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Abstract

Background. Uncertainty about climate change impacts on forests can hinder mitigation and
adaptation actions. Scientific enquiry typically involves assessments of uncertainties, yet different
uncertainty components emerge in different studies. Consequently, inconsistent understanding of
uncertainty among different climate impact studies (from the impact analysis to implementing
solutions) can be an additional reason for delaying action. In this review we (a) expanded existing
uncertainty assessment frameworks into one harmonised framework for characterizing uncertainty,
(b) used this framework to identify and classify uncertainties in climate change impacts studies on
forests, and (c) summarised the uncertainty assessment methods applied in those studies. Methods.
We systematically reviewed climate change impact studies published between 1994 and 2016. We
separated these studies into those generating information about climate change impacts on forests
using models —‘modelling studies’, and those that used this information to design management
actions—‘decision-making studies’. We classified uncertainty across three dimensions: nature, level,
and location, which can be further categorised into specific uncertainty types. Results. We found that
different uncertainties prevail in modelling versus decision-making studies. Epistemic uncertainty is
the most common nature of uncertainty covered by both types of studies, whereas ambiguity plays a
pronounced role only in decision-making studies. Modelling studies equally investigate all levels of
uncertainty, whereas decision-making studies mainly address scenario uncertainty and recognised
ignorance. Finally, the main location of uncertainty for both modelling and decision-making studies is
within the driving forces—representing, e.g. socioeconomic or policy changes. The most frequently
used methods to assess uncertainty are expert elicitation, sensitivity and scenario analysis, but a full
suite of methods exists that seems currently underutilized. Discussion ¢ Synthesis. The misalignment
of uncertainty types addressed by modelling and decision-making studies may complicate adaptation
actions early in the implementation pathway. Furthermore, these differences can be a potential barrier
for communicating research findings to decision-makers.

©2019 The Author(s). Published by IOP Publishing Ltd
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1. Background

Despite overwhelming evidence about climate change
impacts on natural and human systems (Cramer et al
2014), uncertainty about impacts is often perceived as
one of the main challenges for taking action on climate
change (Moser and Ekstrom 2010, Hanger et al 2013,
Yousefpour and Hanewinkel 2016). In forest manage-
ment, a key problem is that actions to maintain
ecosystem functions under a changing climate need to
be taken several decades earlier than their expected
effect (Spittlehouse and Stewart 2003, Millar et al
2007). Yet, uncertainties related to future forest
growth, the occurrence of disturbances, and mortality
complicate taking decisions about the most suitable
adaption and mitigation measures to implement
(O’Hara and Ramage 2013, Lindner et al 2014, Petr
et al 2016, Seidl et al 2017), e.g. which tree species to
plant. Furthermore, other drivers, such as future
policies and societal demands for forest services,
increase uncertainty about appropriate management
options.

Therefore, understanding and embracing uncer-
tainty is an important factor for successful climate
change adaptation and mitigation (Lindner et al 2014)
but a prevailing problem for many climate change-
related studies is how to grasp and report uncertainty
in their findings. Uncertainty is context and domain-
dependent, which influences how different scientists
recognise and deal with it (Bryant et al 2018). More-
over, the conceptualisation of uncertainty might differ
between studies, leading to different understandings
of what is meant by uncertainty or what is included in
its quantification—and hence reported in scientific
papers. For example, climate impact modelling studies
aim to, among others, represent processes and gen-
erate information using computer models. In terms of
uncertainty, modelling studies routinely quantify
uncertainties related to the imperfect knowledge of the
system under investigation (Uusitalo et al 2015,
Gray 2017, Marchand et al 2018). On the other hand,
studies exploring how users assess available informa-
tion and use it to make long-term decisions (hereafter,
‘decision-making’ studies) (Schmolke et al 2010) more
rarely quantify uncertainties. In particular, there is a
lack of studies investigating uncertainty of stakeholder
values or priorities about forest use. However, these
can strongly influence how foresters design and apply
adaptive management strategies (McDaniels et al
2012, Lawrence and Marzano 2014). Therefore, when
quantifying individual components of the ‘cascade of
uncertainty’ prevalent in climate impact studies (Jones
2000, Reyer 2013), its perception in the decision-mak-
ing processes is often ignored (Petr et al 2014a, Radke
et al 2017). This may be due on one hand to the large
number of external drivers containing unpredictable
factors, such as future stakeholders’ needs and policy
changes driven by stochastic human behaviour, that
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increase the complexity of decision-making studies.
On the other hand, while many methods are available
for estimating uncertainty in quantitative modelling,
such as the ‘Model-Independent Parameter Estimation
and Uncertainty Analysis (PEST)’ which constitutes
an uncertainty analysis method for environmental
modelling (Doherty 2015, http://pesthomepage.org/),
a smaller number of techniques have been suggested
for more qualitative decision-making studies. Also,
some widely used uncertainty frameworks have been
designed for classifying uncertainties in modelling stu-
dies (Walker et al 2003, Refsgaard et al 2007, Kwakkel
et al 2010), but to our knowledge only a few studies have
tested and developed frameworks for decision-making
studies (Ascough et al 2008, Petr et al 2014a). This imbal-
ance might lead to substantially different types of uncer-
tainties being covered by the different types of research.
In this review, we address the lack of knowledge
about which aspects of uncertainties prevail or are
missing in modelling and decision-making studies in
forest science, and how they differ in their under-
standing of uncertainty. To answer these questions, we
developed a new multi-dimensional uncertainty fra-
mework, which we used to systematically classify
uncertainties in modelling and decision-making stu-
dies published in the scientific literature. Finally, we
summarized uncertainty assessment methods applied
by those studies, to provide an overview of the meth-
ods at hand. Classifying uncertainty will not only allow
to better recognise, quantify and communicate it
(Walker and Marchau 2003, Nicol et al 2019, van der
Bles et al 2019) but also, and more fundamentally, help
to understand where knowledge gaps are, or how
much we know or do not know about a problem.

2. Conceptual framework

2.1. Uncertainty definitions

Uncertainty is a complex concept with multiple
definitions (Walker et al 2003, Refsgaard et al 2007,
Ascough et al 2008). Consequently, the literature offers
a broad range of meanings and interpretations of the
term. Table 1 provides examples of existing definitions
across different research fields, from general environ-
mental science to forest ecology and management.
These examples show an objective-subjective gradient
from natural to decision-making research disciplines.
Yet, in essence, uncertainty represents ‘any departure
from the unachievable ideal of complete determinism’
(Walker et al 2003), which is the broad definition we
also adopt in this paper.

2.2.Dimensions and types of uncertainty

Beyond this simple definition, uncertainty can be
categorised according to its dimensions or sources
(van Asselt and Rotmans 2002, Walker et al 2003).
These dimensions refer to the different ways in which
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Table 1. Examples of definitions and descriptions of uncertainty types.

Definition of uncertainty Research field Type of study References

‘Any departure from the unachievable ideal of complete na na (Walker etal 2003)
determinism™

‘Measure of unexplained variation’ Environmental research ~ Modelling (Lehmann and

Rillig2014)

‘Lack [of] confidence about knowledge relating to a specific Water management Decision-making  (Sigel et al 2010)
question’

‘The situation in which there is not a unique and complete Ecology Decision-making  (Brugnach et al 2008)
understanding of the system to be managed’

‘Large differences in the simplifying assumptions and para- Forest ecology Modelling (Cheaib etal 2012)

meter choices made in models’

* Denotes the main uncertainty definition used in this paper.

uncertainty can be understood, interpreted, and
addressed. In their conceptual basis for uncertainty
classification in model-based decision support sys-
tems, Walker et al (2003) defined three dimensions of
uncertainty: location, level and nature. The location
describes where in a method/model the uncertainty
occurs, e.g. in parameters or driving forces (see table 2).
The level describes the degree of knowledge available,
ranging from the ideal state of complete knowledge
(determinism) to the state of completely imperfect
knowledge (total ignorance). Finally, the nature
describes the reason for the lack of knowledge, either
from imperfect information (epistemic) or from
natural variability (stochastic). We expanded Walker
et al (2003)’s framework with additional uncertainty
types, which relate more closely to decision-making
processes. Specifically, we added the locations ‘model
selection’, ‘model implementation’, ‘information
selection/decision’ and ‘type of information outputs’
as well as the nature ‘ambiguity’ (after Kwakkel et al
2010). Table 2 presents each of the uncertainty types,
their definition and an example. To ensure the
relevance of our framework, we included each uncer-
tainty type in the framework only if we could provide
an example from the climate-forest nexus.

2.3. Uncertainty assessment methods

To understand how the different uncertainty dimen-
sions and types can be assessed, we complemented our
framework with existing methods for uncertainty
assessment from Refsgaard et al (2007). These contain
widely used quantitative methods such as scenario
analysis or Monte Carlo analysis, but also more
qualitative methods such as stakeholder involvement,
see figure 1. All 15 uncertainty assessment methods are
defined in table S1 is available online at stacks.iop.org/
ERL/14/113003/mmedia, with ‘other’ methods
added to the list. We note that the uncertainty
assessment methods by Refsgaard et al (2007), only
consider ‘sensitivity analysis’ in general terms. Yet,
there are differences between global and local sensitivity
analysis with global being much more useful in assessing
model/parameter uncertainty due to the considera-
tion of nonlinear effects and parameter (hierarchical)

relationships/interdependecies (McKenzie et al 2019).
Recent uncertainty assessment tools include most of
these quantitative methods (e.g. White et al 2016, Hartig
etal2019).

2.4. Uncertainty assessment framework

Based on previously published uncertainty assessment
frameworks (Walker et al 2003, Refsgaard et al 2007,
Warmink et al 2010), we developed a novel framework
to identify and classify uncertainties. Previous frame-
works have provided a comprehensive overview of the
multi-dimensionality of uncertainty including meth-
ods and application examples. However, they have not
integrated modelling and decision-making perspec-
tives into one coherent framework together with
applicable uncertainty assessment methods. To that
end, we compiled uncertainty dimensions and types
(described in table 2) as well as existing methods for
uncertainty assessment (table S1) into one uncertainty
assessment framework. This final uncertainty assess-
ment framework consisted of three dimensions of
uncertainty (level, nature, location) further charac-
terised by 17 uncertainty types and 15 assessment
methods (figure 1).

3. Methods

3.1. Literature search and review

We conducted a systematic review of uncertainty
related to climate change impact research in forest
science, with a focus on modelling and decision-
making studies. We used the Scopus database to search
for published, peer-reviewed scientific papers in
English. We used the search string ((climat™ change)
AND forest AND uncertain™ AND model™) for model-
ling studies, and replacing ‘AND model™ by ‘AND
management’ AND ‘behavior® OR attitude® OR
polic™ for decision-making studies. The search was
carried out by researchers based in Edinburgh, UK. It
yielded 1079 papers (78% modelling and 22% deci-
sion-making) published between 1994 and 2016. To
minimise the bias towards modelling studies, we
randomly selected 191 (i.e. 22%) modelling papers for
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Table 2. Descriptions and examples of uncertainty types classified across three uncertainty dimensions (location, level, and nature)
(expanded version from Walker et al 2003). New additional types proposed by this study are in italics.

standings of a system (Brugnach et al 2008)

Uncertainty
dimension Uncertainty type Description Examples from forest science
Location Context and framing Boundaries of the investigated system, i.e. Choice of study area and climate
processes and actors included scenarios
Driving forces Uncertainty about future drivers of change Changes in forest policy objectives or
outside of the studied system timber prices
System data Uncertainty about the physical description and Changes in future climate conditions
inherent behaviour of the system itself
Model structure Incomplete understanding or simplified Imperfect knowledge on how trees
description of modelled processes respond to changes in extreme
drought events
Technical model Arising from computer implementation of the Bugs or rounding-offs hidden in the
uncertainty model (software program) software or code
Model selection Uncertainty about which model to use or Selection of the most appropriate
further develop forest model for the studied forest,
from a range of available models
Model implementation Uncertainty about how to apply models in new Unsure if model structure or results
locations can be extrapolated to different
regions
Parameter uncertainty The a priori defined values or constants in the Regression coefficients for a tree mor-
model tality algorithm
Model output Accumulated uncertainty from all individual A total variance in timber volume
uncertainty modelling components estimates
Type of information Uncertainty in how the scientific evidence is Large range of classification bins in
outputs communicated the legend of a forest biomass map
Information selection/ Multiple available sources of information Multiple forest biomass maps
decision among which to choose responding to different climate
scenarios
Level Statistical Quantified using statistical metrics, such asa 95% confidence interval for esti-
confidence interval or sampling error mated timber prices
Scenario A plausible description of how the system with A range of climate scenarios deter-
its driving forces can develop in the future mining future tree growth rates
Recognised ignorance Awareness of the lack of knowledge about func- ~ Admitting complete ignorance about
tional relationships, which have not been the timber price of a specific tree
quantified or incorporated into the model or species in the 2080s
decision tool
Nature Epistemic Imperfect knowledge about the system Tree height measured only for a small
sample of trees - missing records
fromall trees in a forest
Stochastic/Aleatory” Inherent chaotic behaviour of natural or Chaotic nature of extreme weather
anthropic system (Walker et al 2003, events such as droughts, occur-
Warmink et al 2010) rence of fire ignitions
Ambiguity Coexistence of different equally valid under- Societal demand to a forest in the

2050s (e.g. timber production or
recreation).

* Both terms are being used interchangeably in the literature, we use stochastic throughout this manuscript.

further abstract scrutiny. After examining the abstracts
of all papers, we ended up with 69 modelling and 31
decision-making papers for further analysis.

For each paper we recorded the following attri-
butes: author(s), year of publication, type of paper
(primary research, review, other), spatial coverage
(local, regional, multi-country, continental, global),
and study area (country). We classified each paper,
into one of nine categories of research topics (carbon
balance, conservation/restoration, fire/drought/
pests, forest management planning, forest dynamics,

forest policy, mortality, species distribution, and oth-
ers). Only for decision-making papers, we recorded
information about the management stage that was stu-
died (operational & tactical, strategic & organisational,
and/or policy-making) (Oesten and Roeder 2012,
table S2).

We thoroughly reviewed each paper using our
uncertainty framework and captured all types of
uncertainty (nature, level, location, and their unique
combinations) identified therein, as well as the uncer-
tainty assessment methods used for each entry. If the
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Figure 1. Uncertainty assessment framework for identifying 17 uncertainty types across three dimensions (nature, level, and location)
and 15 assessment methods (after Refsgaard et al2007). NUSAP = Numeral, Unit, Spread, Assessment and Pedigree.

same combination of uncertainty types was addressed
with the same method, we only recorded the first one
reported. Hence, out of the 69 modelling and 31 deci-
sion-making papers, we extracted 139 and 65 unique
combinations of uncertainty types (table S3). We only
recorded uncertainties related to the actual research
carried out within the papers.

As the reviewing task was shared among co-
authors, we tried to reduce subjectivity in classifying

uncertainty types by having a cross-check of all entries
by the main author.

3.2. Analysis

First, we derived summary statistics for the publication
year, study area, spatial coverage, and research topic.
Second, we counted the number of papers addressing
each type of uncertainty, and tested whether the
reporting frequency of uncertainty natures and levels




10P Publishing

Environ. Res. Lett. 14 (2019) 113003

M Petr etal

Modelling studies

Scenario
_ Recognised
Q| Statistical ignorance
>
(]
o
Not.
available
Ambiguit
Ystochastic guity
3
-
©
2 . .
Epistemic

Figure 2. Combinations of uncertainty types across the nature and level of uncertainty in the total number of unique uncertainty types
in modelling (n = 139, left panel), and in decision-making studies (n = 65, right panel). Relative frequencies of nature and level both
differed significantly (p < 0.05) between modelling and decision-making studies (Chi-squared test).
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differed between modelling and decision-making
papers (Chi-square test). We did not compare loca-
tions, because these uncertainty types largely varied
between studies. Next, we compared the frequency of
unique combinations of nature x location and level x
location between modelling and decision-making
studies, as well as the frequency of uncertainty natures
and levels across different stages of management
(decision-making papers only). Finally, we identified
the most frequently used uncertainty assessment
methods for each nature and level of uncertainty.
Our analyses were conducted using the R language
and environment for statistical computing (R Core
Team 2018), especially the tidyverse package (Wickham
2017).

4, Results

4.1. Summary of reviewed papers

Out of the 69 modelling and 31 decision-making papers,
the majority were published after 2000 and 2004
respectively. Only three papers addressed uncertainty
from both the modelling and decision-making perspec-
tives. The studies covered all continents, with a pre-
valence of North American (41%) and European (27%)
studies. A large proportion of studies focused on
estimating carbon stocks and fluxes (25% of modelling
and 1% of decision-making), followed by risks of fire,
drought, and pests (10% and 7%), and forest manage-
ment (4% and 11%). The latter two topics were the most
frequent in decision-making studies. The dominant
spatial scales were regional and local, representing 52%
and 27% of all studies. However, modelling studies
covered a wider range of spatial scales including global
and continental-scale studies.

4.2. Uncertainty nature and level

When comparing unique combinations of uncertainty
types addressed by modelling and decision-making
studies, we found significant differences (p < 0.05)
across both nature and level (figure 2). Epistemic

uncertainty was the most frequent uncertainty nature
covered in both groups of studies, representing 86% of
modelling and 57% of decision-making entries. Ambi-
guity was relevant only for decision-making entries
(32%). For the uncertainty level, the modelling entries
were rather equally distributed with the highest
proportion associated to scenario uncertainty (35%);
in decision-making studies, the most represented
uncertainty level was recognised ignorance (35%)
followed by scenario uncertainty (26%).

Considering a classification across both level and
nature, we found a similar pattern for modelling and
decision-making studies, except for ambiguity
(figure 2). Modelling studies addressed epistemic uncer-
tainty equally across all three levels of uncertainty. Sto-
chastic uncertainty was only treated in combination
with statistical and scenario uncertainty, whereas ambi-
guity was equally associated to all three uncertainty
levels. In decision-making studies, a large proportion of
epistemic uncertainty could not be associated to any
level (‘not available’ in figure 2). Most entries dealing
with ambiguity were combined with assessments of sce-
nario uncertainty, while stochastic uncertainty com-
bined equally with all uncertainty levels.

4.3. Uncertainty location

The main locations addressed by modellers were
‘model parameters’ (26%), ‘inputs—driving forces’
(23%), and ‘model outputs’ (18%). For these three
locations, the most frequent nature of uncertainty was
scenario (for inputs—driving forces) or statistical (for
model parameters and outputs) (figure 3). Still, a non-
negligible number of entries reported on ‘recognised
ignorance’ for locations such as model structure (67%
of the respective entries), model parameters (39%) and
inputs—system data (33%). Very rarely did modelling
studies report uncertainty in ‘model implementation’
(1%). For modelling studies, epistemic uncertainty
was the preferred way to characterize all uncertainty
locations. Ambiguity, on the contrary, appeared only
at four locations.

6
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Figure 4. Relative proportion of uncertainty types across nature, level, and management stage (only for decision-making studies).

Decision-making papers mainly addressed ‘inputs—
driving forces’ (35% of entries) and ‘information selec-
tion or decision” (26%). Epistemic uncertainty was the
preferred way to characterize all locations. Regarding
combinations of location and level, ‘inputs’ and ‘context
and framing’ were never associated to statistical uncer-
tainty, which instead was sometimes used to characterize
uncertainty in ‘model outputs’ (13% of entries) and
‘information selection’ (12%). Recognised ignorance was

the most frequent uncertainty level for all uncertainty
locations.

4.4. Uncertainty types represented at different
management stages

The entries from the decision-making papers mainly
represented the ‘Operational’ management level (57%),
followed by ‘strategic & organisational’ (20%), and
‘policy-making’ stages (19%). Operational, strategic and

7
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Figure 5. Use of uncertainty assessment methods across uncertainty natures and levels. Blank cells indicate the absence of examples of

policy analyses were mostly linked to epistemic uncer-
tainty (figure 4). The entries dealing with operational and
strategic management were rather evenly distributed
amongst levels compared to statistical uncertainty, while
policy-making studies were mostly associated to recog-
nised ignorance.

4.5. Methods for uncertainty assessment

Distinct uncertainty assessment methods were used in
modelling and decision-making studies. In fact, only
three methods were used in both groups of papers:
expert elicitation, scenario analysis, and sensitivity
analysis (figure 5). Among these, only scenario analysis
was used for assessing stochastic uncertainty, while all
three were used in case of epistemic uncertainty and
ambiguity. Overall, a large suite of uncertainty assess-
ment methods (10) was used in modelling studies to
analyse epistemic uncertainty, five for ambiguity, and
four for stochastic uncertainty. In decision-making
studies, epistemic uncertainty was analysed using six
methods in total, ambiguity using four, and stochastic
uncertainty using three methods. All levels of uncer-
tainty were analysed by an equal number of methods
overall (nine). In modelling studies, the widest range
of methods was used for statistical uncertainty,
followed by recognised ignorance and scenario uncer-
tainty. In decision-making studies, scenario uncer-
tainty was associated to twice the number of methods
(six) as were statistical uncertainty and recognized
ignorance (three each). Scenario analysis, Monte Carlo
analysis, and multiple model simulations were the most

versatile methods, being applied at least once for every
uncertainty level and nature. Finally, five methods were
applied to only one uncertainty type, e.g. exploratory
modelling or error propagation equations.

5. Discussion

Our review of the scientific literature on climate
change impact and adaptation in forests showed a
multi-dimensional understanding of uncertainty,
which was described by different natures, levels, and
locations. Acknowledging this multi-dimensionality
can be crucial for understanding knowledge gaps in
modelling future climate impacts on forests, or analyz-
ing the decision-making process of forest stakeholders
under climate change. Moreover, understanding the
different dimensions of uncertainty can help mod-
ellers and decision-making scientists to identify what
types of uncertainty exist, how to communicate them,
and what would be necessary to reduce them, if
possible.

We have used the example of climate impacts on
forests but our framework is also useful for other areas
of climate impact science. The types of models used to
simulate climate impacts on forests and the types of
methods to assess uncertainties as well as our con-
ceptualisation of uncertainty are very similar to those
used in hydrology (Kundzewicz et al 2018), health
(Wardekker et al 2012), agricultural modelling
(Asseng et al 2013) or climate impact science in general
(Falloon et al 2014). Likewise are the management

8
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challenges inherently complex in these areas. How-
ever, forest management is also special because it deals
with long planning horizons and as uncertainty
increases over time (Augistynczik et al 2017). There-
fore, analysing uncertainty of forest management has
the potential to be a very informative framework to be
adopted and applied to other ecological systems.

5.1. Modelling versus decision-making studies

We found significant differences in understanding
uncertainty among modelling and decision-making
studies. These differences pinpoint towards a misa-
lignment of how the different study types address
uncertainty, and have the potential to misguide com-
munication of uncertainty when those studies are used
as evidence-base to support decisions.

Modelling studies mostly focus on epistemic
uncertainty, whereas addressing ambiguity and sto-
chastic uncertainty was less common. This highlights
that modellers strive to estimate how much uncer-
tainty about the system they model can be reduced by
using more accurate input information, improving
model structure (e.g. Cheaib et al 2012), or filling
knowledge gaps about ecological processes (e.g Littell
et al 2011). Decision-making studies addressed uncer-
tainty across a wider spectrum of natures than model-
ling studies. This reflects a broader view of the
problems that these studies investigate, as opposed to
the more targeted and narrower perspective typically
adopted by modelling studies. The modelling studies
seem to address more process-oriented uncertainties
while the decision-making studies deal with more pol-
icy-oriented uncertainties. In fact, decision-making
studies focused on forests as providers of services like
timber and/or recreation, broadening the boundaries
of their analysis to incorporate, for example, stake-
holder goals and forest policies (e.g. Lawrence and
Marzano 2014, Kemp et al 2015). On the contrary,
modelling studies investigate individual components
of forest structure or functioning, such as biomass
(Verkerk et al 2014), carbon sequestration (Petr et al
2014b), and forest productivity (Reyer et al 2014); or,
more recently, assess multiple forest benefits and their
interactions (e.g. Cantarello efal 2017, Mina et al 2017,
Ray et al 2017, Albrich et al 2018) but weakly integrat-
ing human needs and views that go beyond forest
management practices. Studies focusing on decision-
making also recognized epistemic uncertainty, e.g.
acknowledging the need to obtain better evidence of
the most effective adaptive forest management strat-
egy (e.g. Yousefpour et al 2012). However, ambiguity
was also well represented. Ambiguity has been identi-
fied as one of the key uncertainty dimensions in nat-
ural resource management (Brugnach et al 2008). In
forest management, ambiguity may emerge when
managers are unsure which tree species to plant, even
though they have evidence on how trees can grow in
the future (e.g. Lawrence and Marzano 2014). The
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wider acknowledgment of ambiguity in decision-mak-
ing studies can arise from decision problems being
inherently complex, especially when they involve
human decisions.

Decision-making studies addressed ambiguity
mainly through consultation with stakeholders, which
confirmed the broader system boundaries adopted
under this perspective (Kemp et al 2015). Conversely,
ambiguity was almost lacking in modelling studies,
suggesting that modelling is less likely to incorporate
multiple views and opinions. However, the recent
development of agent-based modelling is trying to
bridge this gap (Rounsevell et al 2012, Rammer and
Seidl 2015) and modellers are also starting to tackle
interdisciplinary questions and problems such as the
selection of suitable tree species for maximizing both
social and economic benefits. Hence we expect a rising
recognition of ambiguity in the modelling world.

Surprisingly, we found little evidence of stochastic
uncertainty being covered by either modelling or deci-
sion-making studies, even though a number of forest
questions related to random elements, such as the
exact occurrence and timing of extreme weather
events. Yet, probably this inherent stochasticity might
be too complex to be dealt with and communicated in
modelling and decision-making studies alike, as
opposed to epistemic uncertainties.

A second difference is that decision-making stu-
dies address preferentially higher levels of uncertainty
(i.e. recognised ignorance) if compared to modelling
studies, which spread evenly across all three levels.
This implies that decision-making studies, while con-
fident about quantifiable (statistical) uncertainty, also
acknowledge that a lot is still ‘known to be unknown’.
Adaptation or mitigation studies are influenced by
many aspects and acknowledging that something is
unknown (recognised ignorance) should be common.
The higher frequency of recognized ignorance in deci-
sion-making studies may suggest that scientists deal-
ing with decision-making are aware of the existing
evidence about the uncertainty surrounding the
impact of climate change on forests, but might strug-
gle to make sense of it (Lemos et al 2012).

In modelling studies, the uniform share of levels
indicates that modellers are aware of the existence of
multi-layered uncertainties. We found that statistical
uncertainty was mostly located in model outputs and
parameters, scenario uncertainty in the driving forces,
and recognised ignorance within the model parameters
(figure 3). These differences indicate that, depending on
the stage of the modelling process, diverse uncertainties
emerge and dictate which part of the system needs more
attention and the application of more complex calibra-
tion techniques (van Oijen 2017).

Finally, in decision-making studies we found clear
differences in both the number and the type of addres-
sed uncertainties going from the policy-making to
more operational management stages (figure 4). For
example, policy-making studies at the national scale
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have mainly dealt with recognised ignorance (known
unknowns), while operational studies at the local scale
identified all three uncertainty levels. This suggests
that at the national scale decisions are harder to make,
as they operate based on known unknowns, while
operational staff working at local scale, where mainly
‘statistical’ uncertainty is addressed, can make more
confident decisions.

5.2. Methods for uncertainty assessment
A range of methods are available for quantifying and
communicating uncertainty in environmental man-
agement (Refsgaard et al 2007). We find that modelling
studies use more methods to assess uncertainties than
decision-making studies, which highlights stronger
traditions in quantifying uncertainty in the modelling
community. Out of 15 main methods, we found that
only three methods-namely sensitivity and scenario
analysis, and expert elicitation are common to both
modelling and decision-making studies. Yet, given
their wide applicability, this is not surprising and
indeed these are promising methods for easier and
clearer communication of uncertainty related to
climate change. Scenario analysis, in particular, has
been used to quantify several types of uncertainty. This
method is very common in forest-related climate
impact studies (Petr et al 2014b, Reyer et al 2014, Ray
et al 2015) but also in a wide range of other climate
impact studies (e.g. Frieler et al 2017), likely due to the
simplicity of scenario development, analysis, and
communication. However, as our review shows, less
frequently used methods offer opportunities for
embracing a wider range of uncertainty types.
Furthermore, the dominance of methods for cap-
turing epistemic uncertainty highlights a lack of meth-
ods for assessing ambiguity and stochasticity, or more
difficulties in applying them. Among available meth-
ods for assessing ambiguity, only expert elicitation
(stakeholder involvement) seems to be adequate for
taking into consideration multiple views and frames
about the problem at hand. With the expected increase
of integrated models and interdisciplinary research
involving multiple types of uncertainty, either new
methods should be developed, or the current ones tes-
ted to capture and communicate ambiguity. Other-
wise, the modelling community might struggle to find
a common language with their model users, and
model results will be less likely to be picked-up by
users. Finally, we acknowledge that a similar analysis
based on papers in a different field, e.g. hydrology,
could have yielded a somewhat different set of meth-
ods to be used for uncertainty assessment reflecting
disciplinary preferences for certain methods.

5.3. Recommendations for modelling, policy and
management

Modelling and decision-making studies provide diverse
but valid knowledge about a system under study
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(Brugnach et al 2008). Building upon this review, we
provide recommendations that might help future mod-
elling and decision-making studies to increase clarity.
This clarity will help to formulate key messages and
better communicate uncertainty as required for thor-
ough policy making under climate change (Meah 2019).

Modelling studies should aim to increase the
usability of model results, while acknowledging differ-
ent uncertainty types, by:

+ Continuously improving model accuracy and redu-
cing epistemic uncertainty by, e.g. additional field
measurements, incorporation of big data from
remote sensing, and novel calibration and data
assimilation techniques.

+ When possible, providing easily interpretable mea-
sures of confidence in statistical models (such as
confidence or credible intervals) in combination
with the effect size of the response variable.

+ Being clear about which types of uncertainty they
are addressing or not, and then communicating
them properly.

+ Being clear about which uncertainty types a model is
trying to reduce, but also demonstrating when new
uncertainties can possibly emerge (i.e. surprising,
new relationship between variables).

+ Trying to model or incorporate broader uncertainty
natures, especially ambiguity, which are important
for decision-making and model users.

As current forest policies increasingly focus on mak-
ing forests resilient to environmental change (EU 2013,
Forestry Policy Team 2013), they inevitably have to deal
with a number of uncertainties associated with climate
change impacts on forests. To translate these policies
into practice and manage for resilient forests, it is impor-
tant to identify the key uncertainties and reduce them, if
possible (Allen et al 2011). For practical forest manage-
ment, to make future forests more resilient, manage-
ment plans need to incorporate uncertainties on climate
change impacts (Lindner et al 2014), e.g. about future
extreme weather events, pest and diseases, which cause
the most severe impacts and may strongly affect model
output’s accuracy (Littell et al 2011). Management plans
can include for example a scenario analysis, coming up
with strategical and tactical management options for
several alternative future climates. Another example
would be using stakeholder involvement to collect opi-
nions on the worst-case scenario, and plan accordingly,
following an approach consistent with a precautionary
principle. For decision-making studies, we therefore
provide the following recommendations:

+ Using available frameworks and methods to capture
all investigated uncertainties for easier communica-
tion with peers and model users.
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*+ Questioning which types of uncertainties models
and their outputs quantify.

+ Being open about the range of uncertainties that the
problem might involve—especially including
ambiguity.

+ Being aware of the model boundaries and about
what processes or components are ‘known
unknowns’, because model outputs and their inher-
ent uncertainties represent only a part of forest
ecosystem dynamics.

+ Acknowledging that recognised ignorance (as a
specific nature of uncertainty) is a common driver
in policy making.

+ Acknowledging, assessing and communicating
uncertainties (e.g. by scenario analysis) when devel-
oping policies for sustainable forest management
and adaptation under climate change (advisors).
Overall, uncertainties should not be perceived as a
barrier for action, but be acknowledged and com-
municated with ‘simple but not simplistic messages’
(Lindner etal 2014).

5.4. Limitations of the review

During this review, we made a number of assumptions
which have to be borne in mind when interpreting the
results. First, only a small proportion of the existing
literature on climate change impacts on forests was
captured by our search criteria. This means that
standardized uncertainty reporting is not at all a
common practice both in modelling and in decision-
making studies. Ultimately, most scientific studies
address uncertainty, because they bring a novel under-
standing of something that was previously unknown,
but most fail to acknowledge uncertainty in a struc-
tured way. Second, for each paper we recorded only
the first uncertainty assessment method applied to a
unique combination of uncertainty location, level, and
nature. As a consequence, we possibly omitted other
methods that would have been used for the same
unique combination. Still, due to our three-dimen-
sional framework, we believe that we identified the
majority of methods. Yet, given that our primary focus
was mostly on the uncertainty types, future research
on the exact use and applicability of uncertainty
assessment methods could shed further light on how
to address different uncertainty types. Third, our
uncertainty framework, which we developed before
the systematic review, is not comprehensive and might
be amended by future users. For example, through the
review, we came across new uncertainty types, which
were missing from the proposed uncertainty frame-
work and were classified as ‘not available’. These could
be classified by introducing ‘deep uncertainty’ as
another uncertainty level, placed just above ‘recog-
nised ignorance’ (Kwakkel et al 2010). Fourth, we
could not completely avoid publication bias, as well as
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a subjectivity bias by the different co-authors classify-
ing the papers (Haddaway and Macura 2018). To
reduce the latter, we followed a well-structured proto-
col for reviewing papers, which we discussed and
shared during several meetings—a common method
when conducting systematic reviews (Haddaway and
Macura 2018). Finally, we used a set of uncertainty
quantification methods that came from a modelling
background and hence heavily focused on modelling
studies (Refsgaard et al 2007). Even though we argue
that the Refsgaard et al (2007) quantification methods
are very comprehensive, they could be expanded to
account for other uncertainty quantification methods
suitable to the peculiar uncertainty dimensions that
must be addressed by this type of research (Ascough
etal2008).

6. Conclusions

This study presents a multi-dimensional recognition
of uncertainty in climate change impacts and adapta-
tion studies in forest science. The modelling and
decision-making studies we reviewed both typically
address a wide range of uncertainties, but not necessa-
rily the same ones. This mismatch highlights the need
for a more transparent and comprehensive treatment
and communication of uncertainty in scientific papers
given that modelling and decision-making studies
together should contribute to provide the evidence
basis for solving climate change adaptation problems.
Yet, trade-offs between which types of uncertainty to
address and investigate will remain, because not all of
them can be addressed in one study alone. Therefore,
we call for strategies or frameworks that clearly and
explicitly identify and communicate uncertainty
dimensions. Disregarding the different uncertainty
dimensions will likely lead to an imperfect commu-
nication of uncertainty, and, after all, to a sub-optimal
evidence basis for decision-making.
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