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Abstract. The norm in classical Sobolev spaces can be expressed as a difference quo-
tient. This expression can be used to generalize the space to the fractional smoothness
case. Because the difference quotient is based on shifting the function, it cannot be used
in generalized Orlicz spaces. In its place, we introduce a smoothed difference quotient
and show that it can be used to characterize the generalized Orlicz–Sobolev space. Our
results are new even in Orlicz spaces and variable exponent spaces.

1. Introduction

Bourgain, Brézis, and Mironescu [6, 7] studied the limit behavior of the Gagliardo
semi-norms

||f ||pW s,p =

�
Ω

�
Ω

|f(x)− f(y)|p

|x− y|n+sp
dx dy, 0 < s < 1,

as s→ 1, and established the appropriate scaling factor for comparing the limit with the
Lp-norm of the gradient of f . They characterized the Sobolev space W 1,p and proved the
convergence of certain imaging models of Aubert and Kornprobst [2] to the well-known
total variation model of Rudin, Osher, and Fatemi [35]. Our aim in this paper is to extend
the characterization to generalized Orlicz spaces defined on open subsets of Rn.

Generalized Orlicz spaces Lϕ(·) have been studied since the 1940’s. A major synthesis
of functional analysis in these spaces is given in the monograph of Musielak [31] from
1983, for which reason they have also been called Musielak–Orlicz spaces. These spaces
are similar to Orlicz spaces, but defined by a more general function ϕ(x, t) that may vary
with the location in space: the norm is defined by means of the integral�

Rn
ϕ(x, |f(x)|) dx,

whereas in an Orlicz space, ϕ would be independent of x, ϕ(|f(x)|). When ϕ(t) = tp, we
obtain the Lebesgue spaces, Lp. Generalized Orlicz spaces are motivated by applications to
image processing [10, 23], fluid dynamics [37], and differential equations [4, 20]. Recently,
harmonic analysis in this setting has been studied e.g. in [15, 25, 29].

We have in mind two principal classes of examples of generalized Orlicz spaces: vari-
able exponent spaces Lp(·), where ϕ(x, t) := tp(x) [14, 17], and dual phase spaces, where
ϕ(x, t) := tp + a(x)tq [3, 4, 5, 8, 9, 11, 12, 13, 34]. It is interesting to note that our
general methods give optimal results in these two disparate cases, cf. [25]. Also covered
are variants of the variable exponent case such as tp(x) log(e+ t) [20, 30, 32, 33].

It is not difficult to see that a direct generalization of the difference quotient to the non-
translation invariant generalized Orlicz case is not possible [27, Section 1]. For instance
Besov and Triebel–Lizorkin spaces in this context have been defined using Fourier theoretic
approach [1, 18]. Hästö and Ribeiro [27], following [16], adopted a more direct approach
with a smoothed difference quotient expressed by means of the sharp averaging operator
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M#
B(x,r). This is the general approach adopted also in this paper. This paper improves

[27] in three major ways:

1. Instead of variable exponent spaces, we consider more general generalized Orlicz
spaces;

2. Instead of Rn, we allow arbitrary open sets Ω ⊂ Rn; and
3. In our main result, we relax the technical assumption f ∈ L1(Ω) to its natural form;

i.e., f ∈ L1
loc(Ω).

The latter two generalizations have been previously established in the case Lp by Leoni
and Spector [28], see also [19, Section 1]. In order to achieve these goals, the methods of
the main results (Section 4) are completely different from those in [27] and involve a new
bootstrapping scheme.

We introduce some notation to state our main result. We refer to the next section for
the precise definition of Lϕ(·) and the assumptions in the theorem. Let Ω ⊂ Rn be an
open set, ϕ ∈ Φw(Ω), and ε > 0. Let ψε be a set of functions such that

(1.1) ψε ∈ L1(0,∞), ψε > 0,

� ∞
0

ψε(r) dr = 1,

and, for every γ > 0,

(1.2) lim
ε→0+

� ∞
γ

ψε(r) dr = 0.

We define a weak quasi-semimodular, %ε#,Ω(f), on L1
loc(Ω) by setting

%ε#,Ω(f) :=

� ∞
0

�
Ωr

ϕ
(
x, 1

r
M#

B(x,r)f
)
dxψε(r) dr

for f ∈ L1
loc(Ω), where Ωr := {x ∈ Ω : dist(x, ∂Ω) > r} and

M#
B(x,r)f :=

 
B(x,r)

|f(y)− fB(x,r)| dy with fB(x,r) :=

 
B(x,r)

f(y) dy.

The associated quasi-norm, ‖f‖ε#,Ω, is defined by

‖f‖ε#,Ω := inf
{
λ > 0 | %ε#,Ω(f/λ) 6 1

}
.

The following is our main result stated for a Φ-function—it is also possible to state it
for weak Φ-functions, see Theorem 4.6. The proof follows from Propositions 4.1 and 4.5.

Theorem 1.1. Let Ω ⊂ Rn be an open set, let ϕ ∈ Φ(Ω) satisfy Assumptions (A), (aInc),
and (aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2). Assume that
f ∈ L1

loc(Ω). Then,

∇f ∈ Lϕ(·)(Ω;Rn) ⇔ lim sup
ε→0+

%ε#,Ω(f) <∞.

In this case,

lim
ε→0+

%ε#,Ω(f) = %ϕ(·),Ω(cn|∇f |) and lim
ε→0+

‖f‖ε#,Ω = cn‖∇f‖ϕ(·),Ω,

where cn :=
�
B(0,1)

|x · e1| dx.

Remark 1.2. Note that the previous result is new even in the case of classical Orlicz
spaces. In this case, Assumption (A) automatically holds.

2



Remark 1.3. In the case ϕ(x, t) = tp(x), Assumptions (A0) and (loc) always hold,
while Assumptions (A1) and (A2) are equivalent to the local log-Hölder continuity and
Nekvinda’s decay condition, respectively. Moreover, if p− := infx∈Ω p(x) > 1, then (aInc)
holds; and if p+ := supx∈Ω p(x) <∞, then (aDec) holds.

2. Preliminaries

This section is organized as follows. In Subsection 2.1, we collect some notation used
throughout this paper. Then, in Subsection 2.2, we recall the definition of Φ-functions
and of some of its generalizations; we recall also the associated Orlicz spaces, norms, and
semimodulars. Finally, in Subsection 2.3, we introduce and discuss our main assumptions
on the (generalized weak) Φ-functions and relate them with other assumptions in the
literature. We conclude by proving two auxiliary results, Lemmas 2.11 and 2.12. The
first one can be interpreted as a counterpart in our setting of the weighted power-mean
inequality for the function ϕ(x, t) = tp for some p > 1; the second one is a Jensen-type
inequality in the spirit of [25, Lemma 4.4] and [27, Lemma 2.2].

2.1. Notation. We denote by Rn the n-dimensional real Euclidean space. We write
B(x, r) for the open ball in Rn centered at x ∈ Rn and with radius r > 0. We use c as
a generic positive constant; i.e., a constant whose value may change from appearance to
appearance. If E ⊂ Rn is a measurable set, then |E| stands for its (Lebesgue) measure
and χE denotes its characteristic function; we denote by L0(E) the space of all Lebesgue
measurable functions on E.

Let g, h : D ⊂ Rm → [0,∞] be two functions. We write g . h to mean that there
exists a positive constant, C, such that g(z) 6 Ch(z) for all z ∈ D. If g . h . g, we
write g ≈ h. Also, given a sequence (gε)ε of non-negative functions in D, the notation
limε→0 gε ≈ h means that there is a positive constant, C, such that 1

C
h 6 lim infε→0 gε 6

lim supε→0 gε 6 Ch in D; i.e., for the equivalence we do not require the limit to exist, only
the upper and lower limits to be within a constant of each other.

Moreover, if D = [0,∞), we say that g and h are equivalent, written g ' h, if there
exists L > 1 such that for all t > 0, we have h( t

L
) 6 g(t) 6 h(Lt). In this case, L is said

to be the equivalence constant.
Let ϕ : [0,∞)→ [0,∞] be an increasing function. We denote by ϕ−1 : [0,∞]→ [0,∞]

the left-continuous generalized inverse of ϕ; that is, for all s ∈ [0,∞],

(2.1) ϕ−1(s) := inf{t > 0|ϕ(t) > s}.

Let Ω ⊂ Rn be open, let ϕ : Ω× [0,∞) → [0,∞], and let B ⊂ Rn. Then, ϕ+
B : [0,∞) →

[0,∞] and ϕ−B : [0,∞)→ [0,∞] are the functions defined for all t ∈ [0,∞) by

ϕ+
B(t) := sup

x∈Ω∩B
ϕ(x, t) and ϕ−B(t) := inf

x∈Ω∩B
ϕ(x, t).

Note that if ϕ(x, ·) is increasing for every x ∈ Ω, then so are ϕ+
B(·) and ϕ−B(·); thus, these

functions admit a left-continuous generalized inverse in the sense of (2.1).

2.2. Φ-functions and generalized Orlicz spaces. We start this subsection by in-
troducing the notion of almost increasing and almost decreasing functions, after which we
recall the definition of Φ-functions and of some of its generalizations.

Definition 2.1. We say that a function g : D ⊂ R → [0,∞] is almost increasing if
g(t1) 6 c g(t2) for every t1 6 t2 in D and some c. We say that c is the monotonicity
constant of g. Almost decreasing is defined analogously.
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Definition 2.2. Let ϕ : [0,∞) → [0,∞] be an increasing function satisfying ϕ(0) =
limt→0+ ϕ(t) = 0 and limt→∞ ϕ(t) =∞. We say that ϕ is a

(i) weak Φ-function if t 7→ ϕ(t)
t

is almost increasing.
(ii) Φ-function if it is left-continuous and convex.

We denote by Φw the set of all weak Φ-functions and by Φ the set of all Φ-functions.

Remark 2.3. If ϕ ∈ Φ, then, by convexity and because ϕ(0) = 0, for 0 < t1 < t2,

ϕ(t1) = ϕ( t1
t2
t2 + (1 − t1

t2
)0) 6 t1

t2
ϕ(t2); thus, t 7→ ϕ(t)

t
is increasing. Hence, Φ ⊂ Φw.

Conversely, if ϕ ∈ Φw, then there exists ψ ∈ Φ such that ϕ ' ψ [22, Proposition 2.3].

Definition 2.4. Let Ω ⊂ Rn be an open set, and let ϕ : Ω × [0,∞) → [0,∞] be a
function such that ϕ(·, t) ∈ L0(Ω) for every t ∈ [0,∞). We say that ϕ is a

(i) generalized weak Φ-function on Ω if ϕ(x, ·) ∈ Φw uniformly in x ∈ Ω; i.e., the
monotonicity constant is independent of x.

(ii) generalized Φ-function on Ω if ϕ(x, ·) ∈ Φ for every x ∈ Ω.

We denote by Φw(Ω) and Φ(Ω) the sets of generalized weak Φ-functions and generalized
Φ-functions, respectively.

By this definition, it is clear that properties of (weak) Φ-functions carry over to gener-
alized (weak) Φ-functions point-wise uniformly. In particular, this holds for Remark 2.3.
Similarly, ϕ ' ψ means that ϕ(x, ·) ' ψ(x, ·) with constant uniform in x, etc.

Next, we recall the definition of the generalized Orlicz space, quasi-norm, and quasi-
semimodular associated with a generalized weak Φ-function.

Definition 2.5. Let Ω ⊂ Rn be an open set, let ϕ ∈ Φw(Ω), and consider the weak
quasi-semimodular, %ϕ(·),Ω, on L0(Ω) defined by

%ϕ(·),Ω(f) :=

�
Ω

ϕ(x, |f(x)|) dx

for all f ∈ L0(Ω). The generalized Orlicz space, Lϕ(·)(Ω), is given by

Lϕ(·)(Ω) :=
{
f ∈ L0(Ω)| %ϕ(·),Ω(λf) <∞ for some λ > 0

}
.

We endow Lϕ(·)(Ω) with the quasi-norm

‖f‖ϕ(·),Ω := inf
{
λ > 0| %ϕ(·),Ω (f/λ) 6 1

}
.

If, in the Definition 2.5, ϕ ∈ Φ(Ω) , then %ϕ(·),Ω(·) defines a semimodular on L0(Ω) and

‖ · ‖ϕ(·),Ω a norm on Lϕ(·)(Ω) (see [17]).

Remark 2.6. If ϕ, ψ ∈ Φw(Ω) and ϕ ' ψ, then Lϕ(·) = Lψ(·) with equivalent quasi-
norms.

2.3. Main assumptions. We begin by introducing our main assumptions on the gener-
alized (weak) Φ-functions on Ω. The first three assumptions, (∆2), (aInc), and (aDec),
extend three known properties for Φ-functions to generalized Φ-functions point-wise uni-
formly. The fourth assumption, (A), relates the behavior of generalized Φ-functions at
different values of the variable in Ω. The last assumption, (loc), implies that simple func-
tions belong to the generalized Orlicz space. These last two assumptions hold trivially for
Orlicz spaces.

Let Ω ⊂ Rn be open and ϕ ∈ Φw(Ω). We denote by ϕ−1 the generalized inverse of ϕ
with respect to the second variable (see (2.1)).
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(∆2) ϕ is doubling ; i.e., there exists A > 0 such that ϕ(x, 2t) 6 Aϕ(x, t) for a.e. x ∈ Ω
and for all t > 0.

(aInc) There exists a constant ϕ↑ > 1 such that for a.e. x ∈ Ω, the map s 7→ s−ϕ↑ϕ(x, s)
is almost increasing with monotonicity constant c↑ independent of x.

(aDec) There exists a constant ϕ↓ > 1 such that for a.e. x ∈ Ω, the map s 7→ s−ϕ↓ϕ(x, s)
is almost decreasing with monotonicity constant c↓ independent of x.

(A) There exist β, σ > 0 for which:

(A0) ϕ(x, βσ) 6 1 6 ϕ(x, σ) for all x ∈ Ω;
(A1) ϕ(x, βt) 6 ϕ(y, t) for every ball B ⊂ Ω, x, y ∈ B, and t ∈

[
σ, ϕ−1

(
y, 1
|B|

)]
;

(A2) there exists h ∈ L1(Ω)∩L∞(Ω) such that for a.e. x, y ∈ Ω and for all t ∈ [0, σ],
we have ϕ(x, βt) 6 ϕ(y, t) + h(x) + h(y).

(loc) There exists t0 > 0 such that ϕ(·, t0) ∈ L1
loc(Ω).

The notation (aInc)1 is used for a version of (aInc) with ϕ↑ > 1; i.e., equality included.
Note that, for any weak Φ-function, (aInc)1 holds for ϕ↑ = 1.

Remark 2.7. Let us collect several observations regarding the assumptions above.

1. Each of the previous conditions is invariant under equivalence of (weak) Φ-functions;
i.e., if ϕ ' ψ, then ϕ satisfies a condition if and only if ψ satisfies it.

2. For doubling (weak) Φ-functions, ' and ≈ are equivalent.
3. (aDec) and (∆2) are equivalent [24, Lemma 2.6].
4. (A0) implies (loc) (choose t0 := βσ).
5. If (aInc) and (aDec) hold, then ϕ↑ 6 ϕ↓.
6. Finally, note that if ϕ satisfies (aDec) and (loc), then ϕ(·, t) ∈ L1

loc(Ω) for every
t > 0.

It follows directly from the definition of the left-inverse that ϕ ' ψ implies ϕ−1 ≈ ψ−1.
Furthermore, if ϕ ' ψ, then ϕ−B ' ψ−B and so (ϕ−B)−1 ≈ (ψ−B)−1.

The next proposition shows that Assumption (A1) is equivalent to its counterpart in
[25].

Lemma 2.8. Let ϕ ∈ Φw(Ω), σ > 0, and β ∈ (0, 1). Then, ϕ satisfies (A1) for (σ, β) if
and only if for every ball B ⊂ Ω, and for all finite t ∈ [σ, (ϕ−B)−1(1/|B|)], we have

(2.2) ϕ+
B(βt) 6 ϕ−B(t).

Proof. Because (ϕ−B)−1
(

1
|B|

)
> ϕ−1

(
y, 1
|B|

)
, it follows that if ϕ satisfies (2.2), then it also

satisfies (A1).
Conversely, assume that ϕ satisfies (A1). We first consider the case when t ∈

[
σ, (ϕ−B)−1

(
1
|B|

))
.

In this case, we can find (yi)i∈N ⊂ B such that t ∈
[
σ, ϕ−1

(
yi,

1
|B|

)]
for all i ∈ N and

ϕ−B(t) = limi→∞ ϕ(yi, t). Then, by (A1), we have

ϕ(x, βt) 6 ϕ(yi, t)

for a.e. x ∈ B and for all i ∈ N. Taking the supremum over x ∈ B and then letting
i → ∞ in the previous estimate, we obtain ϕ+

B(βt) 6 ϕ−B(t). Finally, assume that t =
(ϕ−B)−1

(
1
|B|

)
<∞, and let t′ ∈ [σ, t). By the previous case,

(2.3) ϕ(x, βt′) 6 ϕ+
B(βt′) 6 ϕ−B(t′) 6 ϕ−B(t)

for a.e. x ∈ B, where in the last inequality we used the fact that ϕ−B is increasing. Taking
the limit t′ → t in (2.3), the left-continuity of ϕ(x, ·) yields ϕ(x, βt) 6 ϕ−B(t) for a.e.
x ∈ B. Hence, taking the supremum over x ∈ B, we conclude that ϕ satisfies (2.2). �
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The next lemma shows that left-inverse commutes with infimum, even when the function
is not continuous.

Lemma 2.9. Let Ω ⊂ Rn be an open set, let B ⊂ Ω, and let ϕ ∈ Φw(Ω). Then,
(ϕ−B)−1 = (ϕ−1)+

B.

Proof. Fix s ∈ [0,∞]. For every x ∈ B, we have

(ϕ−B)−1(s) = inf
{
t > 0 |ϕ−B(t) > s

}
> inf

{
t > 0 |ϕ(x, t) > s

}
= ϕ−1(x, s).

Thus, taking the supremum over x ∈ B,

(ϕ−B)−1(s) > (ϕ−1)+
B(s).

To prove the converse inequality, we may assume that t̄ := (ϕ−1)+
B(s) < ∞ without

loss of generality. Fix ε > 0. By definition of t̄ and because ϕ(x, ·) is increasing for every
x ∈ B, we have ϕ(x, t̄ + ε) > s for all x ∈ B. Hence, (ϕ−B)−1(s) 6 t̄ + ε. Letting ε → 0,
we conclude the desired inequality. �

The following lemma allows us to relate Assumption (A1) with its counterpart in [21].

Lemma 2.10. Let Ω ⊂ Rn be open and assume that ϕ ∈ Φ(Ω) is doubling and satisfies
(A0). Then, (A1) is equivalent to the following condition:

(A1’) ϕ−1(x, s) . ϕ−1(y, s) for every ball B ⊂ Ω, x, y ∈ B, and s ∈ [1, 1
|B| ].

Proof. Because ϕ belongs to Φ(Ω) and is doubling, it is a bijection with respect to the
second variable from [0,∞) to [0,∞). Applying ϕ−1 to (A0) and (A1), we find that

(2.4) (A0) ⇔ βσ 6 ϕ−1(x, 1) 6 σ for a.e. x ∈ Ω;

(A1) ⇔ βϕ−1(x, s) 6 ϕ−1(y, s) for a.e. x, y ∈ B and for all s ∈
[
ϕ(x, σ), 1

|B|

]
.

If s ∈ [1, ϕ(x, σ)], then βϕ−1(x, 1) 6 βϕ−1(x, s) 6 βσ because ϕ−1(x, ·) is increasing.
Thus, using (2.4), βϕ−1(x, s) 6 ϕ−1(y, s) holds for all such s. �

As mentioned at the beginning of Section 2, the following lemma can be interpreted
as a counterpart in our setting of the weighted power-mean inequality for the function
ϕ(x, t) = tp for some p > 1.

Lemma 2.11. Let Ω ⊂ Rn be open and assume that ϕ ∈ Φw(Ω) satisfies (aDec). Then,
for all δ > 0 and a, b > 0 and for a.e. x ∈ Ω, we have

(2.5) ϕ(x, a+ b) 6 ϕ(x, (1 + δ)a) +
1

c↓

(
1 +

1

δ

)ϕ↓

ϕ(x, b)

and

(2.6) ϕ(x, a+ b) 6
1

c↓

[
(1 + δ)ϕ↓ ϕ(x, a) +

(
1 +

1

δ

)ϕ↓

ϕ(x, b)

]
.

Proof. If b 6 δa, then the monotonicity of ϕ(x, ·) yields

ϕ(x, a+ b) 6 ϕ(x, (1 + δ)a).

If a < δ−1b, then the monotonicity of ϕ(x, ·) and (aDec) yield

ϕ(x, a+ b) 6 ϕ(x, (1 + δ−1)b) 6
1

c↓
(1 + δ−1)ϕ↓ϕ(x, b).

Thus, (2.5) holds. Further, (2.6) follows from (2.5) by (aDec). �
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The following lemma is a variant of [25, Lemma 4.4] without the assumption ρϕ(·)(fχ{|f |>σ}) <
1 and correspondingly weaker conclusion (see also [27, Lemma 2.2]).

Lemma 2.12. Let Ω ⊂ Rn be open and assume that ϕ ∈ Φw(Ω) satisfies Assump-
tion (A). Then, there exists β′ > 0 such that, for every ball B ⊂ Ω, f ∈ Lϕ(·)(Ω), and
a.e. x ∈ B, we have

ϕ

(
x, β′min

{
(ϕ−B)−1

( 1

|B|

)
,

 
B

|f(y)| dy
})
6
 
B

ϕ(y, |f(y)|) dy + h(x) +

 
B

h(y) dy,

where h is the function provided by (A2).

Proof. Without loss of generality, we may assume that f > 0. By Remarks 2.3 and 2.7,

we may also assume that ϕ ∈ Φ(Ω). Then, t 7→ ϕ(x,t)
t

is increasing for every x ∈ Ω .

Fix a ball B ⊂ Ω, and denote α := (ϕ−B)−1
(

1
|B|

)
. Let (σ, β) be given by Assumption (A),

and set f1 := fχ{f>σ}, f2 := f − f1, and Fi :=
�
B
fi dy for i ∈ {1, 2}. Because ϕ(x, ·) is

convex and increasing,

(2.7) ϕ

(
x,
β

4
min

{
α,

 
B

f dy

})
6 ϕ

(
x, β

2
min{α, F1}

)
+ ϕ

(
x, βF2

)
.

We start by estimating the first term on the right-hand side of (2.7). Suppose first
that 1

2
min{α, F1} > σ. Then, by definition of α, 1

2
min{α, F1} ∈ [σ, (ϕ−B)−1

(
1
|B|

)
]. Thus,

Lemma 2.8 and the monotonicity of ϕ(x, ·) and ϕ−B yield ϕ
(
x, β

2
min{α, F1}

)
6 ϕ−B

(
1
2
F1

)
.

Using now [25, Lemma 4.3], we obtain

ϕ
(
x, β

2
min{α, F1}

)
6 ϕ−B

(
1
2
F1

)
6
 
B

ϕ−B(f1(y)) dy 6
 
B

ϕ(y, f1(y)) dy.

Next, suppose that 1
2

min{α, F1} 6 σ. Then, min{ α
2σ
, F1

2σ
} 6 1, which, together with

the convexity of ϕ(x, ·) and the condition ϕ(x, 0) = 0, yields

ϕ
(
x, β

2
min{α, F1}

)
= ϕ

(
x, βσmin{ α

2σ
, F1

2σ
}
)
6 ϕ(x, βσ) min

{ α
2σ
,
F1

2σ

}
6 ϕ

(
x, βσ

)F1

2σ
.

For the same reason, if f1(y) > σ, then f1(y)
σ
ϕ(y, σ) 6 ϕ(y, f1(y)). If f1(y) = 0, this

inequality also holds, so it holds for all y ∈ B. Then, using these estimates, the inequalities
ϕ(·, βσ) 6 1 6 ϕ(·, σ) given by (A0), and the definition of F1, we conclude that

ϕ
(
x, β

2
min{α, F1}

)
6 ϕ

(
x, βσ

) F1

2σ
6

1

2σ

 
B

f1(y) dy 6
1

2

 
B

f1(y)

σ
ϕ(y, σ) dy

6
1

2

 
B

ϕ(y, f1(y)) dy.

To estimate the second term on the right-hand side of (2.7), we invoke the convexity
and monotonicity of ϕ(x, ·) and Assumption (A2) to obtain

ϕ
(
x, βF2

)
6
 
B

ϕ(x, βf2(y)) dy 6
 
B

ϕ(y, f2(y)) dy + h(x) +

 
B

h(y) dy.

Recalling that α = (ϕ−B)−1
(

1
|B|

)
and ϕ(x, 0) = 0, the claim follows. �

3. Auxiliary results

Lemma 3.1. Let Ω and U be two open subsets of Rn such that U ⊂⊂ Ω. Let ϕ ∈ Φw(Ω)
satisfy Assumptions (aDec) and (loc), and let (ψε)ε be a family of functions satisfying
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(1.1) and (1.2). Then,

(3.1) lim
ε→0+

%ε#,U(f) ≈ %ϕ(·),U(cn|∇f |)

for all f ∈ C∞(Ω), where cn :=
�
B(0,1)

|x · e1| dx. If, in addition, ϕ(x, ·) is continuous for

all x ∈ U , then (3.1) holds with equality.

Remark 3.2. Note that ϕ(x, ·) is continuous for all x ∈ Ω if ϕ ∈ Φ(Ω) satisfies (aDec).

Proof. Let f ∈ C∞(Ω). We start by treating the case in which ϕ(x, ·) is continuous for
all x ∈ U . We claim that

(3.2) lim
ε→0+

%ε#,U(f) = %ϕ(·),U(cn|∇f |).

By the Taylor expansion formula, for any x ∈ Ω and y ∈ Ω such that |y − x| <
dist(x, ∂Ω), we have

f(y) = f(x) +∇f(x) · (y − x) +R(x, y),

where R(x, y) = o(|x− y|) as y → x. Denote h(x, r) := 2
r

�
B(x,r)

|R(x, y)| dy, for r > 0 and

x ∈ Ωr, and cn =
�
B(0,1)

|x · e1| dx. As proved in [27, Lemma 3.1], we have the point-wise
estimate

cn r |∇f(x)| − rh(x, r) 6M#
B(x,r)f 6 cn r |∇f(x)|+ rh(x, r).

Consequently, we can define a function α : Ω × R+ → [−1, 1] such that 1
r
M#

B(x,r)f =

cn |∇f(x)|+ α(x, r)h(x, r) when x ∈ Ωr. Then,

%ε#,U(f) =

� ∞
0

�
Ur

ϕ(x, cn|∇f(x)|+ α(x, r)h(x, r)) dxψε(r) dr.(3.3)

Next, we prove that lim supε→0+ %
ε
#,U(f) 6 %ϕ(·),U(cn|∇f |). Fix δ > 0. Because

cn|∇f(x)|+ α(x, r)h(x, r) 6 cn|∇f(x)|+ h(x, r), the monotonicity of ϕ and (2.5) yield

ϕ(x, cn|∇f(x)|+ α(x, r)h(x, r)) 6 ϕ(x, (1 + δ)cn|∇f(x)|) +
1

c↓

(
1 +

1

δ

)ϕ↓

ϕ(x, h(x, r)).

Hence, invoking (3.3) and (1.1), we obtain

(3.4)

lim sup
ε→0+

%ε#,U(f) 6 %ϕ(·),U((1 + δ)cn|∇f |)

+
1

c↓

(
1 +

1

δ

)ϕ↓

lim sup
ε→0+

� ∞
0

�
Ur

ϕ(x, h(x, r)) dxψε(r) dr.

We claim that

(3.5) lim
ε→0+

� ∞
0

�
Ur

ϕ(x, h(x, r)) dxψε(r) dr = 0,

from which the estimate on the upper limit follows by dominated convergence as δ → 0+

in (3.4) taking also into account the continuity of ϕ(x, ·).
To prove (3.5), we start by observing that because U is bounded, the set Ur is empty

for all r > 0 sufficiently large. Thus, there exists r0 > 0 for which we have� ∞
0

�
Ur

ϕ(x, h(x, r)) dxψε(r) dr =

� r0

0

�
Ur

ϕ(x, h(x, r)) dxψε(r) dr.

Moreover, since f ∈ C2, |R(x, y)| 6 ‖f‖W 2,∞(U)|x − y|2 for all r ∈ (0, r0), x ∈ Ur, and
y ∈ B(x, r). Set C := ‖f‖W 2,∞(U). Then, for all r ∈ (0, r0) and x ∈ Ur, h(x, r) 6
2Cr. Fix 0 < γ < min{1, r0}. We have that ϕ(x, h(x, r)) 6 ϕ(x, 2Cr0) whenever r ∈
(γ, r0); moreover, denoting by c the monotonicity constant of t 7→ ϕ(x,t)

t
, we have also
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ϕ(x, h(x, r)) 6 cγϕ(x, 2C) whenever r ∈ (0, γ]. Using, in addition, the condition ϕ > 0
and (1.1), it follows that� r0

0

�
Ur

ϕ(x, h(x, r)) dxψε(r) dr 6 cγ

�
U

ϕ(x, 2C) dx+

�
U

ϕ(x, 2Cr0) dx

� ∞
γ

ψε(r) dr.

In view of (1.2) and Assumption (loc), together with Remark 2.7, letting ε→ 0+ in this
estimate first, and then γ → 0+, we obtain (3.5).

Finally, we prove that lim infε→0+ %
ε
#,U(f) > %ϕ(·),U(cn|∇f |). Fix δ > 0, and denote

a′ := cn|∇f(x)| and b′ := α(x, r)h(x, r). If r > 0 and x ∈ Ur are such that α(x, r) < 0,
then applying (2.5) with a := a′+b′

1+δ
and b := − b′

1+δ
gives

(3.6)
ϕ(x, cn|∇f(x)|+ α(x, r)h(x, r)) = ϕ(x, (1 + δ)a) > ϕ(x, a+ b)− 1

c↓
(1 + 1

δ
)ϕ↓ϕ(x, b)

> ϕ
(
x, cn|∇f(x)|

1+δ

)
− 1

c↓
(1 + 1

δ
)ϕ↓ϕ(x, h(x, r)),

where we used the monotonicity of ϕ and the estimate 0 6 − b′

1+δ
6 h(x, r). If r > 0 and

x ∈ Ur are such that α(x, r) > 0, then the monotonicity of ϕ yields

(3.7) ϕ(x, cn|∇f(x)|+ α(x, r)h(x, r)) > ϕ
(
x, cn|∇f(x)|

1+δ

)
.

Thus, by (3.6) and (3.7), for every r > 0 and x ∈ Ur, we have

ϕ(x, cn|∇f(x)|+ α(x, r)h(x, r)) > ϕ
(
x, cn

1+δ
|∇f(x)|

)
− 1

c↓
(1 + 1

δ
)ϕ↓ϕ(x, h(x, r)).

Consequently, by (3.3), it follows that

(3.8) %ε#,U(f) >
� ∞

0

�
Ur

[
ϕ
(
x, cn

1+δ
|∇f(x)|

)
− 1

c↓
(1 + 1

δ
)ϕ↓ϕ(x, h(x, r))

]
dxψε(r) dr.

Fix 0 < γ < 1 and r0 > 0 such that Ur0 6= ∅. By (1.1) and (1.2), there exists ε0 = ε0(γ, r0)
such that, for all ε ∈ (0, ε0), we have� r0

0

ψε(r) dr > 1− γ.

Thus, we have also, for 0 < ε < ε0,� ∞
0

�
Ur

ϕ
(
x, cn

1+δ
|∇f(x)|

)
dxψε(r) dr >

� r0

0

�
Ur0

ϕ
(
x, cn

1+δ
|∇f(x)|

)
dxψε(r) dr

> (1− γ)

�
Ur0

ϕ
(
x, cn

1+δ
|∇f(x)|

)
dx.

This estimate, (3.8), and (3.5) yield

lim inf
ε→0+

%ε#,U(f) > (1− γ)%ϕ(·),Ur0

(
cn

1+δ
|∇f |

)
.

The conclusion then follows by using the continuity of ϕ(x, ·) and by letting δ → 0+,
γ → 0+, and r0 → 0+ in this order. This completes the proof of (3.2) under the continuity
assumption.

Suppose now that ϕ is a general weak Φ-function. By Remarks 2.3 and 2.7, there exists
ψ ∈ Φ(Ω) satisfying the same assumptions as ϕ and such that ψ ≈ ϕ. Then, there is
C > 0 such that 1

C
ϕ 6 ψ 6 Cϕ. Hence, by the first part of the proof,

1

C2
%ϕ(·),U(cn|∇f |) 6

1

C
%ψ(·),U(cn|∇f |) =

1

C
lim inf
ε→0+

%ε#,U,ψ(f) 6 lim inf
ε→0+

%ε#,U,ϕ(f)

6 lim sup
ε→0+

%ε#,U,ϕ(f) 6 C lim sup
ε→0+

%ε#,U,ψ(f) = C%ψ(·),U(cn|∇f |) 6 C2%ϕ(·),U(cn|∇f |).�
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Next, we derive an auxiliary upper bound which holds for all functions f ∈ L1
loc(Ω)

with |∇f | ∈ Lϕ(·)(Ω).

Lemma 3.3. Let Ω be an open set of Rn, let ϕ ∈ Φw(Ω) satisfy Assumptions (A) and
(aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2). If f ∈ L1

loc(Ω)
and |∇f | ∈ Lϕ(·)(Ω), then

%ε#,Ω(f) 6 c max
{
‖∇f‖ϕ↑

ϕ(·),Ω, ‖∇f‖
ϕ↓
ϕ(·),Ω

}
.

Proof. By Remarks 2.3, 2.6, and 2.7 we may assume without loss of generality that ϕ ∈
Φ(Ω). Then, in view of Assumptions (A0) and (aInc)1, we have Lϕ(·)(B) ⊂ L1(B) for
every bounded set B ⊂ Ω by [22, Lemma 4.4].

Let f ∈ L1
loc(Ω) with |∇f | ∈ Lϕ(·)(Ω) be such that ‖∇f‖ϕ(·),Ω 6 1. Fix r > 0 and

x ∈ Ωr. By the Poincaré inequality in L1, we have

(3.9)
1

r
M#

B(x,r)f =
1

r

 
B(x,r)

|f(y)− fB(x,r)| dy 6 c

 
B(x,r)

|∇f(y)| dy.

On the other hand, in view of Lemma 2.8, we may invoke [26, Lemma 4.4] (with γ = 1)
that gives the existence of a constant, β′ ∈ (0, 1), depending only on the constants in (A),
such that

(3.10) ϕ

(
x, β′

 
B(x,r)

|∇f(y)| dy
)
6
 
B(x,r)

ϕ(y, |∇f(y)|) dy + h(x) +

 
B(x,r)

h(y) dy.

Using the monotonicity of ϕ, (aDec), (3.9), and (3.10), we obtain
(3.11)

%ε#,Ω(f) .
� ∞

0

�
Ωr

ϕ

(
x, β′

 
B(x,r)

|∇f(y)| dy
)
dxψε(r) dr

6
� ∞

0

�
Ωr

(  
B(x,r)

ϕ(y, |∇f(y)|) dy + h(x) +

 
B(x,r)

h(y) dy

)
dxψε(r) dr.

Next, by changing the order of integration, we observe that�
Ωr

 
B(x,r)

ϕ(y, |∇f(y)|) dy dx =

�
Ωr

�
Ω

ϕ(y, |∇f(y)|)
χB(y,r)(x)

|B(x, r)|
dy dx

6
�

Ω

ϕ(y, |∇f(y)|) dy = %ϕ(·),Ω(|∇f |) 6 1.

Similarly, �
Ωr

 
B(x,r)

h(y) dy dx 6
�

Ω

h(y) dy.

Consequently, because h ∈ L1(Ω) and
�∞

0
ψε(r) dr = 1, from (3.11) we conclude that

(3.12) %ε#,Ω(f) 6 c for all f ∈ L1
loc(Ω) with |∇f | ∈ Lϕ(·)(Ω) and ‖∇f‖ϕ(·),Ω 6 1.

By considering the cases λ 6 1 and λ > 1 and use Assumptions (aInc)1 and (aDec),
respectively, we find that %ε#,Ω(f) 6 c%ε#,Ω(f

λ
) max{λϕ↑ , λϕ↓} for all λ > 0 and f ∈ L1

loc(Ω)

with |∇f | ∈ Lϕ(·)(Ω). Using this estimate with λ := ‖∇f‖ϕ(·),Ω + δ for δ > 0 and then
invoking (3.12), it follows that

%ε#,Ω(f) 6 c%ε#,Ω

(
f

‖∇f‖ϕ(·),Ω + δ

)
max

{
(‖∇f‖ϕ(·),Ω + δ)ϕ↑ , (‖∇f‖ϕ(·),Ω + δ)ϕ↓

}
6 cmax

{
(‖∇f‖ϕ(·),Ω + δ)ϕ↑ , (‖∇f‖ϕ(·),Ω + δ)ϕ↓

}
.

Letting δ → 0+, we conclude the proof of Lemma 3.3. �
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4. Main results

In this section we prove our main result, which provides a characterization of generalized
Orlicz spaces. Theorem 1.1 is an immediate consequence of Propositions 4.1, 4.3 and 4.5
below.

Proposition 4.1. Let Ω ⊂ Rn be open, let ϕ ∈ Φw(Ω) satisfy Assumptions (A), (aInc),
and (aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2). Assume that
f ∈ L1

loc(Ω) with |∇f | ∈ Lϕ(·)(Ω). Then,

(4.1) lim
ε→0+

%ε#,Ω(f) ≈ %ϕ(·),Ω(cn|∇f |) <∞

where cn =
�
B(0,1)

|x · e1| dx. If, in addition, ϕ(x, ·) is continuous for all x ∈ Ω, then (4.1)

holds with equality.

Proof. We start with the upper bound. Let U ⊂⊂ Ω. Using the same arguments as in
[22, Theorems 6.5 and 6.6], we find gν ∈ C∞(Ω), ν ∈ N, such that (∇gν)n∈N converges to

∇f in Lϕ(·)(U ;Rn). For r > 0 and x ∈ Ur, we have M#
B(x,r)f 6M#

B(x,r)(f −gν)+M#
B(x,r)gν

by the triangle inequality. Combining this estimate with (2.5) applied to a = 1
r
M#

B(x,r)gν

and b = 1
r
M#

B(x,r)(f − gν), we obtain

%ε#,U(f) 6 %ε#,U((1 + δ)gν) + cδ%
ε
#,U(f − gν)

for all δ > 0, where we also used the monotonicity of ϕ(x, ·). Invoking now Lemmas 3.1
and 3.3, we conclude that
(4.2)
lim sup
ε→0+

%ε#,U(f) 6 %ϕ(·),U(cn(1 + δ)|∇gν |) + cδmax
{
‖∇(f − gν)‖

ϕ↑
ϕ(·),U , ‖∇(f − gν)‖

ϕ↓
ϕ(·),U

}
.

Because ‖∇(f−gν)‖ϕ(·),U → 0, it follows from (aDec) that limν→∞ %ϕ(·),U(cn(1+δ)|∇(f−
gν)|) = 0. Thus, letting ν →∞ in (4.2) and using (2.5) again, we obtain

(4.3) lim sup
ε→0+

%ε#,U(f) 6 %ϕ(·),U(cn(1 + δ)2|∇f |) 6 %ϕ(·),Ω(cn(1 + δ)2|∇f |).

By (aDec), ϕ(x, cn(1+δ)2|∇f(x)|) 6 cϕ(x, cn|∇f(x)|). This proves that lim supε→0+ %
ε
#,U(f) 6

c%ϕ(·),U(cn|∇f |) for a general ϕ. If, in addition, ϕ(x, ·) is continuous, we use cϕ(x, cn|∇f(x)|)
as a majorant and let δ → 0 in (4.3). Then, Lebesgue’s dominated convergence theorem
yields

lim sup
ε→0+

%ε#,U(f) 6 %ϕ(·),Ω(cn|∇f |).

We claim that

(4.4) lim sup
U↗Ω

lim sup
ε→0+

� ∞
0

�
Ωr\Ur

ϕ
(
x, 1

r
M#

B(x,r)f
)
dxψε(r) dr = 0,

which, together with the bound on lim supε→0+ %
ε
#,U(f) established above, concludes the

proof of the upper bound.
To prove (4.4), we observe that replacing f by f̃ := ‖∇f‖−1

ϕ(·),Ωf if necessary, we may

assume that ‖∇f‖ϕ(·),Ω 6 1. Indeed, by (aDec), if (4.4) holds for f̃ , then it also holds for
f . Arguing as in Lemma 3.3, we find that

(4.5)

� ∞
0

�
Ωr\Ur

ϕ
(
x, 1

r
M#

B(x,r)f
)
dxψε(r) dr

6 c

� ∞
0

�
Ωr\Ur

(  
B(x,r)

ϕ(y, |∇f(y)|) dy + h(x) +

 
B(x,r)

h(y) dy

)
dxψε(r) dr.
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Let γ > 0. If r 6 γ
2
, then y ∈ Ω\Uγ whenever x ∈ Ωr\Ur. Therefore, we may estimate

the right-hand side of (4.5) as follows:

(4.6)

� ∞
0

�
Ωr\Ur

(  
B(x,r)

ϕ(y, |∇f(y)|) dy + h(x) +

 
B(x,r)

h(y) dy

)
dxψε(r) dr

6
� ∞

0

�
Ωr\Ur

( �
Ω\Uγ

(ϕ(y, |∇f(y)|) + h(y))
χB(y,r)(x)

|B(0,r)| dy + h(x)

)
dxψε(r) dr

+

� ∞
γ
2

�
Ωr

(  
B(x,r)

ϕ(y, |∇f(y)|) dy + h(x) +

 
B(x,r)

h(y) dy

)
dxψε(r) dr.

Changing the order of integration as in Lemma 3.3, from (4.5) and (4.6), we obtain� ∞
0

�
Ωr\Ur

ϕ
(
x, 1

r
M#

B(x,r)f
)
dxψε(r) dr

. %ϕ(·),Ω\Uγ (|∇f |) + 2‖h‖L1(Ω\Uγ) +
(
%ϕ(·),Ω(|∇f |) + 2‖h‖L1(Ω)

) � ∞
γ
2

ψε(r) dr.

Then, (4.4) follows by (1.2) as ε→ 0, γ → 0, and U → Ω, in this order.

It remains to prove the lower bound. The proof of this estimate is similar to the proof
of the upper bound once we show that for all U ⊂⊂ Ω, we have

(4.7) %ε#,U(f) > %ε#,U( 1
(1+δ)

gν)− cδ%ε#,U(f − gν),

where cδ = 1
c↓

(
1 + 1

δ

)ϕ↓ . Fix r > 0 and x ∈ Ur, and set a′ := 1
r
M#

B(x,r)gν and b′ :=
1
r
M#

B(x,r)(f − gν). Note that 1
r
M#

B(x,r)f > |a′ − b′|. We consider two cases:

• If a′ − b′ > 0, then using (2.5) with a = a′−b′
1+δ

and b = b′

1+δ
, we obtain

ϕ(x, a′ − b′) > ϕ
(
x, a′

1+δ

)
− cδϕ

(
x, b′

1+δ

)
> ϕ

(
x, a′

1+δ

)
− cδϕ(x, b′),

where in the last inequality we used the fact that ϕ(x, ·) is increasing and 1
1+δ
6 1.

• If a′ − b′ 6 0, then

ϕ
(
x, a′

1+δ

)
6 ϕ

(
x, b′

1+δ

)
6 cδϕ(x, b′)

because ϕ(x, ·) is increasing, 1
1+δ
6 1, and cδ > 1. Thus,

0 > ϕ
(
x, a′

1+δ

)
− cδϕ(x, b′).

Splitting the inner integral defining %ε#,U(f) according to these two cases, we conclude
that (4.7) holds. �

Remark 4.2. In the proof of the previous proposition the assumption (aInc) was used
only for the density of smooth functions in the Sobolev space. Presumably, (aInc) is not
really needed for this, but it was used in the cited reference.

Proposition 4.3. Under the assumptions of Proposition 4.1, we have

(4.8) lim
ε→0+

‖f‖ε#,Ω ≈ cn‖∇f‖ϕ(·),Ω.

If, in addition, ϕ ∈ Φ(Ω), then (4.8) holds with equality.

Proof. Suppose first that ϕ ∈ Φ(Ω). Since ϕ is also doubling, ϕ(x, ·) is continuous; thus,
the modular inequality (4.1) holds with equality. Fixing δ > 0 and applying this equality
to the function

gδ :=
f

cn(1 + δ)(‖∇f‖ϕ(·),Ω + δ)
,

12



we obtain

lim
ε→0+

%ε#,Ω(gδ) = %ϕ(·),Ω(cn|∇gδ|) 6 1
1+δ

�
Ω

ϕ
(
x,

|∇f |
‖∇f‖ϕ(·),Ω + δ

)
dx < 1,

where we used convexity in the last estimate. Thus, %ε#,Ω(gδ) 6 1 for all sufficiently
small ε > 0. Consequently, also ‖gδ‖ε#,Ω 6 1 for all sufficiently small ε > 0; that is,
‖f‖ε#,Ω 6 cn(1 + δ)(‖∇f‖ϕ(·),Ω + δ). Letting ε → 0 first and then δ → 0, we obtain
lim supε→0+ ‖f‖ε#,Ω 6 cn‖∇f‖ϕ(·),Ω.

Next, we prove the opposite inequality. Fix δ > 0, let εj → 0 as j → ∞ be such that
lim infε→0+ ‖f‖ε#,Ω = limj→∞ ‖f‖

εj
#,Ω, and set

gδ :=
f

limj→∞ ‖f‖
εj
#,Ω + δ

.

Because limj→∞ ‖gδ‖
εj
#,Ω < 1, we conclude that ‖gδ‖

εj
#,Ω 6 1 for all sufficiently large

j ∈ N. For all such j ∈ N, %
εj
#,Ω(gδ) 6 1 by the definition of the norm. Letting j → ∞,

the previous proposition yields %ϕ(·),Ω(cn|∇gδ|) 6 1; so, ‖cn|∇gδ|‖ϕ(·),Ω 6 1. Therefore,
‖cn|∇f |‖ϕ(·),Ω 6 limj→∞ ‖f‖

εj
#,Ω + δ = lim infε→0+ ‖f‖ε#,Ω + δ. Letting δ → 0, we obtain

the desired inequality.

This completes the proof in the case ϕ ∈ Φ(Ω). If ϕ ∈ Φw(Ω), we find ψ ∈ Φ(Ω) with
ϕ ' ψ (Remarks 2.3 and 2.7). Then, ‖∇f‖ϕ(·) ≈ ‖∇f‖ψ(·) and similarly for the #-norm;
so, the claim follows from the first part. �

The next lemma shows that the condition lim supε→0+ %
ε
#,Ω(f) < ∞ implies that f is

locally in a Sobolev space. The estimate for the norm obtained in this way is not uniform,
however. Nevertheless, this information is used later to prove a uniform estimate.

Lemma 4.4. Let Ω ⊂ Rn be open, let ϕ ∈ Φw(Ω) satisfy Assumptions (A), (aInc), and
(aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2). Assume that
f ∈ L1

loc(Ω) and

lim sup
ε→0+

%ε#,Ω(f) <∞.

Then, there is a constant c > 0 such that, for every U ⊂⊂ Ω,
�
U
ϕ−U(|∇f(x)|) dx 6 c.

Moreover, ∇f ∈ Lϕ↑
loc(Ω;Rn).

Proof. Let U ⊂⊂ Ω and note that ϕ−U ∈ Φw (the only nontrivial condition is the limit at
infinity, which follows from (A0)). By [22, Lemma 2.2], there exists ξ ∈ Φ with ξ ' ϕ−U for

which the equivalent constant depends only on the monotonicity constant of t 7→ ϕ(x,t)
t

.
Then, by (aDec), we can find c > 0, independent of U , such that c−1ϕ−U 6 ξ 6 c ϕ−U .

Fix δ > 0, and let Gδ be a standard mollifier; that is, Gδ(x) = δ−nG(x/δ), where
G ∈ C∞0 (B(0, 1)) is a non-negative function, radially symmetric, and

�
B(0,1)

G(x) dx = 1.

Let τ > 0 be such that U ⊂⊂ Ωτ . Then, for 0 < δ < τ , Gδ ∗ f ∈ C∞(Ωτ ) and, by
Lemma 3.1 with ϕ = ξ, U := Uδ, and Ω := Ωτ ,

(4.9)
lim
ε→0+

� ∞
0

�
Uδ+r

ξ
(

1
r
M#

B(x,r)(Gδ ∗ f)
)
dxψε(r) dr = %ξ,Uδ(cn|∇(Gδ ∗ f)|)

> %ξ,Uτ (cn|∇(Gδ ∗ f)|).
13



On the other hand, by the triangle inequality and a change on the order of integration,
we obtain, for all r > 0 and x ∈ Ur,

(4.10)

M#
B(x,r)(Gδ ∗ f) =

 
B(x,r)

|(Gδ ∗ f)(y)− (Gδ ∗ f)B(x,r)| dy

=

 
B(x,r)

|(Gδ ∗ f)(y)− (Gδ ∗ fB(·,r))(x)| dy 6 (Gδ ∗M#
B(·,r)f)(x).

Hence, the monotonicity of ξ yields

ξ
(

1
r
M#

B(x,r)(Gδ ∗ f)
)
6 ξ
(
(Gδ ∗ 1

r
M#

B(·,r)f)(x)
)
.

For x ∈ Ωr, define gr(x) := 1
r
M#

B(x,r)f . Since Gδ dx is a probability measure and ξ is
convex,

ξ
(

1
r
M#

B(x,r)(Gδ ∗ f)
)
6 ξ((Gδ ∗ gr)(x)) 6 (Gδ ∗ ξ(gr))(x).

Integrating Gδ ∗ ξ(gr) over Ur+δ and changing variables and the order of integration, we
obtain�

Uδ+r

�
B(x,δ)

Gδ(x− z)ξ(gr(z)) dz dx =

�
B(0,δ)

Gδ(w)

�
Uδ+r

ξ(gr(x− w)) dxdw

6
�
Ur

ξ(gr(y)) dy.

Combining the previous two estimates, we conclude that�
Uδ+r

ξ
(

1
r
M#

B(x,r)(Gδ ∗ f)
)
dx 6

�
Ur

ξ(gr(x)) dx 6 c

�
Ur

ϕ
(
x, 1

r
M#

B(x,r)f
)
dx,

where in the last inequality we used the definition of gr and the estimate ξ(t) 6 c ϕ(x, t)
for x ∈ U . Consequently,

lim sup
ε→0+

� ∞
0

�
Uδ+r

ξ
(

1
r
M#

B(x,r)(Gδ ∗ f)
)
dxψε(r) dr 6 c lim sup

ε→0+
%ε#,U(f)

6 c lim sup
ε→0+

%ε#,Ω(f) <∞,
(4.11)

which, together with (4.9), shows that (∇(Gδ ∗ f))δ is bounded in Lξ(Uτ ;Rn).
By (A0), (aInc), and (aDec), Lξ(Uτ ;Rn) is reflexive (see [22, Lemma 2.4 and Proposi-

tion 4.6]). Since (∇(Gδ ∗f))δ is a bounded sequence, it has a subsequence which converges
weakly in Lξ(Uτ ;Rn) to a function l ∈ Lξ(Uτ ;Rn). Using the fact that Gδ ∗ f converges
to f in L1(U), it follows from the definition of weak derivative that l = ∇f . By weak
semi-continuity [17, Theorem 2.2.8], (4.9), and (4.11), we obtain that�

Uτ

ϕ−U(cn|∇f(x)|) dx 6 cρξ,Uτ (cn|∇f |) 6 c lim inf
δ→0+

ρξ,Uτ (cn|∇(Gδ ∗ f)|)

6 c lim sup
ε→0+

%ε#,Ω(f) <∞.

Letting τ → 0, we obtain
�
U
ϕ−U(|∇f(x)|) dx 6 c by monotone convergence and (aDec).

Finally, we observe that Assumptions (aInc) and (A0) imply that tϕ↑ 6 c(ϕ−U(t) + 1)
with c > 0 independent of U . Hence,�

U

|∇f(x)|ϕ↑ dx 6 c

�
U

ϕ−U(|∇f(x)|) + 1 dx 6 c+ c |U |,

which yields ∇f ∈ Lϕ↑
loc(Ω;Rn). �

We now remove the local-condition from the previous lemma:
14



Proposition 4.5. Let Ω ⊂ Rn be open, let ϕ ∈ Φw(Ω) satisfy Assumptions (A), (aInc),
and (aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2). Assume that
f ∈ L1

loc(Ω) and

lim sup
ε→0+

%ε#,Ω(f) <∞.

Then, ∇f ∈ Lϕ(·)(Ω;Rn).

Proof. Let U ⊂⊂ V ⊂⊂ Ω and δ ∈ (0, 1
6
) be such that U δ ⊂ V ⊂ Ωδ. Let Gδ and gr be

as in the previous lemma. By Remarks 2.3 and 2.7, there exists ξ ∈ Φ(Ω) equivalent to ϕ
which satisfies the same assumptions. In Lemma 4.4, we proved that

�
U
ξ−U (|∇f |) dx 6 c

for every U ⊂⊂ Ω. In view of (aDec), by scaling the function f , if necessary, we may
assume that

(4.12)

�
B

ξ−B(|∇f(x)|) dx 6 3−n for every ball B ⊂⊂ Ω with |B| 6 1.

Let r ∈ (0, δ] and x ∈ Ur. By the Poincaré and triangle inequalities,

1

r
M#

B(x,r)(Gδ ∗ f) 6 c

 
B(x,r)

|∇(Gδ ∗ f)(y)| dy 6 c

 
B(x,r)

�
B(y,δ)

Gδ(y − z)|∇f(z)| dz dy.

Note that Gδ 6 c
χB(0,δ)

|B(0,δ)| ; hence, by [25, Lemma 4.3] and (4.12), together with the previous

estimate, we obtain

1
r
M#

B(x,r)(Gδ ∗ f) 6 c

 
B(x,r)

 
B(y,δ)

|∇f(z)| dz dy

6 c

 
B(x,r)

(ξ−B(y,δ))
−1

(  
B(y,δ)

ξ−B(y,δ)(|∇f(z)|) dz
)
dy

6 c

 
B(x,r)

(ξ−B(y,δ))
−1
(

1
3n|B(y,δ)|

)
dy.

Observe that B(y, δ) ⊂ B(x, 3δ) for every y ∈ B(x, r), and |B(y, δ)| = |B(x, δ)| and
|B(x, 3δ)| = 3n|B(x, δ)|. By Lemmas 2.9 and 2.10,

(ξ−B(y,δ))
−1( 1

3n|B(y,δ)|) ≈ (ξ−B(x,3δ))
−1( 1

3n|B(x,δ)|) ≈ (ξ−B(x,δ))
−1( 1

3n|B(x,δ)|)

when y ∈ B(x, r). Then, because (ξ−B(x,δ))
−1 is increasing, we obtain

1
r
M#

B(x,r)(Gδ ∗ f) 6 c(ξ−B(x,δ))
−1(3−n|B(x, δ)|−1) 6 c(ξ−B(x,δ))

−1(|B(x, δ)|−1).

On the other hand, by (4.10), we have also 1
r
M#

B(x,r)(Gδ∗f) 6 (Gδ∗gr)(x) 6 c
�
B(x,δ)

|gr| dy.

Thus,

1

r
M#

B(x,r)(Gδ ∗ f) 6 cmin

{  
B(x,δ)

|gr| dy, (ξ−B(x,δ))
−1
(

1
|B(x,δ)|

)}
.

Then, by the monotonicity of ξ(x, ·) and Lemma 2.12, invoking (aDec) if necessary, it
follows that

ξ
(
x, 1

r
M#

B(x,r)(Gδ ∗ f)
)
6 c

(  
B(x,δ)

(
ξ(y, gr(y)) + h(y)

)
dy + h(x)

)
.
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Integrating this estimate over x ∈ Ur, changing the order of integration as in Lemma 3.3,
and using the inclusion (Ur)

δ ⊂ Vr, we obtain�
Ur

ξ
(
x, 1

r
M#

B(x,r)(Gδ ∗ f)
)
dx 6 c

( �
(Ur)δ

ξ(y, gr(y)) + h(y) dy +

�
Ur

h(x) dx

)
6 c

(�
Vr

ξ
(
y, 1

r
M#

B(y,r)f
)
dy + 2‖h‖L1(Ω)

)
for r 6 δ.

Next, we consider r ∈ (δ,∞). Fix x ∈ Ur, and recall that ∇f ∈ Lϕ↑(V ;Rn) by
Lemma 4.4. By the Poincaré and Hölder inequalities, we have

1
r
M#

B(x,r)(Gδ ∗ f) 6 c

 
B(x,r)

|∇(Gδ ∗ f)(y)| dy 6 c

 
B(x,r)

‖Gδ‖(ϕ↑)′,B(0,δ)‖∇f‖ϕ↑,B(y,δ) dy

6 cδ‖∇f‖ϕ↑,Uδ 6 cδ‖∇f‖ϕ↑,V .

Hence, �
Ur

ξ
(
x, 1

r
M#

B(x,r)(Gδ ∗ f)
)
dx 6

�
Ur

ξ
(
x, cδ‖∇f‖ϕ↑,V

)
dx

for r > δ.
Combining the two cases, r 6 δ and r > δ, we obtain� ∞

0

�
Ur

ξ
(
x, 1

r
M#

B(x,r)(Gδ ∗ f)
)
dxψε(r) dr

6 c

� δ

0

( �
Vr

ξ
(
x, 1

r
M#

B(x,r)f
)
dx+ 2‖h‖L1(Ω)

)
ψε(r) dr +

� ∞
δ

�
Ur

ξ
(
x, cδ‖∇f‖ϕ↑,V

)
dxψε(r) dr.

The second term on the right-hand side of the previous inequality tends to zero as ε→ 0
by (loc) and (1.2). Consequently,

lim sup
ε→0

� ∞
0

�
Ur

ξ
(
x, 1

r
M#

B(x,r)(Gδ ∗ f)
)
dxψε(r) dr 6 c lim sup

ε→0
ρε#,V (f) + c <∞

by hypothesis, where we also used (1.1) and the fact that ξ ≈ ϕ.
Thus, arguing as in Lemma 4.4, we conclude that ∇f ∈ Lξ(·)(U ;Rn). Hence, also
∇f ∈ Lϕ(·)(U ;Rn) (see Remark 2.6).

Finally, we appeal to Proposition 4.1 to conclude that

%ϕ(·),U(cn|∇f |) 6 c lim sup
ε→0+

%ε#,U(f) 6 c lim sup
ε→0+

%ε#,Ω(f) <∞.

Because the upper bound in the last estimate is independent of U , we conclude the proof
of Proposition 4.5 by monotone convergence as U ↗ Ω. �

Combining the propositions of this section, we arrive at the following theorem.

Theorem 4.6. Let Ω ⊂ Rn be an open set, let ϕ ∈ Φw(Ω) satisfy Assumptions (A),
(aInc), and (aDec), and let (ψε)ε be a family of functions satisfying (1.1) and (1.2).
Assume that f ∈ L1

loc(Ω). Then,

∇f ∈ Lϕ(·)(Ω;Rn) ⇔ lim sup
ε→0+

%ε#,Ω(f) <∞.

In this case,

lim
ε→0+

%ε#,Ω(f) ≈ %ϕ(·),Ω(cn|∇f |) and lim
ε→0+

‖f‖ε#,Ω ≈ cn‖∇f‖ϕ(·),Ω,

where cn :=
�
B(0,1)

|x · e1| dx.
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of the Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia,
Universidade Nova de Lisboa. Finally, we thank the referee for some useful comments.

Addendum

During the reviewing process of this manuscript, the authors became aware that Sibei
Yang, Dachun Yang, and Wen Yuan had completed a related manuscript [36]. Their
manuscript is dated of 28 January 2018, over one year after our work was posted on arXiv
(see arXiv:1612.04566).

Their work is based on the abstract assumption that the maximal operator is bounded,
whereas we assume (A) (which implies the maximal inequality [25]). On the other hand,
our results are more general in the sense that we cover arbitrary open sets Ω, instead
of the entire Euclidean space Rn, and we assume only local integrability, whereas they
assume global integrability.
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[25] P. Hästö: The maximal operator on generalized Orlicz spaces, J. Funct. Anal. 269 (2015), 4038–4048.
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(P. Hästö) Department of Mathematical Sciences, P.O. Box 3000, FI-90014 University
of Oulu, Finland, and, Department of Mathematics and Statistics, University of Turku,
Finland

E-mail address: peter.hasto@oulu.fi
URL: http://cc.oulu.fi/∼phasto/
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