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ABSTRACT  Yeast adaptation to stress has been extensively studied. It in-
volves large reprogramming of genome expression operated by many, more 
or less specific, transcription factors. Here, we review our current knowledge 
on the function of the eight Yap transcription factors (Yap1 to Yap8) in 
Saccharomyces cerevisiae, which were shown to be involved in various stress 
responses. More precisely, Yap1 is activated under oxidative stress, 
Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 
under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 
seem to be involved in hydroquinone and nitrosative stresses, respectively. 
The data presented in this article illustrate how much knowledge on the func-
tion of these Yap transcription factors is advanced. The evolution of the Yap 
family and its roles in various pathogenic and non-pathogenic fungal species is 
discussed in the last section. 
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INTRODUCTION 
The yeast Saccharomyces cerevisiae has been used in re-
search for more than one hundred years, and it is generally 
regarded as the most well understood eukaryotic organism 
in the stress response field. The sensing and transduction 
of the stress signals into different cellular compartments 

induce a genetic reprogramming, which leads to a transient 
arrest of normal cellular processes, with a decrease in the 
expression of housekeeping genes and protein synthesis. In 
addition, there is an induction of the expression of genes 
encoding stress proteins such as molecular chaperones 
responsible for maintaining protein folding [1]. Survival and 
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Abbreviations: 
ARE – AP1-recogniction element, 
bZIP – basic leucine-zipper, 
CBC – CCAAT binding complex, 
CIA – cytosolic iron–sulfur protein 
assembly, 
CRD – cysteine-rich domain, 
CWI – cell wall integrity,  
ER – endoplasmic reticulum,  
GSH – reduced glutathione,  
GSSG – oxidized glutathione, 
HOG - high osmolarity glycerol,  
HQ – hydroquinone, 
NES – nuclear export signal, 
NO – nitric oxide,  
ORF – open reading frame, 
ROS – reactive oxygen species, 
Trx – thioredoxin,   
uORF – upstream ORF, 
WGD- whole genome duplication,   
Y8RE – Yap8 response element,  
YRE – Yap response elements. 
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growth resumption imply successful cellular adaptation to 
the new conditions as well as the repair of damages in-
curred to the cell that might compromise its viability. Spe-
cific stress conditions elicit distinct cellular responses due 
to gene expression programs orchestrated by a number of 
specific transcription factors commonly activated when the 
cells shift to sub-optimal growth conditions. Among these 
transcription factors, the basic leucine-zipper (bZIP) pro-
teins form a large multifunctional family, which is con-
served in all eukaryotes [2]. These regulators play im-
portant roles in the maintenance of cellular homeostasis 
and in cell differentiation during development in multicel-
lular organisms. They are defined by a basic DNA binding 
region followed by a leucine zipper motif. In metazoans, 
bZIP can form hetero- or homodimers, but yeast members 
of this family mostly act as homodimers [2]. Several sub-
families of bZIP regulators can be defined based on the 
protein sequences and DNA binding preferences [3]. In this 
review, we will highlight the role of the Yeast Activator 
(AP1-like) Protein (Yap) sub-family in the yeast adaptation 
to environmental stress response. The last section provides 
an overview of the evolution and functional significance of 
this family in other fungal species. 

 

THE YAP FAMILIY OF TRANSCRIPTIONAL REGULATORS  
Fifteen bZIP proteins are found in the S. cerevisiae genome. 
Four of them are homologous to the ATF/CREB subfamily 
(Aca1, Sko1, Hac1 and Cst6) and one is related to AP1 

(Jun/Fos) transcription factors (Gcn4). The rest belongs to 
fungal specific bZIP subtypes [2]. The yeast activator (AP1) 
protein family is the largest bZIP subfamily in S. cerevisiae. 
It includes eight members (Yap1 to Yap8) which have some 
sequence similarity to Gcn4. Gcn4 interacts with DNA, via 
five residues in its basic region (Asn235, Ala238, Ala239, 
Ser242, and Arg243) that make base-specific contacts with 
DNA (Fig. 1). These residues are highly conserved in the 
Jun/Fos bZIP proteins found in mammals [4-6]. The Yap 
family is unusual among bZIP proteins because they con-
tain a glutamine at the position corresponding to Gcn4 
Ala239 and a phenylalanine or a tyrosine at the position 
corresponding to Ser242, hence having different DNA bind-
ing properties (Fig. 1). Furthermore, there are two family 
specific residues in the Yap family, in position 234 and 241 
of Gcn4 that are a glutamine and an alanine, respectively 
[7]. 

Yap1, the first member of the Yap family to be de-
scribed, was initially identified by its ability to bind a DNA 
sequence containing the simian virus 40 (SV-40) sequence 
AP-1 recognition element (ARE: TGACTAA). Based on the 
ARE-binding capacity, this factor was purified as a 90 kDa 
protein and the corresponding gene was cloned by screen-
ing a λgt11 library with a monoclonal antibody raised 
against Yap1 [8]. Subsequently, this gene was also found as 
a multicopy suppressor of sensitivity to the iron chelators 
1,10-phenantroline as well as to a variety of drugs, includ-
ing cycloheximide. Hence, this locus was historically desig-

FIGURE 1: Structural features of the Yap family DNA binding domain. The sequences of the eight Yap DNA binding domains (i.e. the basic 
region of the bZIP motif) are compared with the equivalent region of Gcn4, the classical yeast AP-1 factor, used as an outgroup. A green 
background highlights the positions, whose physico-chemical properties are conserved in the Yap family. The most conserved residues are 
in bold. The Yap8 specific residues are in blue. The Yap1 amino-acids which were predicted to contact DNA based on structural studies [12, 
140] have been underlined by a black box. The Gcn4 residues involved in DNA interaction are highlighted by pink boxes. The rooted tree 
and the multiple alignment were obtained from ClustalW (https://www.genome.jp/tools-bin/clustalw), using the bZIP sequences and the 
100 flanking amino-acids. 
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nated as PAR1/SNQ3/PDR4 [9]. Besides YAP1, a second 
gene, YAP2, conferring resistance to the iron chelator 
1,10-phenantroline, was also described. This gene encodes 
a 45 kDa protein that binds YRE (Yap response elements) 
located in the promoters of its targets. YAP2 is also named 
CAD1, due to the acquisition of cadmium resistance in cells 
overexpressing this gene [10]. The sequencing of YAP1 and 
YAP2 genes revealed the presence of three conserved re-
gions: the bZIP domain in the N-terminus, a region in the 
C-terminus containing conserved cysteine residues and 
another one in the internal region adjacent to the bZIP-
domain [7].  

A search in the S. cerevisiae genome using as query the 
bZIP motif revealed the other six members of the Yap fami-
ly [11]. All of them possess common key residues in the 
bZIP, which confer to the family distinct DNA binding prop-
erties (Fig. 1).    

Yap1 recognizes the specific sequences TGACTAA, 
TTAGTCA, TTACTAA and T(T/G)ACAAA (YREs) in the pro-
moter of its target genes [11-14]. Genome-wide analyses 
have defined the consensus Yap1 sequence as being 
TTACTAA (YRE-O) [12, 15, 16]. The remaining Yap transcrip-
tion factors bind either the YRE-O element (Yap2/Cad1, 
Yap5, Yap7) or a slightly different motif, TTACGTAA, called 
YRE-A (Yap4/Cin5, Yap6) [16-19]. Yap3 was described as a 
transactivator of the YRE-O, but the YRE-A was predicted as 
his preferred binding motif based on chromatin immuno-
precipitation (ChIP-chip) experiments [11-17]. The prefer-
ence for YRE-O or YRE-A has been proposed to be due to 
the presence of either an arginine or a lysine in the basic 
domain of the corresponding Yap (position 15 in the se-
quences represented in Fig. 1) [17], however, this hypothe-
sis is controversial [11, 12]. The sole exception is Yap8/Arr1, 
which binds a cis-element with 13 base pair sequence 
TGATTAATAATCA hereafter designated as Yap8 response 
element (Y8RE) [20, 21]. Both the core element (TTAATAA) 
and the flanking regions (TGA and TCA) of Y8RE are crucial 
for Yap8/Arr1 binding and for in vivo activation of its tar-
gets [20, 21]. Interestingly, a residue in the Yap8 basic re-
gion, Leu26, is required for Yap8-DNA binding and Yap8 
activity (highlighted in blue in Fig. 1). This residue, together 
with Asn31, hinders Yap1 response element recognition by 
Yap8, giving its narrow DNA-binding specificity [20]. 

A structural common feature between YAP1 and YAP2 
is the presence of unusually long 5’-untranslated region 
containing short upstream open reading frames (uORF). 
The YAP1 leader has one 7-codon uORF whereas the one of 
YAP2 contains one 6-codon uORF (uORF1) and an overlap-
ping short reading frame of 23 codons (uORF2), which is 
located at -1 with respect to the main reading frame [22]. 
The latter is involved in YAP2 mRNA turnover via termina-
tion-dependent decay. Indeed, the YAP1-type uORF allows 
scanning of 40S subunits to proceed via leaky scanning and 
re-initiation to the major ORF, whereas the YAP2-type acts 
to block ribosomal scanning by promoting efficient termi-
nation [23]. 

 

YAP1, THE REGULATOR OF OXIDATVE STRESS 
RESPONSE  
Cells have to keep intracellular concentrations of peroxides 
(H2O2 and organic peroxides) and of other reactive oxygen 
species (ROS) at very low levels by regulating their concen-
tration through tightly controlled mechanisms. ROS are 
endogenously produced during aerobic respiration or be-
cause of altered cellular environment (oxidant molecules 
exposure, imbalance in metal homeostasis). Microorgan-
isms, including S. cerevisiae, contain sensors that detect 
the levels of ROS. In yeast cells, Yap1 is activated under 
oxidative stress conditions and its absence renders cells 
hypersensitive to the several oxidants that generate su-
peroxide anion radicals [9]. Kuge and Jones provided the 
first and clear clue towards the role of Yap1 in this re-
sponse mechanism [24], by showing that TRX2 gene (thi-
oredoxin) induction by H2O2, t-BOOH, diamide and dieth-
ylmaleate (DEM) is Yap1-dependent. Analyses of several 
promoter sequences of antioxidants genes such as TRX2, 
GSH1 (γ-glutamyl cysteine synthetase) [24], GSH2 (glutha-
thione synthetase) [25] and TRR1 (thioredoxin reductase) 
[26] revealed functional YREs.  

Yap1 redox regulation by oxidants involves two cyste-
ine-rich domains (CRDs) located in the N- and C-terminus. 
Yap1 shuttles between the nucleus and the cytoplasm me-
diated by the exportin Crm1/Xpo1 and imported by the 
importin Pse1 [27, 28]. Upon stress conditions, Yap1 accu-
mulates in the nucleus because its NES (nuclear export 
signal) is masked by the formation of an intramolecular 
disulfide bond between the cysteine 303 and 598, avoiding 
Crm1 recognition. Consequently, there is an increased ex-
pression of Yap1 targets (Fig. 2) [28]. In vitro studies per-
formed by Wood M.J. et al. revealed that upon H2O2 expo-
sure, an additional intramolecular disulfide bond between 
Cys310 in n-CRD and Cys629 in c-CRD is formed [29]. Alt-
hough this second disulfide bond was not shown to be 
relevant in vivo, it possibly adds stability to the oxidized 
active conformation of Yap1 [30]. The fact that Yap1 does 
not respond to H2O2 in the absence of Hyr1 (also designat-
ed as Gpx3 or Orp1), led to establish the role of this protein 
as a sensor and signal transducer of H2O2. Yap1 oxidation 
does not thus take place directly and the Cys36 of 
Hyr1/Orp1 oxidized to sulfenic acid (Cys36-SOH) senses the 
H2O2 signal [31, 32]. Next, the signal is transduced to Yap1 
through the generation of an intermolecular disulfide bond 
between Cys36 of Hyr1/Orp1 and Yap1 Cys598, which then 
forms the intramolecular disulfide bridge with Yap1 Cys303 
rendering Yap1 to its active form (Fig. 2) [29]. When this 
bond is formed, the Cys36 sulfenic acid of Hyr1/Orp1 is 
prepared to react with its Cys82 to complete the peroxida-
tive cycle. Bersweiler et al. showed that the protein Ybp1 
could be associated to Yap1 forming a ternary complex 
with Hyr1/Orp1 [33]. It is possible that Ybp1 functions as 
chaperoning the formation of the disulfide bridge between 
the Cys36-SOH of Hyr1/Orp1 with the Cys598 of Yap1. It 
could also avoid the competition with the Cys36-Cys82 
disulfide bond of Hyr1/Orp1 that is part of its catalytic site 
[33]. The Hyr1/Orp1 peroxidase is different from the classi-
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cal ones and is reduced by the thioredoxin (Trx) pathway 
[32, 34]. 

In contrast to H2O2, the Yap1 response to diamide is 
Hyr1/Orp1-independent and it does not involve the n-CRD 
(Fig. 2) [35]. This is consistent with the notion that it pos-
sesses two redox centers. Indeed, the electrophile N-
ethylmaleimide (NEM) and the quinone menadione, both 
electrophile and superoxide anion generators, were shown 
to modify the c-CRD cysteines independently of Hyr1/Orp1, 
leading to Yap1 nuclear accumulation [35]. The Trx path-
way is involved in the recycling of the Yap1 oxidized form 
by disrupting the disulfide bond [36-38]. Fe-S clusters are 
also very susceptible to oxidation. It was described that 
Yap1 attenuates the toxic effect of hydroxyurea by regulat-
ing the expression of key players of the cytosolic iron–
sulfur protein assembly machinery (CIA), proposed to act 
as sensors of the intracellular oxidative stress [39, 40].  

During the oxidation-reduction processes in which Yap1 
is active, the glutathione functions either in reduced (GSH) 
or oxidized (GSSG) form. Recently, it was shown that gluta-
thione in the endoplasmic reticulum (ER) is oxidized but 
not reduced, being catalyzed to the oxidative state by Ero1, 
a protein forming the disulfide bond necessary for this 
process. The reduction of this GSSG molecule to GSH is 
then occurring in the cytoplasm. As such, the interplay 
between reduced cytosolic GSH and the oxidized GSSG in 
the ER keeps the redox homeostasis [41, 42]. The transport 
of glutathione between the cytoplasm and the ER is facili-
tated via diffusion through the Sec61 complex (protein-
conducting channel) plus the Sec62-Sec63 complex [41, 42]. 

 

YAP1 IN METAL AND METALLOID STRESS 
Metal toxicity depends on each metal’s physicochemical 
properties and ligand preferences. Redox-active metals 

FIGURE 2: Schematic representation of Yap1 activation. Yap1 has two distinct molecular sensors: one for hydrogen peroxide (H2O2) and 
the other for thiol-reactive compounds (see description in the text). In the first panel is represented the shuttling of Yap1 between the 
nucleus and cytoplasm, occurring under physiological conditions, entering the nucleus by Pse1 importin and exiting the nucleus by exportin 
Crm1. In the second panel is depicted the activation of Yap1 by H2O2, which is dependent on Hyr1/Gxp3/Orp1 and Ybp1 proteins. H2O2 

induces the formation of a disulfide bond between Cys303 and Cys598 of Yap1, preventing the recognition of the nuclear export signal 
(NES) by Crm1 (represented in red the activated Yap1). In the third panel is depicted the activation of Yap1 by thiol-reactive agents. These 
compounds bind to Cys598, Cys620 and Cys629, thereby preventing the recognition of the NES by Crm1 (in purple the activated Yap1). In 
both cases, the conformational change leads to Yap1 accumulation in the nucleus and posterior gene activation. 
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such as iron (Fe), chromium (Cr), copper (Cu) and cobalt 
(Co) can take oxygen and sulphur as their ligands, whereas 
redox-inactive metals such as cadmium (Cd) and mercury 
(Hg) prefer sulphur as a ligand [43-45]. Redox-active metals 
can induce oxidative stress by participating in Fenton-type 
reactions, whereas redox-inactive metals imbalance the 
antioxidant pool of the cell [43-45]. In general, metals in-
duce cellular toxicity by generating oxidative stress, impair-
ing the DNA repair system and inhibiting protein folding 
and function [45-47]. 

Yap1 plays a pivotal role in mitigating metal-generated 
ROS, but its contribution to metal detoxification is not re-
stricted to the induction of the cellular antioxidant defenc-
es. Indeed, Yap1 also regulates expression of the YCF1 gene, 
the vacuolar transporter of metal-glutathione conjugates, 
thereby contributing to vacuolar compartmentalization of 
metals and metalloids such as cadmium and arsenite [48, 
49]. Over the last years, several other metal detoxification 
pathways controlled by Yap1 were unveiled as subsequent-
ly detailed.  

Cobalt is a biologically relevant metal in many living or-
ganisms because it is an essential cofactor of enzymes in-
volved in many reactions [50]. However, when cobalt is in 
excess it generates oxidative stress, which damages cells. 
Analysis of transcriptional profiles of cells stressed with 
high concentrations of cobalt revealed the induction of 
antioxidant genes in a Yap1 dependent way [51]. Corrobo-
rating this molecular data, biochemical analysis showed 
Yap1 to be important to deal with oxidative damage gen-
erated by exposure to cobalt. Activation of Yap1 is not ex-
clusively involved in cobalt-generated ROS since under 
anoxia, Yap1 also localizes in the nucleus [51]. Moreover, 
Yap1 up-regulates cobalt uptake through the activation of 
the expression of the high affinity phosphate transporter 
PHO84, a well-known cobalt transporter. Accordingly, yap1 
knockout cells accumulate lower levels of cobalt [51]. The 
authors suggested that cobalt accumulation could be a side 
effect of Yap1 regulation of PHO84 under non-stressed 
conditions and proposed that phosphate uptake mediated 
by Yap1 may fulfill a role in the oxidative stress response 
triggered by the aerobic metabolism. Reinforcing this pos-
sibility, growing evidences indicate that manganese-
phosphate complexes, which enter cells via Pho84 [52], act 
as scavengers of superoxide [53, 54]. 

Cadmium is a well-known mutagenic metal that can en-
ter cells via non-specific divalent metal transporters. Yap1 
is a repressor of the FET4 gene [51], a plasma membrane 
low affinity iron transporter, which can transport other 
bivalent metals including cobalt and cadmium ions. Alt-
hough this repression does not significantly affect cobalt 
uptake, it avoids cadmium toxicity by impairing its 
transport into the cell [55]. Genomic deletion of Yap1 in-
creases FET4 transcripts as well as protein levels [55]. The 
yap1 mutant accumulates high cadmium levels compared 
with the wild-type strain, whilst the deletion of FET4 gene 
from the yap1 mutant resumes cadmium tolerance. Note-
worthy, cadmium uptake increased in cells treated with 
both cadmium and iron because iron induces CUP1 expres-
sion, which possibly binds and sequesters cadmium [55]. 

Yap1 is not a direct regulator of FET4 because its promoter 
does not contain YREs. Previous microarray analysis ob-
tained in the presence of cobalt [51] revealed that Yap1 
positively regulates the transcription factor Rox1. This fac-
tor is a repressor of hypoxic genes and represses FET4 ex-
pression under aerobic conditions. The promoter of ROX1 
possesses one functional YRE located at – 414 upstream 
the ATG codon. Yap1 is a direct regulator of ROX1, which in 
turn represses FET4 [55].  

Yap1 also plays an important role in arsenic compound 
detoxification by regulating genes encoding several of the 
cellular antioxidant defenses, important to mitigate arse-
nic-generated ROS [56]. Besides, Yap1 was also shown to 
control the expression of YCF1, ACR2, the yeast arsenate 
reductase gene, and ACR3, the plasma membrane arsenite-
efflux protein-encoding gene [48, 57, 58]. Recently, a new 
line of action of Yap1 in the protection against arsenate 
toxicity was put forward. By analyzing the transcriptomic 
profile of Yap1 knockout cells treated with arsenate, sever-
al genes involved in the biogenesis of mitochondrial (ISC) 
and cytosolic (CIA) Fe-S clusters were found to be depend-
ent on Yap1 [59]. This dependence was maintained under 
anoxia, suggesting that arsenate per se is able to activate 
Yap1 and triggers the up-regulation of Fe-S cluster biogen-
esis genes. Arsenate was shown to directly and indirectly 
(possibly via intracellular ROS production) affect the activi-
ty of Fe-S containing proteins and accordingly overexpres-
sion of CIA and ISC genes attenuates arsenate deleterious 
effects [59]. Together these findings led the authors to 
propose that the transcriptional regulation of Fe-S biogen-
esis genes may constitute another safeguard against arse-
nate toxicity activated by Yap1. 

 

YAP2/CAD1 INVOLVEMENT IN CADMIUM AND 
OXIDATVE STRESS 
Yap2/Cad1 is the family member that shares the highest 
homology with Yap1 [10]. When overexpressed, Yap2 con-
fers resistance to several stress agents, suggesting a role 
for this transcription factor in response to toxic compounds. 
Although YAP2 and YAP1 overexpression elicits similar 
phenotypes, deletion of the latter has strong phenotypic 
effects, whereas deletion of YAP2 does not affect or only 
slightly affects cell growth [7, 10]. 

Notably, the YAP2 and YAP1 single deletion similarly 
decreased the resistance towards the oxidants H2O2 and 
menadione of stationary-phase cultures [60]. Under such 
circumstances, Yap2 does not regulate the known Yap1 
antioxidant targets, an observation that led the authors to 
propose that the H2O2-mediated adaptive response could 
be composed of two distinct regulons, one being con-
trolled by Yap1 and the other by Yap2 [60]. These data also 
support the notion that Yap1 and Yap2 have overlapping, 
but not redundant functions. Corroborating this idea, the 
analysis of the transcriptomic profile of yap1 and yap2 null 
mutants showed that Yap1 and Yap2 activate separated 
regulons when challenged with H2O2 [61]. 

Yap2 transactivation potential is slightly stimulated up-
on treatment with cadmium [11]. The swapping of Yap1 
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and Yap2 c-CRDs domains shows that Yap2 cCRD can func-
tion in the context of Yap1 in response to cadmium but not 
in response to H2O2, indicating the high specificity of these 
responses [62]. Accordingly, overexpression of YAP2 in the 
yap1 null mutant suppresses cadmium, but not H2O2 sensi-
tivity [63]. 

Yap2 is mainly localized in the cytoplasm in unstressed 
cells but soon after the addition of cadmium it accumulates 
in the nucleus, activating its targets. In the Yap2 C-terminus, 
there are three cysteines, Cys391, Cys356 and Cys387, to 
which cadmium binds directly as shown using the high mo-
lecular mass alkylating agent (AMS), which targets free 
thiol moieties in cysteines. This interaction masks the nu-
clear export signal recognized by the exportin Crm1 leading 
to the accumulation of Yap2 in the nucleus [62].  

Using proteomic analysis after cadmium treatment, 
Azevedo et al. searched for other Yap2-specific targets [62]. 
In order to eliminate the influence of Yap1-target genes, a 
yap1 null strain transformed with a Yap2 multi-copy vector 
was used in the presence or absence of cadmium. Proteo-
me analysis under such conditions revealed the induction 
of the Frm2 protein. The expression of the gene encoding 
this protein is only dependent on Yap2 in the presence of 
cadmium. Frm2 shares high identity with type 4 nitrore-
ductases, shown to be involved in the fatty acid signalling 
pathway and required for unsaturated fatty acid control of 
the stearoyl-CoA desaturase gene (OLE1) expression [64]. 
FRM2 was also identified in a screen for mutants defective 
in OLE1 repression by unsaturated fatty acids, and the fact 
that the frm2 mutant is sensitive to arachidonic acid led to 
the hypothesis that FRM2 participates in lipid metabolism 
[62]. Considering that cadmium exerts its toxicity by pro-
moting lipid peroxidation cascades, it is plausible that Yap2 
regulates lipid metabolism [65, 66].  

Yap2 was also found in a two-hybrid screen using Rck1 
or Rck2 MAPK-activated protein kinases (MAPKAPs) as 
baits [67, 68]. The sensitivity of the rck1 mutant to tBOOH 
is fully suppressed by overexpression of Yap2 [67]. Alt-
hough Yap2 is a cadmium responsive transcription factor, 
its deletion does not increase yeast sensitivity to cadmium. 
In the absence of Rck1, Yap2 gives protection against cad-
mium toxicity. These results indicate that Rck1 appears to 
have an inhibitory effect on Yap2 activity. Furthermore, 
Yap2 may play a role in cell wall maintenance by control-
ling the expression of CWI (Cell wall Integrity) genes, name-
ly SLT2, RLM1 and CHS1 [68, 69]. These genes are depend-
ent on Yap2 but not on Yap1 and in the yap2 mutant 
strains, CWI genes are downregulated in the presence of 
cadmium indicating a regulatory role of Yap2 on their ex-
pression. It is possible that cadmium causes damage in the 
glucan structure of the cell wall, thus activating the expres-
sion of the CWI genes [68, 69]. 

 

YAP3, A TRANSCRIPTION FACTOR WITH A POTENTIAL 
FUNCTION UNDER HYDROQUINONE STRESS 
Yap3 (YHL009C) encodes a 399 amino acid protein contain-
ing a bZip domain similar to the other family members (Fig. 
1). YAP3 is located in the chromosome VIII and activates 

transcription from promoters containing a Yap recognition 
element (YRE; 5'-TTAC/GTAA-3') [11]. YAP3 is not an essen-
tial gene and so far, the regulatory targets of Yap3 are not 
yet defined but it seems that Yap3 plays a specific role in 
the cellular response to hydroquinone (HQ). Indeed, the 
yap3 mutant strain is sensitive to HQ. Like other Yap family 
members, Yap3 contains two CRDs and a NES in its C-
terminus. Yap3 localizes in the nucleus upon treatment 
with HQ [70]. Yap3 also responds to ER stress, as the null 
mutants are sensitive to tunicamycin, a compound that 
causes ER stress through induction of the unfolded protein 
response [71]. Yap3 was also identified in a screen of wild-
type and mutant strains as being sensitive to arsenic (As) 
and monomethylarsonous (MMA) treatments, suggesting 
that these stresses and HQ share cellular targets [72].  

Yap3 possesses a very high transactivation potential, 
even higher than the one of Yap1 in the absence of any 
stress [11], suggesting that this transcription factor might 
have an important function which was not yet precisely 
identified. 

 
YAP5 CONTRIBUTES TO IRON HOMEOSTASIS 
Yap5 (YIR018W) is a protein containing a CRD at the C-
terminus and a bZIP domain at the  
N-terminus that recognizes YRE-O sites (Fig. 1). Additional-
ly, Yap5 possesses a Hap4L domain just upstream of its 
bZIP. The Hap4L motif is a conserved protein sequence of 
16 amino acids, which is found in proteins interacting with 
the CCAAT binding complex (CBC), a highly conserved tran-
scriptional regulator [73]. However, the Hap4L domain of 
Yap5 is degenerated compared to other CBC interacting 
proteins and its role in Yap5 activity in S. cerevisiae has not 
been investigated yet [19]. Yap5 is responsible for yeast 
adaptation to iron overloading conditions. The Ccc1 trans-
porter fulfills an important role in high iron detoxification, 
by importing iron into the vacuole, which is the major site 
of iron storage in fungi and plants [18]. CCC1 expression is 
induced by iron through the activity of Yap5 [18, 74]. How-
ever, the up-regulation of CCC1 expression driven by Yap5 
is not essential for cells to cope with high iron toxicity, 
since deletion of the functional YRE [18] from the CCC1 
promoter region still allows cell growth under high iron 
levels [74]. Corroborating this notion, the yap5 null mutant 
is not as sensitive to iron excess as the ccc1 null mutant is 
[74-76]. 

Transcriptional and chromatin immunoprecipitation 
analyses revealed two other genes directly regulated by 
Yap5 with a relation to iron homeostasis, TYW1 and GRX4 
[74, 77, 78]. TYW1 encodes a cytosolic iron-sulfur (Fe-S) 
cluster-containing enzyme required for the synthesis of 
Wybutosine modified tRNA [79]. It was proposed that the 
induction of TYW1 triggered by Yap5 might provide protec-
tion against iron toxicity by sequestering cytosolic free iron 
as protein-bound Fe-S clusters [77]. GRX4 encodes a cyto-
solic monothiol glutaredoxin, which together with Grx3 
inhibits Aft1 activity under iron loading conditions by pro-
moting its retention in the cytoplasm [80, 81]. The Yap5-
dependent up-regulation of GRX4 expression was suggest-
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ed to reinforce this function, as in the yap5 null mutant 
Aft1 nuclear exclusion is slightly impaired [74] (Fig. 3). 

While the transcriptional activity of Yap5 depends on 
iron bioavailability, Yap5 binding to the promoter of its 
target genes is iron insensitive [18, 74] and Yap5 is consti-
tutively localized in the nucleus. Iron sensing by this tran-
scription factor depends on two CRDs (amino- and carbox-
yl-terminal CRDs), located in the  
C-terminus of the protein and separated by 37 residues 
[18]. Mutations of the cysteine residues of the CRDs impair 
the induction of Yap5 targets and compromise the adapta-
tion of yeast to high iron [18].  

Yap5 activation by iron is abrogated by mutations in 
genes encoding proteins of the mitochondrial iron-sulfur 
cluster assembly system (ISC), indicating that the transcrip-
tional response to high iron is dependent on Fe-S biogene-
sis [82]. Accordingly, Rietzschel et al. showed that Yap5 
senses iron by coordination of Fe-S clusters [76]. Both CRDs 
of Yap5 bind a 2Fe-2S cluster, whose maturation is un-
common as it depends on the ISC but not on the cytosolic 
CIA machinery [76]. These authors found that Fe-S cluster 
binding to Yap5 induces a conformational change in the 

protein, which may explain the increase in its transactiva-
tion potential under conditions of iron excess. 

 

THE ROLE OF YAP4/CIN5 AND YAP6 DURING OSMOTIC 
STRESS 
Hyperosmotic stress leads to the passive efflux of water 
from the cell to the exterior, resulting in a decrease in cell 
volume, loss of the state of turgidity, resulting in rigidity 
and increased concentration of cellular solutes [83]. In the 
case of hypo-osmotic environment, it allows the move-
ment of water into the cell, originating the swelling of the 
cell, a high-pressure turgor as well as the dilution of the 
intracellular milieu [83]. To counteract these effects, the 
cell makes use of osmolytes, which are compatible solutes, 
such as the alcohol glycerol, trehalose, and sorbitol that 
protect the cell against the effects of an osmotic challenge 
by modifying the intracellular osmotic pressure [83-85]. 
These alterations correlate to modifications of gene ex-
pression that consequently leads to the alteration of the 
cell permeability to the osmolytes and of their biogenesis 
rate. These metabolic alterations are triggered by the HOG 
(high osmolarity glycerol) pathway via the modulation of 

FIGURE 3: Schematic representation of the Yap5 involvement in the cellular response to iron-overload. In upper panel is represented the 
cellular response to low levels of iron (“low iron” in the figure) where the Aft1 transcription factor is responsible for the activation of the iron 
regulon. In the lower panel is represented the role of Yap5 when cells are exposed to iron excess conditions (“high iron” in the figure). Yap5 
activates the expression of CCC1, coding for a vacuolar iron transporter, and of TYW1, encoding a cytosolic Fe-S cluster protein. Additionally, 
it activates the expression of GRX4 gene, coding for a glutathione-dependent oxidoreductase, leading to Aft1 accumulation in the cytoplasm. 
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the expression of stress-responsive genes [86]. The main 
actor of this pathway is Hog1, a mitogen-activated protein 
kinase (MAPK). Hog1 controls the activity of several tran-
scription factors, in particular Msn1 [87], Msn2/4 [88], 
Hot1p [88], and Sko1p [86], among others.  

Yap4/Cin5, the fourth member of the Yap family was in-
itially characterized as a chromosome instability mutant 
designated as Cin5, encoding a 33 kDa protein [89]. Its 
overexpression confers salt tolerance [90] as well as re-
sistance to antimalarial drugs [91] and cisplatin [92]. Re-
sults from several microarray analyses indicate an induc-
tion of Yap4 under various conditions, such as those of 
oxidative and osmotic stress. The YAP4 null mutant reveals 
a slight salt-sensitivity phenotype under hyperosmotic 
stress. On the other hand, it was also shown that under 
these conditions YAP4 gene expression is regulated by 
Msn2 through the more proximal STRE elements (-430bp). 
The promoter of YAP4 contains several cis-elements such 
as HSE (nGAAnnTTCn) located at -432 and -425 upstream 
of ATG codon and bound to HSF, a Yap1-cis element locat-
ed at -516 and -508 from the ATG codon (YRE – 
TTAG/CTAA) and also STRE cis-elements for Msn2/ Msn4 
(AGGGG) [90]. Moreover, Yap4 is a downstream compo-
nent of the HOG pathway and its overexpression partially 
rescues the salt sensitive phenotype of the hog1 single 
mutant [90].  

Yap6 is a 44 kDa protein sharing almost 20% identity 
with Yap4/Cin5, making it the closest-related Yap family 
members (Fig. 1). Overexpression studies in the ena1 mu-
tant (lacking the Na+/Li+ extrusion ATPase) subsequently 
identified both YAP4/CIN5 (HAL6) and YAP6 (HAL7) as 
genes that confer salt tolerance through a mechanism un-
related to the Na+/Li+ ATPase extrusion [93]. In contrast to 
Yap1, Yap2 and Yap8, the subcellular localization of Yap4 
and Yap6 is constitutively nuclear.  

Yap4 also interacts with the product of the yeast gene 
LOT6 (YLR011W) encoding a 21 kDa protein. Lot6 possesses 
a quinone reductase activity similar to its mammalian 
counterparts [90, 94, 95]. The association of Yap4 with this 
quinone reductase and the 20S proteasome affects its 
ubiquitin-independent degradation. It was proposed that 
the FMN cofactor in the Lot6 active site is a redox-
regulated switch that controls the stability and localization 
of Yap4 [96]. A similar redox-controlled mechanism might 
regulate p53 and related transcription factors in mammali-
an cells [97]. It was also reported that the association of 
Lot6 with the 20S proteasome is via its flavin-binding site 
[96]. Interestingly, however, these authors showed that 
the reduction of the FMN cofactor by either NADH or light 
irradiation results in the binding of Yap4 to the Lot6–
proteasome complex, indicating that recruitment of Yap4 
depends on the redox state of the quinone reductase [96]. 
Alternatively, Lot6 in its native dimeric state is essential for 
the binding of Yap4 to the complex. The dissociation of 
Lot6 dimers into monomers does not affect the catalytic 
properties of the enzyme with regard to quinone reduction 
[98]. These authors put forward the hypothesis that Yap4 
binds the Lot6:20S proteasome in a redox-dependent 
manner and may participate in the proapoptotic effect of 

Lot6 and thus might represent an activator of yeast apop-
tosis [98].  

Transcriptional arrays of the yap4 mutant under mild 
conditions of hyperosmolarity revealed a large set of genes 
possibly regulated by Yap4. Amongst these target genes 
are GCY1, encoding a putative glycerol dehydrogenase, and 
GPP2, encoding a NAD-dependent glycerol-3-phosphate 
phosphatase. These genes show a decrease of their induc-
tion in the yap4 mutant strain with reduction values corre-
sponding to 40% and 50% of the maximum levels, respec-
tively. Furthermore, DCS2, a gene homologous to the 
DCS1-encoded mRNA decapping enzyme, shows 80% re-
duction of its induction level in the yap4 mutant upon os-
motic shock. The fact that YAP4 and YAP6 are induced by a 
variety of unrelated forms of environmental stresses sug-
gests a universal role in the yeast response to stress, in 
contrast to the other Yap members [90]. 

ChIP-chip experiments have shown that Yap4/Cin5, 
Sko1, Yap6, Msn2 and Skn7 bind their targets after incuba-
tion with high salt (0.6 M) for 30 min [99, 100]. Later, Ni et 
al. determined that the binding of several of these tran-
scription factors is a dynamic process [101]. Their data 
allowed the classification of Yap4 targets into three classes: 
constant binding independently of salt (class 1), rapid in-
duction (class 2) and slow induction (class 3). Other minor 
binding patterns were found such as transient induction 
(class 4) and decrease in binding (class 5). Sko1 and Yap6 
also bound many Yap4 constitutive targets of class 1, at 
either 0 min or 30 min. Another interesting aspect is that 
Msn2 preferentially binds inducible Yap4 targets. Moreo-
ver, Yap6 and Sko1 bind a significant number of salt-
induced Yap4 targets that belong to class 2. It seems from 
the results of Ni et al. that the binding of other factors cor-
relates with induced binding, and thus the association of 
different components at induced targets regulates gene 
expression [101]. Yap4 targets were involved in oxidore-
ductase activity and Yap4, together with Sko1, have targets 
involved in hexose transport, glucose and ethanol catabo-
lism. Yap6 has targets in the same categories as Yap4 but it 
specifically targets genes encoding ribosomal proteins.  

Yap4 is a highly phosphorylated protein. This post-
translation modification is dependent on PKA and GSK3 
and was shown to affect its stability but not its nuclear 
localization [102]. 

Finally, Yap4 and Yap6 were shown to interact with the 
general transcriptional repressor Tup1, suggesting that 
they could also act as transcriptional repressors [16, 93]. 
 

YAP7 AND NITROSATIVE STRESS 
The function of Yap7 (YOL028c) has not been completely 
deciphered. It was described that Yap7 represses YHB1, 
encoding a flavohemoglobin which functions as a nitric 
oxide (NO) oxidoreductase [19]. In consequence, Yap7 de-
letion confers high resistance to NO. Yap7 repression of 
YHB1 is exerted by binding YRE-O motifs in the YHB1 pro-
moter and by recruiting the transcriptional repressor Tup1 
[19, 103]. Like Yap5, Yap7 has a bipartite Hap4L-bZIP do-
main, which was shown to play a role in its function. How-
ever, the de-repression of YHB1 observed in a mutant of 
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CBC is only 30% of that observed in a yap7 mutant, indicat-
ing that Yap7 repressor activity is only partially dependent 
on CBC [19]. Noteworthy, in laboratory S. cerevisiae strains, 
YAP7 is interrupted by a frame-shift and produces a trun-
cated protein which has DNA binding properties but lacks 
the Tup1 interaction domain and is unable to repress tran-
scription. The role of Yap7 was therefore revealed by stud-
ying “wild” yeast strains expressing a full-length Yap7 pro-
tein [19]. 
 

YAP8 AND ITS ROLE IN THE DETOXIFICATION OF 
ARSENIC COMPOUNDS 
Arsenic (As) is the 20th most abundant element in the 
earth’s crust and is a highly toxic metalloid with respect to 
the human health being the most potent human carcino-
gen. Although synonymous to a poison, it is one of the 
oldest drugs in the history of humankind, first used to treat 
syphilis and later malaria. In spite of its toxic effects, arse-
nic is also a chemotherapeutic agent in the treatment of 
the acute promyelocytic leukemia (APL) as well as other 
solid cancers [104-108]. Arsenic is a multifactorial element 
because this metalloid interferes with several metabolic 
pathways leading to a myriad of cytotoxic effects, forming 
ROS with the induction of apoptosis [56].  

The global environmental widespread of arsenic led the 
organisms to develop and evolve several detoxification 
mechanisms for this compound. In S. cerevisiae the main 
detoxification system for arsenic is composed of Acr2/Arr2, 
an arsenate reductase responsible for the reduction of 
arsenate (As(V)) to arsenite (As(III)) [109] and Acr3/Arr3, a 
dual As(III) and antimonite (Sb(III)) plasma-membrane ef-
flux protein [45, 110]. The transcription factor Yap8/Arr1 is 
the master regulator of arsenic detoxification that binds 
the promoter region located between ACR2 and ACR3, two 
divergently transcribed genes (Fig. 4). Remarkably, the 
YAP8 gene itself is located just next to ACR2 and ACR3, 
hence forming a genomic cluster specialized in arsenic re-
sistance. Yap8 specifically recognizes and binds an extend-
ed YRE with a 13 bp pseudo-palindromic sequence (TGAT-
TAATAATCA), where both the core element (TTAATAA) and 
the flanking sequences are essential for Yap8 binding and 
transcriptional activation of its targets (Fig. 4) [20, 45]. 
Yap8 was found to be regulated by arsenic at the level of 
its nucleo-cytoplasmic shuttling. When exposed to arsenic 
the cysteine residues, Cys132, Cys137 and Cys274, bind the 
arsenic compound masking the NES and as such, Yap8 will 
remain in the nucleus activating its targets [57]. However, 
contrary to these observations, another study showed that 
Yap8 is constitutively nuclear, being associated with the 
ACR3 promoter in untreated as well as As(III)-exposed cells 
[45]. Unknown genetic differences in  
S. cerevisiae strains used and/or different expression sys-
tems may account for the discrepancies between both 
works. The three conserved cysteine residues, Cys132, 
Cys137 and Cys274, are important for Yap8 transactivation 
function, since the mutants obtained by substitution for 
each residue failed to induce ACR3 expression [57]. 

Menezes et al. have shown that arsenate alters the sulfhy-
dryl state of Yap8 conserved cysteines, suggesting that 
these residues may also be direct sensors of the pentava-
lent form of arsenic, As (V) [111]. 

As(V) also induced the expression of the Aft1-
dependent gene CTH2 to levels similar to those triggered 
by BPS (bactophenantroline disulfonic acid) [112]. However, 
in the presence of As, the expression of the high-affinity 
iron uptake protein encoding genes FET3 and FTR1 is abro-
gated and the aft1 mutant growth is impaired. Further-
more, growth of the aft1 mutant in presence of As is totally 
resumed when iron is added, indicating a physiological link 
between As and the Aft1/2 regulon iron deprivation re-
sponse [112]. As such, these data revealed that As(V) caus-
es Fe scarcity.  

Tamas´s laboratory showed that Yap8 escapes degrada-
tion under arsenic conditions [113]. Later, Ferreira et al. 
have shown how Yap8 circumvents proteolysis under As 
stress [114]. Although Ufd2, an E4-Ubiquitin ligase, was 
involved in protein degradation, those authors found that 
the UFD2 deletion causes Yap8 degradation and a decrease 
in its transcriptional activity. Consequently, the cell growth 
under arsenic stress is compromised in this mutant. These 
data suggested that Ufd2 possesses another function be-
sides proteolysis. Several reports indicated that the Ufd2 
U-box motif is essential for ubiquitination and as such, is 
required for Ufd2 action during proteolysis [115, 116]. 
However, the U box motif is not functional in the Ufd2 that 
is acting as a stabilizing protein in the activity of Yap8 [114].  

Another important aspect of Yap8 activity relies on its 
interaction with the core transcriptional machinery and 
more particularly with the Mediator complex (Fig. 4). The 
Mediator is a complex molecular machine composed of 
about 20 subunits organized in four domains (tail, middle, 
head and regulatory modules) [117-119]. The tail module 
contains the subunits Med2, Med3, Med15 and Med16 
interacting with transactivators and as such recruiting the 
complex to the gene promoter. Until now a small numbers 
of associations between the Mediator tail subunits and 
transcription factors such as Pdr1/Pdr3 [120], Hsf1 [121], 
Gal4 [122], and Gcn4 [123] were described. Using two hy-
brid assays in the presence of arsenate, Menezes et al. 
revealed that Yap8 is a partner of Med2, a result after-
wards confirmed by chromatin immunoprecipitation assays 
[111]. After Yap8 activation, the Mediator binds the 
ACR2/ACR3 promoter through the interaction with the 
mediator complex via the tail subunit, Med2 (Fig. 4). Tran-
scription is also under the control of the SWI/SNF and SA-
GA chromatin-remodeling complexes [124-126]. In the 
case of Yap8, the specific SWI/SNF and SAGA subunits (Snf2, 
Snf5 and Spt20) are as well required for the full expression 
of ACR2. In conclusion, Menezes et al. showed that Yap8 is 
a direct sensor of arsenate and that the Mediator and 
chromatin-remodelers SWI/SNF and SAGA are essential co-
activators for the expression of Yap8 targets, ACR2 and 
ACR3 [111]. 



C. Rodrigues-Pousada et al. (2019)  Stress and AP-1 transcription factors in yeast 

 
 

OPEN ACCESS | www.microbialcell.com 276 Microbial Cell | JUNE 2019 | Vol. 6 No. 6 

THE YAP FAMILIY IN OTHER FUNGAL SPECIAS: AN 
EVOLUTIONARY PERSPECTIVE 
Orthologues of Yap transcription factors are found in all 
fungi. Most species have three to four members of this 
family, with the notable exception of the fission yeast 
Schizosaccharomyces pombe, which has only one (Fig. 5). 
The eight YAP genes described in S. cerevisiae actually orig-
inated from whole genome duplication (WGD), which oc-
curred in its ancestry. This WGD created pairs of ohno-
logues (i.e. paralogues arising from the WGD). It was fol-
lowed by massive gene reduction and most of the ohno-
logues were lost. Consequently, the modern yeast species 
which have encountered the WGD (named post-WGD spe-
cies) have roughly the same number of genes than those 
which haven’t (called pre-WGD species) [127]. Yet, in some 
cases, the ohnologues evolved divergent functions which 
were positively selected and retained. This was the case for 
the Yap family and most extent post-WGD yeast species 

have six to eight YAP genes, with some variations in the 
repertoire. In S. cerevisiae, three pairs of ohnologues were 
retained: Yap1/Yap2, Yap4/Yap6 and Yap5/Yap7 (Fig. 1). 
Another well-studied post-WGD species, the human path-
ogen Candida glabrata, has seven YAP genes: it lacks an 
orthologue for YAP8, has two YAP3 genes (named CgYAP3a 
and CgYAP3b) and only one orthologue for the YAP4 and 
YAP6 pair (named CgYAP4/6) (Fig. 5) [103]. 

Yap1 is the most conserved member of the family, both 
in terms of sequence and in terms of function (Fig. 5). 
Orthologues playing a major role in oxidative stress re-
sponse have been described in post-WGD yeast species 
(e.g. CgYap1 in C. glabrata), pre-WGD yeast species (e.g. 
KlYap1 in Kluyveromyces lactis, Cap1 in the human patho-
gen Candida albicans), euascomycetes (e.g. NapA in Asper-
gillus nidulans), archeascomycetes (e.g. Pap1 in S. pombe) 
and basidyomycetes (e.g. Yap1 in the human pathogen 
Cryptococcus neoformans) [128-134]. Although their list of 

FIGURE 4: Schematic representation of the Yap1 and Yap8 involvement in arsenic adaptation. The phosphate transporters, Pho84 and 
Pho87, take up arsenate. Arsenite can enter the cells through hexose transporters, Hxt, and the aquaglyceroporin, Fps1. Upon arsenic expo-
sure, Yap8 recognizes and binds a specific YRE sequence, TGATTAATAATCA, depicted as Y8RE. Then, it interacts with the mediator complex, 
via the tail subunit Med2, which is essential for the full activation of its target genes, ACR2 and ACR3 (for details see text). Arsenite is import-
ed into the vacuole, in conjugation with glutathione, by Ycf1, which is regulated by Yap1. Furthermore, Yap1 activates antioxidant response 
and Fe-S cluster biogenesis genes, to mitigate the ROS and the disruption of Fe-S clusters, generated by arsenic. 
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target genes diverged, they all share a core set of regulated 
genes which are essential for redox homeostasis (e.g. cata-
lase, thioredoxin, thioredoxin dependent peroxydases, 
glutathione reductase, etc.) [12, 17, 135-138]. All the Yap1 
orthologues recognize YRE-O motifs [12, 139], but CgYap1 
and Pap1 are also able to interact with YRE-A sites [17, 
140]. The mechanism for Yap1 redox sensing is remarkably 
conserved. In C. glabrata, the overexpression of Ybp1 con-
fers resistance to oxidative stress and CgYap1 cooperates 
with CgSkn7 to regulate a set of protective genes under 
oxidative stress, as described in S. cerevisiae [136, 141]. In 
C. albicans, Cap1 is regulated at the level of its nucleocyto-
plasmic localization due to the interaction of its CRDs with 
Ybp1 and Hyr1/Orp1/Gpx3, as described for Yap1 in  
S. cerevisiae [142, 143]. Notably, Cap1 mutants are defec-
tive for macrophage escape and less virulent than wild-
type strains [142]. In S. pombe, Crm1 actively exports Pap1 
from the nucleus [134, 144, 145]. Pap1 is activated by the 
oxidation of its CRDs by the peroxiredoxin Tpx1 [146-149]. 

 The involvement of Yap1 in multidrug resistance is also 
largely conserved (Fig. 5). Null mutants for YAP1 
orthologues show sensitivity to multiple drugs in C. glabra-

ta, K. lactis, C. albicans, S. pombe and C. neoformans [131, 
133, 150-153]. The role of Yap1 and Yap2 in cadmium de-
toxification is slightly less widespread. Cadmium sensitivity 
has been observed for mutants of Yap1 orthologues in  
C. glabrata, K. lactis, C. albicans, N. crassa and S. pombe, 
but not in A. nidulans and C. neoformans [103, 129-131, 
133, 134, 150, 154]. Besides these conserved roles, some 
Yap1 orthologues have more species-specific functions. For 
instance, in C. glabrata, CgYap1 controls the expression of 
the specific adhesin Epa2, which is involved in host coloni-
zation [155]. In A. nidulans, NapA modulates secondary 
metabolites production and sexual development [156-158]. 

The Yap5 and Yap7 proteins show poor sequence con-
servation over the full sequence. Still, their lineage can be 
easily traced over large evolutionary distances due to their 
characteristic Hap4L-bZip bipartite domain, which provides 
them with the potential to interact both with the CCAAT 
binding complex and with DNA [73, 159-161]. Moreover, 
most of them have retained the specific CRD, which is used 
by Yap5 to sense iron-sulfur clusters [76, 162]. Orthologues 
have been found in C. glabrata (CgYap5 and CgYap7),  
K. lactis (KlYap5/7), C. albicans (Hap43) and in euascomy-

FIGURE 5: Evolution of the Yap family in fungi. The Yap proteins have been indicated for seven fungal species: the hemiascomycetes S. 
cerevisiae, C. glabrata, K. lactis and C. albicans, the euascomycete A. nudilans, the archaeascomycetes S. pombe and the basidiomycete C. 
neoformans. The tree on the left is just a schematic representation of the phylogenetic relationships between these species. The whole 
genome duplication event is indicated by a black star. The remarkable protein domains (squares) and the described function (circles) are 
indicated for each Yap. The color code is indicated at the bottom of the figure. 
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cetes and basidyomycetes (HapX). These proteins are con-
sistently involved in fungal iron homeostasis and their in-
teraction with the CBC is conserved in most species and 
required for their function (Fig. 5) [18, 19, 159, 160, 163, 
164]. As for Yap1, a core set of targets involved in iron con-
suming is remarkably conserved between Yap5, CgYap5, 
Hap43 and HapX [74, 103, 164-166]. However, in contrast 
to the Yap1 case, their precise role has been considerably 
rewired during evolution. In euascomycetes, HapX is in-
volved in both iron starvation and iron excess responses, 
by repressing or activating the expression of the iron con-
suming genes depending on the iron supply [162]. In ba-
sidyomycetes, HapX is also able to act both as a repressor 
and as an activator [164]. In the pre-WGD yeast C. albicans, 
Hap43 is mostly involved in the repression of iron consum-
ing genes when iron is limiting and it has almost no role in 
the iron excess response [160, 163, 167]. Conversely, in  
C. glabrata and S. cerevisiae Yap5 is majorly involved in the 
iron excess response and has few impacts on the iron star-
vation response [18, 19, 73, 74, 103]. This role of Yap5 in 
the protection against iron overload is conserved in the 
pre-WGD yeast species K. lactis and Lachancea kluyverii 
[19].  

No Hap4L-bZIP bipartite protein is found in S. pombe. 
However, a functional homologue of HapX, named Php4, 
has been described in this species. Php4 has a Hap4L do-
main but no bZIP. It represses the expression of iron con-
suming genes under iron limited conditions through its 
interaction with CBC, but it has no role in iron excess re-
sponse and does not bind DNA directly [168, 169]. In con-
trast to HapX and Yap5, Php4 senses iron indirectly through 
interaction with glutaredoxins [170]. Then, it is difficult to 
say if Php4 is actually a HapX orthologue, which has lost its 
bZip domain, or if the similar role of Php4 and HapX in iron 
starvation response is just an evolutionary convergence 
between proteins of different origins.  

The role of Yap7, the ohnologue of Yap5 in the consti-
tutive repression of YHB1 is conserved in post-WGD spe-
cies but not in the pre-WGD species K. lactis and L. kluyverii 
[19]. This led to propose that this role appeared after the 
WGD. However, this hypothesis is challenged by the fact 
that YHB1 is a target of Hap43 in C. albicans, which re-
presses its expression in a Tup1-dependent way when iron 
is limiting [163]. Notably, YHB1 is a heme-containing pro-
tein and therefore the activity of Yap7 is also connected to 
iron homeostasis. Consequently, the deletion of YAP7 con-
fers resistance to iron overload in C. glabrata, probably 
due to the high expression of Yhb1 which traps iron into a 
protein-bound, non-toxic, form [103]. Importantly, HapX 
proteins are required for the pathogenesis of several fun-
gal pathogens of human and plants [163, 166, 171, 172], 
but they are dispensable for virulence in C. neoformans 
and in the dermatophyte Arthroderma benhamiae [164, 
173]. 

The mode of action and DNA interaction properties of 
this sub-group of Yap proteins has also diverged. In euas-
comicetes and in C. albicans, the interaction with CBC is 
predominant, the most highly enriched motif in the pro-
moter of the targets of HapX, and Hap43 is the CCAAT mo-

tif [162, 165]. Still their bZIP domain is important for their 
regulatory properties, but it only synergically contributes 
to DNA binding with a loose specificity [160, 174]. In  
C. glabrata and S. cerevisiae, the YRE-O is the most en-
riched motif in the target promoters of Yap5 and it is nec-
essary for the binding to occur [18, 77, 103]. In C. glabrata, 
the interaction with the CBC is also necessary for the activi-
ty of Yap5 on its targets and a CCAAT motif is always found 
close to the YRE in the promoter of its targets [73]. This 
aspect of Yap5 regulation has not been investigated in  
S. cerevisiae yet. In post-WGD species, the Yap7 lineage is 
apparently on the way of losing the CBC interaction. In-
deed, the CBC only partly contributes to the repression 
properties of Yap7 in S. cerevisiae [19]. In C. glabrata, 
CgYap7 has even totally lost its Hap4L domain and does 
not require CBC for its function [19]. 

In terms of sequence, Yap3 is the second most con-
served Yap after Yap1 and YAP3 orthologues can be found 
with good confidence from S. cerevisiae to euascomycetes 
(Fig. 5). Yet, in most species, no clear role could be as-
signed to these regulators. In C. glabrata, large-scale anal-
yses failed to identify a biologically meaningful set of tar-
gets for Yap3a and Yap3b [103]. In C. albicans, FCR3 was 
initially described as a partial multicopy suppressor for the 
fluconazole sensitivity of a pdr1Δpdr3Δ S. cerevisiae strain. 
However, Fcr3 has no role in drug resistance in C. albicans. 
The only phenotype described for FCR3 null mutants is a 
decrease in adherence properties [175]. In A. nidulans and 
in the human pathogen Aspergillus fumigatus, RsmA stimu-
lates secondary metabolite production and controls sexual 
development [158, 176-178]. However, these processes 
are specific for filamentous fungi and cannot be transposed 
to yeasts. 

The Yap4 and Yap6 lineage shows high sequence diver-
gence. Still probable orthologues can be identified in al-
most all fungal species (Fig. 5). It is not clear if the role 
described for these two factors in the osmotic stress re-
sponse of S. cerevisiae is conserved in other species. In  
C. glabrata, about 40 targets of CgYap4/6 have been iden-
tified, with no obvious connection with osmotic homeosta-
sis. Yet, CgYAP4/6 null mutant exhibits a moderate growth 
defect in high salt concentration conditions [103]. The 
orthologues of Yap4 and Yap6 in C. albicans (Cap4) and  
A. nidulans (ZipC) have no functional annotation, but their 
potential involvement in the osmotic shock response has 
not been investigated to our knowledge. 

Yap8 shows a strange and hectic conservation pattern. 
Orthologues are found in S. cerevisiae and two closely Sac-
charomyces sensu stricto species, but in no other post-
WGD yeasts. Additionally, YAP8 orthologues are present in 
a handful of pre-WGD species, namely K. lactis, two 
Lachancea species (out of twelve which genomes is fully 
sequenced) and Torulaspora microellipsoides (information 
taken from www.saccharomycessensustricto.org and from 
gryc.inra.fr). Each time YAP8 is present in a genome, an 
ACR3 orthologue is found just next to it on the same chro-
mosome, hence constituting a small genomic cluster in-
volved in arsenic resistance. Intriguingly, although the 
presence of YAP8 is poorly conserved in yeasts, the se-
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quence identity between the Yap8 orthologues is high. For 
instance, the S. cerevisiae and L. fermentati Yap8 proteins 
share 46% identity over the full sequence, despite of the 
large evolutionary distance separating these two species. 
For comparison, the S. cerevisiae and L. fermentati Yap1 
proteins share only 33% identity. Is it a sign of an introgres-
sion of the YAP8 locus from one species to the other? Or 
has Yap8 been conserved in this particular species because 
of special environmental selective pressures? The current 
knowledge does not allow answering these questions. Im-
portantly, the role of Yap8 in arsenite resistance and its 
property of direct sensing of As(III) molecules are con-
served in K. lactis [179, 180]. 

 

CONCLUSIONS 
Data obtained in the last decade have shown that gene 
expression regulation under stress conditions does not 
involve a single transcription factor but cooperation be-
tween several such factors. For instance, RPN4, which en-
codes a transcriptional activator of proteasome genes, 
contains in its promoter multiple regulatory elements 
bound by Hsf1, Pdr1/Pdr3 and Yap1 [181] and Yap4/Cin5 
contains also in its promoter HSE/Hsf1, STRE/ Msn2/Msn4 
and YRE/Yap1 elements [90]. Then, responses to stress are 
not linear sequences of events but rather an orchestrated 
phenomenon that puts at play several interconnected 
pathways and response elements, acting via condition and 
gene-specific cross-talk events. This would lead to a precise 
response and adaptation to the new environment. In this 
review, we have thus focused on the major transcription 
factors of the Yap family that are involved in yeast stress 
response. It will be important to understand how the activ-
ity of these factors is coordinated, as well as to identify the 
signals triggering this coordination and to determine their 
integration with metabolic pathways. The work by Snyder’s 
group [101] shows the interaction of factors such as 
Yap4/Cin5, Yap6, Sko1, Msn2 and Msn4. Furthermore, it 
would be attractive to study how these transcription fac-
tors interact with each other. It could be directly or indi-

rectly via the transcriptional machinery as it was already 
determined for Yap8 [111]. Another important point is that 
several Yap transcription factors (Yap4/Cin5, Yap5, Yap6, 
HapX) can act as both inducers and repressors. The precise 
mechanisms behind this versatile activity might constitute 
another line of research once all the targets of these tran-
scription factors have been known. 
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