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Abstract
Considering open portfolios, we analyze bonus–malus systems (BMS) under a
realistic approach, as we already did in Guerreiro and Mexia (Discuss. Math.
Probab. Stat. 24(2):197–213, 2004). Using stochastic vortices model we are now
able to predict long-run distribution through confidence intervals.

1 Introduction

A bonus–malus system (BMS), in automobile insurance, is a rating system from
which Insurers, through premiums, are able to, simultaneously, penalize drivers who
are responsible for accidents and reward claim-free policyholders. It is, in fact, an a
posteriori classification from which the a priori premium is adjusted, according to
past experience information. This a posteriori premium aims to better measure the
risk that the policyholder represents to the insurer: in the long run, he will pay the
premium corresponding to his claim frequency.

The design and evaluation of BMS is based on Markov chains (for detailed pre-
sentations of BMS techniques, see [9]). Many authors proposed models for the study
of BMS. However, most models are based on the assumption of closed portfolios
with a pre-defined entry class for all new policyholders. In Portugal, as stated in
[2, 3, 6], there are many movements among different insurers and frequently, due
to commercial goals, a priori discounts are given to new policyholders. This facts
clearly reveal unrealistic restrictions in classic models. We consider that analyzing
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BMS under open portfolio approaches renders a more realistic perspective. For open
portfolio models, see, for instance, [2, 6].

In this chapter, availing ourselves of the stochastic vortices (SV) model (see
[6–8]), we estimate long-run distribution through confidence intervals. In this way,
we are able to obtain intervals for bonus scales which can be useful to define optimal
and competitive premiums. SV model has already been developed for populations
with complex characteristics. In this paper, we focus on BMS application, so the
presented model is congruent to it’s structure. For general results, see [8].

2 Stochastic Vortices Model for Bonus Malus Systems

2.1 Transition Matrix

Let us consider:
• A BMS with s bonus classes in one Markov chain communication class
• One recurrent state, representing the withdrawals of policyholders

The one-step transition matrix of the Markov chain will be

P D
�

K q1

0 1

�
(1)

with

K—s � s transition matrix between bonus classes
q1—s components vector of annulment probabilities

With qn D Pn�1
j D0 K j q1 ; n 2 N, the n step transition matrix will be

Pn D
�

Kn qn

0 1

�
; n 2 N: (2)

2.2 Policyholders Entries

We assume that entries into the portfolio occur at the beginning of time periods,
which we will consider as years. Moreover, we assume that:
• Numbers of new policyholders in year i , Ei ; i 2 N, are independent and Poisson-

distributed random variables with means �0
i ; i 2 N.

• Mean values �0
i are given by

�0
i D a C b �i ; a; b 2 R ; 0 < � < 1 ; i 2 N: (3)

Note that we are focusing on 0 < � < 1, but the model was developed for
� > 0; see [7]. Equation (3) represents a quite general assumption and applies
to a variety of population entries. We point out the next example: when a D 0,
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(3) represents a population with a geometric growth on entrances; if b D �a

and � D e�ı ; ı > 0, (3) will represent a population with an asymptotic growth
on entrances; for the situations � D 1 or b D 0, (3) reflects a constant rate on
entrances.

• New policyholders are subject to an initial classification. Elements entered in
the i th year will be allocated to any of the bonus classes, according to the
components of probabilities vector ci ; i 2 N. We assume that new elements
do not leave the portfolio immediately after initial classification; thus c T

i D�
tT

i j 0
�
, with t i corresponding to the probabilities of a new element entering

into transient states, in year i . For details about initial classification criteria,
see [7].

2.3 Expected Subpopulations Dimension

Let N i be the number of policyholders initially placed in each bonus class in time
period i ; i 2 N.

The next proposition (see [4]) has a fundamental role in our developments:

Proposition 1. If E � Poisson.�/ and .X jE D e/ � Multinomial.e; c/ with cT D
.c1; : : : ; ck/, then X is a random vector whose margins, X1; : : : ; Xk, are indepen-
dent and Poisson-distributed random variables with mean values .�1; : : : ; �k/T D
.�c1; : : : ; �ck/T , respectively.

We will say that X has a multivariate Poisson distribution with mean vector
� D .�1; : : : ; �k/T and will be represented by X � Poisson.�/.

Theorem 1. Consider a population with k subpopulations and that the numbers
Ei; i 2 N, of new elements arriving to the population in year i are Poisson dis-
tributed with mean value �0

i ; i 2 N. New elements are allocated in subpopulations,
in year i; i 2 N, according to probabilities vector ci ; i 2 N. After entry, future
periodic re-classifications follow stable probability transition matrices. In a time
period m, the number N i;m of elements in each sub-population, entered in the i th
year, will have been subject to m � i reclassifications and are Poisson distributed
with parameter

�T
i;m D �0

i cT
i Pm�i : (4)

Proof. According to Proposition 1, we may acknowledge that N i , number of
elements initially placed in each subpopulation in year i , is Poisson distributed with
mean vector �0

i ci , N i � Poisson.�0
i ci /.

In each time period m; m � i , the Ni;j ; i 2 N; j D 1; : : : ; k, elements entered
in year i , and initially placed in subpopulation j , have been subject to m � i

reclassifications and distributed over the subpopulations according to transition
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matrix P . The vector of the number of elements N T
i;m;j D .Ni;m;j;1; : : : ; Ni;m;j;k/;

will, according once again to Proposition 1, also be Poisson distributed,

N i;m;j � P
�
�0

i ci;j ıT
j Pm�i

�
; i; m 2 N; j D 1; : : : ; k;

with ıj a vector whose components are null, except the j th one, which is 1.
Since the components of N i ; i 2 N, are independent random variables, vectors

N i;m;j ; i; m 2 N ; j D 1; : : : ; k, will also be independent. To complete the proof
we only need to point out that the vector of total sizes, in time period m, will be
given by N i;m D Pk

j D1 N i;m;j . Thus, due to Poisson distribution reproducibility,

we obtain N i;m � P.�i;m/ with �T
i;m D Pk

j D1 �0
i ci;j ıT

j Pm�i D �0
i cT

i Pm�i . ut

Using (4) (see [7]), we are able to estimate bonus classes dimension, according
to stochastic vortices model. The estimator for bonus classes dimension now reflects
entrances intensities, initial classification, transition, and annulment probabilities.

For total number of policyholders in each bonus class in time period m, we have

N CC
m D

mX
iD1

N i;m � P.�CC
m / (5)

with
�CC T

m D � Pm
iD1 �0

i tT
i Km�i

ˇ̌ Pm
iD1 �0

i tT
i qm�i

�
: (6)

2.4 Asymptotic Results for Transient States

The existence of stochastic vortices in transient states implies stable limit relative
dimension for the bonus classes.

Let us assume that sub-matrix K is a s � s diagonalizable matrix. Under very
general conditions (see [11]), we will have

K D
sX

j D1

�j ˛j ˇ T
j K m D

sX
j D1

�m
j ˛j ˇ T

j (7)

with �j

h
˛j ; ˇ T

j

i
; j D 1; : : : ; s matrix K eigenvalues [left and right eigenvectors].

Considering the first block of (6), as well as assumption (3), let

�C T
m D

mX
iD1

�0
i tT

i Km�i D
mX

iD1

.a C b �i / tT
i Km�i (8)

be the mean vector for transient states (bonus classes), in time period m.
Using (7), we identified conditions for convergence of (8). Proposition 2 is

established in [7]. For computational simplicity, we obtained last expression in [8].
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Proposition 2. If entries intensities are given by �0
i D a C b �i ; i 2 N; .a; b/ 2

R
2; 0 < � < 1 and limi!C1 ti;j D tj ; j D 1; : : : ; s, we then have

�CT1 D lim
m!C1�CT

m D
sX

j D1

tT ˛j a

1 � �j

ˇT
j D a tT .I s � K /�1 : (9)

This proposition guarantees, under general conditions, the existence of finite
limits for the parameters vector of sub-populations in transient states, if 0 < � < 1.

Long-run distribution of BMS corresponds to limit relative dimensions for
transient states, which will be stable as m ! C1 (see [7]) and given by

�1;j D lim
m!C1 �m;j D lim

m!C1
�C

m;jPs
j D1 �C

m;j

D �C
1;jPs

j D1 �C
1;j

; j D 1; : : : ; s (10)

so a stochastic vortex is established in transient states and long-run distribution
for BMS can be easily obtained. Note that initial classification will not interfere
in long-run distribution. However, regarding weighted distributions (see [1]), initial
classification renders more realistic models.

2.4.1 Confidence Intervals for Bonus Classes
Due to (5), for large portfolios we obtain level q confidence intervals for �C

m;j ; j D
1; : : : ; s ; m 2 N:

P

�
N C

m;j � zq=2

q
N C

m;j � �C
m;j � N C

m;j � zq=2

q
N C

m;j

�
D 1 � q

2

where zq=2 is the upper 1 � q

2
critical value for standard normal distribution.

Using delta method (see [12]), we obtain level q confidence intervals for
�m;j ; j D 1; : : : ; s ; m 2 N:

P

2
4 N C

m;jPk
j D1 N C

m;j

� zq=2

q
Vj N C

m;j � �m;j �
N C

m;jPk
j D1 N C

m;j

C zq=2

q
Vj N C

m;j

3
5 D 1 � q

2

(11)
with

Vj D �
�C1

	�2
h
.1 � �m;j /2 C C �2 �2

m;j � 2C �1 �m;j .1 � �m;j /
i

(12)

or
Vj D �

�C1
	�2

�2
m;j : (13)

considering �C1 D Ps
j D1 �C

1;j and Sj D Ps
i¤j

O�C
m;j .

Equation (12) holds if limm!C1 �
�

C
1;j

=�Sj D C > 0 and (13) holds if, for class

j , we have limm!C1 �
�

CC
j

=�Sj D 0.
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Table 1 Number of new policyholders per year

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
4,107 9,607 15,829 22,443 29,216 34,770 39,686 32,588 46,692 49,283

3 An Example

3.1 Transition Rules and Claim Frequency

Consider data from a Portuguese insurer portfolio. BMS has s D 20 classes with
premium increasing with class index. For each claim-free year, index decreases by
one. The first [each of the next] claim increases the class index by three [five]. The
zero bonus/malus class is the tenth.

To C.t/, the number of claims in Œ0; t/, we adjusted a mixed Poisson distribution
with Gamma structural distribution: C.t/ � P.�/ ; � � Gamma.˛; ˇ/. From the
data we obtained the ML estimates Ǫ D 0:70523 and Ǒ D 10:10695.

3.2 New Policyholders Estimation

Table 1 resumes insurer information about new policies for automobile insurance.
Let .E1; : : : ; Em/ be the random sample of the number of entries in m consecu-

tive years. Let us assume that Ei � P.�0
i / with �0

i D 	.1 � e�ı i /; .	; ı/ 2 R
2. Note

that this is a particular case of (3) with � D e�ı and 	 D �b D a.
ML estimators for 	 and ı are the solutions of

O	 D
Pm

iD1 ei

m � Pm
iD1 e�Oı i

(14)

O	
mX

iD1

i e�Oıi D
mX

iD1

i e�Oıi

1 � e�Oıi
ei : (15)

From (14) and (15), ML estimates were obtained: O	 D 212109 and Oı D
0:026692. This implies, for general model (3), that O� D e�Oı D 0:973661.

We note that the ML estimate for 	 is unrealistic for this insurer. Due to the
Portuguese market and the insurer’s quota share, it is not likely that they attain such
number of new annual entries. An alternative estimate relies on fix 	 as the insurer’s
long run perspective on growth and estimate ı, based on that assumption.

3.3 Initial Classification and Annulment Probabilities

Initial classification and annulment probabilities were considered not depending on
year and estimated from data. Results are presented in Table 2.
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Table 2 Initial classification and annulment probabilities per bonus class

j 1 2 3 4 5 6 7 8 9 10

c.j / 0.2394 0.0537 0.1914 0.0696 0.1886 0.0061 0.0342 0.0104 0.0625 0.1424
q.j / 0.1043 0.1275 0.1542 0.1833 0.2248 0.2179 0.2473 0.2350 0.2375 0.4533
j 11 12 13 14 15 16 17 18 19 20
c.j / 0.0006 0.0004 0.0003 0.0002 0.0002 2 � 10�5 3 � 10�5 3 � 10�5 4 � 10�6 2 � 10�5

q.j / 0.3909 0.4718 0.5621 0.5964 0.5703 0.7353 0.9487 0.4815 0.7364 0.8276

Table 3 Long run distributions and optimal bonus scales—S. vortices and C. model approaches

j �C .j / bG
C .j / �S .j / �S .j / N�S .j / bG

S .j /

1 0.7943 0.0531 0.6879157898 0.6879163605 0.6879169313 0.06086
2 0.0412 0.0764 0.0735734532 0.0736314416 0.0736894300 0.07082
3 0.0462 0.0996 0.0854663157 0.0854859575 0.0855055993 0.08078
4 0.0134 0.1228 0.0435894748 0.0435998164 0.0436101579 0.09074
5 0.0113 0.1461 0.0428224948 0.0428325975 0.0428427002 0.10070
6 0.0081 0.1693 0.0152794230 0.0152815824 0.0152837419 0.11067
7 0.0077 0.1926 0.0158469193 0.0158492070 0.0158514948 0.12063
8 0.0074 0.2158 0.0111921268 0.0111934917 0.0111948565 0.13059
9 0.0055 0.2390 0.0101670336 0.0101682137 0.0101693938 0.14055
10 0.0050 0.2623 0.0103512971 0.0103525116 0.0103537261 0.15051
11 0.0045 0.2855 0.0013487107 0.0013487707 0.0013488308 0.16047
12 0.0044 0.3088 0.0009259372 0.0009259720 0.0009260068 0.17043
13 0.0043 0.3320 0.0004858670 0.0004858807 0.0004858945 0.18039
14 0.0044 0.3552 0.0003050116 0.0003050186 0.0003050255 0.19035
15 0.0047 0.3785 0.0002083131 0.0002083171 0.0002083212 0.20031
16 0.0051 0.4017 0.0001247669 0.0001247688 0.0001247707 0.21027
17 0.0058 0.4250 0.0001169801 0.0001169818 0.0001169835 0.22023
18 0.0069 0.4482 0.0000559784 0.0000559790 0.0000559796 0.23019
19 0.0086 0.4714 0.0000377499 0.0000377502 0.0000377506 0.24016
20 0.0113 0.4947 0.0000793801 0.0000793812 0.0000793823 0.25012

Note that policyholders entered through all classes and a large number of insured
nullified his policy when arrived to maluses classes. This highlights that assuming
closed models and a “starting class” for all new policyholders in rather unrealistic.

3.4 Long Run Distribution and Optimal Bonus Scale—Stochastic
Vortices and Closed Model Approach

Using (10) for SV model and classical results for BMS (see [9]), long-run distri-
butions were obtained. For SV model we are able to predict long-run distribution
through confidence intervals using (11). Following [5] after [10], an optimal bonus
scale was obtained for each approach.
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Table 3 presents results for both models. Indexes C and S refer to closed and SV
model, respectively. bG represents Gilde and Sundt’s linear optimal bonus scale and
�S .j / and N�S .j / the 95 % confidence intervals. Note that long-run distributions
differ significantly and closed model overestimates probabilities in maluses classes
as well as in higher discount class. This, naturally, has impacts on optimal bonus
scales.

With the ML estimates for 	 and ı, the SV model converges slowly to stationarity.
This implies that Borgan et al. [1], optimal bonus scale should be implemented
instead of Norberg’s [10]. In this chapter we illustrate Norberg’s optimal bonus scale
in order to evaluate portfolio performance in a long-run perspective.

Acknowledgments This work was partially supported by Financiamento Base 2009 ISFL-1-297
from FCT/MCTES/PT.

References

1. Borgan, Ø., Hoem, J., Norberg, R.: A nonasymptotic criterion for the evaluation of automobile
bonus system. Scand. Actuar. J. 3, 165–178 (1981)

2. Centeno, L., Andrade e Silva, J.: Bonus systems in open portfolio. Insurance Math. Econom.
28, 341–350 (2001)

3. Denuit, M., Dhaene, J.: Bonus-malus scales using exponential loss functions. Blatter der
DGVFM 25(1), 13–27 (2001)

4. Feller, W.: An Introduction to Probability Theory and it’s Applications, 2nd edn. Wiley, New
York (1966)

5. Gilde, V., Sundt, B.: On bonus systems with credibility scales. Scand. Act. J. 2, 13–22 (1989)
6. Guerreiro, G.R., Mexia, J.T.: An alternative approach to bonus malus. Discuss. Math. Probab.

Stat. 24(2), 197–213 (2004)
7. Guerreiro, G.R., Mexia, J.T.: Stochastic vortices in periodically reclassified populations.

Discuss. Math. Probab. Stat. 28(2), 209–227 (2008)
8. Guerreiro, G.R., Mexia, J.T, Miguens, M.F.: A model for open populations subject to periodic

re-classifications. J. Stat. Theory Pract. 4(2), 303–321 (2010)
9. Lemaire, J.: Bonus-Malus Systems in Automobile Insurance. Kluwer, Boston (1995)

10. Norberg, R.: A credibility theory for automobile bonus system. Scand. Act. J. 2, 92–107 (1976)
11. Schott, J.R.: Matrix Analysis for Statistics, Wiley Series in Probability and Statistics. Wiley,

New York (1997)
12. Tiago de Oliveira, J.: The delta-method for obtention of asymptotic distributions-Applications.

Publ. de l’Inst. de Stat. de l’Univ. de Paris 27, 49–70 (1982)


	Preliminary Results on Confidence Intervals for Open Bonus Malus
	1 Introduction
	2 Stochastic Vortices Model for Bonus Malus Systems
	2.1 Transition Matrix
	2.2 Policyholders Entries
	2.3 Expected Subpopulations Dimension
	2.4 Asymptotic Results for Transient States
	2.4.1 Confidence Intervals for Bonus Classes


	3 An Example
	3.1 Transition Rules and Claim Frequency
	3.2 New Policyholders Estimation
	3.3 Initial Classification and Annulment Probabilities
	3.4 Long Run Distribution and Optimal Bonus Scale—Stochastic Vortices and Closed Model Approach

	References


