 == 3000) // 3 second
Led_Green_Write(Ou); // Toggle LED

ms_count3++;
if (ms_count3 == 1000) // 1 second

{

data_collector ();
ms_count3 = 0;

ms_count4++;
if (ms_count4 == 500) // 0.5 second
nsends = 1;

[] END OF FILE «/

Listing V.2: PSoC -> Arduino I2C Communication Test Code
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V.2 Voltage Step-up and Battery Charger

V.2.1 Schematic
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Figure V.2: Voltage step-up and battery charger test schematic.
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ANNEX VI.

PAYLOAD BOARD TESTS - TECHNICAL FILES

VI.1 Schematic
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Figure VI.1: CTSAT-1 <-> Arduino test schematic.
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