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Abstract—The paper describes analysis of nonlinear effects in a 

MOS transistor operating in moderate inversion and saturation. 

The dependence of the drain current on the gate-source and 

drain-source voltages is described using a modified version of the 

“reconciliation” model developed by Y. Tsividis. In the new model 

the current components, which correspond to the terms depending 

exponentially on normalized gate-source or drain-source 

modulating sinusoidal voltages, are presented using modified 

Bessel functions. This approach allows one to find the first, second 

and third harmonics of the drain current caused by the 

gate-source or drain-source voltage sinusoidal modulation, and 

find also the intermodulation terms produced by these two 

modulating voltages. The results are applied to set the 

requirements to the gate-source and drain-source bias voltages in 

design of low-distortion and/or low-voltage amplifiers. It is shown 

that the realization of the stage with the zero value of third order 

harmonic requires extremely tight tolerances for the threshold 

voltage. The suppression of intermodulation terms requires 

increased drain-source voltage. These recommendations are 

confirmed by simulations. 

 
Index Terms—MOS transistor model, moderate inversion, 

saturation, drain current harmonics, low-distortion/ low-voltage 

amplifier.  

I.  INTRODUCTION 

s anticipated over 30 years ago [1], MOS transistor 

moderate inversion is an increasingly important region for 

modern analog circuit design. It provides the best compromise 

in terms of consumption and speed, especially in low power and 

low voltage applications. 

     A very powerful method of analysis and design of linear 

analog integrated circuits with transistors operating in moderate 

inversion was described in [2]. This work initiated the analysis 

of many aspects [3-9]: voltage gain, thermal noise, and settling 

time of low power/low voltage amplifiers. Yet, in this 

development, due to the exponential dependence of the drain 

current on the gate-source voltage, the weak and moderate 

inversion regions were generally dismissed for low-distortion 
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applications [10] even though some properties of MOS 

transistors seemingly useful for design of low-distortion 

amplifiers were found in the course of years. 

     It was discovered in measurements [11] that when the 

gate-source voltage is modulated by a sinusoidal signal, the 

third harmonic of the drain current depending on bias may have 

two zero values. Other simulations and measurements [12] on 

the modern sub-micron devices suitable for RF applications 

indicated a significant peaking, or “sweet spot”, in the 

third-order intercept point, IP3, for the moderate inversion 

region. This gave a hope [12] that “a significant increase in 

linearity with low power consumption is possible”. Finally, the 

simulation of the drain current in a low-distortion amplifier [13] 

indicated that this “sweet” point may exist for IP2 as well.  

     Yet, these results cannot be directly applied to design of 

low-distortion amplifiers. The model which allows one to 

connect the transistor bias and the regions of operation with 

calculation of harmonic distortions was absent. The  /m Dg I  

characteristic so successfully used in design of linear circuits 

[14, 15] is not fully adapted for analysis of nonlinear distortions 

[16-18], because of the limitations occurring when Taylor 

series’ are used for nonlinear circuit design (a good example is 

dependence of the ‘sweet spot” on the signal strength 

overlooked in [12]). The Bessel functions used in this paper 

help to see better the effects when large amplitude sinusoidal 

signals are applied. 

     The first step in this direction was done in [19] where the 

authors tried to use the so-called ‘reconciliation’ model [20] for 

this purpose. But this approach, besides of being indirect (via 

the transconductance derivatives), was still used for evaluation 

of distortions in small-signal operation. Yet, many features of 

nonlinear behavior in this case are lost, for example, the 

dependence of performance on the signal strength when the 

signal may change the bias voltage. 

     The goal of this paper is to introduce further modifications of 

‘reconciliation’ model which result in using exponential and 

algebraic terms only. In this case, one can use the modified 

Bessel functions for calculation of harmonics. The analysis of 

third and second harmonic suppression follows. Using full 

modified “reconciliation” model allows one to calculate the 

intermodulation harmonics, and this is important for design of 

low-voltage amplifiers. The approach becomes suitable for 

analysis of wide range of nonlinear effects (some are included).    
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     In Section II we are giving a review of this new model and 

describing its further development for moderate inversion and 

strong saturation. We also give a clear distinction between the 

proposed model and the model used in /m Dg I approach. 

Section III describes the basic properties of modified Bessel 

functions required for calculations of harmonics. Section IV 

describes the harmonics due to the gate-source or drain-source 

modulations and the intermodulation harmonics occurring when 

both voltages are modulated and provides the formulas for 

harmonics calculation. Section V provides an example of 

harmonics calculations for common-source stage and 

establishes how the achievable reduction of the third or second 

harmonic is connected with tolerances of the transistor 

threshold voltage and gives recommendations on the choice of 

gate-source bias voltage. Section VI describes the influence of 

the drain modulation on the choice of the drain-source voltage. 

Section VII gives the application of the harmonics calculation to 

calculation of 1-dB compression point and shows how using 

Bessel functions clarifies two-tone test. Section VIII discusses 

the results and provides some conclusions. 

II. NEW TRANSISTOR MODEL  

      In the “reconciliation” model [20], the drain current DI of 

an n-channel transistor without body effect is described by the 

following equation  
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where 
2' )/(2 toxZ nLWCI  , qktt /)(  is the thermal 

voltage and THV is the threshold voltage. The substrate factor n  

will be approximated as [20]:  ]22/[1 FSBVn    

where   is the body-effect factor and F is the Fermi voltage. In 

the model (1), all voltages are taken with respect to the source. 

The term involving only the gate-source voltage GSV  (inversion 

term) is conveniently separated from the term including 

both GSV  and the drain-source voltage DSV (saturation term).  

The model (1) usually (for wide and long transistors) provides a 

good correspondence between theoretical, simulation and 

experimental results [21-22] in typical CMOS technologies. 

     If the saturation term can be neglected ( DSV is sufficiently 

high), the current can be approximated as 
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From (2) one can obtain that  
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where /m D GSg I V   . The eq. (3) is the basis for the above 

mentioned [2] /m Dg I   design approach (we are using in (3) 

slightly different current normalization).  

     Both (1) and (2) are   not well adapted for the analysis of 

nonlinear distortions when GSV  and DSV have the sinusoidal 

components.  Two expansions of logarithmic functions into 

series’ are convenient for further derivation. These are [23] 
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for | 1 | 1x   , and 
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for | 1 | 1x   . Then, using two terms of (4) with 
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   (with modified coefficients 1 and 

2 of second terms; the details can be found in [21]) one can 

find the modified model for the region of moderate inversion 

( GS THV V ) and saturation ( | | | |GS TH DSV V nV   ) as 
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where 1 (1 ln 2)    and 2
2 1 (ln 2)   . The subscripts in 

DMSI  mean the Drain current for Moderate inversion and 

Saturation (we suggest that the condition (2) is called “Deep 

saturation”).  

     Here the model (6) is even further simplified. The terms with 

1 and 2 are omitted, and the model is reduced to 
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(7) 

The omitted terms provide a continuous and smoother 

connection between the adjacent regions of operation (weak, 

moderate and strong inversion, different degrees of saturation). 

They do not change the techniques of harmonic calculations (the 

removed terms are also exponential); but the results with 

inclusion of these terms   will be more cumbersome and does not 

improve comparison with simulations. 

     The first two terms of (7) (with their sum squared) describe 

the transition from moderate to strong inversion [21]. The third 

term is calculated for | | | |GS TH DSV V nV   for the operation 

in (say, strong) saturation. This term may be used to calculate 



 

the transistor output impedance  
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One can develop the expression for /out Dg I which can be used 

in calculation of nonlinearities as well. This topic is outside the 

scope of this paper. 

     The velocity saturation is neglected in both models (1) and 

(7) and can be considered in the same way as it was considered 

in [20] for model (1), i.e. by inclusion of a channel-length 

modulation multiplier. 

     Here (7) is used for calculation of harmonics in the 

common-source (CS) stage (Fig. 1), and the voltages 

GSV and DSV  may have sinusoidal 

components tVv gmgs cos  and tVv dmds  cos . 
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Fig. 1 Common-source stage with gate and drain modulation 

III. MODIFIED BESSEL FUNCTIONS  

The calculation of harmonics using modified Bessel 

functions is based on the following [24] mathematical identities: 
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Here )(,...),(),( 10 xIxIxI n are modified Bessel functions of 

the first kind [24, 25, and 26]. In MATLAB routine they are 

available using script besseli(n,x); otherwise they can be 

calculated using the following series [24] 
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where )!1()(  kk is gamma-function for positive numbers.  

    The approximate expressions for the values of 1x   are 
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(in general, 
!
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n   (for 1n )). The approximations 

(12) are sufficient to avoid the assumptions of signal smallness 

in the considered electronics problem. An extensive table of 

these functions can be found in [24]. The relative values of 

higher order functions for the same value of x are quickly 

decreasing with respect to )(0 xI when the order n  is 

increasing (a useful property to remember for evaluation of the 

dominant intermodulation harmonic). 

IV. CALCULATION OF DRAIN CURRENT HARMONICS 

     Let the gate-source voltage include a sinusoidal component, 
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defines the harmonics of current caused by modulation of the 

gate-source voltage only, and which do not depend on the 

saturation term, and  
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defines the harmonics which appear when the drain-source 



 

modulation is added. Continuing calculations one arrives to the 

following four groups of harmonics 
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     We are using below the values of harmonics amplitudes 

normalized by the current ZI . The first group of harmonics are 

produced by the modulation of gate-source voltage only. Their 

normalized values are the following 
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The second group has the normalized amplitudes  
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They appear when both gate and drain modulations are present. 

For the amplifiers, the value of Y is negative; the region of 

saturation requires that THGSDS VVnV  00                                                            

and increasing 0DSV  suppresses these harmonics (see Sections 

V and VI below). In case of the gate-source modulation only 

they should be considered when 0DSV  is small (low-voltage 

power supply). Then, using (25), one must put 1)(0 yI .  

     The third group of harmonics appears also when the both the 

gain-source and drain-source modulations are present. The 

normalized harmonics amplitudes in this case are 
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In case of drain-source modulation only one has to put 

1)2(0 xI in calculations using (26). These components are 

also important in case of small values of 0DSV , and are 

suppressed increasing DSV  voltage (see Sections V and VI 

below again). 

     Finally, the last group, the normalized intermodulation 

harmonics IMH , are obtained from the expression 
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Using the tables in [24] or graphs in [26] one can find that the 

function )(1 xI increases faster than )(2 xI or )(3 xI (see also 

remarks under eq. (12)).  Hence, the intermodulation harmonics 

obtained from multiplication of the first terms in the square 

brackets of (27)  
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have usually the largest amplitudes. 

 

Table I. Intermodulation Harmonic Coefficients 

 tcos  t2cos  t3cos  

cos t  )()2(2 11 yIxI  )()2(2 12 yIxI  )()2(2 13 yIxI  

cos 2 t  )()2(2 21 yIxI  )()2(2 22 yIxI  )()2(2 23 yIxI  

cos3 t  )()2(2 21 yIxI  )()2(2 32 yIxI  )()2(2 33 yIxI  

       

     All other intermodulation harmonics can be obtained from 

(27) using the formulas of elementary trigonometry. It is 

convenient to use Table I; the multiplier 
Ye and the signs of the 

terms in the table are omitted. Yet, this multiplier indicates us 

that these harmonics can also be suppressed increasing the DSV  

voltage (see Section VI again). 

V. THIRD AND SECOND HARMONICS AND CS STAGE BIAS  

      In this part we consider calculations of harmonics for the 

transistor designed for 65 nm technology. The basic parameters 

of this technology are the following: THV 0.24 V, 

oxC 983 µA/V2 (extrapolated from the data in [22]), the 

substrate factor n 1.3, and the thermal voltage t 25.9 mV. 

The simulations are done for the device with the aspect ratio 

LW / 50µm/0.36µm. This gives the normalizing current of 

ZI 238 µA. The simulation dependencies considered in this 

part are obtained using the drain-source 1DSV  V (nominal 

voltage for this technology). 

      Assume that there is no drain modulation. The design of a 

low-distortion amplifier with low-power dissipation is, first of 

all, connected with searching the optimal bias point located in 

the region of moderate inversion and minimizing the third 

harmonic.  Let us see how the third harmonic of current is 

varying when the bias voltage 0GSV is changing. The eq. (7), 

with omitted saturation term, is describing the transition from 

moderate (exponential term in the first bracket of (7) is 

dominating) to strong inversion (the algebraic term is 

dominating). The border, GSTV , between these two regions can 

be found from the equation  

Xe X 
                                                                               (30) 

The solution of (30) is 567.0X which gives GSTV  0.278 V 

≈ 0.3 V. Hence, below this voltage the transistor operates 

definitely in moderate inversion. 

     Let us return to Eq. (24) and rewrite it as ∙ 



 

3 3 2 32 [ 2 ( ) ( ) (2 )]X XA e XI x xI x e I x                           (31) 

Calculating 3| |A as a function of the bias voltage GSV  (Fig. 2) 

for the above mentioned process parameters one observes that 

there are, indeed, two bias points where this harmonic becomes 

equal to zero. To find these points one has to solve the nonlinear 

equation   

3 2 32 ( ) ( ) (2 ) 0XXI x xI x e I x                                        (32) 

 

  
Fig. 2 Calculation of normalized third harmonic 

 

The left side of (32) is a function of both X (i.e. bias) and 

x (i.e. signal amplitude). Yet, one can separate these variables 

using approximations (12). Substituting them into (32) one finds 

that  
3

3
3 3( 3 4 ) ( )

12

X
Xx e

A X e x F X


                                        (33) 

where 3( ) [ ( 3 4 )] /12X XF X e X e     can be called the 

third harmonic distortion factor. Hence, if one chooses the bias 

voltage at the points defined by the equation 

3 4 0XX e                                                                   (34) 

the third harmonic amplitude becomes zero. The solutions of 

(34) are 1 0.451X  (corresponding to 1 0.270GSV  V) 

and 2 2.742X   (corresponding to 2 0.425GSV  V).  

     The first point is definitely located in the region of moderate 

inversion. To estimate the suitability of this point for biasing of 

a low-distortion amplifier, let us remark that using the bias 

voltage of 0 0.270GSV   V for moderate inversion means that 

this voltage is always larger than the threshold voltage THV . 

This requires an unrealistically tight tolerance of 10% for THV . 

Fig. 3 shows how the value of 3| |F changes when, with a given 

bias voltage, THV varies within chosen tolerance.  Then, for the 

tolerance of 10%, 0.216 V 0.268 VTHV  and, indeed, for 

the case of 0.24 VTHV  and 0 0.270 VGSV  (Fig. 3, black 

line) the amplitude 3| |F is equal to zero. But if THV is close to 

0.268 V the amplitude of 3| ( ) |F X  is quickly increases (read:  

 
Fig. 3 Bias voltage and threshold voltage tolerances 

 

the third harmonic distortion increases tremendously). 

     Similar observations should be done for other choices of the 

bias voltage. Using 0 0.320 VGSV  requires 25% tolerance for   

THV . Then 0.18 V 0.30 VTHV  , and if THV satisfies this 

condition, the maximal value of 3 max| | 0.0162F  located 

between 1X  and 2X . If the tolerance even wider (say, 50%, 

which is very realistic), i.e. 0.12 V 0.36 VTHV  , then, using 

0 0.37 VGSV   may give the increased values of 

3 3 max| | | |F F for transistors with high values of THV  (Fig. 3, 

blue line). Increasing the bias voltage one can finally find the 

bias voltage 0 0.385 VGSV  (Fig. 3, red line) which provides 

the value of 3| |F which is not exceeding the value 

of 3 max| | 0.0162F  for the whole possible range of  THV  

voltage.  

      Hence, Fig. 3 is the most important plot for the 

low-distortion one-transistor amplifier design. One concludes 

that using the first zero solution of (34) is practically impossible; 

it is better to rely on the value of the distortion 

factor 3 max| | 0.0162F  . Further increasing the bias voltage 

decreases 3| |F (see the result for 0 0.425 VGSV  ). But now the 

transistor dissipates more power, and the result is not so 

spectacular: the curve of 3| |F  around maximum is rather flat. 

     Now consider the contribution 3B  to the third harmonic (see 

(25)). If the drain voltage modulation is absent, one has to use 

0( ) 1I y  in calculation of this component. Then, using the 

approximation for 3(2 )I x  from (12) one obtains 

3
3 ( / 3)YB e x                                                                        (35) 

If it is desirable to suppress 3B with respect to 3A  one can 

introduce and specify the suppression coefficient  

3 3 3| | / | |dgS B A                                                               (36) 

Then, from (33) and (35) one finds that the required 

drain-source bias, 0DSV , can be obtained from the equation 



 

3 max 33 | |Y
dge F S                                                             (37) 

We remind that 0 0( ) / ( )GS TH DS tY V V nV n   , then, to be 

on a safe side, one has to use the lowest value of THV in the 

calculations of 

0 0
3max 3ln(3 )GS TH DS

dg
t

V V nV
Y F S

n

 
                         (38) 

     For example, for the considered case with 

0 0.385 VGSV  one must use min 0.120 VTH THV V   

(minimal value of the threshold voltage in case of 50% 

tolerance). Then, to obtain 3 0.01dgS  one finds that the 

required drain-source bias voltage 0DSV  0.257 V. This 

voltage is higher than (0.385-0.260) V=0.125 V which would be 

required to keep the transistor in saturation for the nominal 

value of the threshold voltage.  

     The evaluation of the second harmonic can be done in the 

same order which we used for the third harmonics. The eq. (23) 

can be rewritten as 

2

2 2 1

3 2

2 {2 ( ) [ ( )
2

( )] (2 )}

X

X

x
A e XI x x I x

I x e I x





  

 
                                     (39)

 

Fig. 4 shows the dependencies of 2A  from 0GSV , the bias 

voltage, and for the same signal amplitudes as in Fig. 3. Then, 

indeed, one can find the bias voltage for which the value of 2A is 

minimal. 

     Using (12) one finds that eq. (39) can be reduced to 

2 2
2

2 21 ( 2 2 ( , )
2 12

X Xx x
A e X e x F x X 

 
      

  

        (40) 

The multiplier 2( , )F x X practically does not change for the 

signal amplitudes shown in Fig. 4, i.e. one can write that 

 2 2
1

( , ) ( ) 1 2(1 )
2

X XF x X F X e X e      
 

                 (41) 

The function 2( )F X has the minimum of 2min ( ) 0.412F X   

located at 0.450X  corresponding to 0 0.270 VGSV  , and 

 

 
Fig. 4 Normalized second harmonic as the function of bias voltage 

      

the flat maximum of 2max ( ) 0.528F X  which is located at 

2.670X  corresponding to 0 0.420 VGSV  . 

     Usually, the main goal is minimization of the third harmonic 

amplitude 3| |A (with simultaneous minimization of power 

dissipation). But if it is required to evaluate a possible 

minimization of 2A one has to connect it with the  THV   

tolerances, as it was done previously.  

     Fig. 5 shows that the minimal value of 

2min ( ) 0.412F X  can be realized for a very narrow range of 

THV tolerances (even less than 10%); yet, the result will be only 

about 20% better than for the case of 50% tolerance. The only 

satisfying conclusion is that 2max ( ) 0.528F X   practically 

does not depend on bias in the range important for minimization 

of 3| |A .  

     The contribution 2B  to the second harmonic is given in (25).  

In the absence of the drain voltage modulation one has to use 

0( ) 1I y  in calculation of 2B . Then, using (12) for 2(2 )I x one 

obtains 

2
2

YB x e                                                                          (42) 

 
Fig. 5 Bias voltage and threshold voltage tolerances 

      

To quantify the suppression of this contribution, one can 

introduce and specify the suppression coefficient  

2 2 2| | / | |dgS B A                                                               (43) 

     If the choice of 0GSV is defined by conditions of design for 

the third harmonic, then one can consider that 

2
2 2maxA x F and calculate  

2 2max/Y
dgS e F                                                                    (44) 

Using (44) and the definition of 

0 0( ) / ( )GS TH DS tY V V nV n   one can find the required 

drain-source bias voltage, 0DSV , from the equation 

0 0
2 2maxln( )GS TH DS

dg
t

V V nV
S F

n

 
                              (45) 



 

To be on a safe side one must use 

min 0.120 VTH THV V  again in this calculation.  

     As follows from the above given analysis the choice of 

gate-source voltage for a low-distortion stage operation can be 

summarized the following way. 

  

 
   Fig. 6 Dependence of the third harmonic on bias voltage, Vgm=2 mV 

  

    The designer should assume that the first “sweet” point for 

the third and the “sweet” point for second harmonics require too 

tight tolerance for THV . From the other side, the bias voltage 

located between the “sweet” points of the characteristics shown 

in Fig. 2 and corresponding to the maximum value of 

3 max| ( ) |F X may provide a reasonable bias voltage at the 

condition that the corresponding level of the third harmonic and 

power dissipation are acceptable.  

     The most important parameter for the design is the threshold 

voltage: its nominal value THV , and its tolerance, i.e. the 

maximum, maxTHV , and minimum, minTHV , values (these two 

figures are usually difficult to provide). Then, using the nominal 

value of THV one has to find the value of X corresponding to  

 3( ) [ ( 3 4 )] 0.0162X XF X e X e                                 (46) 

The solution of this equation is 0.971X  , and the bias voltage 

corresponding to this normalized value is 0.31 VGSV  (all 

calculations are done for THV 0.24 V, n 1.3, and t 25.9 

mV). At this stage it is reasonable to simulate the stage using the 

device with the dimensions satisfying the condition of Y. 

Tsividis’ model (avoiding short and narrow channel effects) and 

carrying the current which will be used in the application.     

  An example of such characteristic is shown in Fig. 6.  The 

denormalized value of calculated current is obtained using the 

normalized values of Fig. 2 and multiplying them by 238 µA, 

the simulated values are obtained measuring the voltage drop at 

1 Ω resistor inserted in the drain circuit. Both the calculated and 

simulated characteristics are presented for 2 mVgsV  .  One 

can see that the simulated “sweet” point is sufficiently close to 

the calculated one. The point of the maximum is located at   

0.36 VGSV   which is also sufficiently close to the just 

calculated 0.31 VGSV  . The second “sweet” point is not 

pronounced (it exists, but is located at much higher gate-source 

voltages), yet this is not so important. We know that we have to 

take the gate-source voltage around 0.35 VGSV  and after that 

the only way to reduce the third harmonic is to increase GSV  

moving towards the second “sweet” point. A better choice 

would be 0.42 V or larger value (with higher power dissipation). 

       The tolerances for THV are usually not known. Yet, it is 

well known that THV depends on the channel length. One way to 

evaluate the influence of THV variation is to shorten 

simultaneously the width and the length of transistor. This does 

not change the parameter ZI , so the calculated characteristic 

will be the same. But the simulated characteristics can change 

drastically. Fig. 7 shows the result when the width and length 

both are shortened by two times. The location of the first 

“sweet” point is about 0.31 V now. And the maximal value is 

moved to 0.42 V. Hence, this simulation confirms once more 

that to rely on biasing in the “sweet” point is not advisable.  

    Then, using the chosen bias (in our case 0.42 V) one must 

verify that this point is tolerant with respect to the variation of 

the drain voltage, temperature and process variations (corners). 

 

 
Fig. 7 Dependence of the third harmonic on transistor length, Vgm=2 mV 

 

Then, if the requirements to the suppression of the harmonics 

components connected with the variation of the saturation part 

of the model are given, one has to correct (read: to increase) the 

drain-source bias voltage. 

     This, in general, finishes the recommendations on the 

common-source stage design.   

VI. INTERMODULATION  

     The simulation dependencies considered in this section are 

obtained for non-standard VDS voltages (below 1 V). The 

increase of this voltage mentioned before was a mean to 

suppress the variation of the saturation part of the model. 

    The presence of drain modulation, as shown in Fig. 1, 

changes the calculation of these components the following way. 

Using the approximations (12), with 0y  and this modulation 

signal which is comparable in amplitude with the input signal x  



 

one obtains that  

2 2
2 2| | ; | | ( / 4)Y YB e x D e y                                                  (47)                                                                                                                 

so that the total value of this second harmonic component 

becomes  

22
2 2

2 2| | | | 1
4 4

dgY Y
Ky

B D e x e x
  
      
     

                 (48) 

Here | | / | |dgK y x . In a similar way one obtains that  

3 3
3 3| | ( / 3); | | ( / 24)Y YB e x D e y                                    (49)                                               

The total value of this third harmonic component becomes  

33 3 3

3 3| | | | 1
3 24 3 8

dgY Y
Kx y x

B D e e
  
      
     

                 (50) 

One can see that the presence of drain modulation, in case of 

high level of modulating signal can be also taken care of by 

increasing the suppression coefficients 2dgS  and 3dgS , i.e. 

increasing the drain-source voltage. 

 

Table II Values of intermodulation coefficients 

 tcos  t2cos  t3cos  

cos t  xy  2( ) / 2x y  3( ) /12x y  

cos 2 t  2( ) / 4xy  2 2( ) / 8x y  3 2( ) / 24x y  

cos3 t  3( ) / 24xy  2 3( ) / 48x y  3 3( ) /144x y  

 

The suppression of intermodulation harmonics is achieved in 

the similar way.  Table II gives the values of the intermodulation 

coefficients when the approximations (12) are used for the 

entries in Table I. Recurring to these approximations allows one 

to evaluate the dominant intermodulation term very quickly: for 

the same level of the input signal and drain modulation it will be 

the upper left corner. If the requirement to the suppression are 

formulated (say, with respect (to the level of gate-source 

modulation) one can define the required drain-source voltage 

increase using the same type of calculation as was used for the 

drain modulation suppression. 

     The harmonic 3A , in accordance with eq. (25) does not 

depend on DSV voltage; but the harmonics 3B and 3D , and, 

especially, all intermodulation harmonics strongly depend on 

this voltage. To demonstrate this dependence, Fig. 8 

compares IMH   (black line), 3B (red line), 3D (blue line), 

and 3A (dashed line). All are normalized values obtained for 

5 mVgm dmV V  .   

  Let us consider the range 0.32 V 0.40 VGSV  which is 

preferable for low distortion amplifier. 

      Fig. 8 a) is calculated for 0.2 VDSV  . For this drain 

voltage, with 0.24 VTHV  and 1.3n  , transistor will work in 

saturation. But for these voltages, the intermodulation distortion 

is strongly dominating (it may have the amplitude which is one 
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Fig. 8 Comparison of intermodulation amplitude with third harmonic 

                and its components: a) VDS=0.2 V, b) VDS=0.3 V, c) VDS=0.4 V 

  

order of magnitude higher than that of 3| |A  ), and even 

components 3B  and 3D have the amplitudes which may be 

higher than that of 3A . This means that, even in the absence of 



 

the drain-source modulation, they may define the choice of 

DSV voltage. To reduce the level of the intermodulation 

harmonic to that of 3A  one must increase the drain-source to 

0.3 VDSV  (Fig. 8 b)). And only when the drain-source 

voltage is increased to 0.4 VDSV  (Fig. 8 c)) the 

intermodulation harmonic becomes lower than 3A  and one can 

neglect the components 3B  and 3D . 

     The diagrams of the Fig. 8 can also be interpreted the 

following way. The third harmonic components 3B  and 3D  

and intermodulation current IMH  are completely 

suppressed when the drain-source voltage increases further. But 

the third harmonic 3A  does not depend on this voltage. Let us 

look now at the results of simulation at one particular case of 

gate-source voltage.  

      Table III shows the result of simulation for the transistor 

50um/0.36um with 0.35 VGSV  and modulation signals 

5 mVgsV   ( 100 MHzf  ) and 

5 mVdsV  ( 110 MHzf  ). One can see that, indeed, the third 

harmonic, at   0 . 3 VDSV  becomes close to 

3 3 1.6 nAZI I A   (this figure can be verified using Fig. 6 and 

multiplying the value for 0.32 VGSV   by 2.53=15.6), then 

slowly increases with the growth of the drain-source voltage. 

But 10MHzI is, first, dominating 3I below 0.3 VDSV  and, 

second, arrives to its final “asymptotic” value instead of being 

further suppressed, when DSV becomes about 0.5 V.  

 

     Table III Suppression of harmonics 

DSV , V 0.2 0.3 0.4 0.5 0.6 0.7 

3I , nA 3.77 1.40 1.44 1.50 1.60 1.69 

10MHzI ,nA 285 96.0 90.6 88.7 87.4 86.4 

      

     This “asymptotic” value, in accordance with the used model, 

does not exist, and one can verify that the values for 

10MHzI shown in the Table III for GSV  values below 0.3 V are 

much higher than that calculated in accordance with the model. 

The proposed simplified model does not provide correct level of 

intermodulation distortion: it does not indicate the drain-source 

independent “asymptotic” value of this distortion. This 

limitation can be corrected using the multiplier representing the 

channel length modulation factor as it is proposed in [20]. This 

multiplier, in the analysis of harmonic distortions, will provide 

the term required for non-attenuated intermodulation distortion. 

The complexity of derivation will increase, yet this derivation 

will be “doable’ considering the results obtained already in this 

paper. This could be the matter of further development.  

VII. OTHER APPLICATIONS 

a) 1-dB compression point 

     The obtained expressions for harmonics allow to evaluate 

one important parameter, the so-called 1-dB compression point. 

The total first order harmonic of the drain current is given by  

1 1 1 0 2

2
1 1 0

2 4 ( ) 2 [ ( ) ( )]

2 (2 ) [2 (2 ) ( )]

X X

X Y

A B Xx Xe I x xe I x I x

e I x e I x I y

 



    

 
         (51) 

Consider 2X  as a linear gain. Then, in the absence of the 

drain-source modulation, 0( ) 1I y  , and the normalized bias 

1X  . This allows one to write that 
2

1 1 12 2 (2 ) [2 2 (1 )]
2

Y Y x
A B Xx e I x X e x     

(52)                                              

Then the input signal creating 1-dB compression point can be 

found from the expression 

2
1.122

(1 / 2)Y

X

X e x


 
                                                    (53) 

     Normally, Y is negative. But if it close to zero (low DSV ) , 

the signal x creating 1-dB compression point is decreasing.  

b) Two-Tones Intermodulation Test 

     The two-tone intermodulation test for evaluation of 

nonlinearity in narrow-band amplifiers consists of introducing 

two sources of the same amplitude but with different and close 

frequencies in the input circuit and finding the terms defining 

the intermodulation. 

     Choose the stage size using (3) as in /m Dg I design method. 

Then, one can return back to (2) and find the current DI . 

Let 0 1 2cos cosGS GS gm gmV V V t V t    . Doing the same 

normalization as in Section IV one can write 

1 2
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                               (54) 

Let the bias is chosen so that (54) can be approximated as  
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Now one can use the expansion (15) and write 
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                           (56) 

From this expression one can choose the terms which provide 

the most dangerous intermodulation components. 

2
1 2

1 2 1 2

1 2 0 2 1 2

1 2

( cos cos )

2 [... 4 ( ) ( )(cos cos 2

cos 2 cos ) ... 2 ( ) ( ) (cos cos 2

cos 2 cos ) ...]

DMS Z

X
Z

I I X x t x t

I e XI x I x t t

t t I x I x x t t

t t

 

 

   

 



  

 

  

 

     (57) 



 

      Using (12) one can rewrite (57) as  
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Then, eq. (58) shows that one can choose the bias 

1X  (i.e. 0 2GS TH tV V n  ), and the terms introducing 

intermodulation will disappear. One can analyze this bias point 

and find that the designer should not rely on operation in this 

point. It is more reliable to increase X (i.e. to move towards 

strong inversion) to suppress the intermodulation terms. 

     In addition, it was demonstrated how to connect the 

proposed method of nonlinearities analysis with /m Dg I design 

method.  

VIII. DISCUSSION AND CONCLUSIONS 

     The proposed method of harmonics calculation became 

possible after essential modification of the initial Tsividis’ 

model. The new model (7) embraces both moderate and strong 

inversion. In [27] it was shown how to apply this model for 

static characteristics of integrated circuits. This model includes 

the saturation term which is important for calculation of 

intermodulation components and design of low-voltage 

amplifiers. 

  The new model allows one to use the modified Bessel 

function for calculation of the drain current harmonics. The 

calculations, for the DC component and the first, second, and 

third harmonic, are reasonably simple, and, what is more 

important, these calculations do not require any assumption 

about the smallness of the amplitude of the applied signal. The 

application of modified Bessel functions for calculation of 

harmonics is simplified when the MATLAB program is 

available (which is nowadays, fortunately, the case because this 

program is a part of nearly all design programs). 

      Using this approach one can calculate the dependence of the 

third harmonic amplitude on bias and find that, for a nominal 

value of the threshold voltage, there are two gate-source bias 

voltages where the third harmonic amplitude becomes zero. The 

first bias point is located at the beginning of the moderate 

inversion region. Yet, using this point to realize a low-distortion 

amplifier requires a very tight tolerance, not achievable in 

practice, for the threshold voltage.  In addition, one can show 

[28] that for very large signal amplitudes, when one must use the 

eq. (34) and the approximations (12) are not sufficient, the first 

“sweet” point depends on the signal strength as well. The 

second “sweet’ point does not require a tight tolerance for the 

threshold voltage and can be used for design of low distortion 

amplifier. Yet, this point is located in the range of strong 

inversion. The investigation indicates that one can operate the 

stage after the first “sweet” point with a reasonably constant 

amplitude of the third harmonic independent on the threshold 

voltage variations. This choice provides some reduction for the 

power dissipation. 

  The same approach indicates that there is a gate-source bias 

voltage where the second harmonic has a lower value in 

comparison with other bias points. Yet, the realization of an 

amplifier with reduced second-order harmonic requires again an 

unusually tight tolerance for the threshold voltage.  

  If one is not hunting for the “sweet” points, the design of 

low-distortion stage is simple. The bias providing operation 

between these “sweet” points defines the level of third harmonic 

distortion. As soon as this bias is accepted one can calculate the 

drain-source voltage required for accepted level of the drain 

modulation. This basically finishes the design of a CS stage 

operating in low power and low distortion amplifiers.    

The proposed analysis can be added to /m Dg I  design 

approach. To do this one has to go back to the transistor model, 

i.e. to move back from (2) to (1) and make the corresponding 

model modifications. In fact, we demonstrated this doing the 

calculations in the second part of Section VII. The necessity to 

return back to transistor model was realized also in [18] but the 

analysis used there was still a small-signal analysis. This 

integration of the proposed analysis with /m Dg I  design 

method is considered as a matter of the future work, and the first 

step which we are going to do in this direction is to obtain the 

expression for  /out D DSg I V   (using the analogy between 

derivation of (3) from (2) and operating with the second term in 

Tsividis’ model.  
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