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Abstract

In this thesis an Optimization Platform capable of guaranteeing a proper sizing for

a Low Noise Amplifier, is proposed. The developed platform, which runs in a python

client, contains a Genetic Algorithm capable of managing the circuits’ components di-

mensions, to fulfill the necessary requirements imposed by high- frequency architectures.

To improve the results, the Cadence simulator is used, guaranteeing a more accurate

simulation process when compared to traditional sizing methods.

The Optimization Platform contains an interface, which provides different optimiza-

tion methods, each one with different approaches to provide the circuits’ optimal sizing.

Keywords: CMOS Wideband LNA, Noise and Distortion cancelling, Evolutionary Algo-

rithms, Genetic Algorithm, Optimization Platform for electronic circuits.
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Resumo

Nesta tese será proposta uma plataforma de otimização, capaz de garantir um dimen-

sionamento aceitável para um Amplificador de Baixo Ruído. A plataforma desenvolvida,

desenvolvida num ambiente Python, contém um Algoritmo Genético capaz de gerir as

dimensões dos componentes dos circuitos implementados, por forma a garantir os requi-

sitos associados às arquiteturas de alta-frequência.

Para que seja possível obterem-se resultados mais precisos, quando comparados com

métodos de otimização tradicionais, é utilizado o otimizador do Cadence no processo de

simulação.

A plataforma de otimização contém uma interface, que dispõe ao utilizador diferentes

métodos de otimização, por forma a garantir um dimensionamento óptimo dos compo-

nentes dos circuitos.

Keywords: CMOS Wideband LNA, Noise and Distortion cancelling, Evolutionary Algo-

rithms, Genetic Algorithm, Optimization Platform for electronic circuits.
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1
Introduction

1.1 Background and Motivation

The technology and electronics devices, in our days, play a huge role in the society. Com-

panies are starting to develop and improve their own systems by reducing their costs,

power consumption and spent time, in order to achieve the society’s needs.

Since circuits have improved their complexity, the search for other methods of opti-

mization have started to become more and more present with the improvement of the

technology. Traditional methods, require bigger costs and time to the companies when

compared with new unconventional methods.

Low Noise Amplifiers play a huge role in the electronic systems and are widely used

in receivers architectures capable of amplifying weak signals, which ensure the society’s

global communications. This kind of amplifiers need to be low power, which is becoming

a major issue when more components are added to their architectures. Although con-

sidered simple circuits, their sizing need to address multiple variables, where computer

based algorithms can be a proper solution to achieve the optimal circuit sizing.

Evolutionary computing has also been an area of huge improvement due to the de-

velopment of computers and algorithms that are able to solve more complex real world

problems. Having this powerful tool, the industries are starting to apply it to their own

systems.

Considering the issues regarding the sizing of Low Noise Amplifiers due to the com-

plexity of the imposed requirements, when compared with low frequency circuits, results

in a more complex optimization process, which can be applied to computing methods

capable of providing a more viable and faster solution when compared to traditional

sizing methods.
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1.2 Proposed Solution

The proposed solution stands on an optimization platform capable of replacing the tra-

ditional optimization methods. The developed platform, uses a Genetic Algorithm to

generate the LNA components size, which will be further analyzed using the Cadence

Spectre tools to provide an accurate result for the rating of the LNA sizing. The com-

munication between the Genetic Algorithm and the Cadence Software is ensured by the

Sockets communication for Cadence [14].

The used topology to optimize is a well known wideband LNA with noise and distor-

tion cancellation [1] which is a simple architecture and provides good performance. To

boost the LNA performance some changes are applied to the architecture, replacing the

passive loads for active loads [10], increasing the search space for the GA to operate.

The optimization platform, provides a menu with the implemented optimization

methods, where each one shows the taken approaches to obtain a viable sizing for the

circuit.

1.3 Thesis Organization

This thesis is organized in five chapters, being this one the introduction.

Chapter 2 contains the fundamental concepts,containing the information related to

evolutionary algorithms and low noise amplifiers.

Chapter 3 contains the state-of-the-art alternative optimization methods applied to

LNAs. Chapter 4 presents the proposed optimization platform in order to fulfill the

circuits specifications.

Chapter 5 contains the LNAs architectures which were implemented for the optimiza-

tion purpose and their respective implementation method.

Chapter 6 presents the obtained results from each method related to the developed

optimization platform.

Chapter 7 contains a discussion of the results and the taken conclusions as well as the

suggested future work.
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2
Fundamental Concepts

This chapter will expose, in a first topic,a brief introduction to evolutionary algorithms.

The following topic presents the fundamental concepts of the low noise amplifiers, to

allow a better comprehension of the developed work.

2.1 Evolutionary Algorithms

Evolutionary computing is an area that is in great development, due to the massive in-

crease of computational systems and to the fact that, this systems, allow the development

of algorithms that are capable of solving difficult problems, yet to be solved by "classi-

cal"techniques. Evolutionary algorithms are methods based on basic principles of genetic

and evolutionary theory [6].

The algorithms work with a group of possible solutions, called population, which try

to survive to natural selection processes. The evolution is characterized by the introduc-

tion of random variations through the process of reproduction in the population. The

reproduction process allows the transmission of genetic heritage which will compose the

new generation of individuals.

Having in consideration Darwin’s evolution theory, it is possible to propose an evo-

lutionary algorithm pattern which is presented in Fig.2.1 and in Algorithm.1. The al-

gorithm starts from a population of individuals, who are candidates to the problem’s

solution. Each individual as a structure of data which defines him. Those individuals

reproduce themselves, generating new individuals who may obtain some of their parents

characteristics. Through these processes genetic mutations may occur, conferring genetic

variation to the population. Natural selection is applied through a function, called fitness

function, which evaluates the individual and gives him a score according to his fitness.

The individuals with the higher fitness tend to survive, and those with the lower fitness

3
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Algorithm 1 General scheme of an evolutionary algorithm in pseudocode adopted from
[6].

INITIALIZE population with random candidate solutions
EVALUATE each candidate
while TERMINATION CONDITION do

SELECT parents
RECOMBINE pairs of parents
MUTATE new candidates
EVALUATE new candidates
SELECT individuals for the next generation

end while

tend to be eliminated from the population. At the end of all these processes it is said

that a generation has occur. The algorithm only stops if a previously fixed number of

generations has been reached or when the reached solution is satisfying.

Figure 2.1: Outline of an Evolutionary Algorithm adapted from [17].

2.1.1 Components of Evolutionary Algorithms

To define a particular EA, there are a components that need to be specified. The most

important components are [3]:

• representation

• evaluation function

4



2.1. EVOLUTIONARY ALGORITHMS

• population

• parent selection mechanism

• recombination and mutation

It is necessary to specify each of the components in order to generate a complete and

runnable algorithm.

2.1.1.1 Representation

To create an algorithm it is essential to create a link between the real world and the

computational world. Therefore, the first step to have in consideration is to find a way to

connect the problem context to the problem-solving space where evolution takes place.

From the point of view of the automated problem-solving it is necessary to decide how

possible solutions should be specified and stored in a way that can be manipulated by a

computer. The objects that form possible solutions within the original problem context

are referred to as phenotypes, while their enconding are called genotypes. This step is

called representation since it intends to specify a bridge trough the phenotypes onto a

set of genotypes that can represent them. For example, if a binary code representation is

chosen the phenotype could have the value 18 and its genotype would be seen as 10010.

The inadequate definition of the representation may lead to solutions that could not

be the most suitable to the problem context, which is why this is one of the most critical

steps in the implementation of the evolutionary algorithm.

2.1.1.2 Evaluation function

The evaluation function is responsible for setting a measure of quality to the genotype.

Normally it is set by a quality function in the phenotype space and than converted to

genotype space. Following the previously used example, if the goal is to find and integer

x that maximises x2, then the fitness of the genotype 10010 could be defined by decoding

its corresponding phenotype,10010→ 18, and then applying 182 = 324.

The evaluation function is usually called fitness function in EA.

2.1.1.3 Population

The objective of the population is to hold the possible solutions. In other words the

population is characterized as a group of genotypes.

In almost every EA applications the population size is constant during the evolution-

ary search and the selection operators work at the population level. For instance, the best

individual of a population is selected to create the next generation. Another possibility is

to replace the worst individual.
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2.1.1.4 Parent selection

The role of parent selection is to distinguish individuals based on their quality, to allow

the better individuals to become parents increasing the quality of the next generation.

In EA, parent selection is typically probabilistic. Therefore, individuals with a higher

fitness are more likely to be selected to become parents than those who have less fitness.

It is important to have in consideration that the less adequate individuals are given a

smaller probability, but they can also be selected, which guarantees that the evolutionary

search doesn’t get stuck in a local solution.

2.1.1.5 Recombination and mutation

Both processes, recombination and mutation, are responsible for generating new individ-

uals from old ones.

Mutation This process is usually the name given to the genetic operators that allows the

creation of new individuals from only one parent. This process is stochastic and depends

on the previously chosen representation process and on the evolutionary strategy chosen

by the designer.

The simplest way to satisfy this process is to allow the mutation operator to jump

everywhere, allowing any allele to be mutated into any other, with a nonzero probability.

However, many researchers consider this process irrelevant and EA implementations

don’t often possess this property.

Recombination This process is associated to a binary variation operator. This process

merges the information from two parents genotype into one or two new child genotypes.

Like mutation, recombination is a stochastic operator: the choices of what parts of

each parent are combined and how this is done depends on random variables. Therefore,

this operator is usually dependent on the representation and on the chosen evolutionary

architecture.

2.1.2 Genetic Algorithms

Genetic algorithms were developed by Holland in the decade of 1970 at the University of

Michigan. Holland studied the natural evolution considering it a simple and powerful

process that could be adapted to obtain computational solutions for optimization prob-

lems. GAs are commonly known for generating satisfying solutions without being hardly

dependent on the initial conditions [5].

The biggest focus of genetic algorithms is the creation of new individuals through

recombination operators, combining them with mutation operators which are normally

incompatible. GAs do their search for the optimum solution, considering a population

of candidates, using transition rules based on probabilistic processes. In Table.2.1 are

represented the characteristics of a classic genetic algorithm.

6



2.1. EVOLUTIONARY ALGORITHMS

Table 2.1: Genetic Algorithm characteristics adopted from [6].

Representation: Bit strings
Recombination: 1 Point crossover
Mutation: Bit flip
Parent Selection: Fitness proportional- Roulette Wheel

Despite all the features in GAs there are some issues in its implementation. The use

of binary strings may lead to non-optimum solutions if applied to a great dimension of

numeric problems which require great numeric precision. Therefore, binary strings may

be replaced by a different representation, like fluctuating point codification. Some issues

may be found during the selection and the reproduction, which may lead to the loss of the

best individual of the population, and so other strategies can be used in order to achieve

better results.

2.1.2.1 Genetic Algorithm parameters

The use of genetic algorithms in optimization problems has been widely applied. How-

ever, there are some parameters that may alter the search for the optimum solution, which

is why the need to be adapted to optimization problem in matter.

• Population Size- the population size affects directly the efficiency of the algorithm.

A small population may lead to a small search space, which may corrupt the solution.

If an elevated number of individuals in a population is applied, the algorithm

may take a lot of time and resources, to achieve the optimum solution. Therefore,

the values used for the size of the population are normally between 20 and 200

individuals, having in consideration the problem’s complexity.

• Number of generations- the number of generations is related to the size of the

population and with the available computational time for the algorithm’s execution.

There are no standard values for this parameter, but is highly recommended to have

high numbers of generations.

• Crossover- GAs may suffer from premature convergence when the crossover tax is

incorrectly chosen. If the crossover tax is too high the individuals may have great

skills an may lead to a non-optimum solution. If the crossover tax is too small the

algorithm may be too slow. Typically the chosen value is between 70% and 85%.

• Mutation- The used mutation tax is usually between 1% and 5%. This reduced tax

serves to prevent that the algorithms stays locked in a local solution, and may find

the optimum solution much faster. If a high mutation tax is selected the algorithms

becomes almost random and turns the search for the solution really hard.
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2.1.2.2 Additional operators

In GAs there are some additional operators that are added to achieve an higher perfor-

mance of the algorithm. The most commonly used operators are:

• Elitism- This operator consists in replicating the best individual of a generation,

keeping it unaltered through the new generation. With this the designers intend to

don’t lose the best possible solution through the reproduction process.

• Re-initialization- Initializing the population periodically is an operator that avoids

the algorithm’s stagnation. After a random number of generations the population

converges to a solution that may not be the optimum. Therefore, with this operator,

one of the individuals will the taken to another search space which may lead to a

better solution.

• Niching- There might be a region of the search space that is undesired by the de-

signer. Therefore, a function is added to the algorithms which intends to avoid that

region and makes the population to stay away from it.

2.1.3 Particle Swarm Optimization

Particle Swarm Optimization is a stochastic optimization method developed by Dr.Eberhart

and Dr.Kennedy [5]. This method is based on the social behavior of animals like bees,

fishes and birds, where each decision is taken always from the leader.

The PSO method is related to evolutionary algorithms, since there is an initial popu-

lation and each element of the population is evaluated at each iteration of the algorithm,

in order to achieve the optimal solution of the problem. Despite the similarities, the

PSO algorithm doesn’t rely on evolutionary operators such as crossover, or mutation. The

possible solution candidates approach to the optimal solution by moving themselves in

the search space, following the candidates with the higher rate.

This method has set a good position in solving optimization problems in the engineer-

ing area, due to its easy implementation and good results.

2.1.3.1 Algorithm Description

In the PSO each member of the population is called a "particle". Each particle represents

a solution in the search space for the problem’s solution. All particles have associated to

it a fitness score and a velocity which define the movement of the particle in the search

space.

The algorithm starts with a random group of particles, creating a population, where

each particle is then evaluated in the search for the optimal solution. At each iteration of

the algorithm, each of the particles is updated in two values. The first one is given by the

best solution found at the moment by the particle, which is defined as pbest. The second
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value is given by the best value of fitness obtained among the particles, gbest. After both

values are defined, both speed and direction are updated in the particle according to:

vi+1 = v + c1 × rand()× (pbest − pf itness) + c2 × rand()× (gbest − pf itness) (2.1)

pf itnessi+1
= pf itness + vi+1 (2.2)

where v defines the particle’s velocity, ci are learning factors, and rand() a random number

generator between zero and one.

Algorithm 2 PSO pseudo-code representation adapted from [5].

for each particle do
Initialize particle randomly

end for
while Stop Criteria is not achieved do

for each particle do
Calculate fitness
if particle fitness> pbest then
pbest=fitness

end if
end for
Choose the particle with the highest fitness value - gbest
for each particle do

Update particle velocity
Update particle new position

end for
end while

In Algorithm.2 is represented the algorithm’s pseudo-code. The velocity in each

particle is limited to a certain value which is defined by the user. If the sums of the

accelerations results in a higher value than expected the particle’s velocity is then settled

with the defined value given by the user.

2.1.3.2 PSO Parameters

In the development of the algorithm there are a few parameters to have in consideration:

Number of particles Typically the used number of particles stays between twenty and

forty. However the complexity of the problem may alter the value of used particles, for

example, a simple problem may only need ten particles, but a more complex problem

may need around two-hundred.

Particles’ Dimension The dimension of the particles is settled by the complexity of the

problem and its representation.
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Maximum Velocity Represents the maximum alteration a particle may suffer during an

iteration. If a high value is chosen, the algorithm tends to converge fast but may become

highly unstable and never converge to the optimal solution. A small value leads to a low

speed algorithm, which consumes a lot of time.

Learning factors The learning factors, c1 and c2, have typically values between zero

and four, ensuring good results.

2.2 Low Noise Amplifiers

A low noise amplifier is a block responsible for amplifying the microwave signal without

increasing its noise. This kind of amplifiers require a matching impedance, a low noise

factor and a high gain specifications in order to fulfill the proposed requirements.

2.2.1 Impedance Matching

In high frequency circuits, the wavelengths are the same order of magnitude as the phys-

ical dimensions of the circuit, therefore, lumped circuit analysis is not appropriate since

it assumes instantaneous signal propagation. This way, circuit paths behave like trans-

mission lines.

A segment of a transmission line can be represented by an equivalent lumped circuit,

as shown in Fig.2.2, where R, L, C and G are frequency-dependent [13]. The resistance

R represents the finite conductivity of the conductors, the inductance L is related to

the self-inductance of the wire and the mutual inductance between the conductors, the

capacitance C defines the proximity of the the conductors and the conductance G is the

electric loss between the conductors.

Figure 2.2: Lumped circuit equivalent of a transmission line adopted from [10].

Given that the system can be represented as an equivalent lumped circuit, the Kirch-

hoff’s voltage and current laws can be applied, which lead to

v(z, t)−R∆zi(z, t)−L∆z∂i(z, t)
∂t

− v(z+∆z, t) = 0 (2.3)

i(z, t)−G∆zv(z+∆z, t)−C∆z (z+∆z, t)
∂t

− i(z+∆z, t) = 0 (2.4)
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Dividing both equations by ∆z and taking the limit to ∆z→ 0, results in

∂v(z, t)
∂z

= −Ri(z, t)−L∂i(z, t)
∂t

(2.5)

∂i(z, t)
∂z

= −Gv(z, t)−C∂v(z, t)
∂t

(2.6)

These equations can be simplified if sinusoidal steady-state conditions are considered,

which lead to
dV (z)
dz

= −(R+ jωL)I(z) (2.7)

dI(z)
dz

= −(G+ jωC)V (z) (2.8)

Deriving both terms of Eq.2.7 and Eq.2.8 results in

d2V (z)
dz2 −γ2V (z) = 0 (2.9)

d2I(z)
dz2 −γ

2I(z) = 0 (2.10)

where,

γ =
√

(R+ jωL)(G+ jωC) (2.11)

defines the propagation constant, which is dependent on frequency. Solving both previous

differential equations it is possible to obtain the voltage and current at any specific point

of the transmission line which are presented in the following equations

V (z) = V +
0 e
−γz +V −0 e

γz (2.12)

I(z) = I+
0 e
−γz + I−0 e

γz (2.13)

where the wave propagation in the +z and -z is given by the terms e−γz and eγz respectively.

Deriving Eq.2.7 and applying to the voltage of Eq.2.12 the current on line is given by

I(z) =
γ

R+ jωL
(V +

0 e
−γz −V −0 e

γz) (2.14)

Therefore

I+
0 = V +

0
γ

R+ jωL
(2.15)

I−0 = V −0
γ

R+ jωL
(2.16)

Transmission line characteristic impedance is given by:

Z0 =
R+ jωL
γ

(2.17)

If the line is terminated by a load ZL at z = 0 and the assuming that the source of the wave

is located at z < 0, it is verified that

ZL =
V +

0 +V −0
V +

0 −V
−
0
Z0 (2.18)
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where V +
0 and V −0 are the amplitude voltages of the incident and reflect waves, respec-

tively.

Solving the previous equation in order to V −0 /V
+
0 , shows that the voltage reflection

coefficient Γ , which represents the amplitude of the reflected voltage wave normalized to

the amplitude of the incident voltage wave, is given by:

Γ =
ZL −Z0

ZL +Z0
(2.19)

To achieve the maximum power transfer to the load, the reflection should be non-existent,Γ =

0, which only occurs when ZL = Z0. If this happens, the load is matched to the line’s char-

acteristic impedance.

In RF, the characteristic impedance of an antenna is 50Ω, so that the receiver may

have a matching input impedance.

2.2.2 Scattering Parameters

The usual system characterization used in low frequencies, through open and short-circuit

measurements, is not appropriate since this approach usually involves the the magnitude

and phase of traveling or standing waves [12]. Therefore, circuit measurements, at high-

frequencies, are made using the average power instead of the traditional open and short-

circuit measurements. The scattering parameters, or S-parameters, relate the voltages of

the incident and reflected waves,at n-ports, through the scattering matrix,
V −1
...

V −n

 =


S11 ... S1n

... ...

Sn1 ... Snn



V +

1

...

V +
n

 (2.20)

where Vi is the voltage amplitude on port i and the signal, + and -, are related to the

incident and reflected waves respectively.

Specific S-parameter can be determined through the equation:

Sij =
V −i
V +
j

∣∣∣∣∣∣
v+
k ,0,k,j

(2.21)

which implies that an S-parameter Sij can be determined as the ratio between the reflected

wave voltage, at the port i and the incident wave at the port j, when the other ports are

terminated with a matched load so that reflections are avoided. These parameters can be

measured by using a network analyzer.

If a two-port network, Fig.2.3, is considered, the S-parameters can be designated [13]:

• S11- Input reflection coefficient

• S12- Reverse voltage gain

• S21- Forward voltage gain

12



2.2. LOW NOISE AMPLIFIERS

Figure 2.3: Incident and reflected waves in a two-port network adapted from [10].

• S22- Output reflection coefficient

The S-parameters are very important in the LNA design due to the need of input

matching, which is associated to the return loss that indicates the fraction of incident

power that is reflected back to the source. The input return loss is given by

RL = −20log(|S11|) (2.22)

where the designers aim to have at least 10dB return loss, which implies a maximum of

10% of power that is reflected back to the source.

2.2.3 Gain

Signals at the receiver’s input are usually very weak and need to be amplified in order to be

processed. Therefore, the gain is a very important technical specification in an amplifier’s

design because it expresses the capability of the circuit to increase the amplitude of the

signal, ideally without increasing any distortion and noise.

There are, commonly, three types of gain [13]:

• Voltage gain

• Current gain

• Power gain

where

Av =
vout
vin

(2.23)

defines the voltage gain,

Ai =
iout
iin

(2.24)

defines the current gain, and

Ap =
pout
pin

(2.25)

defines the power gain. Due to simplicity the gain is often expressed in dB where voltage

and current gains are expressed as

Av,i
∣∣∣
dB

= 20log |Av,i | (2.26)

and power gain is expressed as

Ap
∣∣∣
dB

= 10log |Ap| (2.27)
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2.2.4 Noise

In electronic circuits, noise is present as a variable that cannot be predicted at any time

which are caused by external interference or by physical phenomena due to the nature

of the materials. Having in mind that the presence of noise in circuits is inevitable, it is

important to analyze its influence and develop methods to minimize its effect.

2.2.4.1 Noise Figure

The noise factor, F, or the noise figure, NF,when expressed in dB, are both the most

common factor to measure the noise generated by a circuit.

Considering a circuit characterized by a 2-port network, the noise factor is defined as

the ratio between the total noise power at the 2-port output and the 2-port output noise

power due to the input noise sources only and is given by [8]:

F =
T otaloutputnoisepower

Outputnoiseduetothesource
(2.28)

and the noise figure can be expressed as:

NF = 10logF (2.29)

2.2.5 Linearity

Characterization of linearity can be done by the 1dB compression point and by the 3rd-

order intermodulation product, and both parameters appear in the system’s specifications.

A linear system generates an output proportional to the input signal, however, most

devices have a non-linear characteristic, and if they are memory-less and time invariant,

the input-output relationship may be described by a Taylor series

y =
n∑
i=0

aix
i (2.30)

The type of linearity is directly related to the terms used, and its representation

becomes more accurate with the increase of used terms.

2.2.5.1 Harmonics

Harmonics are generated by nonlinear devices. A 3rd−order polynomial is usually a good

approximation, since it allows simplifications to be done in the calculations.

Assuming a sinusoidal input signal where

vi(t) = Vmcos(ωf t) (2.31)

the output results in

y(t) = a0 + a1Vmcos(ωf t) + a2V
2
mcos

2(ωf t) + a3V
3
mcos

3(ωf t) (2.32)
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or

y(t) = a0 +
a2V

2
m

2
+
(
a1Vm +

3a3V
3
m

4

)
cos(ωf t) +

a2V
2
m

2
cos(2ωf t) +

a3V
3
m

4
cos(3ωf t) (2.33)

where

• a0 + a2V
2
m

2 ⇒ DC component

•
(
a1Vm + 3a3V

3
m

4

)
cos(ωf t)⇒ 1st Harmonic

• a2V
2
m

2 cos(2ωf t)⇒ 2nd Harmonic

• a3V
3
m

4 cos(3ωf t)⇒ 3rd Harmonic

An n-order nonlinearity will generate n harmonics, each one with a frequency that is

multiple of the fundamental frequency,ωf .

2.2.5.2 Intermodulation product

Assuming that,instead of applying at the input a single sinusoidal signal, two signals with

two different frequencies are applied, the input signal can be described as

vi(t) = V1cos(ω1t) +V2cos(ω2t) (2.34)

the output intermodulation product results in

y(t) = a0 + a1(V1cos(ω1t)V2cos(ω2t))+

a2

[
V 2

1
2

(1 + cos(2ω1t)) +
V 2

2
2

(1 + cos(2ω2t)) +V1V2(cos((ω1 +ω2)t) + cos((ω1 −ω2)t)
]
+

a3


(3

4V
3
1 + 3

2V1V
2
2 )cos(ω1t) + (3

4V
3
2 + 3

2V2V
2
1 )cos(ω2t)+

3
4V

2
1 V2(cos((2ω1 +ω2)t) + cos((2ω1 −ω2)t))+

3
4V

2
2 V1(cos((2ω2 +ω1)t) + cos((2ω2 −ω1)t))+

3
4 (V 3

1 cos(3ω1t) +V 3
2 cos(3ω2t))

 (2.35)

and the appearance of the different frequencies are presented in Fig.2.4 for the partic-

ular case of a device with a 3rdorder non-linearity.

2.2.5.3 1dB Compression Point

The 1 dB compression point is a linearity measure of a circuit which is defined as the out-

put signal power that corresponds to 1dB difference from the nominal output of the ideal

(linear) circuit and it is represented in Fig.2.5. Past this point, the signal consequently

starts to degrade.
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Figure 2.4: Frequency spectrum of a 3rdorder nonlinear device adapted from [10].

Figure 2.5: 1dB Compression Point adapted from [10].

2.2.5.4 Third-order Intercept Point

The third-order intercept point, IP3, is defined as the interception point between the

linear curves of the power output of the fundamental frequency and the third-order

intermodulation product, IM3. The specification of the IP3 is usually input-referred,

IIP3, but it can also be output-referred, OIP3, as it is shown in Fig.2.6.
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Figure 2.6: Definition of the IP3 adapted from [10].
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3
Related Work

This chapter is devoted to present a review of state-of-the-art optimization processes and

different approaches to wideband LNAs.

Considering the development of the processing units that are present in our days,

some new approaches related to the optimization of circuits are being presented. Choos-

ing a new approach to replace a traditional optimization process is a huge issue, when

considering the multiple requirements related to high-frequency architectures. Therefore,

simple and easy implementation alternative methods are chosen to allow the developers

to understand and be able to make adjustments to the developed optimization software.

3.1 LNA Parametric Simulation-based Optimization

In [4] an alternative optimization method is proposed where the design space was ex-

plored with parametric simulations in spectreRF. This method was set to optimize the

circuit presented in Fig.3.1, where all the variables are represented through a vector,

−→x = [WM1n,WM1p,WM2,WM3,RF ,RB,VC , IFB] (3.1)

where WM1n, WM1p, WM2 and WM3 represent the widths of the transistors. RF and RB
represent the feedback and bias resistors. VC represents the control voltage from the

current-reuse stage and IFB is the bias current from the feedback stage. The design space

was limited by,

1µm 6WMi 6 300µm (3.2)

0 < VC 6 1.5V (3.3)

0 < IFB 6 10mA (3.4)
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the length of the transistors was set to 130µm which is the smallest dimension value from

the used technology. The frequencies with interest were also put in a vector,

−→
f = [fstd1, fstd1, ..., fstdn] (3.5)

where fstdi represents the work frequency for each optimization goal.

Figure 3.1: Proposed LNA Architecture from [4].

A brief analyze to the proposed circuit concludes that the gain is given by,

AV ≈ −Gm1Z2 (3.6)

where,

Z2 =
1
gds1
|| 1
s(CL +Cgd2 +Cdb1)

(3.7)

the bandwidth is represented by,

BW ≈ 1
2πRS(Cgs1 +Cgd1 + (1 + |AV |))

(3.8)

if ideal conditions and low frequency are considered, the input impedance is,

ZinLF =
1

gm2gm1ro1
(3.9)

The circuits’ noise can be considered, when |AV | >> 1, by the equation,

F ≈ 1 +
γ1Ngm1N

G2
m1RS

+
γ1P gm1P

G2
m1RS

+
RF
RSA

2
V

+
γ2

|AV |

[
1− RF

RS |AV |

]
+

+γ3gm3RS

[
1− RF

RS |AV |

]2

+
RS
RB

[
1− RF

RS |AV |

]2

(3.10)
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the linearity can be expressed using the equation,

IIP 3 =

√
4
3

A1(jω1)
A3(−jω1, jω2, jω2)

(3.11)

where Ai(s) represent the transfer functions from the Taylor series.

According to the simulation, the power consumption of the circuit decreases with

the size of the transistors, while the linearity increases with the size of the components.

Therefore, a tradeoff between WM1n and WM2 needs to be found in order to fulfill the

circuits’ specifications. To get the best set of results a figure of merit, FOM, is considered

FOM =
Gmax.IIP 3max.BW

(Fmin − 1).PDC
(3.12)

where the Gmax represents the maximum voltage gain expressed in V/V, IIP 3max is the

maximum input-referred third-order intercept point expressed in mW, BW is the is the

-3 dB bandwidth in GHz, Fmin expresses the minimum noise factor in linear units and

PDC goes for the the static power consumption of the LNA in mW.

Considering the complexity in finding a possible solution to the circuits’ parameters,

an algorithm is proposed in order to find the maximum FOM value. The algorithm is

represented in Fig.3.2.

Figure 3.2: Proposed Algorithm from [4].

The presented algorithm calculates the figure of merit from the simulation results

obtained from the parametric simulations in spectreRF. If the circuits specifications are

fulfilled, the FOM is stored and the next set of simulation results are select. The process is

repeated until all the simulations are analyzed. Finally the highest rated FOM is selected,

which may guarantee the best set of results. This algorithm was implemented because

the chosen FOM is more sensible to PDC and IIP3 than to G, NF and BW. Therefore,

some regions of values which contain high rated FOM don’t fulfill the specifications. To

guarantee the proper results from the algorithm, there was set a FOMspec which contain

the expected results which are,

−−−→xopt = [150µm,150µm,25µm,10µm,300Ω,14kΩ,1.3V ,650mV ] (3.13)
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By the provided information it isn’t possible to settle a comparison between the expected

results and the obtained ones since there were only presented the results referent to

the FOM parameters and not to the components dimension. Despite this, is possible to

conclude that the obtained results are way above average when compared to other LNA

architectures which are mentioned in the work.

3.2 LNA matching network sizing using a Genetic Algorithm

In [2] a genetic algorithm, GA, is proposed to optimize the input and output matching

of a basic LNA architecture. This architecture is composed only by a RF transistor as

represented in Fig.3.3.

Figure 3.3: Proposed LNA architecture from [2].

The input matching network, as well as the output matching network are both com-

posed by two components. The IMN is composed by an inductor, L, and a capacitor, C,

while the OMN is composed by a transmission line and a stub. Therefore, the chromo-

some’s is represented by a matrix which contains four rows and three columns. Each row

represents a component from the matching network, while the first column represents

the topology type, the second and third represent the electrical parameter for each pa-

rameter as shown in Fig.3.4. After the matching networks are represented, they are both

integrated with the RF transistor to obtain the circuits’ simulation results.

Figure 3.4: Matrix representation from [2].
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To achieve the matching requirements the function to be optimized contains the

matching conditions of the LNA, as well as the performance gain and noise figure,

F =
N∑
i=1

wi,S11
fi,S11

+wi,S22
fi,S22

+wi,S21
fi,S21

+wi,NFfi,NF (3.14)

where fi,α represents the difference between the obtained and the expected results. The

wi,α represents the weight considered to each simulation result. It is possible to identify

that the two first parameters of the Eq.3.14 are responsible for the circuits’ matching

conditions, while the third and fourth parameters represent, respectively, the gain and

noise figure results.

The algorithm can be described through:

• A population is initialized composed by the chromosomes with the matching net-

work parameters;

• Each chromosomes is evaluated through the function described in Eq.3.14;

• The evolution of the population is insured by selection, crossover and mutation

processes.

It is important to mention that the crossover and mutation processes where settled with

a probability of 0.7 and 0.1, respectively. The convergency of the circuit was acquired in

about seventy iterations which are obtained after three minutes of simulation.

The simulation requirements were settled to obtain:

• 2.4GHz LNA:

– Input and output return loss < -10 dB

– Power gain > 20 dB

– Noise figure < 3 dB

– 2.2 GHz < Frequency band < 2.5 GHz

• 5.2GHz LNA:

– Input and output return loss < -10 dB

– Power gain > 20 dB

– Noise figure < 3 dB

– 5.0 GHz < Frequency band < 5.3 GHz

Both tests were done by the Agilent ADS simulator to get the circuits’ simulation results.
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3.3 LNA matching network sizing using a Particle Swarm

Optimizer

Another approach to set optimization goals is presented in [15] where a particle swarm

algorithm is proposed to establish the circuits’ design. The LNA architecture can be seen

in Fig.3.5.

Figure 3.5: Proposed LNA architecture from [15].

To increase the knowledge of the algorithm’s implementation is necessary to under-

stand the circuits relative equations which were used to guarantee the convergence of the

algorithm. The transducer power gain is given by,

GT =
|S21|2(1− |ΓS |2)(1− |ΓL|2)

|(1− S11ΓS )(1− S22ΓL)− (S12S21ΓSΓL)|2
(3.15)

where,

ΓS =
ZSource − 1
ZSource + 1

(3.16)

ΓL =
ZLoad − 1
ZLoad + 1

(3.17)

The noise figure of the circuit is given by,

F = Fmin +
RN
GS
|YS −Yopt |2 (3.18)

where,

YS =
1
ZO

1− ΓS
1 + ΓS

(3.19)

Yopt =
1
ZO

1− Γopt
1 + Γopt

(3.20)

Fmin represents the minimum noise figure from the transistor, RN is the noise resistance

from the transistor, GS is the real part of the source admittance,YS is the source admit-

tance and Yopt goes for the admittance which results in a minimum noise.

The evaluation of the particles in the algorithm are done trough the gain, Eq.3.15,

of the circuit, when considering a single frequency in the design. Since there are a lot
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OPTIMIZER

of requirements the circuit’s noise figure was used as a fitness criteria, including also

the Γin and Γout. The developed Algorithm.3, stands for a particle swarm optimization

algorithm, PSO, where a group of particles are randomly initialized. For each particle,

at every iteration, the fitness values, which represents how close the particles are to the

desired solution, are calculated. There is a best local solution in each iteration, pbest, that

is achieved. Among all particles, the best is labeled as gbest.

Algorithm 3 PSO scheme from [15].

INITIALIZE particles
CALCULATE fitness in each particle
while MINIMUM ERROR CRITERIA do

CHECK fitness value in each particle, replace pbest if fitness is better than current
pbest of the particle
CHOOSE best particle among all particles with the best pbest and label gbest
UPDATE each particle velocity and position according to the equations

end while

The equations to update the particles velocity and position are respectively:

v = w ∗ v + c ∗ rand() ∗ (pbest − present) + c ∗ rand() ∗ (gbest − present) (3.21)

present = present + v (3.22)

where v stands for the particles’ velocity and present for the position. Inertia weight, w,

is set to 0.4 and the learning parameter, c, is set to 2.

For the algorithm’s design a few considerations were taken:

• 15 particles were randomly generated with the input and output matching networks

components parameters;

• Minimum required gain was set to 20 dB;

• Noise figure was set to be below 1 dB;

• 3000 iterations were considered for all the particles to converge.

The expected results were achieved where after five-hundred iterations the algorithms as

more than twelve particles near the optimized solution, as presented in Fig.3.6.
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Figure 3.6: Obtained results from [15].

3.4 LNA optimization using a NSGA-II

A non-dominated sorting genetic algorithm, NSGA-II, in [7] is presented in order to

optimize the circuit presented in Fig.3.7, which represents a LNA with a image rejection

filter.

Figure 3.7: Proposed LNA architecture from [7].

This kind of optimizer are usually used in multiple objective problems, where, in

this case, all of the objectives have the same weight when considered the relevance of

each one. Initially a N individuals population is randomly initialized, and by using

the usual genetic algorithm processes another population with the same size is created.

Then the two populations are merged using a non-dominated sort algorithm which will

generate a 2N population. The non-dominated sort generates a set of nondominated

fronts. The solutions in the first non-dominated front are better than those in the second

non-dominated front and so on. After the non-dominated sort process is done, new fronts

are added to the N population starting with best selected front. After this process is done

another sort based on crowding distances is applied guaranteeing the diversity of the

individuals.The crowding distance method is very important to achieve solutions that set

a tradeoff between the multiple objective functions to be optimized.The used expressions
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are,

cdk(x[i,k]) =
zk(x[i+1,k])− zk(x[i−1,k])

zmaxk − zmink

(3.23)

Cd(x) =
∑
k

Cdk(x) (3.24)

where zk is the function goal, while zmaxk and zmink are the maximum and minimum of this

function, respectively. A graphic representation of this process is represented in Fig.3.8.

Figure 3.8: Crowding method from [7].

The implementation of the algorithm was done in MATLAB and the simulation results

were obtain trough the HSPICE RF, where each object is evaluated, as presented in Fig.3.9.

Figure 3.9: Proposed Algorithm’s architecture from [7].

It is important to refer that due to the complexity of the circuit the circuit’s optimiza-

tion was done only to computer processes. The applied algorithm took about six-hundred

iterations to achieve the expected results which are presented in Table.3.1, and were then

compared with the ones from [9].
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Table 3.1: Obtained results from [7].

Ref Test 1 Test 2 Test 3
F0(GHz) 5.7 5.7 5.7
NF(dB) 1.68 1.63 1.68
S21(dB) 39.89 36.74 39.36
S11(dB) -17.77 -15.88 -26.64
S22(dB) -22.79 -28.14 -27.36
Vdd(V) 0.61 9.61 0.61
FOM1 23.74 22.53 23.42
fOM2 626.39 440.91 589.31

3.5 LNA sizing using an Evolutionary Algorithm with cost

functions

In [16] another approach of an evolutionary algorithm, based on a GA is proposed. The

EA is represented in Algorithm.4.

Algorithm 4 EA scheme from [16].

START a genetic optimization strategy
FIT the cost function after each population.Include only points within a defined radius
from the active optimum
while stop criteria isn’t fulfilled do

COMPUTE the next evolutionary population using the circuit but calculate the value
predicted by the model as well
UPDATE the fit for each point within a radius from the active optimum.
START a new evolutionary iteration using the fitted function.
CONTINUE an adaptive number of evolutionary populations depending on the qual-
ity of the fit

end while

To achieve the optimum solution, this algorithm presents cost functions to attribute

the respective fitness to each individual that is evaluated. The Pi represents each opti-

mization parameter, and the cost functions are represented in Fig.3.10.
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FUNCTIONS

Figure 3.10: Cost functions from [16].

The circuit, presented in Fig.3.11, was optimized to the approached circuit’s electrical

model and only the parameters that were required to be extracted from SPICE are simu-

lated. This way, the algorithm runs almost as two independent parts, which increases the

total optimization speed.

Figure 3.11: LNA architecture from [16].

A brief analyze to circuit ensures that the input third order intercept-point is given

by,

IIP 3 = 11.25 + 10log10

(
Vgst,M1(1 + r2)(2 + r)

θ

)
(3.25)

the input reflection coefficient is represented by,

S11 =
Zin −RS
Zin +RS

(3.26)

the noise figure is expressed by,

NF = 10log10

(
1 +

Rl
RS

+RchRS +γgd0RS

(
ω0

ωT

)2)
(3.27)
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finally the gain is given by,

Gain = GMRout (3.28)

where GM equals to,

GM = gmM1QRout (3.29)

and Q represents the matching network quality factor. The algorithm was designed with

the following specifications:

• S11 < 10 dB

• IIP3 > -10 dBm

• Gain > 20 dB

• NF < 2.5 dB

• Ibias = 5 mA

• Q < 2.5

• frequency = 1.8 GHz

The results were settle at a stable value in about six-hundred iterations.

3.6 LNA optimization using a Genetic Algorithm

A genetic algorithm based optimizer is proposed in [11]. This algorithm is set to achieve

a possible solution in the optimization of the circuit presented in Fig.3.12.

Figure 3.12: LNA architecture from [11].

To achieve the best solution the optimizer considers ten parameters of the LNA archi-

tecture which are presented in Table.3.2.
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Table 3.2: Parameters to be optimized from [11].

Element Range
Cmatch1 300-800 fF
Cmatch2 1-10 pF
Cmatch3 1-10 pF
Lbond 1-10 nH
Ldeg 0.1-5 nH
Lmatch1 1-10 nH
Rload 1.5-5.5 Ω

Lload 1.5-5.5 H
VB1 0.5-1.5 V
VB2 0.5-5 V

Algorithm 5 GA scheme from [11].

INITIALIZE parameters extraction environment
INITIALIZE the GA
while fitness score of the best chromosome > tolerated score do

SEARCH for better solution calculate the value predicted by the model as well
if the evolution seems to be saturated then

SEARCH best local solution
end if

end while

The proposed genetic algorithm is represented in Algorithm.5. The problem was

defined, in this work, as,

F(SP ,Vin,
−→p ) =Oresult (3.30)

where Sp represents a netlist required by the circuit simulator. Vin is the input bias while
−→p represents the parameters that need to be extracted. Oresult represents the output of

the simulation (S11, S12, S21, S22,NF,...).

The gene encoding was done by transforming real numbers into discrete steps which

represent each gene in a chromosome. This process was implement using the equation,

Pvalue = Pmin +
Pmax − Pmin
Resolution

(3.31)

The fitness function associated to the algorithm is:

F =
∑

alltarget

(W (sim− spe)) (3.32)

where the W represents a weight function which increases when there is a problem

associated with the solution. The sim parameter represents the simulated result solution,

while the spe is for the simulation’s target to achieve.

The selection process is done after the fitness are attributed to each chromosome. This

process is responsible for selection the best individuals, where in this work is done by a

tournament method where two competitors are randomly chosen and the one with the
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best fitness score is selected. This process repeats itself for a specified number of times.

In Algorithm.6 is possible to observe the selection method.

Algorithm 6 Selection process scheme from [11].

SET number of contests according to the selection rate
while contest isn’t done do

PICK 2 competitors, randomly
SELECT the competitor with the better fitness score

end while

A mutation process was also included in the algorithm which is responsible for not

letting the algorithm getting stuck into non-optimal solutions. After the mutation process

it was also implemented another method capable of verifying if the algorithm is obtaining

a region of values that have a monotonic variation property, and if so the step size may

be increased in order to speed up the optimization. This is also very useful when the

optimization process founds a sensitive region, where the steps should be shortened

to avoid skipping the possible optimum solution. This process was adapted from the

Levenberg-Marquardt method.

In order for the algorithm to find a possible solution the following specifications were

proposed:

• S11 < -10 dB

• S22 < -10 dB

• S12 < -25 dB

• S21 as large as possible

• NF < 2

• IIP3 < -10

The obtained results from the optimization are presented in Table.3.3 and Table.3.4.

Considering the experiment the application of the algorithm shows good convergency

behavior when the population size is set to 50 individuals and the mutation rate is set to

0.5 which ensures the diversity of the evolution of the population. After 60 generations

the population starts to converge to the optimal solution.

32



3.7. LNA SIZING USING A PARTICLE SWARM OPTIMIZER

Table 3.3: Optimized parameters from [11].

Element Result
Cmatch1 512.132 fF
Cmatch2 4.6104 pF
Cmatch3 4.5511 pF
Lbond 1.0782 nH
Ldeg 1.145 nH
Lmatch1 6.202 nH
Rload 3.5 Ω

Lload 3.5 H
VB1 0.75 V
VB2 2.7 V

Table 3.4: Achieved results from [11].

Specification Result
S11 -14.1 dB
S22 -22.6 dB
S12 -39.3 dB
S21 12.7 dB
NF 0.979
IIP 3 -1.3

3.7 LNA sizing using a Particle Swarm Optimizer

In [] another PSO is proposed to fulfill the LNA circuit requirements presented in Fig.3.14.

A flowchart of a PSO can be seen in Fig.3.13 where the equations to update the particles

position and see are represented in Eq.3.21 and Eq.3.22.

33



CHAPTER 3. RELATED WORK

Figure 3.13: PSO flowchart from [].

Figure 3.14: LNA architecture from [].

The algorithm is set to maximize the equation,

FOM =
G

(NF − 1)PDC
(3.33)

where G represents the gain, NF the noise factor and PDC the power consumption.
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The gain equation can be expressed by,

AV =Qingm1ZL (3.34)

where Qin is the input matching network quality factor, gm1 represents the transconduc-

tance of the main transistor, and ZL is the load impedance.

The noise figure of the circuit is expressed as,

F =
R
Rs

(
1 +R

γω2
0C

2
t

α2gd0
X

)
(3.35)

where,

X =
δα2

5γ
[1 +Q2

in]
C2
gs

C2
t

+ 1− 2|c|
Cgs
Ct

√
δα2

5γ
(3.36)

The power consumption equation is expressed as,

PDC = VDD × IDC (3.37)

where the circuit’s current is given by,

IDC =WCoxVsat
V 2
od

V 2
od +LEsat

(3.38)

The PSO was implemented using Matlab and the Advanced Design System (ADS) was

used to simulate the circuit. To set the link between the algorithm and the optimizer,

constraints were added to the design parameters:

• 10µm 6Wi 6 100µm;

• Li close to minimum feature size of the technology;

• 10mV 6 Vodi 6 400mV .

The initial population of the algorithm was developed using a matrix of seventy rows and

three columns, 70x3, where seventy represents the number of particles in the population,

while the columns’ number is responsible for the vector with the simulation’s results,

[AV ,NF,PDC].

The executed test using the algorithm was then compared with a simulation made

through traditional methods of optimization. The results are expressed in Table.3.5,

where it is possible to conclude the PSO was efficient in finding an optimization solution

for the LNA circuit.
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Table 3.5: PSO optimization results adopted from [].

Specifications Traditional Method Optimization PSO optimization
PDC 957 mW 869 mW
AV 10.7 dB 12.6 dB
NF 3.27 dB 3.20 dB

FOM 4.92 6.6

3.8 Brief Comparison

Having in consideration the previously presented works there are a few points to have in

mind when a brief comparison is settled. In the Table.3.6 are presented the pros and cons

between the algorithms.

Table 3.6: Comparison between the algorithms.

Authors Algorithm Spent Time Complexity
De Souza et al.[4] Parametric Simulations Average Medium
Chen et al.[2] GA Low Medium
Ülker [15] PSO High Medium
Fallahpour et al.[7] NSGA-II High High
Vancorenland et al.[16] GA Medium High
Li[11] GA Low Medium
Manjula and Selvathi [] PSO Medium Low

Having in mind the presented works, it is possible to notice that the main target of

the algorithms is to get possible solutions according to a FOM of the circuit. The applied

FOMs, despite their differences, all contemplate the gain and noise figure of the LNA

architecture, since it is a simple solution to combine the imposed specifications. Another

point to have in consideration, is the fact that the extracted optimization values are based

in a certificated program. This method ensures the obtained results are much more

accurate than the ones based on simple the circuit equations because they consider a lot

more variables.

Since the circuits’ specifications don’t stand on linear equation models, computer

based algorithms are being considered as a reliable solution to overcome traditional

optimization methods. A big issue of the algorithms relates to the need of a structure

capable of not getting stuck in local solutions, which increase the complexity of the

problem.

Despite the difference between the works, there are some considerations which all

have in common. Therefore, setting a link between them, is possible to conclude:

• The application of algorithms to optimize circuits is a possible solution.

• Evolutionary computing is a proper alternative to traditional methods.
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• The diversity of algorithms applied to different architectures guarantee it is a proper

alternative optimization method.

• The optimization time depends on how many parameters are set to be optimized.

37





C
h
a
p
t
e
r

4
Optimization Platform

Circuits’ sizing are becoming a region of interest for the application of self-learning

mechanisms since it requires a lot of time and cost. Many of the applied approaches are

based on circuits’ equivalent equations which provide good and fast results.

The proposed optimization platform consists in using the provided simulations from

Cadence for a more accurate result which feed an algorithm capable of finding a good

sizing for the components in the circuits. To establish the link between the algorithm and

the Cadence software, the optimization platform uses the SOCAD documentation which

provides the necessary resources to ensure the communication with the server.

Figure 4.1: High level graphic representation of the developed system.

The optimization platform, represented in Fig.4.1, is implemented in Python which
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provides multiple tools to ensure the development of the project. The platform runs

in a created environment containing the DEAP documentation package, as well as the

SOCAD documentation. After both packages are installed a connection with the Cadence

server needs to be initialized providing the communication with the algorithm and the

simulations results.

The optimizer can be describe in two main topics which are managed by the main

platform allowing the connection between all two of them:

• Genetic Algorithm

• SOCAD Configurations

To establish a more friendly link with the user, the platform presents a list of options,

presented in Fig.4.2, with different types of actions:

• 1-Load Simulator for LNA with Resistors

• 2-Update variables and run simulation with 2.4Ghz Optimization

• 3-Update variables and run simulation with 4 points Optimization

• 4-Wideband Optimization

• 5-Wideband Optimization with n=4 factor

• 6- Wideband Balun Optimization

• 7-Load Simulator for LNA with Active Loads

• 8-Wideband Balun Optimization for LNA with Active Loads

• 9-Wideband Balun Optimization for LNA with Active Loads with self-polarization

• 0-Exit

Figure 4.2: Platform Optimization options.
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Initially the user needs to perform the loading of the circuit characteristics and simu-

lations using the Load Simulator options, option 1 and 6, where a message of success will

be sent if the simulator is properly loaded as presented in Fig.4.3.

Figure 4.3: Load Simulator successfully.

After the loading requirements are fulfilled the platform is ready to execute the opti-

mization of the circuit’s components. From this point the used optimization method will

be dependent on the user’s choice among the presented options in the platform.

After the optimization is selected the genetic algorithm will start its processes and

the SOCAD software will send the provided information from the GA to the Cadence

software, which will provide the necessary simulations, and send their results back to

the platform and GA. This process will occur in a specific number of generations which

are defined by the user. After the number of generations are concluded the GA will then

provide the best individual among the final population.

4.1 System Modulation

In the system modulation there will be presented the use-case and sequence UML (Unified
Modeling Language) diagrams, for a better understanding of the system’s interaction.

4.1.1 Use Case Diagram

Analyzing the presented use-case diagram in Fig.4.4, it is possible to identify the actors

in the system, as well as the interaction between the scenarios of the system. In this

diagram are identified four actors: user, genetic algorithm, SOCAD and the Cadence. In

the use case "Select Menu Option"the user is responsible to choose the desired option,

and the SOCAD sets the link between the provided information and the Cadence server

and program. This use case also includes the possibility to "Load Simulator"and "Start

Optimization"which are the provided options in the menu.

Another use case is "Run optimization"where the Cadence is responsible to run the

necessary simulations to feed the algorithm. In order to feed the algorithm another use

case called "Get analysis results"is responsible to save the results from the simulations

which will be used to calculate the fitness of each individual. The genetic algorithm is then

responsible to "select the best individuals", another use case, which includes the applied
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processes in the GA. It is also possible to observe that the "mutation"and "crossover"only

occur when the individuals are selected for each process.

Finally the GA is responsible to get the best individual among the population after a

reasonable number of generations. This use-case is represented by "Get best Individual".

Figure 4.4: UML use case diagram.

4.1.2 Sequence Diagram

The UML sequence diagrams allow a temporal and behavioral perception of how the

system interacts with the different actors and objects in the operation scenarios. To

represent each element of the diagram it is necessary to identify the actors and objects.

The actors are element which communicate autonomously in the system, while the objects

don’t have that ability, but have some interference in the processes.

In Fig.4.5 is represented the sequence diagram developed for this project.
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Figure 4.5: UML sequence diagram.
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4.2 Genetic Algorithm

The implemented algorithm is based on the DEAP documentation where examples are

provided, as well as libraries containing implemented processes related to evolutionary

algorithms[6].

To be able to find an optimal sizing for the implemented circuits the chosen algorithm

approach was based on a genetic algorithm with certain modifications to suit as well

as possible the presented work. This modifications stand on the interactions between

the main operators in the platform and, having that in mind, a classic genetic algorithm

wouldn’t be able to achieve good results in a reasonable time.

Establishing a link between the developed and modified genetic algorithm with the

classic one, it is possible to identify five similar processes:

• Representation

• Selection

• Crossover

• Mutation

• Fitness calculation

4.2.1 Representation

To start the algorithm a population needs to be initialized. This process is responsible for

generating the circuits’ components sizing, to be further optimized by the platform, and

is based on the DEAP libraries provided examples[]. Each component size is placed in a

position of a list containing all the components to be optimized, creating an individual.

The individuals set will form the population as shown in Fig.4.6.
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Figure 4.6: Representation process flowchart.

4.2.1.1 Individuals’ Representation

As it was previously referred, the circuits’ components are represented by a list containing

the size of the components according to the selected circuit for the optimization purpose.

In Fig.4.7 is possible to observe the chosen representation for each individual, having

in consideration the characteristics of the circuits. The first vector corresponds to the

circuit presented in Fig.5.3, where each position of the vector corresponds to a generated

dimension for each correspondent component of the circuit, where VDD , VB1, VB2 are

the circuit’s voltage sources, L represents the length of the transistors, IDC represents

the bias current, W1 and W2 correspond to the widths of the transistors M1 and M2, and

R1, R2 and R3 to the resistors. In the second vector there are a few changes, since the

vector corresponds to the components from the circuit shown in Fig.5.5. The resistors are

replaced by W3 and W4 representing the width of the transistors M3 and M4 respectively,

and VT une is a voltage source which is also added to the list.
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Figure 4.7: Individuals’ representation.

4.2.1.2 Components restrictions

Components are restricted according to the selected optimization method in the provided

menu of the platform. After the optimization type is defined by the user, each component

is then selected and a random number is generated giving the chosen dimension for the

component. After the random number is generated a round function is then applied to

set a valid size for the component’s dimension. In Algorithm.7 is possible to observe the

applied process.

Algorithm 7 Restricted components creator.

Receive chosen optimization option;
Receive component to generate size;
Receive minimum and maximum component size values;
Generate random number for the component size according to the received values;
Round the previously generated number to a valid one;

4.2.1.3 Representation operator Modulation

A further analysis to this process is presented in Fig.4.8 and Fig.4.9. To be able to generate

the population of individuals, the GA contains three toolboxes:

• Population Creator- This toolbox receives the size of the desired initial population,

as well as the chosen circuit to be optimized. It is also responsible to save each

individual into a position of the population’s list;

• Individual Creator- This toolbox is responsible to create each individual with the

components size and fitness in a list. It is also responsible for returning each indi-

vidual into the population creator list;

• Restricted Component Creator- This function is responsible for generating the size

of each component for each individual in the population. It returns the components

description of each circuit back to the Individual creator.

The representation operator is executed in the beginning of the optimization. The GA

contains the size of the population to be generated, and will provide it to the Population

Creator. This creator will ensure the Individual Creator is executed the same amount of

times as the population size provided by the GA. After all the iterations are concluded,
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the population’s list is retrieved back to the GA which will contain the individuals, with

the components size provided by the Component Creator, for the optimization.

To improve the algorithm’s convergence rate, high rated individuals are also added to

the population in certain optimization options. This individuals are also created by the

same toolboxes but with specific sizing for the components.

Figure 4.8: Representation-UML sequence diagram.

Figure 4.9: Representation-UML use case diagram.
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4.2.2 Selection

The selection process is responsible for selecting the best individuals among the popula-

tion in order to generate the new population. This is a very useful process to guarantee

the convergence of the algorithm.

In this process the best individuals are chosen based on their respective fitness, where

a tournament selection method is implemented. The tournament method selects three

individuals and compares them with each other. The individual with the highest fit-

ness value among the three is then selected. This process is repeated N times, where N

represents the size of the actual population.

In order to guarantee a higher convergence rate, the best individual in the population

is always chosen in the selection process.

Another taken consideration relates to the speed of the algorithm, where all the indi-

viduals selected from the tournament may result in an inadequate individual, f itness = 0,

and if so the individual is deleted, which decreases the size of the chosen individuals to

the crossing process, thus decreasing the size of the population. In Fig.4.10 is a flowchart

related to the process.
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Figure 4.10: Selection process flowchart.
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4.2.3 Selection operator Modulation

To establish a more closer to implemented operator, a closer representation of the process

can be seen in Fig.4.11 and Fig.4.12. The selection process is implemented using four

functions:

• Selection Toolbox- This toolbox receives the population and manages the other

functions related to the selection operator. It is also responsible for creating a

list with the selected individuals which may be used in the generation of the new

population.

• Tournament- This function contains the implemented tournament method. In this

case the tournament is done by selecting the highest rated individual among three

randomly selected candidates. This tournament occurs N times, where N equals the

size of the population.

• Best individual Selector- This function contains the necessary processes to select

the most fitted individual among the population.

• Fitness Evaluator- This function is responsible for retrieving the fitness associated

to each individual.

As it is possible to observe, the Selection Toolbox will manage the selected individuals

from the other functions. Initially the selected individuals from the tournament will be

added to the aspirants list. After the tournament is concluded the individuals with a non

adequate fitness, f itness = 0, are deleted from the aspirants. After the list is composed,

only with adequate individuals, the highest rated individual in the population is also

added to the aspirants list. After the selection operator is completed the individuals in

the aspirants will be further selected for the crossover and mutation operators, setting up

the new generation of individuals.
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Figure 4.11: Selection-UML sequence diagram.

Figure 4.12: Selection-UML use case diagram.
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4.2.4 Crossover

The crossover process consists in creating a new generation of individuals based on the

previously selected ones. These selected individuals are called parents, and when crossed,

create new individuals, called children.

Initially the aspirants list is cloned resulting in two similar lists, and one individual

from each list is randomly selected. After both individuals are selected, both individuals

are crossed, which consists in changing the dimensions of the components, if a certain

component from the individuals’ list is selected. Each position of the individuals’ list

is associated with a certain probability of being selected to be crossed with the other

individual respective position, as illustrated in Fig.4.13. From this process two children

are created, containing the characteristics of the two parents.

Figure 4.13: Crossover illustration.

Associated to the crossover operator is a probability which manages if the individuals

are selected for crossing , in order to ensure the GA doesn’t get lost in the search space.

The crossover operator flowchart can be seen in Fig.4.14.
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Figure 4.14: Crossover flowchart.

4.2.4.1 Crossover operator Modulation

To a further understanding of the crossover operator the UML sequence and use case

diagrams are presented in Fig.4.15 and Fig4.16, respectively. This operator is composed

by five functions:

• Crossover Toolbox- This toolbox manages the crossover operator by calling the other

processes and storing the alterations in the individuals.

• Population Clone- This function clones the aspirants list, retrieving the equal ones.

• Individual Selector- This process is responsible for selecting one individual from

each list, if the probabilistic restrictions are fulfilled.

• Individuals Cross- This process consists in crossing the two selected individuals

and selecting the components to be crossed, retrieving two new individuals, called

children.

• Fitness Evaluator- Function responsible for retrieving the fitness associated to an

individual.

The crossover process is associated to a probability that selects if an individual will enter

or not the mate process. If the individual in the aspirants list is select, the implemented

toolbox will start executing the functions, previously referred, in order to generate the
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new individuals after the mate process. In this project, considering the restrictions ap-

plied to each component, the selected crossing method is done point to point. In other

words, each component can only be mate with another component of the same type. After

the children is generate, each child will have its fitness deleted to be further updated have

the simulations are executed.

Figure 4.15: Crossover Sequence diagram.
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Figure 4.16: Crossover use case diagram.

4.2.5 Mutation

The mutation process, which is illustrated in Fig.4.17, is very useful to guarantee the

diversity of the solutions. The process consists on:

1. Randomly choose individuals from the aspirants list for the mutation process with

a certain probability;

2. If the individual is selected each component has a probability of being mutated;

3. The individual is mutated according to the restrictions applied to each component

in the Representation process;

4. The mutated individuals’ fitness is then deleted to be further calculated.

To increase the search speed in the space search for the optimum solution, a flag was ad-

ditionally implemented which increases the mutation probabilities when the population

tends to converge to a solution.
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Figure 4.17: Mutation process illustration.

4.2.5.1 Mutation operator Modulation

Through a more detailed analysis is possible to observe in Fig.4.18 and Fig.4.19 that the

mutation operator is implemented by four main objects:

• Mutation Toolbox- The toolbox manages the mutation process in the algorithm. It

is also responsible for selecting if the individuals in the aspirants list are mutated

or not.

• Component Selector- Function which identifies the components to be mutated.

• Restricted Component Creator- Creator to generate the new component size value.

• Fitness Evaluator- Function used to delete the fitness value from the mutated indi-

vidual.

The mutation operator is, as previously referred, mostly managed by the Mutation Tool-

box. Initially the toolbox receives the aspirants list and selects which individuals are

going to enter the mutation process. If the individual is selected, there is a probability

associated to its components of being mutated, where a new size value for the selected

components will be then created. The mutated individuals’ fitness is deleted to be further

calculated, after the simulations are executed.
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Figure 4.18: Mutation sequence diagram.

Figure 4.19: Mutation use case diagram.
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4.2.6 Fitness calculation

To associate the simulation results with the GA it is necessary to create a managing

operator capable of providing a rating association to each individual. This rating is given

by the simulation output results provided by the Cadence Spectre implemented scripts.

In order to establish the fitness association between the individuals among the population

and the simulation results, Figures of Merit (FOMs), are used to distinguish a well adjusted

sizing of the circuit to a not well adjusted one.

The fitness operator uses a list to store the simulation results. After the list is com-

posed, the circuits sizing needs to fulfill certain defined restrictions. If the restrictions

are not fulfilled, then the individuals’ fitness is set to zero, considering it an invalid indi-

vidual. On the other hand, if the circuits sizing passes the imposed restrictions, then the

FOM is calculated an the result is associated to the respective individual. In Fig.4.20 is

represented a flowchart of the fitness calculation operator.

Figure 4.20: Simulation results management flowchart.

4.2.6.1 Restrictions manager

As previously referred, to check the sizing of the circuits, some minimum requirements

are implemented in order to limit the search space of the GA. Therefore, the restrictions

are based on the noise figure, impedance matching and the operating region of the tran-

sistors. These restrictions are also altered according to each simulation option, to match

each circuit’s characteristics.

In Algorithm.8 is represented an high level representation of the applied procedure

to manage the restrictions.
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Algorithm 8 Restrictions manager.

Receive chosen optimization option
Check restrictions
if restrictions ok then

Calculate FOM;
end if
if restrictions failed then

Set individual as invalid;
end if

4.2.6.2 Fitness calculation operator Modulation

Considering the diagrams in Fig.4.21 and Fig.4.22 it is possible to observe the fitness

calculation operator contains three main procedures:

• Simulations List Creator- This creator manages the simulations’ results and stores

them into a list.

• Restrictions Manager- This functions is responsible for checking the main restric-

tions related to the circuit.

• Fitness Calculator- Function responsible for calculating the fitness of the individuals

and associate it with the respective individual.

The fitness calculation operator is essential for the comparison of the individuals among

the population. Therefore, the implementation of this operator needs to be simple and

fast, since it is run numerous amounts of times.

Initially the simulations’ results are stored in a list. After this process, restrictions

are checked and the fitness is calculated and added to the respective individual. If an

individual doesn’t fulfill the necessary conditions, the fitness value will be equaled to zero,

even if the fitness rating of the individual could result in a reasonable individual. This

operator is executed for every individual in the population, and in every new individuals’

generation.
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Figure 4.21: Fitness operator sequence diagram.

Figure 4.22: Fitness operator use case diagram.
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CONFIGURATIONS

4.3 Socket Communication for Cadence program

configurations

The SOCAD documentation is responsible for establishing the connection between the

developed algorithm and the Cadence program and server. To be able to guarantee the

connection a client is implemented in order to allow an easier installation of the necessary

software.

Considering the developed architecture three files need to be generated considering

the circuit’s characteristics when designed using Cadence. This files are provided from

the Cadence design tools which allow the user to download an Ocean Script file containing

the previously design architecture.

After the circuit is implemented and the Ocean Script file is then downloaded, the file

needs to be split in three files for each architecture:

• Load Simulator file

• Variables file

• Run file

4.3.1 Load Simulator file

The "LoadSimulator.ocn"and "LoadSimulatorActiveLoads.ocn"files are responsible for

loading the circuits’ characteristics where each component is described and loaded ac-

cording to the available libraries in Cadence.

The referred files contain the designed circuits’ components and each characteristics

as well as the netlist of the circuits.After the circuits are loaded it is also needed to load

the simulations which will provide the results.

These files need to be loaded in the CIW the first time the optimization platform is

initialized.

4.3.2 Variables file

The "vars.ocn"and "varsActiveLoads.ocn"files contain the dimensions of the components

present in the circuits. These files are feeded from the optimization platform and change

the variables values according with the selected individual from the GA.

Each time an individual is selected, each position from the individual contains the

dimension of each component which will update the variables file. After this process is

completed the simulations are ready to be executed.

4.3.3 Run file

The "run.ocn"and "runActiveLoads.ocn"files are responsible for giving the instructions

for the simulations to be executed. After the simulations are loaded through the Load
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simulator files, the simulations no longer need to be loaded. The simulations only need

to be executed for each individual for each generation.

These files also contain the implemented functions which will allow to retrieve the

necessary results from each simulation, to apply to the fitness of each individual which

were previously presented.

4.3.4 Simulation Results file

To save the results of the simulations in a simple way a file called "sim_res.ocn"is overwrit-

ten every time a simulation is executed. This file contains the results from the functions

and equations implemented in the Run file. Each result is written in each line of the file.

This results will then be sent to the GA which will calculate the fitness value from

each respective individual.
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5
Used Low Noise Amplifiers

In this chapter will be presented the implemented LNAs for the optimization purpose,

containing the circuits’ study as well as the taken steps for their implementation.

When choosing the LNA topology important decisions need to be made. The first

decision to take is, if the topologies are narrowband or wideband, which will influence

the used optimization method. Another decision is related to single-ended and differ-

ential input, where the single-ended input simplifies the connection to most filters and

antennas, and avoids the need of other stages responsible for the conversions from single

to differential.

In this thesis, a well known wideband LNA will be implemented, where the main goal

is to achieve a good sizing provided from the optimization platform which will be further

presented.

5.1 Balun Low Noise Amplifier with Noise and Distortion

cancellation

The presented circuit in Fig.5.1 consists in a well known inductorless LNA[1]. This circuit

combines a common-gate stage and common-source stage, performing a balun operation

allowing noise and distortion cancellation.

Considering the study through all the many years applied to this topology many ways

to provide a better sizing trade-off in order to maximize the circuit’s performance have

been proposed.
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Figure 5.1: LNA with Noise and Distortion cancellation.

5.1.1 Balun Operation (Balancing)

Assuming ideal transistors with infinite output resistance, the common-gate stage biased

with a current source, establishes a relation with its voltage gain, AVCG, and its input

impedance, Zin. All the input current flows into the CG stage through R1 originating the

output signal, Vout1, with the same phase as the input signal vin. Therefore the common-

gate gain can be given by,

AVCG = gm1R1 (5.1)

and its input impedance given by,

Zin =
1
gm1

(5.2)

where Zin must be equal to RS for ideal input matching conditions.

In order to obtain a proper balancing between the both stages of the circuit, they must

have equal gains with different signs to achieve differential operation which results in,

AVCS = −gm2R2 (5.3)

which leads to,

AVCG = AVCS =
R1

RS
(5.4)
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CANCELLATION

5.1.2 Noise and Distortion Cancellation

The thermal noise generated by the CG stage can be represented by a current source,

In1, which produces an input noise at Vin. The CS stage noise, when gain matching is

considered with the CG stage, stands in opposition which allows the noise contribution

of the CG transistor to be cancelled.

The presented architecture also allows the cancellation of the distortion produced

by the CG stage. The CG transistor produces a nonlinear current, ids, dependent on the

variations of Vgs and Vds, which originates a nonlinear voltage at Vin.

The voltage Vin can be represented by a Taylor expansion dependent of vs where,

Vin = α1vs +α2v
2
s +α3v

3
s + ..+αnv

n
s = α1vs + vNL (5.5)

where αi represents the Taylor coefficients and vNL the nonlinear voltages. The CG stage

output voltage,Vout1 can be expressed by,

Vout1 =
vs −Vin
RS

R1 = ((1−α1)vs − vNL)
R1

RS
(5.6)

and the CS stage output voltage can be expressed by,

Vout2 = −Vin
R1

RS
= −(α1vs + vNL)

R1

RS
(5.7)

This way all nonlinear voltages are cancelled by the differential operation where it only

remains a linear voltage:

Vout = Vout1 −Vout2 = vs
R1

RS
(5.8)

Considering the transistors with an infinite output impedance, an ideal current source

IDC , and considering only the thermal noise of the resistors and transistors, the noise

factor can be expressed by [1]:

F = 1 +
γgm1(R1 −RSgm2R2)2 +γgm2R

2
2(1 + gm1RS )2 + (R1 +R2)(1 + gm1RS )2

RSA
2
V

(5.9)

where γ = 2/3, the second part is the contribution from the CG stage, the third part is

from the CS stage, the last part corresponds to the load resistors and AV equals:

AV = gm1R1 + gm2R2 (5.10)

5.1.3 Linearity and Distortion of the CS-stage

As it was previously presented the CG-stage distortion can be canceled in the parallel

of the CG-stage and CS-stage amplifier, therefore, the distortion of the total amplifier is

given by the CS-stage behavior[1]. Since the modern CMOS are becoming more and more

smaller, the output conductance cannot be neglected[][]. The drain current, ids, can be

represented as function of Vgs and Vds:

ids = gm1Vgs+gds1Vds+gm2V
2
gs+gds2V

2
ds+g11VgsVds+gm3V

3
gs+gds3V

3
ds+g12VgsV

2
ds+g21V

2
gsVds+...

(5.11)
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where,

gmk =
1
k!
∂kids
∂V kgs

;gdsk =
1
k!
∂kids
∂V kds

;gpq =
1
p!q!

∂p+qids
∂V

p
gs∂V

q
ds

(5.12)

Considering the drain source voltage, Vds, depends on the current ids and on the load

resistor R2, it can be express by:

vds = c1Vgs + c2V
2
gs + c3V

3
gs + ... (5.13)

with,

c1 = −gm1(R2//(1/gds1))

c2 = −(gm2 + gds2c
2
1 + g11c1)(R2//(1/gds1))

c3 = −(gm3 + gds3c
3
1 + 2gds2c1c2 + g11c2 + g12c

2
1 + g21c1)(R2//(1/gds1)) (5.14)

Applying the Taylor coefficients it is possible to define the IIP2 and IIP3 equations:

IIP 2 = 20log10

(∣∣∣∣∣c1

c2

∣∣∣∣∣)+ 10dB

IIP 3 = 20log10

(√∣∣∣∣∣4c1

3c3

∣∣∣∣∣)+ 10dB (5.15)

Considering the IIP2 and IIP3 equations, a graph providing the variations through Vgs
is possible to obtain as shown in Fig.5.2.Therefore, it is possible to conclude that the

CS-stage can ensure good IIP2 and IIP3 values, +20dBm and +2dBm respectively, when

Vgs is near 500mV.

Figure 5.2: IIP2 and IIP3 versus Vgs for CS-stage from [1].

5.1.4 Circuit Implementation

To be able to achieve reasonable gain and low NF, small modifications were applied to

the proposed architecture, as visible in Fig.5.3.
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CANCELLATION

Figure 5.3: LNA with Noise and Distortion cancellation used in the simulation.

This changes allow a more flexible adjustment of the bias currents on the circuit,provided

by VB1, VB2 and a RC high pass filter, reducing the impact of the nonlinearities. Therefore,

since the sizing of the components is adjusted by the optimization platform, it provides a

bigger search space for the algorithm to provide a reasonable result.

To obtain a more realistic optimization approach, a converter from differential to

single-ended architecture is also applied to the LNA during the simulations to ensure the

output matching, and combining the differential outputs. The architecture is presented

in Fig.5.4.

Figure 5.4: Differential to Single-Ended Buffer.
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5.2 Low Noise Amplifier with Active Loads

Figure 5.5: LNA with Active Loads adopted from [1].

In Fig.5.5 a LNA with Active Loads is proposed[10]. This architecture replaces the resis-

tors from the circuit in Fig.5.3 with the transistors M3 and M4. By performing this small

modification both gain and NF can be improved. In this architecture the voltage gain is

controlled by the voltage source, Vtune, and the bias currents are defined by the voltage

sources, Vb1 and Vb2. The bulk and source of the CG-stage are also connected to reduce

the body effect.

5.2.1 Circuit Implementation

After the resistor loads are replaced with the active loads it is possible to obtain better

results from this architecture. To allow this better results the transistors M3 and M4 need

to be in the triode region, without degrading the input matching of the circuit which,

but also close to the saturation region to ensure that both differential voltage gains are

matched for noise and distortion cancellation.

Considering the previously analysis it is possible to conclude that the low frequency

gain of the circuit is given by:

AVLNA = gm1(rds1//rds3) + gm2(rds2//rds4) (5.16)
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which will lead to a higher gain when compared with the load resistor circuit, if rds3 and

rds4 values are bigger than R1 and R2 from Eq.5.10.

Considering the differential output gains are both matched in both circuits, it is possi-

ble to compare the noise factor in the circuits. Assuming R1 = R2 = RL and gm1 = gm2 = gm
from the circuit in Fig.5.3, and if the flicker noise is taken into account, the noise factor

from Eq.5.9 can be rearranged as[10]:

F = 1 +
kf

8kT RSCoxf αf

(
1

W1L1
+

1
W2L2

)
+

γ

2RSgm
+

1

RSRLg
2
m

(5.17)

where k is the Boltzmann’s constant, Cox is the oxide gate capacitance per unite area, W
and L are the transistor dimensions, T is the absolute temperature, γ is the transistors’ ex-

cess noise factor, kf and αf are intrinsic process parameters dependent on the transistors

size[]. Otherwise, the active load LNA also needs to take into account the flicker noise

from the transistors M3 and M4. Once again if rds3 = rds4 = rds, the noise factor is given

by:

F = 1 +
kf

8kT RSCoxf αf

(
1

W1L1
+

1
W2L2

+
1

W3L3
+

1
W4L4

)
+

γ

2RSgm
+

1

RSrdsg
2
m

(5.18)

which proves the noise factor can get lower thanks to the bigger rds value when com-

pared with RL in the last part of the equation. This way, the noise figure may become

lower with changing the value of gm.

Another point to discuss relates to the distortion introduced by the transistor M4.

Since the distortion is introduced mainly by the CS-stage, the transistor M4 would be

also an issue, but its influence is negligible because it is in the triode region. Therefore,

the main concern between gain and linearity trade-off relates to the Vgs of the transistor

M2, which needs to be biased from 400mV to 430mV for an ideal biased. This value may

depend on the chosen application since it might be important to increase the gain while

decreasing the IIP2 and IIP3 and vice-versa.

The previously analysis are very useful since the develop optimization platform will

be used, mainly, to boost the figure of merit of the circuit considering only the CG-stage

and CS-stage.

5.3 Cadence Spectre

In order to ensure more accurate results, the circuit is simulated using Cadence Spectre

tools which runs in a no-graph option for a higher speed rate in each simulation.

Initially the circuit needs to be designed with the components variables to be opti-

mized as shown in Fig.5.6.After the circuit is designed, the dimension of the components

need to be set as variables in order for them to be replaced for the values given by the GA.

The following step is to set the simulations which will provide the results to feed the

fitness calculation in the GA, using the ADE-L provided by the program. In this project

two simulations are implemented:
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Figure 5.6: LNA circuit designed in Cadence.

• DC simulation

• S-Parameters and Noise Figure

5.3.1 DC simulation

The DC simulation is responsible for getting the consumption power from the circuit as

well as the transistors’ region. Cadence Spectre returns values according to the region the

transistor is in. In this project the goal is for the transistors M1 andM2 to be in saturation

which will be represented by the value 2. If the active load circuit is selected to be

optimized the transistors M3 and M4 need to be in the triode region which is represented

by the value 1.

The balun operation in the circuit is obtained through the difference between the

trans-conductance of the transistors M1 and M2 multiplied by the ouput impedance of

the circuit which is represented by R1 and R2, or by the trans-impedance of the transistors

M3 and M4, as shown in,

∆V = gm1R1 − gm2R2 (5.19)

or,

∆V = gm1rds1 − gm2rds2 (5.20)

5.3.2 S-Parameters and Noise Figure

The S-Parameters includes the Noise Figure analysis and provide the most part of the

results to feed the GA. These analysis are executed from 20MHz to 20GHz to minimize
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the errors and provide:

• S11

• Z11

• S21

• NF

• Gain

• BWmin

These analysis results are very important to achieve a reasonable fitness value for each in-

dividual. To obtain such results an Ocean Script file is implemented where Skill functions

are used which are represented in Algorithm.9.

Algorithm 9 Used Skill functions.
S11min=ymin(db(spm(’sp 1 1)))
Z11max=ymax(real(zpm(’sp 1 1)))
S21max=ymax(db(spm(’sp 2 1)))
NFmin=ymin(db10(getData("F"?result "sp_noise")))
Gain(f ) == value(db(spm(’sp 2 1)) f )
Gain3dB=S21max − 3
BWGain3dB

= cross(db(spm(’sp 2 1)) Gain3dB)
BWS11

= cross(db(spm(’sp 1 1)) -10)
NoiseWave=cross(db10(getData("F"?result "sp_noise")) 3.5 1 "either"t "cycle")
NoiseV ector= drGetWaveformYVec(NoiseWave)
BWNoise= drGetElem(NoiseVector 1)

In order to get the circuits’ bandwidth, the GA will then choose the minimum value be-

tween the BWGain3dB
, BWS11

and BWNoise. It is important to refer that the Ocean Script file

also contains some applied restrictions which ensure the provided results are reasonable,

despite increasing its complexity.
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6
Simulations and Results

This chapter contains the description of the implemented simulations provided in the

menu of the platform and also the results from the each optimization.

Each option contains a different approach to obtain a viable sizing for the circuit’s

components, and are organized according to the related issues found in each one. With

this being said, it means that each presented optimization tries to solve the issues related

to the previously developed ones, in order to improve the circuits’ performance.

6.1 Low Noise Amplifier with resistor loads Optimization

This section contains the executed optimization to achieve an optimal sizing for the circuit

presented in Fig.5.3. In[1] the authors conclude that there is a relationship between the

transistors and resistors in the circuit that increases the gain and decreases the noise

factor without affecting the linearity of the architecture.

The implemented optimizations are settle to obtain similar conclusions, using differ-

ent simulation methods which are provided by the Cadence Spectre software, allowing

a more accurate result, and combining them with the optimization platform to increase

the search space.

To execute the necessary analysis, an output stage, Fig.5.4, combining both differential

gains is also added to the circuit.

6.1.1 N-Points Optimization

Since the chosen circuit’s architecture is a wideband-LNA, it is assumed that if the siz-

ing fulfills the requirements for specific frequency values, then it will also fulfill then

in the other frequencies. Therefore, the N-point optimization uses four frequencies

(400MHz,900MHz,1.7GHz,2.4GHz).
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Considering the main goal is to provide the simulations results from each frequency

the used FOM, to provide the rating of the sizing, is given by:

FOM =
1
N

N∑
i=1

S21(fi)[dB]
(NF(fi)[dB]− 1)PDC[W ]

(6.1)

where fi = [400M,900M,1.7G,2.4G].

6.1.1.1 Restrictions

To limit the search space of the GA, restrictions are implemented relating to the simu-

lations’ results as well as the components size. In this specific optimization option the

restrictions related to the size of the components are presented in Table.6.1 and Table.6.2,

where it is possible to observe that only the transistors sizes are not specific values.

Table 6.1: Constant components size restrictions in N-Points Optimization.

VDD VB1 VB2 L IDC R1 R2 R3
1.2V 800mV 450mV 120nm 2mA 200Ω 50Ω 200Ω

Table 6.2: Variable components size restrictions in N-Points Optimization.

W1 W2
10-100µm 100-200µm

In Table.6.3 it is possible to observe the restrictions applied to the simulations’ results

which will ensure that inadequate individuals are deleted from the population. This

restrictions are related to the operating point of the transistors and with the S-parameters

analysis as well as the noise simulation provided by the Cadence.

Table 6.3: Analysis results restrictions in N-Points Optimization.

Analysis Restrictions
S21 S21(fi)>0dB
S11 S11(fi)<-10dBΩ
Z11 40Ω < Z11(fi)<60Ω
NF NF(fi)<3dB
M1 M1OP=2
M2 M2OP=2

6.1.1.2 Results

Considering the previously presented considerations and method applied to this opti-

mization option, an initial population with 30 individuals is generated to provide a good

amount of individuals capable of finding an adequate sizing for the circuit. The pre-

sented results are obtained after 200 generations and the best individual is presented in

Table.6.4.
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Table 6.4: Best individual in N-Points Optimization.

VDD VB1 VB2 L IDC W1 W2 R1 R2 R3
1.2V 800mV 450mV 120nm 2mA 48µm 157µm 200Ω 50Ω 200Ω

Relating the obtained sizing for the transistors in the best individual among the popu-

lation it is visible that their sizes are not the same, W1 ,W2. Establishing a ratio between

the transistors size, NW =W2/W1, and also between the previously defined resistors size,

NR = R1/R2, it is noticeable that the obtained dimensions ratio in the optimized compo-

nents are way different, as shown in Table.6.5.

Table 6.5: Transistors and Resistors relationship in N-points Optimization.

NW NR
3.3 4.0

Due to the imposed restrictions the search space of the GA is limited, since it is only

responsible for providing the transistors sizes, but it is also very useful to provide the

necessary conclusions regarding the NW ratio. Since the restrictions don’t allow the W1

and W2 to be equally sized, if NW = 1 were beneficial the W2 dimension would reduce to

the lower imposed bound, which is not verified, since the W2 keeps increasing to a size,

leading to a NW much closer to NR.

Using the best individual sizing the analysis results used in the optimization process

are presented in Table.6.6. In a more detailed perspective the full analysis is shown in

Fig.6.1.

Table 6.6: Simulations results from N-points Optimization.

Analysis Results
S21max 11.58dB
S11min -25.9dB
IIP3 -3.7dBm
PDC 6.5mW
NFmin 2.83dB
BW 7.16GHz
∆V 1.12dB
AVCG 6.17dB
AVCS 7.29dB
FOM 974

Considering the obtained results it is visible that both differential gains are not en-

tirely matched, but are relatively close, due to the ratio between the resistors and tran-

sistors. Another noticeable aspect is related to the gain and noise improvement. In this

optimization method, the linearity and bandwidth are not consider in the individuals’

fitness calculation. Therefore, main goal of the GA is to boost the gain and decrease the

75



CHAPTER 6. SIMULATIONS AND RESULTS

noise figure and power consumption. The power consumption being considered in the

fitness calculation is really important to establish a more reliable sizing since it is directly

associated with the noise figure, and it is probably why NW ,NR.

Figure 6.1: Simulation results for N-points Optimization.

6.1.1.3 Conclusions

The presented optimization method is based on the analysis results provided by N-points

which are defined by the user. In the platform menu there are two presented options,

where one only a single point is considered, which is more adequate to narrow-band

LNAs, and the other considers four frequencies placed in a list.

Considering the selected topology to be optimized, the presented optimization method

does not follow the typical processes used in conventional methods. Having this fact in

mind, the N-points method, is not as reliable as the further described methods. Another

issue in the previously provided results, are related to the low freedom given to the GA,

since only the transistors size are being generated, and considering only 200 generations.

Although the issues related to the N-points method, it was still possible to obtain a

functional sizing which fulfills the imposed requirements.

6.1.2 Wideband Optimization

The wideband optimization method is based on a more the typical approach to set a good

fulfillment of the predefined requirements for the circuit’s sizing, when compared with

76



6.1. LOW NOISE AMPLIFIER WITH RESISTOR LOADS OPTIMIZATION

the previous method. To implement this optimization method a few changes related to

the FOM are elaborate where:

FOM =
S21max[dB]×BW [GHz]
(NFmin[dB]− 1)PDC[W ]

(6.2)

which now considers the bandwidth of the circuit in the rating of the size of the compo-

nents.

6.1.2.1 Restrictions

In this method the applied restrictions also take in consideration the previously provided

study[1], providing a good polarization for good linearity results.

Considering the circuit’s polarization, this time the main goal is to optimize the tran-

sistors and resistors size to find a good relationship between the components. Therefore,

the applied restrictions are shown in Table.6.7 and Table.6.8.

Table 6.7: Constant components size restrictions in Wideband Optimization.

VDD VB1 VB2 L IDC R3
1.2V 800mV 450mV 120nm 2mA 200Ω

A more closer look to the components size restrictions shows that the transistors

and resistors have larger bounds ensuring the GA a good increase of the search space.

Applying such freedom, may lead the GA to find a not optimal solution. To go around this

issue a flag system to increase the probabilities in the mutation and crossover processes

are also added to the optimization.

Table 6.8: Variable components size restrictions in Wideband Optimization.

W1 W2 R1 R2
10-200µm 10-200µm 50-500Ω 50-500Ω

Considering the changes applied to the components, the considered analysis restric-

tions were maintained the same as the previous method. This restrictions will ensure

the space search is reduced, especially due to the restrictions applied to the transistors

operation point, that when combined with the imposed polarization for the components,

will ensure the generated individuals sizing which aren’t viable are further deleted from

the population. In Table.6.9 there are presented the restrictions applied to the analysis

provided from the Cadence Spectre.
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Table 6.9: Simulation results restrictions in Wideband Optimization.

Analysis Restrictions
S21 S21max>0dB
S11 S11max<-10dBΩ
Z11 40Ω < Z11max<60Ω
NF NFmin<3dB
M1 M1OP=2
M2 M2OP=2

6.1.2.2 Results

To initiate the optimization, a population with 60 individuals is generated to provide an

adequate sizing for the circuit. This optimization method was executed for 200 genera-

tions where the highest rated individual is presented in Table.6.10.

Table 6.10: Best individual in Wideband Optimization.

VDD VB1 VB2 L IDC W1 W2 R1 R2 R3
1.2V 800mV 450mV 120nm 2mA 46µm 85µm 321Ω 256Ω 200Ω

From the obtained best individual it is possible to observe that both transistors, M1

and M2, have now much closer sizing. This is due to the bigger bounds imposed in the

restrictions allowing the M2 width to be smaller. Despite the changes in the restrictions,

it was expected to obtain a higher W2 size, since the AVCS depends on gm2. This can

be explained by the changes applied to the FOM which provides the fitness to each

individual. By adding the circuit’s bandwidth to the FOM, another trade-off between size

and bandwidth is also taken into account for the circuit’s performance.

In Table.6.11 there are presented the obtained relationship from transistors and resis-

tors. Taking a closer look to theNR value it is also noticeable that the relationship between

R1 and R2 has also decreased when compared with the previous method. Despite this

decrease in the NR it is visible that both components increased in size providing a higher

gain in the circuit, since AVCG and AVCS are directly dependent on the resistors sizing.

Table 6.11: Transistors and Resistors relationship in Wideband Optimization.

NW NR
1.25 1.85

In Table.6.12 there are provided the obtained results from the executed analysis on the

best individual among the population. From this analysis is visible that an improvement

in the power consumption is achieved, as well as a slightly higher gain, despite the worse

result in the IIP3 analysis, which it is expected considering the optimization doesn’t not

have in account the linearity effects.
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Another visible issue relates to both differential gains, since the balancing operation

between AVCG and AVCS does not occur, which explains the higher distortion effects. For

a more detailed analysis of the circuit’s performance, the executed simulations are shown

in Fig.6.2.

Table 6.12: Simulations results from Wideband Optimization.

Analysis Results
S21max 12.67dB
S11min -26.5dB
IIP3 -4.32dBm
PDC 5.43mW
NFmin 2.95dB
BW 7.73GHz
∆V 1.54dB
AVCG 7dB
AVCS 8.54dB
FOM 5795

Figure 6.2: Simulation results for Wideband Optimization.

6.1.2.3 Conclusions

The wideband optimization method provides a good sizing for the circuit’s components

as it is shown previously. The obtained relationship between the transistors and resistors
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size also provide a further knowledge and understanding of the circuit. It is noticeable

that with the decreasing of the components relationship the power consumption decreases

and the bandwidth increases, without affecting the circuit’s gain and noise figure.

Despite the good results, the same issue regarding the balancing of the AVCG and

AVCS continues to affect the results, since the balancing operation is not entirely fulfilled.

In conclusion, and having in mind the low number of generations applied to the test,

the obtained sizing for the circuit’s transistors and resistors shows good results, leading

to the idea of a successful applied method.

6.1.3 Wideband N-factor Optimzation

The N-factor optimization method is based in the study provided in [1] where the size

of the components are not randomly generated, and depend on a previously defined

relationship. This relationship is defined by the N-factor and intends to achieve the

balancing operation between the differential output gains.

Considering that the algorithm generates the R1, W1 and W2 sizes, the size of the

resistor R2 is then defined by the N-factor relationship, where N = W2/W1. This means

that R2 = R1/N .

To guarantee that this optimization method is viable, it is necessary to apply some

changes to the crossover and mutation processes. If an individual is selected for both

processes, then the selected components will always generate the other depended compo-

nents based on the N-factor.

The applied FOM in this method is the same one applied in Eq.6.2.

6.1.3.1 Restrictions

The applied restrictions to the components size in this optimization method can be seen

in Table.6.13 and Table.6.14.

Table 6.13: Constant components size restrictions in Wideband N-Factor Optimization.

VDD VB1 VB2 L IDC R1 R3
1.2V 800mV 450mV 120nm 2mA 200Ω 200Ω

The GA will only be able to generate values for the width of the transistors M1, M2

and for the resistor R2, between their respective bounds.

Table 6.14: Variable components size restrictions in N-Factor Optimization.

W1 W2 R2
10-100µm 100-200µm 10-500Ω

The applied simulation restrictions are shown in Table.6.15 where an increase in the

noise figure restriction, allowing more freedom in the search space, is applied when com-

pared with the previous methods. The restrictions ensuring the circuit’s input impedance
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matching are also changed, in this case, for more restricted bounds, limiting the search

space.

Table 6.15: Simulation results restrictions in Wideband N-factor Optimization.

Analysis Restrictions
S21 S21max>0dB
S11 S11max<-10dBΩ
Z11 45Ω < Z11max<55Ω
NF NFmin<3.5dB
M1 M1OP=2
M2 M2OP=2

6.1.3.2 Results

The obtained results from 200 generations with an initial population of 30 individuals

are presented in Table.6.16.

Table 6.16: Best individual in Wideband N-factor Optimization.

VDD VB1 VB2 L IDC W1 W2 R1 R2 R3
1.2V 800mV 450mV 120nm 2mA 37µm 88µm 200Ω 84Ω 200Ω

Considering the obtained individual, it is possible to get the transistors and resistors

relationship considering their respective sizing. It is noticeable that NW =NR =N which

is visible in Table.6.17.

In this optimization, and having in mind the few generations applied in the process,

the N-relationship between the components stood in a relatively small value, when con-

sidering the numerous presented possibilities from[1]. This is due to the fact that, in this

optimization, the FOM considers not only the circuit’s gain and noise figure, but also the

power consumption and bandwidth, which will lead the GA to find smaller components

capable of fulfilling also these requirements.

Table 6.17: Transistors and Resistors relationship in Wideband N-factor Optimization.

NW NR
2.38 2.38

Considering the best achieved individual in the optimization process, it is possible to

get the analysis results, presented in Table.6.18.

Having in mind the presented analysis results, it is possible to visualize that the re-

sults suffered a huge decrease when compared with the previous Wideband optimization

method. It is visible once again an increase in the power consumption, and worse results

when considering both gain and noise figure. Once again the both differential outputs

are not balanced which is not viable for the topology to eliminate the distortion effects.

In Fig.6.3, there are presented the analysis results from Cadence Spectre.
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Table 6.18: Simulations results from Wideband N-factor Optimization.

Analysis Results
S21max 8.28dB
S11min -29.50dB
IIP3 -2.50dBm
PDC 6.73mW
NFmin 3.35dB
BW 9.99GHz
∆V 1.2dB
AVCG 4.0dB
AVCS 2.8dB
FOM 3175

Figure 6.3: Simulation results for Wideband N-factor Optimization.

6.1.3.3 Conclusions

Considering the applied restrictions to the optimization method, the space search is very

limited since the R1 is also fixed. Therefore, the low rated result was expected as well as

the gain decrease and noise increase.

Having in mind that the Wideband optimization method provided a good sizing for

the topology, the objective for the N-Factor optimization method, was to provide a more

reliable balancing operation between the differential outputs, which couldn’t be achieved.
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This occur because of the low generations used in the optimization process, which are not

entirely conclusive.

Despite the bad results, conclusions regarding the components sizing can be taken

according to the transistors dimensions, where it is visible the GA keeps searching for

smaller W1 and W2, to increase the bandwidth and decrease the power consumption.

6.1.4 Wideband Balancing Optimization

The wideband balancing optimization method is similar to the wideband optimization

method previously presented. The main of goal of this method is to ensure that both

differential output are matched to each other, guaranteeing that the balancing operation

in this topology is fulfilled.

To be able to guarantee the balancing operation in this optimization method, it is

added to the FOM, responsible for the fitness calculation of each individual, the difference

between both AVCG and AVCS . Therefore the new FOM is given by:

FOM =
1

1 + |∆V [dB]|
Gainmax[dB]×BW [GHz]
(NFmin[dB]− 1)PDC[W ]

(6.3)

where ∆V is given by:

∆V = AVCG −AVCS (6.4)

6.1.4.1 Restrictions

Considering the similarities from this method to the wideband optimization method

previously presented, the applied restrictions to this method are also the same ones as in

the previous method. Once again the main goal is to optimize the transistors and resistors

sizes, Table.6.20, applying the polarization from Table.6.19.

Table 6.19: Constant components size restrictions in Wideband balancing Optimization.

VDD VB1 VB2 L IDC R3
1.2V 800mV 450mV 120nm 2mA 200Ω

Table 6.20: Variable components size restrictions in Wideband balancing Optimization.

W1 W2 R1 R2
10-200µm 10-200µm 50-500Ω 50-500Ω

In Table.6.21 there are shown the applied restrictions to the analysis results and

requirements, where this time a slightly greater noise figure is allowed, to match the

obtained results from[1].
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Table 6.21: Simulation results restrictions in Wideband balancing Optimization.

Analysis Restrictions
S21 S21max>0dB
S11 S11max<-10dBΩ
Z11 45Ω < Z11max<55Ω
NF NFmin<3.5dB
M1 M1OP=2
M2 M2OP=2

6.1.4.2 Results

The wideband balancing optimization method is initialized with a population of 60 indi-

viduals and the best individual is achieved after 200 generations, which is presented in

Table.6.22.

Table 6.22: Best individual in Wideband balancing Optimization.

VDD VB1 VB2 L IDC W1 W2 R1 R2 R3
1.2V 800mV 450mV 120nm 2mA 39µm 63µm 284Ω 203Ω 200Ω

Once again is visible that the GA tends to search for solutions where theW2 generated

size doesn’t stand to far from W1. Since M1 is responsible for the input matching it is

normal to visualize that the obtained size for this transistors are normally around the

same values.

In Table.6.23 there are presented both obtained relationship, NW and NR, where it

once again shown that by adding the circuit’s bandwidth and power consumption into

the fitness calculation, the difference between M1 and M2 doesn’t converge to a huge

relationship.

Table 6.23: Results relationship in Wideband balancing Optimization.

NW NR
1.40 1.62

Considering the best obtained sizing for the components, represented in Table.6.24

and Fig.6.4, it is possible to observe that both differential gains are now balanced. Despite

the changes improved this aspect, it is also important to notice that the circuit’s gain and

noise figure performances have decreased. This may be related to the circuit’s limitations

according to the resistors loads. In a more detailed analysis it is visible that M1 is limited

for certain bounds related to the input matching, M2 needs to be sized according to the

balancing operation of the topology, and when considered the power consumption and

bandwidth of the circuit it also needs to keep its bounds into small sizes. This leaves

the loads with a very important role, by ensuring that the balancing operation does not

affect the gain in the topology. The main issue with the resistors loads is related to their
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voltage drop which limit the loads to get impedance values superior to approximately

350Ω when considering the used polarization or a low power consumption one.

Table 6.24: Simulations results from Wideband balancing Optimization.

Analysis Results
S21max 11.05dB
S11min -36.2dB
IIP3 -4.09dBm
PDC 5.04mW
NFmin 3.25dB
BW 10.40GHz
∆V 0.06dB
AVCG 6.18dB
AVCS 6.12dB
FOM 6580

Figure 6.4: Simulation results for Wideband balancing Optimization.

6.1.4.3 Conclusions

Considering the previously presented results acquired from this optimization method it

is visible that a well adjusted sizing is achieved.

Considering the applied changes to the FOM when establishing a comparison with

the other optimization methods previously presented, it is visible that both differential
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gains are now matched, thus reducing the distortion effect present in the circuit.

Another noticeable point is related to the relationship between the transistors and

resistors sizing, where it is visible that M1 and M2, as well as R1 and R2 are much closer

in terms of their dimensions, due to the balancing operation. This leads to a lower gain

which can be overcome by providing some changes to the topology, which will be further

shown.

6.2 Low Noise Amplifier with active loads Optimization

The presented section contains the related optimization methods applied to obtain a

reasonable sizing for the circuit presented in Fig.5.5. Considering the previously study

provided in[10], the main goal is to obtain the optimal sizing provided by the developed

optimization platform.

To execute the necessary simulations in the optimization process, the output stage,

presented in Fig.5.4, is also added to the circuit, combining the differential output into

a single-ended output. Therefore, the simulations also consider the distortion and noise

effects imposed by the output stage.

6.2.1 Wideband Optimization

The wideband optimization method follows the same ideology as the previously pre-

sented one in the LNA with resistor loads and uses the same FOM from Eq.6.3 to establish

the balancing operation between the differential gains.

Considering the changes applied to the topology it is necessary to update some of

the platform processes. In the Cadence management files it is necessary to update the

circuit’s characteristics file, which replace the resistors for active loads, where R1 and

R2 are replaced for the transistors M3 and M4. Also the variables file to be generated

are also altered in both GA and Cadence files which will provide the individuals and

their respective simulations. All these changes are done through the menu option "Load

Simulator for LNA with Active Loads".

6.2.1.1 Restrictions

The applied restrictions to the circuit’s components are presented in Table.6.25 and Ta-

ble.6.26, where it is visible that the transistors M3 and M4 are restricted to the the triode

region, but also close to the saturation, as it was previously described in the circuit’s

description section.

The applied restrictions also consider the used polarization in the work developed

from[10] to improve the linearity of the circuit.
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Table 6.25: Constant components size restrictions in Wideband Optimization with Active
Loads.

VDD VB1 VB2 VT une L IDC R
1.2V 800mV 450mV 400mV 120nm 2mA 200Ω

Table 6.26: Variable components size restrictions in Wideband Optimization with Active
Loads.

W1 W2 W3 W4
10-200µm 10-200µm 18-35µm 18-35µm

Despite the bounds applied to the active loads, the Cadence analysis also verify is the

transistors operation point fulfills the requirements, Table.6.27, for a proper sizing. The

other analysis restrictions are maintained the same as the previous presented ones.

Table 6.27: Simulation results restrictions in Wideband Optimization with Active Loads.

Analysis Restrictions
S21 S21max>0dB
S11 S11max<-10dBΩ
Z11 45Ω < Z11max<55Ω
NF NFmin<3.5dB
M1 M1OP=2
M2 M2OP=2
M3 M3OP=1
M4 M4OP=1

6.2.1.2 Results

The results from this optimization method were obtained from 200 generations with

an initial population of 60 individuals. In Table.6.28 is presented the highest rated

individual from the optimization process.

Table 6.28: Best individual in Wideband Optimization with Active Loads.

VDD VB1 VB2 VT une L IDC W1 W2 W3 W4
1.2V 800mV 450mV 400mV 120nm 2mA 41µm 60µm 27µm 35µm

Analysing the best individual in the population it is noticeable, once again, that both

M1 and M2 aren’t that different in terms of their respective size. Through Table.6.29 it is

possible to observe that the obtained sizing for the active loads, conducts to an impedance

that could be easily obtained with the previous topology which uses resistors.
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Table 6.29: Components relationship in Wideband Optimization with Active Loads.

RDS3 RDS4 NW NRDS
286 205 1.39 1.46

Considering the best individual among the population, the simulation results from

the applied simulations are presented in Table.6.30, where a great improvement in the

FOM result is visible, when compared to the resistor loads circuit’s results. It is also

possible to observe that the output stage reduces the circuit’s gain by 1.5dB. On the other

hand a huge improvement in the linearity is achieved.

Table 6.30: Simulations results from Wideband Optimization with Active Loads.

Analysis Results
S21max 11.3dB
S11min -31.5dB
IIP3 1.93dBm
PDC 5.4mW
NFmin 3.28dB
BW 7.86GHz
∆V 0.5dB
AVCG 12.8dB
AVCS 12.3dB
FOM 6965

Figure 6.5: Simulation results for Wideband Optimization with Active Loads.
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6.2.1.3 Conclusions

Considering the optimization method uses the same polarization provided from[10],

where VT une = 400mV which improves the gain and decreases the noise factor in the

circuit, the obtained sizing for the components in the circuit are reasonable. With this po-

larization, the circuit’s bandwidth and linearity is supposed to decrease, which confirms

the results.

Having in mind the matching conditions restrictions it is shown that with a NRDS , 1

there is also an improvement in the results. The balancing condition is also satisfied

which limits the AVCS , limiting the search space of the algorithm. Despite this con-

siderations it is possible to conclude that the obtained sizing outdoes the requirements

when compared with the LNA with resistors loads obtained sizing from the previous

optimization methods.

6.2.2 Wideband Optimization with self-polarization

Considering the previously implemented optimization method, it is possible to conclude

that the achieved sizing does not provide the highest performance from the optimized

topology. Having in mind the higher potential from this circuit when compared with the

presented topology from[1], a more exhaustive optimization was implemented, to be able

to search for other sizing options.

The implemented Self-Polarization method follows the previously presented opti-

mization method, but also tries to improve the circuit’s polarization to achieve a higher

performance rate.

6.2.2.1 Restrictions

In this optimization method, the GA has the liberty to change all the components to a

limited restricted size, presented in Table.6.32, according to each component itself. There

are also some constant restrictions which are presented in Table.6.31.

Table 6.31: Constant components size restrictions in Wideband Optimization with Polar-
ization.

VDD L R
1.2V 120nm 200Ω

Table 6.32: Variable components size restrictions in Wideband Optimization with Polar-
ization.

VB1 VB2 VT une IDC W1 W2 W3 W4
500-950mV 100-450mV 0-400mV 1-3mA 10-200µm 10-200µm 15-35µm 15-35µm
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The applied restrictions to the simulations results applied in the optimization process

are presented in Table.6.33, where it is visible that the used restrictions are the same as

in the previous optimization method.

Table 6.33: Simulation results restrictions in Wideband Optimization with Polarization.

Analysis Restrictions
S21 S21max>0dB
S11 S11max<-10dBΩ
Z11 45Ω < Z11max<55Ω
NF NFmin<3.5dB
M1 M1OP=2
M2 M2OP=2
M3 M3OP=1
M4 M4OP=1

6.2.2.2 Results

The results in this method are obtained after 500 generations with an initial population

of 120 individuals. In Table.6.34 is presented the obtained sizing of the best individual

among the population, where it is possible to observe that there are a few changes related

to the voltage sources VB1, VB2 and VT une.

Table 6.34: Best individual in Wideband Optimization with Polarization.

VDD VB1 VB2 VT une L IDC W1 W2 W3 W4
1.2V 915mV 450mV 220mV 120nm 2mA 49µm 97µm 16µm 18µm

Considering the more freedom applied to the optimization process, it is visible that

the active loads are much closer and more in the triode region, providing a higher

impedance value, shown in Table.6.35, which will directly boost the circuit’s gain. It

is also noticeable that the VT une responsible for the polarization of the active loads also

decrease which is supposed to boost the bandwidth and linearity in the topology.

Another important aspect related to the components sizes is the increase in the tran-

sistors M1 and M2 widths difference, and also the decrease in M3 and M4. This changes

despite boosting the achieved gain, will also decrease the linearity and reduce the band-

width of the circuit.

Table 6.35: Transistors and Gains relationship in Wideband Optimization with Polariza-
tion.

RDS3 RDS4 NW NRDS
394 279 1.98 1.13

Having in mind the analysis results the taken conclusions from the obtained sizing

are also verified in in Table.6.36. It is possible to observe that the topology performance
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actually increased when compared with the previous implemented optimization methods.

The main issue is related to the decrease of the bandwidth and also the linearity which as

also decreased.

Table 6.36: Simulations results from Wideband Optimization with Polarization.

Analysis Results
S21max 13.7dB
S11min -31.2dB
IIP3 -5.81dBm
PDC 4.8mW
NFmin 2.8dB
BW 6.4GHz
∆V 0.1dB
AVCG 14.8dB
AVCS 14.7dB
FOM 9614

Figure 6.6: Simulation results for Wideband Optimization with Self-Polarization.

6.2.2.3 Conclusions

Considering the presented method and establishing a brief comparison between the other

implemented optimizations it is noticeable that, by introducing a self-polarization into

account, also increases the sizing rating. Although the search space increases widely and
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the number of iterations to obtain the optimal solution increases, the number of local

maximums also increases and gives more freedom to the GA to be able to find a adequate

sizing. The most important change in the polarization is due to the new sizing for the

VT une voltage source, which is responsible for the polarization of the active loads. By

decreasing its size, the gain and noise figure also decrease which takes the obtained results

to average ones. Another issue is related to the increase of the components size, that

decreased considerably the bandwidth of the architecture when compared with [1][10].

This shows that the GA has to deal with a lot of trade-offs that are not easy to fulfill, in

such a short number of iterations.

Having in consideration the low number of generations used by the GA, it is very easy

to conclude that it is almost impossible to achieve the best possible solution. Hypothet-

ically, the developed platform would be able to achieve a solution capable of outdoing

the State-of-the-Art presented optimizations, but when considering the amount of vari-

ables and solutions in the search space it is set as impossible when not having more

computational power.

Taking in account the changes provided through all optimization methods which were

previously presented, it is possible to establish a comparison between the State-of-the-Art

optimizations and the best obtained in all the presented methods, which is represented

in Table.6.37.

Table 6.37: Comparison of wideband balun LNAs optimizations.

Ref
BW
[GHz]

Gain
[dB]

NF
[dB]

Power
[mW]

IIP3
[dBm]

balancing?
Gain
imbal.
[dB]

V.
Sup.

Tech.

This Work 6.4 14.8 2.8 4.8 -5.9 Yes <0.5 1.2V 130nm
[1] 5.2 13-15.6 <3.5 21 >0 Yes <0.7 1.2V 65nm
[10] 5-10 12.4-20.2 2.6-3.2 4.8 -10.9 - 0.7 Yes <1.2 1.2V 130nm

From Table.6.37 is possible to observe that the obtained sizing stands in line with

the other related works. If the necessary number of generations to achieve the optimal

solution were able to achieve in a reasonable spent time, it is almost implicit that the GA

would be able to find a higher rated solution that the presented one.

In a brief summary for the obtained sizing result it is possible to verify that the pro-

posed platform may ensure a good and viable solution for the optimization process, if

computational power and spent time isn’t a major issue.
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7
Conclusions and Future Work

7.1 Conclusions

Considering the recent years, it is noticeable the increase of evolutionary algorithms

applied to optimization problems. In this thesis, a GA is proposed to optimize a CMOS

wideband LNA with noise cancelling[1][10].

Having in mind the previous studies around the circuit to optimize it is visible that

a relationship between the transistors and loads sizing can be altered for gain and noise

improvement purpose. Therefore, different optimization methods were implement in

order to obtain an optimal sizing for the components.

In chapter 5 are provided the implement optimization methods, as well as the ob-

tained results from each one. Establishing a comparison between the methods it is possi-

ble to conclude:

• N-Points Optimization- In this method only specific frequencies are considered for

the optimization purpose. The implemented simulations only consider the obtained

results from the selected frequencies, not providing the most accurate results for a

proper sizing of the circuit’s components. Another issue relates to the balancing of

the AVCG and AVCS which is not achieved properly in this optimization method.

• Wideband Optimization- This method considers a typical sizing of the components

in the circuit. The implemented simulations in this method are based on the maxi-

mum and minimum obtained results from the executed simulations, which ensure

a more properly adjusted results when compared with the previous method. By

including the circuit’s bandwidth in the fitness calculation of the individuals, con-

taining the components sizing, it is visible that the transistors and loads generated

size don’t tend to go to higher dimensions, thus affecting the bandwidth. Despite
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the better approach to the problem, the same issue regarding the balancing output

operation is also present in this optimization method.

• N-factor Optimization- In this method the approach is based on the study provided

from[1] where a N relationship between the size of the components is established

to boost the gain and reduce the noise effect in the circuit. Having that in mind the

generated dimensions of the transistors and loads are always generated based on a

N sizing relationship. Considering this fixed relationship it is clear to see that the

search space of the GA is drastically reduced resulting in a worse rating. Despite

the worse fitness rating, the differential outputs are much more accurate in terms

of the balancing operation.

• Wideband balancing Optimization- This optimization method is based on the pre-

vious implemented wideband method, with a different FOM for fitness calculation

purpose, capable of comparing both differential gains. With this method it is consid-

ered the difference between AVCG and AVCS , leading to a more accurate balancing

between both differential outputs.

• Wideband Optimization with Active Loads- This optimization is similar to the pre-

vious method, despite the adjusts required with the necessary changes regarding

the active loads which replaced the previously used resistors. Considering the cir-

cuit changes applied in this method, the search space for the GA to search for an

optimal sizing increases due to higher dynamic output resistance when consider-

ing the same DC voltage drop. This circuit changes lead to a higher rating when

compared with the previous optimization.

• Wideband Optimization with Self-Polarization- This method is based on the previ-

ous method, considering the changed resistors for active loads. The changes to the

previous method are related to the used polarization in the optimization process.

In this method the voltage and current sources are also added into the optimization

process, giving the GA a more freedom, thus increasing the search space. Consid-

ering this changes, the obtained results in this simulation are the highest rated and

when compared with the state-of-the-art presented works it is shown that the op-

timization platform was able to provide a well balanced sizing for the circuit, also

providing a good overall performance.

The main issue related to the implemented optimization methods relates to the executed

number of generations. Considering that the fitness calculation uses the provided results

from the simulations given by the Cadence Spectre, the spent amount of time from each

simulation makes the developed software a not so viable solution if the spent time is

a criteria with a relevant weight. Therefore, the shown results may not be the optimal

sizing due to the low number of iterations.
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Another issue relates to the initial population generated for each population, where

a trade-off between a reasonable number of individuals and time needs to be considered.

Since the increase of the initial population may provide better adjusted individuals, and

also guaranteeing that the GA does not end up in a local solution, the number of individu-

als in the initial population should be as high as possible, but on the other hand the spent

time in executing more simulations in not relevant individuals isn’t a good compromise.

Considering this issue the used solution was to add an individual with a known sizing,

where M1 =M2 and R1 = R2 or M3 =M4.

Taking in consideration each described optimization methods and their issues, it is

possible to conclude that each presented method increases the sizing rate considerably,

being the wideband optimization with self-polarization the one with the highest rated

individual. With all the developed methods, an eminent conclusion consists in the fact

that NW , 1 and NR , 1 showing that the different sizing relationship, between the

components, increases the circuits’ performance.

Considering the simulation results it is also possible to conclude that with different

relationship between the transistors and loads, the circuit’s gain is improved, as well as

the noise figure. Due to consumption and matching requirements, the difference between

M1 andM2 size is not that big, which limits the circuit’s gain but increases the bandwidth.

The difference between the loads also show that the GA tends to increase both sizes, but

with a relationship which considers the balancing output conditions.

In conclusion, the implemented optimization platform, is a viable tool for the pre-

sented circuits, which stands in conformity with the other state-of-art related works and

could easily be adapted to other LNA architectures.

7.2 Future Work

For future work purpose the following topics are suggested:

• Use the Cadence Cloud service in the optimization process, which would be able to

improve the simulations’ spent time. Also the idea of multiple simulations running

at once may be implemented.

• The circuits’ components and layout are described in files, as well as the simulations

results, which could be replaced for a more efficient method.

• Add the linearity study to the fitness evaluation process.

• Develop a more efficient way of providing the transistors and loads polarization, to

guarantee a higher rated fitness value.

• Integrate the platform with an online database to be able to save all the generations

information.
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• Add additional operators to the GA capable of reducing amount of non relevant

individuals.

• Search for other LNA topologies, and apply smaller CMOS technologies, that can

lead to better performance.
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I
Analysis Results from Cadence

I.1 N-Points Optimization

In this section are presented the analysis results from the best individual provided by the

N-Points optimization method.

Figure I.1: AVCG analysis in N-Points Optimization.
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Figure I.2: AVCS analysis in N-Points Optimization.

Figure I.3: S21 analysis in N-Points Optimization.
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Figure I.4: S11 analysis in N-Points Optimization.

Figure I.5: Z11 analysis in N-Points Optimization.
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Figure I.6: NF analysis in N-Points Optimization.

Figure I.7: S22 analysis in N-Points Optimization.
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Figure I.8: Z22 analysis in N-Points Optimization.

Figure I.9: IP 3 analysis in N-Points Optimization.
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I.2 Wideband Optimization

In this section are presented the analysis results from the best individual provided by the

wideband optimization method.

Figure I.10: AVCG analysis in Wideband Optimization.

Figure I.11: AVCS analysis in Wideband Optimization.
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Figure I.12: S21 analysis in Wideband Optimization.

Figure I.13: S11 analysis in Wideband Optimization.
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Figure I.14: Z11 analysis in Wideband Optimization.

Figure I.15: NF analysis in Wideband Optimization.
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I .2. WIDEBAND OPTIMIZATION

Figure I.16: S22 analysis in Wideband Optimization.

Figure I.17: Z22 analysis in Wideband Optimization.
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Figure I.18: IP3 analysis in Wideband Optimization.
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I.3 Wideband N-factor Optimization

In this section are presented the analysis results from the best individual provided by the

N-factor optimization method.

Figure I.19: AVCG analysis in Wideband N-Factor Optimization.

Figure I.20: AVCS analysis in Wideband N-Factor Optimization.
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Figure I.21: S21 analysis in Wideband N-Factor Optimization.

Figure I.22: S11 analysis in Wideband N-Factor Optimization.
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Figure I.23: Z11 analysis in Wideband N-Factor Optimization.

Figure I.24: NF analysis in Wideband N-Factor Optimization.
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Figure I.25: S22 analysis in Wideband N-Factor Optimization.

Figure I.26: Z22 analysis in Wideband N-Factor Optimization.
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Figure I.27: IP3 analysis in Wideband N-Factor Optimization.
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I.4 Wideband Balancing Optimization

In this section are presented the analysis results from the best individual provided by the

wideband balancing optimization method.

Figure I.28: AVCG analysis in Wideband Balancing Optimization.

Figure I.29: AVCS analysis in Wideband Balancing Optimization.
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Figure I.30: S21 analysis in Wideband Balancing Optimization.

Figure I.31: S11 analysis in Wideband Balancing Optimization.
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Figure I.32: Z11 analysis in Wideband Balancing Optimization.

Figure I.33: NF analysis in Wideband Balancing Optimization.
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Figure I.34: S22 analysis in Wideband Balancing Optimization.

Figure I.35: Z22 analysis in Wideband Balancing Optimization.
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Figure I.36: IP3 analysis in Wideband Balancing Optimization.
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I.5 Active Loads LNA-Wideband Optimization

In this section are presented the analysis results from the best individual provided by the

wideband optimization method considering the changes applied to the circuit’s loads.

Figure I.37: AVCG analysis Active Loads Wideband Optimization.

Figure I.38: AVCS analysis Active Loads Wideband Optimization.
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Figure I.39: S21 analysis Active Loads Wideband Optimization.

Figure I.40: S11 analysis Active Loads Wideband Optimization.
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Figure I.41: Z11 analysis Active Loads Wideband Optimization.

Figure I.42: NF analysis Active Loads Wideband Optimization.
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Figure I.43: S22 analysis Active Loads Wideband Optimization.

Figure I.44: Z22 analysis Active Loads Wideband Optimization.
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Figure I.45: IP3 analysis Active Loads Wideband Optimization.
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I.6 Active Loads LNA- Wideband Optimization with

Self-Polarization

In this section are presented the analysis results from the best individual provided by the

wideband optimization with self-polarization method considering the changes applied to

the circuit’s loads.

Figure I.46: AVCG analysis in Active Loads with Self-Polarization.
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SELF-POLARIZATION

Figure I.47: AVCS analysis in Active Loads with Self-Polarization.

Figure I.48: S21 analysis in Active Loads with Self-Polarization.
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Figure I.49: S11 analysis in Active Loads with Self-Polarization.

Figure I.50: Z11 analysis in Active Loads with Self-Polarization.
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I .6. ACTIVE LOADS LNA- WIDEBAND OPTIMIZATION WITH

SELF-POLARIZATION

Figure I.51: NF analysis in Active Loads with Self-Polarization.

Figure I.52: S22 analysis in Active Loads with Self-Polarization.
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Figure I.53: Z22 analysis in Active Loads with Self-Polarization.

Figure I.54: IP3 analysis in Active Loads with Self-Polarization.
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