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RESUMO 
 

 A utilização de águas residuais tratadas para irrigação agrícola é uma prática comum 

em vários países, diminuindo assim a pressão sobre as fontes de água doce. No entanto, as 

estações de tratamento de águas residuais (ETAR) nem sempre são capazes de remover 

completamente os contaminantes presentes na água, representando um risco de contaminação 

ambiental. A contaminação do solo por águas residuais pode potencialmente promover a 

absorção e a acumulação de contaminantes por plantas e produtos hortícolas que, 

consequentemente, podem afetar a saúde humana. Os agentes patogénicos e os metais 

pesados são tradicionalmente a principal preocupação, no entanto os contaminantes de 

preocupação emergente (CECs), e particularmente os produtos farmacêuticos e de cuidado 

pessoal (PPCPs), têm vindo a captar a atenção científica e pública.  

 Na presente tese, o processo eletrocinético (EK) foi aplicado como tecnologia de 

remediação a um solo agrícola contaminado com uma mistura de PPCPs. Para melhor 

compreender os mecanismos de remediação envolvidos, foram desenvolvidos diferentes ensaios 

para discriminar contribuições bióticas (solo não esterilizado), abióticas (solo esterilizado) e do 

processo EK, isoladas e acopladas, para a degradação dos PPCPs. Como os fatores ambientais 

podem afetar a remediação, foram realizados ensaios com e sem irrigação e a diferentes 

temperaturas (18 e 24ºC). Como contaminantes foram usados 10 PPCPs: 17β-estradiol (E2), 

sulfametoxazol (SMX), bisfenol A (BPA), ibuprofeno (IBU), 17α-etinilestradiol (EE2), oxibenzona 

(OXY), triclosan (TCS), diclofenaco (DCF), cafeína (CAF) e carbamazepina (CBZ). Estes 

compostos são representativos das principais classes de PPCPs e abrangem diversas 

propriedades físico-químicas. Todas as experiências foram realizadas em microcosmos à escala 

laboratorial usando 20 mA em modo de corrente ON/OFF de ciclos de 12h por 4 dias (em 

duplicado). 

 Os melhores resultados de remediação foram obtidos quando o processo EK foi 

aplicado em condições bióticas a 24ºC, em combinação com irrigação diária; estas condições 

permitiram remover aproximadamente 37% da massa total de PPCPs no solo. Ao eliminar-se a 

contribuição microbiológica para os processos de degradação (solo esterilizado; ambiente 

abiótico) nas mesmas condições de EK, promoveu-se uma diminuição da remoção em 7%. Os 

mecanismos de remoção abiótica contribuem apenas para um declínio de massa total próximo 

dos 6% enquanto que o mecanismo biótico permite uma remoção de 20% (a 24ºC). Os PPCPs 

mais recalcitrantes à degradação foram a CBZ, a OXY e o TCS. Em oposição o E2, SMX e BPA 

demonstraram ser mais biodegradáveis. 

 Os resultados obtidos corroboram que o uso combinado de EK com a biorremediação 

melhora consideravelmente a eficiência da remoção de poluentes do solo. O processo EK é uma 

opção eficaz para a remediação de PPCPs em solos argilosos, potencializando a degradação de 

contaminantes através de dois principais mecanismos de remediação: (i) degradação 

eletroquímica induzida e (ii) biorremediação.
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ABSTRACT 
 
 

The use of treated wastewater for agricultural irrigation, is a common practice in several 

countries as it has several benefits, such as decreasing pressure on freshwater sources and 

reduced nutrient loads to receiving waters. However, wastewater treatment plants (WWTP) are 

not always able to remove all the contaminants present, thus representing a significant risk for 

environmental contamination. Soil contamination by wastewater may potentially promote 

contaminants uptake and accumulation by plants and derived products which consequently can 

affect human health. Pathogens and heavy metals are traditionally the main concern, however 

contaminants of emerging concern (CECs), and particularly pharmaceutical and personal care 

products (PPCPs), are gaining scientific and public attention.  

In the present dissertation, the electrokinetic (EK) process was applied as a remediation 

technology to an agricultural soil contaminated with a mixture of PPCPs. To better understand 

the remediation mechanisms involved, different assays were developed to discriminate biotic, 

abiotic and EK contributions, alone and coupled, to the degradation of the PPCPs. As 

environmental factors may affect the remediation processes, trials with and without irrigation and 

at different temperatures were also conducted (18 and 24 ºC).  As contaminants, 10 commonly 

environmentally occurring PPCPs were selected for the study: 17β-estradiol (E2), 

sulfamethoxazole (SMX), bisphenol A (BPA), ibuprofen (IBU), 17α-ethinylestradiol (EE2), 

oxybenzone (OXY), triclosan (TCS), diclofenac (DCF), caffeine (CAF) and carbamazepine (CBZ). 

These compounds represent the major PPCPs classes and attain diverse physicochemical 

properties. All experiments were carried out in a lab scale microcosm using a 12h ON/OFF current 

mode at 20 mA for 4 days (in duplicates). 

The best remediation results were attained when EK process was applied in biotic 

conditions at 24ºC and combined with a daily irrigation (EK-Biotic-24-W); these conditions allowed 

to remove approximately 37% of the total mass on PPCPs in the soil. By eliminating the 

microbiological contribution to the degradation processes (sterilized soil; abiotic setting) in the 

same EK conditions (EK-Abiotic-24-W) a decrease in the removal by 7% was observed. The 

abiotic removal mechanisms only contributed to a total mass decay of 6%, whereas the biotic 

mechanism removed 20% (at 24ºC). The PPCPs more recalcitrant to degradation were CBZ, 

OXY and TCS. Oppositely E2, SMX e BPA displayed to be more biodegradable.  

Such results are compatible with previous tests, which suggest that usage of EK in 

combination with bioremediation vastly improves the efficiency over that of EK remediation alone 

in removing pollutants from soil. The EK process showed to be an effective option for the 

remediation of PPCPs in clay soils, which may enhance the degradation of contaminants by two 

main remediation mechanisms: (i) electrochemical induced degradation and (ii) bioremediation. 

 

Keywords:  Electrokinetic process; bioremediation; abiotic removal; agricultural soil; 

contaminants of emergent concern 
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1. Introduction 
 

Sustainable water management has become an issue of major importance over the past 

decades. One fundamental concern is the impact of climate change and increasing population on 

water supply, which will add to the problems of water scarcity and droughts. While Europe is 

considered as having adequate water resources, water scarcity is an increasingly frequent and 

widespread phenomenon in the European Union (EU), where approximately half of the European 

countries, representing almost 70% of the population, are facing water stress issues (Bixio et al, 

2006). A third of water use in Europe goes to the agricultural sector and agriculture accounts for 

70% of global freshwater withdrawals (FAO, 2017; EEA, 2012). In long term this affects both the 

quantity and the quality of water available for other uses. More specifically, in Portugal, agriculture 

and livestock are the dominant sector, accounting for approximately 75% of water use, followed 

by supply to populations with 20% and industry with 5% (APA, 2016). 

To address these demands and others emerging ones, water resources management 

approaches around the world are changing and shifting away from sole reliance on finding new 

sources of supply and gaining emphasis on incorporating ecological values into water policy 

(Gleick et al., 2000). As a response, municipal wastewater reuse has been developed as an 

important and viable mean of supplementing decreasing water supplies and promoted as a way 

of limiting wastewater discharges to aquatic environments (Weber et al., 2006).  

Although wastewater seem to be a good alternative, one of the challenges is the 

establishment of guidelines or criteria. World Health Organization (WHO) guiding principles must 

therefore be practical and offer viable risk-management solutions that minimize health risks and 

allow for the beneficial use of scarce resources. Recently this year (February), the European 

Parliament has adopted rules to facilitate the reuse of water in the EU for agricultural irrigation 

and to help manage water scarcity and droughts. The European Parliament and the Council on 

Water Scarcity and Droughts sets out the hierarchy of measures that Member States should 

consider in managing water scarcity and droughts, accenting that saving water must become the 

priority and all strategies to improve water efficiency should be explored. Setting minimum 

requirements for all member states on the quality of reclaimed water and monitoring, together 

with responsible risk management tasks ensures equity for those engaged in water reuse and 

those affected, preventing potential obstacles to the commercialization and consumption of 

agricultural products irrigated with reclaimed water. It also allows to ensure health and 

environmental protection which increases confidence in the practice of water reuse. 

The uncontrolled use of wastewater in agriculture may have significant health 

consequences for consumers, farmers and communities in wastewater-irrigated areas, since it 

can damage the soil and the quality of the crops affected by the different types of pollutants. This 

could lead to a deteriorating quality of groundwater and soil (Erikson et al., 2006; Carr et al., 

2004). According to Candela et al., (2007), treated wastewater may still contain humic 

substances, heavy metals, pesticides, disinfection by-products, industrial contaminants, 

microorganisms, inorganic and organic compounds, including Pharmaceuticals and Personal 
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Care Products (PPCPs) - many of them with unknown geochemical behaviour, raising concerns 

regarding their potential environmental fates and effects on human health. 

Consistent with Ternes et al., (2004), in the EU there are more than 3000 different 

substances used as medicines, including painkillers, antibiotics, contraceptives, beta-blockers, 

lipid regulators, tranquilizers, and impotence drugs. During and after treatment, humans and 

animals excrete a combination of intact and metabolized pharmaceuticals, many of which are 

generally soluble in water and have been discharged to the environment with little evaluation of 

possible risks or consequences to humans and the environment. The environmental toxicology 

of PPCPs is not well understood, and toxicological concerns regarding the environmental release 

of these compounds include inducement of abnormal physiological processes and reproductive 

impairment, increased incidences of cancer, development of antibiotic resistant bacteria, and the 

potential for increased toxicities when chemical mixtures occur in the environment (Richardson et 

al., 2005). 

PPCPs enter the soil environment via irrigation with treated wastewater, groundwater 

recharge, and land application of biosolids. The transformation and fate of PPCP in soil affects 

their potential for plant uptake and groundwater pollution (Dodgen et al., 2014), since significant 

amounts of PPCP compounds can be found accumulated in the top soil profile at an irrigated field 

(Xu et al., 2009; Chen et al., 2013). Irrigation with treated wastewater may cause accumulation 

of PPCPs in soil to higher levels (than in the irrigation water) and soil half-lives for PPCP can vary 

widely depending on the compound (ranging from hours in the case of ibuprofen, to years in the 

case of fluoxetine) and environmental conditions (Dodgen, 2014). 

The electrokinetic (EK) soil remediation process was proposed as an effective in situ and 

ex situ technology to remove heavy metals and organic contaminants from contaminated soil 

(Wang et al., 2007), by directing contaminant migration to where remediation may be more easily 

achieved (Lear et al., 2007). This technique has already demonstrated its effectiveness in soils 

contaminated with PPCPs (Guedes et al., 2014; Ferreira et al., 2017; Li et al., 2018; Silva, 2018; 

Lopes, 2018). 

This procedure relies on the application of a low-density direct current between electrodes 

placed in the soil (Kim et al., 2000). The electric field applied across a saturated soil mass results 

in electrolysis reactions, transport of species by ionic migration, electroosmosis, and diffusion. 

These transport processes are accompanied by sorption processes in the soil, precipitation and 

dissolution, and other aqueous phase reactions in the pore fluid (Acar et al., 1995). 

 
 

1.1. Study objectives and research  
 
 The main objective of this dissertation was to study the EK remediation of soils 

contaminated with PPCPs, aiming to decrease the risk of organic contaminants uptake by crops. 

The present dissertation proposes to answer the following questions: 

a) Is the EK process a viable in situ technology for the remediation of a mixture of 10 organic 

contaminants? 
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b) How does the different removal mechanism (abiotic, biotic, electrokinetic processes) 

contribute to the PPCPs removal? 

c) How do the environmental parameters, like water content and temperature, affect the 

PPCPs degradation rates? 

d) How does an organic contaminant mobilize in the soil with and without EK?  

 To answer these questions, a microcosm capable of simulating in situ conditions was 

designed, and experiments were performed at a laboratory scale. The assays (duplicates) were 

carried out using an agricultural clay soil used for organic tomato field plantation. All experiments 

were carried out in a lab scale microcosm for 4 days using as EK operating parameter a 12h 

ON/OFF current mode at 20 mA (previously optimised by Lopes, 2018). 

In total eight settings were tested in duplicate, six at 24°C and two at 18°C and. At 24°C 

it was possible to study the effect of different parameters inside flow chamber that promote sterile 

conditions: Biotic vs Abiotic - which disclaimed the contribution of biodegradation; EK-Biotic-24 

vs EK-Abiotic-24 - allowed to analyse the EK efficiency alone and coupled to bioremediation; and 

EK-Biotic-24-W and EK-Abiotic-24-W - allowed to assess the impact of soil moisture (daily 

irrigation). At 18°C two different scenarios were tested: EK-Biotic-18 and Biotic-18 - disclaimed 

the contribution of lower temperature to the PPCPs removal. A time zero control was also 

performed. 

In its entirety, ten compounds belonging to the group of pharmaceuticals and personal 

care products, were used to spike the soil, those were: 17β-estradiol (E2), sulfamethoxazole 

(SMX), bisphenol A (BPA), ibuprofen (IBU), 17α-ethinylestradiol (EE2), oxybenzone (OXY), 

triclosan (TCS), diclofenac (DCF), caffeine (CAF) and carbamazepine (CBZ). These compounds 

were chosen since they are commonly occurring on WWTP effluents and belong to different 

classes also comprising different physicochemical properties. 

To accomplish this work, all laboratorial work was carried out at the RESOLUTION Lab 

(347; CENSE) and at the “Soil teaching Laboratory” (231; DCEA, FCT NOVA). 

 

1.2. Dissertation structure  
 

The present dissertation is organized in the following chapters:  

I. Introduction – work scope and relevance, main objectives and structure;  

II. Literature review – description of the central theme and relevant terms and 

previous work developed;  

III. Materials and methods – description of materials used, characterization analysis, 

identification and data treatment methods;  

IV. Results and discussion – presentation of results, hypothesis formulation and their 

discussion;  

V. Conclusions – main outcomes;  
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VI. Future developments;  

VII. References;  

VIII. Annexes – includes a set of detailed data complementary to the main document  
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2. Literature review  

2.1 Wastewater reuse 

Global water shortage is placing an unprecedented pressure on water supplies, and so 

creating a need to find more ecological alternatives. With such scenario treated wastewater 

becomes a valuable resource. Irrigation with reclaimed wastewater is one of the most important 

applications as roughly 2/3 of all water use goes to agriculture irrigation (Baresel, et al., 2015).  

The use of treated wastewater in agriculture benefits human health, the environment and 

the economy. These benefits include increased water availability by decreasing pressure on 

freshwater sources; reduced over-abstraction of surface and groundwater and, consequently, 

reduced energy consumption compared to using deep groundwater resources and reduced 

nutrient loads to receiving waters (Sanz & Gawlik, 2017). Also, there is a rapidly growing world 

water market, which is estimated to be as large as 1 trillion Euros by 2020. By seizing new and 

significant market opportunities, Europe can increasingly become a global market leader in water-

related innovation and technology (BIO by Deloitte, 2015). 

The level of treatment before discharge and the sensitivity of the receiving waters 

determine the scale of the impacts on aquatic ecosystems. In the WWTPs, primary (mechanical) 

treatment removes some of the suspended solids, while secondary (biological) treatment uses 

aerobic or anaerobic microorganisms to decompose most of the organic matter and retain some 

of the nutrients (around 20-30%). Tertiary (advanced) treatment removes organic matter even 

more efficiently (85%). It generally includes phosphorus retention and, in some cases, nitrogen 

removal (Kosma et al., 2014; Lubliner et al., 2010). In Figure 2.1 is possible to observe the 

evolution of type of water treatment applied in Portugal since 1980 until 2015. 
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Figure 2.1 Type of water treatment applied in Portugal since 1980 until 2015, related to the percentage of 
population served by each type of treatment (Source: EEA, 2012). 
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FAO reported that approximately 10% of the total global irrigated land area receives 

untreated or partially treated wastewater, resulting in 20 million hectares in 50 countries (Figure 

2.2).  

Standards adopted by Member States for water reuse specify intended uses which are 

mostly agricultural and urban applications. The Spanish and the Greek standards are those for 

which the highest number of uses is included. In comparison the Portuguese guidelines only refer 

the use for irrigation of urban areas and agriculture (European Commission (2018)). While water 

reuse is certainly a promising option for many Member States, it needs to be considered that at 

present only 6 Member States (Cyprus, Greece, Spain, France, Italy and Portugal) have 

requirements on water reuse in place (in legislation or in national non-regulatory standards) 

(European Commission (2018). 

The use of treated or untreated wastewater in agriculture is not exempt from adverse 

effects on the environment, especially on soil (Table 2.1). The scientific literature includes 

evidence of alterations in the physicochemical parameters of soil. Additionally, in recent research, 

variations have been observed in the structure and magnitude of microbial biomass in soil, as 

well as an increase in microbial activity caused by agricultural wastewater reuse (Jaramillo et al., 

2017). Altering physicochemical parameters and soil microbiota can affect fertility and 

Figure 2.2 Reuse area in agriculture by country (thousand ha) ( Jaramillo & Restrepo, 2017). 
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productivity, thus disturbing soil sustainability from inadequate irrigation with wastewater (Becerra 

et al., 2015). 

 

Table 2.1 Effects on the environment from the use of wastewater in agriculture (Jaramillo et al., 2017) 

 

The hygienic quality of the wastewater is the major aspect to consider when wastewater 

is used in agriculture. One challenge of promoting the use of treated wastewater on agricultural 

Parameter 
Associated Effects on the Soil and the Environment 

Physicochemical Properties Microbiological Properties 

pH 

Increases the availability of nutrients and trace metals 

Mineralization of organic matter 

Cation exchange capacity 

Community richness and diversity 

Organic 

matter 

Soil structure stabilization 

Formation of aggregates  

Water retention  

Improves nutrient content  

Buffer Capacity  

Cation exchange capacity  

Enzymatic activity  

Increase in TOC  

Possible increase of contaminants availability  

Selection of specific populations  

Soil microhabitats 

Nutrients 

Increase in organic soil matter 

Water retention  

Leaching to groundwater  

Improves nutrient content Risk of eutrophication of 

aquatic environments 

Perturbation of microbial soil 

communities  

Microbial catabolic activity 

Salinity 

Soil salinization or sodification 

Decreased stability of aggregates  

Changes in soil structure in the long term  

Permeability of soil and water retention  

Increased soil compaction  

Variation in soil pH  

Negative impact on soil fertility  

Dynamics in organic and inorganic compounds  

Heavy metal leaching 

Changes in soil microhabitats and 

variation in diversity and activity of 

the microbial community 

Contaminants 

Soil toxicity and leaching 

Accumulation in soils 

Negative impact on soil fertility  

Potential contamination of the food chain 

Mineralization of organic matter  

Changes in enzyme activity  

Decomposition of fallen leaves  

Limiting soil fertility 

Community structure and diversity 

Increase of microbial tolerance to 

contaminants and/or 

biodegradation  

Spread of antibiotic resistance 

https://www.researchgate.net/profile/Maria_Jaramillo28
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irrigation is the safety concern of its products due to the presence of various pollutants in treated 

wastewater (Wu et al., 2014). 

The concentration levels and types of pathogens and chemical substances present in 

wastewater vary by region, according to the sanitary and socioeconomic conditions of a 

community. Besides viruses, protozoan parasites and helminths that can be found in irrigated 

wastewater, other compounds that may pose risks to human health are emerging contaminants, 

particularly PPCPs (Jaramillo et al., 2017) which rightfully have become a new issue garnering 

public attention (Wang et al., 2005) 

Due to the increasing human use of PPCPs with aging populations and advances in 

healthcare, and the fact that WWTP are generally incapable of completely removing these 

chemicals, PPCPs are universally found in WWTP effluent around the world, with levels ranging 

from μg/L to low ng/L (Vanderford et al., 2006; Wu et al., 2014; Gros et al., 2010). In 2010, the 

Washington State Department of Ecology (Ecology) and the U.S. Environmental Protection 

Agency (EPA) conducted a one-day screening study to characterize PPCPs at five municipals 

WWTPs in the Pacific Northwest. Secondary treatment alone achieved high removals for 

hormones and steroids. Approximately 21% of the 172 analytes were reduced to below reporting 

limits by conventional secondary treatment, whereas 53% were reduced to below reporting limits 

by at least one advanced nutrient-removal technology. Roughly 20% of the 172 analytes (mainly 

polycyclic aromatic hydrocarbons) were found only in the biosolids and not in the wastewater 

samples. Some analytes were clearly concentrating in the biosolids. Three PPCPs 

(carbamazepine, fluoxetine, and thiabendazole) were relatively untreated by the surveyed WWTP 

technologies (Lubliner et al., 2010). 

 These PPCPs are molecules with biological activity on different organisms, and their 

physicochemical properties determine their persistence in the environment and facilitate their 

bioaccumulation. The effluents of municipal wastewater treatment plants are classified as one of 

the primary PPCPs sources, as conventional treatment processes do not effectively prevent the 

release of these compounds into the environment (Jaramillo et al., 2017; Jackson et al., 2008). 

Albeit at trace levels in the effluents, PPCPs will probably accumulate in the soils if long-term 

irrigation occurs, which may result in environmental problems such as the contamination risk to 

groundwater (Baresel et al., 2005). 

 

2.2 PPCPs 
Compounds of emerging concern (CEC) are a chemical group of contaminants of which 

PPCPs and endocrine disrupting chemicals (EDCs) are included. These compounds produce 

biological activity on different organisms, and their physicochemical properties determine their 

persistence in the environment and facilitate their bioaccumulation. As said before, effluents of 

municipal WWTPs are classified as one of the primary PPCPs sources, as conventional treatment 
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processes do not effectively prevent the release of these compounds into the environment 

(Jaramillo et al., 2017; Jackson et al., 2008).  

PPCPs form a diverse group of chemicals comprising human and veterinary drugs, 

diagnostic agents such as X-ray contrast media, bioactive food supplements and other consumer 

chemicals such as fragrances, cosmetics and sun-screen agents as well as inert ingredients or 

excipients used in PPCP formulations and manufacture. Table 2.2 lists some major PPCP 

functional classes in terms of their use and the associated principal compounds of environmental 

concern (Ellis, 2008). Their adsorption behaviours vary from compound to compound and are 

difficult to predict because their behaviour is frequently controlled by interactions with specific 

functional groups or complicated pH-dependent speciation (Kibbey et al., 2007). 

 

Another recent aspect of concern about PPCPs is the overuse and misuse of antibiotics 

which may result in the release of resistance vectors into the environment. The rise of antibiotic 

resistance is considered to possibly be related with the widespread use of antibiotic 

pharmaceuticals in humans and animals. In both humans and animals, up to 95% of antibiotics 

can be excreted in an unaltered state (Pruden et al., 2006). Without adequate treatment at the 

WWTP residual antibiotics are consequently released into the environment where they may 

exercise selection pressure on microorganisms. 

 

i. Impacts in environment and food chain 

Municipal wastewater, attributed to the widespread use of PPCPs both in the home and 

in health care and personal care facilities, is the primary pathway by which chemicals in 

Table 2.2 PPCPs organized by functional classes in terms of their main use. 
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prescription and over-the-counter products find their way into the aquatic environment (Wenning 

et al., 2014).  

Other pathways for PPCPs to enter the environment are: aquaculture facilities, and runoff 

from fields, as well as releases to soils during biosolid and manure application, emissions from 

manufacturing sites, disposal of unused medicines to landfills, runoff of veterinary medicines in 

farmyards, off label emissions, and disposal of carcasses of treated animals (Boxall et al., 2012). 

A schematic of the several possible entryways of these compounds is depicted in Figure 2.3. 

 

When treated wastewater is used for agricultural irrigation, contaminants in reclaimed 

water may transfer to crops from soil through root uptake and translocation, and the risk is higher 

for products that may be consumed raw (e.g. fresh fruits, vegetables). (Wu et al., 2014; Kosma 

et al., 2014; Grassi et al., 2013; Miege et al., 2019).  

Antibiotics are usually the most-abundant PPCPs in plants because of the high 

concentration in the biosolids and animal manure applied to agricultural fields. The 

physicochemical properties of the compounds like hydrophobicity and ionization, have great 

influence in the uptake, accumulation, translocation, and transformation of PPCPs in plants. Soil 

properties, such as water and organic matter content, pH, the duration and concentration of the 

exposure, and lastly the physiological nature of the plant and its tissues can also affect the uptake 

and accumulation of PPCPs (Bartrons & Peñuelas, 2017). 

Figure 2.3 Possible sources and pathways for the occurrence of pharmaceutical residues in the aquatic 
environment (Source: Heberer, et al., 2002). 
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A study by Wu et al., (2014) showed that when irrigated with treated wastewater, common 

vegetables grown under field conditions were capable of selectively accumulate PPCPs into their 

edible parts, and at different frequencies and levels. Among the 8 vegetables studied by these 

researchers the cumulative per capita annual exposure to PPCPs was found to be the highest in 

carrot (2.33 μg), followed by lettuce (0.53 μg), celery (0.31 μg), cabbage (0.25 μg), and bell pepper 

(0.14 μg), while exposure values for spinach, cucumber and tomato were small (<0.09 μg). The 

contaminant that through consumption of contaminated vegetables was accountable for greatest 

annual exposure was caffeine (1.25 μg), followed by triclosan (0.84 μg), and carbamazepine (0.64 

μg). The ionic state of the compound greatly affects the compound's interactions with plants, such 

as adsorption on root surfaces, interaction with the cell membrane, and sequestration into plant 

compartments (Trapp, 2009). 

Consumption of these PPCP-contaminated vegetables represents an exposure pathway 

for humans via dietary intake. However, most studies about the risks of PPCPs on both 

environmental end-points and human receptor targets indicate a low risk of adverse effects in the 

various trophic levels of food webs or in human health. This conclusion is based on the low 

concentrations of PPCPs in plants and the low toxicity of most compounds (exposure levels are 

usually below human therapeutic dose). However, there is an increasing concern since there is 

increasing selection of antibiotic-resistant microorganisms in the environment, including 

pathogens, and because it may occur possible synergistic effects between PPCPs and other 

micropollutants or medications taken by a patient for an existing condition (Bartrons & Peñuelas, 

2017).  

Actually, some PPCPs can have dramatic adverse effects on wildlife. For example, the 

inappropriate use of diclofenac and disposal of animal carcasses, combined with the high 

sensitivity of vultures to diclofenac, were responsible for the decline in populations of three vulture 

species in Asia (Oaks et al., 2004). The oestrogens E2 and EE2 are also associated with severe 

health effects in some species of fish, impacting the sustainability of wild fish populations (Kidd 

et al., 2007; Overturf et al., 2015). 

 

ii. Target contaminants of emerging concern 

For this study, 10 PPCPs comprising different classes as physicochemical properties 

were selected (Table 2.3): 17β-estradiol (E2), sulfamethoxazole (SMX), bisphenol A (BPA), 

ibuprofen (IBU), 17α-ethinylestradiol (EE2), oxybenzone (OXY), triclosan (TCS), diclofenac 

(DCF), caffeine (CAF) and carbamazepine (CBZ). 
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Table 2.3 Physicochemical properties of each contaminant of emergent concern used in this study. 
Source: https://pubchem.ncbi.nlm.nih.gov  

Compound 
Acrony

m 
CAS 

Chemic
al 

formula 

Molecular 
weight 
(g/mol) 

Solubilit
y in 

water 
(mg/L) 

KH 
(atm-cu 
m/mole) 

pKa  
Log 
Kow 

Log Koc 

Oxybenzone OXY 
131-57-

7 
C14H12O3 228.25 69 (a) 1.5x10-8 8.07 3.79 2.98 

Diclofenac DCF 
15307-

86-5 
C14H11Cl

2NO2 
296.15 2,37 (a) 6.1x10-8 4.15 4.51 2.39 

Triclosan TCS 
3380-
34-5 

C12H7Cl3
O2 

289.54 10 (b) 2.1x10-8 7.90 4.76 
3.38 – 
4.20 

Caffeine CAF 58-08-2 
C8H10N4

O2 
194.19 

2.16x104 
(a) 

1.1x10-11 
0.7/14

.0 
-0.07 

2.87 – 
3.89 (e) 

Sulphamethoxa
zole 

SMX 
723-46-

6 
C10H11N3

O2S 
253.28 610 (c) 6.4x10-13 1.60 0.89 1.85 

Carbamazepine CBZ 
298-46-

4 
C15H12N2

O 
236.27 17,7 (c) 1.1x10-10 13.9 2.45 2.71 

Bisphenol A BPA 80-05-7 C15H16O2 228.29 120 (c) 4.0x10-11 9.60 3.32 
2.06 – 
3.59 

17β-estradiol E2 50-28-2 C18H24O2 272.40 3,6 (e) 3.6x10-11 10.3 4.01 4.48 

17α-
ethinylestradiol 

EE2 57-63-6 C20H24O2 296.41 11,3 (e) 7.9x10-12 10.3 3.67 2.71 

Ibuprofen IBU 
15687-

27-1 
C13H18O2 206.29 21 (a) 1.5x10-7 4.91 3.97 3.53 

(a) at 25 ºC; (b) at 20 ºC; (c) at 37 ºC; (d) at 27 ªC; (e) silt - sandy loam soils 

 

1. 17β-Estradiol (E2) 

One of the main oestrogens released into the environment is the steroidal hormone 

estrone 17β-estradiol (E2) which is excreted by all humans and animals (Lucas et al., 2006). It 

has been shown that exposure to oestrogen levels as low as 1 ng/L (<10 pM) is enough to cause 

severe impacts in some animal species, like the feminization of male trout (Hansen et al., 1998) 

and the development of intersex roach in rivers (Jobling et al., 1998). The removal of this 

substance from 18 Canadian municipal treatment systems were examined by Servos et al., 

(2005), in general E2 was removed effectively, >75% and as high as 98%, in most of the 

conventional mechanical treatment systems with secondary treatment. In conventional activated 

sludge and lagoon treatment systems, the mean concentrations of E2 and estrone in influent were 

15.6 ng/L (range 2.4–26 ng/L) and 49 ng/L (19–78 ng/L). In the final effluents, the mean 

concentrations of both E2 and estrone were reduced to 1.8 ng/L (0.2–14.7 ng/L) and 17 ng/L (1–

96 ng/L), respectively. 

A study performed by Lucas et al., (2006) determined that the rate of this hormone 

mineralization was strongly influenced by both soil type and the matrix in which the hormone was 

added to the soil. It is clear from this study that in comparison to many xenobiotics, the oestrogens, 

estrone and E2 are not particularly persistent in soil especially when present in a natural matrix 

lasting only a few days in most soils. 
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 Another research by Mashtare (2013), concluded that, in general, E2 was found to exhibit 

moderate to moderately-high sorption, degrade rapidly in the aerobic environment, and persist 

longer under anaerobic conditions. 

2. Sulfamethoxazole (SMX) 

Sulfamethoxazole (SMX) is a worldwide used antibiotic, which is commonly prescribed in 

clinical treatment and veterinary medicine including farming and aquaculture. Due to the 

characteristics of SMX, approximately 15–25% is incompletely metabolized and excreted into the 

surrounding environment from the human or animal body after ingestion.  

The removal efficiencies of SMX by conventional treatment plants vary significantly, 

depending on types of treatment processes and operation conditions. In 2008, Bhandari and co-

workers, studied the concentration of SMX in WWTPs serving urban communities in the 

Midwestern United States. Concentrations averaged between 3.25-5.49 µg/L, which are similar 

to those obtained by other researchers, like Batt et al., (2007) who reported concentration of 0.21– 

7.9 µg/L in treated effluents from China WWTPs.  

Studies conducted in soils have confirmed that SMX is adsorbed by the organic matter 

and minerals of the clay fraction, but not by the sand fraction and gravels composing the soil, 

(Hou et al., 2010; Barros et al., 2018). 

In 2010, a research conducted by Liu et al., in soil collected from an agricultural field in 

Conghua, southern China concluded that SMX dissipated more rapidly in non-sterile soil than in 

sterile soil, showing that biodegradation played a major role in the dissipation of SMX in the soil. 

The half-life of SMX was 4 days in non-sterile soil under aerobic conditions. Under anoxic 

conditions, its half-life in non-sterile soil was 11 days.  

SMX contamination is of public concern because it can build up antibiotic resistance in 

bacteria and develop antibiotic resistant infections in humans by contacting resistant organisms 

or by having resistant microbes in the body (Yao, 2018).  

 

3. Bisphenol A (BPA) 

Bisphenol A (BPA) is manufactured in high quantities for its use in adhesives, powder 

paints, thermal paper and paper coatings. Implicated in endocrine disruption, BPA is also used in 

the primary production of polycarbonate plastics and epoxy resins which are used in the plastics 

industry (Mohapatra et al., 2017; Pookpoosa et al., 2014). 

Regarding BPA concentrations in WWTP, several studies have been done in several 

countries. For example, in Quebec Mohapatra et al., (2017) showed that BPA was present in 

significant quantities (0.07 μg/L to 1.68 μg/L in wastewater and 0.104 μg/g to 0.312 μg/g in 

wastewater sludge) in the WWTP. The treatment plant is efficient (76%) in removal this pollutant 

from process stream. However, environmentally significant concentrations of 0.41 μg/L were still 

present in the treated effluent. 
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Another comprehensive study involving samples from twenty-five WWTPs, had median 

BPA concentrations in influent and final effluent of 400 ng/L and 150 ng/L, respectively. 

Median removal efficiencies ranged from 1 to 77%. Respective median BPA levels in primary 

sludge, secondary biological sludge, and biosolids were 230, 260, and 460 ng/g with digested 

biosolids having the highest concentrations. In the considered scenarios biological aerated filter 

and membrane bioreactor processes showed the best performance, while chemically-assisted 

primary treatment achieved the lowest removal (Guerra et al., 2015). Similar results were obtained 

in five municipal WWTP in and around Bangkok (Thailand) the BPA levels in the effluents ranged 

between 57.5 ng/L and 257.0 ng/L (Pookpoosa et al., 2014). 

In the environment, most of the BPA (78 to 99%) is fixed in the soil. Primary sources of 

BPA to terrestrial soils include the application of sewage sludge, irrigation with wastewater 

effluent, discharge of landfill leachate disposal and recycling of electronic waste (Huang et al., 

2014). 

Once BPA has reached the soil, it is relatively immobile due to its high soil–water 

partitioning coefficient and can form non-extractable residues in 3 days. Sorption to soils and 

sediments is highly reliant on organic matter concentrations and particle grain size. Ionization of 

BPA could occur in extreme soils if pH values approach its pKa, which could result in enhanced 

leaching or percolation to groundwater (Corrales et al., 2017).  

 

4. Ibuprofen (IBU) 

Ibuprofen (IBU) is a non-steroidal anti-inflammatory drug used in the treatment of 

rheumatic disorders, pain, and fever. As one of the most widely consumed pharmaceutical drugs 

in the world it reaches the environment because it is excreted unchanged in urine (González-

Naranjo et al., 2013). The entry routes of this type of pharmaceutical compound into the 

environment are related with WWTPs, septic tanks, hospital effluents and animal excreta (Estevez 

et al., 2014).  

Concerning its presence in WWTPs, previous research showed that IBU was not 

completely eliminated in WWTPs with removal efficiency ranging from 13 to 99%. It is detected 

at μg/L, and even effluents seem to contain it quite frequently at concentrations up to 100 μg/L 

(Picó et al., 2017; Hiller et al., 2017). 

Studies conducted by Santos et al., (2008) and Davarnejad et al., (2018) identified IBU 

has existing in sewer wastewater in considerable amounts, up to 10 ng/L and 169 µg/L.  In 

England and Wales, IBU even exists in surface and drinking water in the range of 0.025 to 0.475 

mg/L. Another research with the aim to evaluate the occurrence of pharmaceutical compounds in 

wastewater, the influent and effluent, in fifteen WWTPs in five different regions of Portugal (North, 

Center, Lisbon and Vale do Tejo, Alentejo and Algarve), during the summer of 2013, found that 

IBU showed the higher concentration of about 0.995 mg/L in the effluent (Fortunato, 2014). 
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 Smook et al., in 2008, with the goal of discovering the best way to eliminate this type 

of compound in WWTPs, studied different types of removal in order to test its efficiency. More 

than 95% of ibuprofen was found to be removed in the aeration tank, with aerobic biodegradation 

being the dominant mechanism. 

Application of wastewater in agriculture irrigation is one of the main entry ways of this 

compound in soil. The persistence of IBU in soils implies that it may behave conservatively once 

reaching subsurface soils where anaerobic conditions may be prevalent. Furthermore, although 

this pollutant can be subject to microbial degradation in surface soil under aerobic conditions both 

the poor adsorption and short residence times reported suggest that it may readily move 

downward (Lin and Gan 2011). 

 

5. 17α-Ethinylestradiol (EE2) 

As a synthetic oestrogen, 17α-Ethinylestradiol (EE2) is mainly used in birth control pills 

and other pharmaceuticals to treat the ailments of infertility, hormone imbalance, osteoporosis, 

among others. The generally low absorption efficiency of these pharmaceuticals, similar to what 

happens with other pharmaceuticals, will cause this chemical to be excreted and discharged into 

the environment, exhibiting potent biological effects at a very low concentration (ng/L) (Xu et al., 

2015).  

The treatment process in WWTPs is incomplete and insufficient to remove EE2 resulting 

in measured wastewater treatment plant (WWTP) effluent concentrations of up to 62 ng/L. 

Cargouët et al., (2004) also reported that the highest level of free EE2 has been detected in 

domestic wastewater at 7 ng/L and in the effluent of wastewater treatment plants of up to 42 ng/L 

(Aris et al., 2014). Although the concentrations observed in WWTPs studied by Lima et al., (2012) 

were extremely low (ng/L) these compounds are extremely potent, particularly EE2 with an 

estrogenic potency about ten times that of natural hormones and has been detected in effluents 

of different sewage treatment plants (up to 94 ng/L). 

Due to their hydrophobic properties, oestrogens are strongly sorbed into soils and can 

easily accumulate in soil and sediment (Yu et al., 2018), potentially limiting the mobility and 

transport of oestrogens from soils to aquatic ecosystems where they seem to cause most damage 

(Hu et al., 2018). Lima et al., (2012) reported that Stumpe and Marschner (2007) considered that 

the electro-strong character of the benzene A-ring of the EE2 may be responsible for this strong 

sorption to organic matter. 

Colluci et al., (2001) reported somewhat longer dissipation rate constants for EE2 (0.1 to 

0.37 d-1) in moist agricultural soil microcosms. These rates correspond to half-lives between 0.5d 

and 7.7d. EE2 persisted in sterilized soil.  

 

 



16 

6. Oxybenzone (OXY) 

Oxybenzone (OXY), also known as benzophenone-3, is an aromatic hydrocarbon that 

acts as an ultraviolet light filter, it is used in sunscreens and personal care products to help 

minimize the damaging effects of ultraviolet radiation (DiNardo & Downs, 2017). This type of 

chemical is also used in cosmetics, shampoos, fragrances, and flavours and as photo stabilizers 

in personal products and plastics (Schneider & Lim, 2019). 

They are absorbed percutaneously and excreted in the urine, which enters the plumbing. 

However, approximately only 4% of the applied dose is absorbed through the skin, and excreted 

in the urine, leaving most of the filter on the skin to be washed off. This contaminant reaches the 

environment either indirectly via WWTPs or directly from swimming and bathing in lakes and rivers 

(Sánchez-Brunete et al., 2011; Chen & Schröder, 2018; 2019; DiNardo & Downs, 2017). Due to 

their high lipophilicity water insolubility and relative stability against biotic degradation, they are 

expected to be found in wastewater and by using this water for irrigation in agriculture, they end 

up in soil (Sánchez-Brunete et al., 2011). 

Although OXY is removed with relative efficiency (68 to 96%) in conventional WWTPs 

(Balmer et al., 2005), concentrations in WWTP influents and effluents ranged from 0.58 to 10.4 

ppb with the highest concentrations reported in a wastewater influent at San Diego County in the 

USA (Kim & Choi, 2014).  Similarly, six WWTPs in southeast Brazil evaluated levels of OXY and 

observed (0.18 to 1.15 ppb) in both raw treated and chlorinated water, indicating that the 

compound was not removed completely by the water treatment process (DiNardo & Downs, 

2017). Chen & Schröder (2018) observed that the widespread use of OBZ has led to its release 

into the environment and today it is one of the most frequently detected UV filters in surface water 

and wastewater. Their review also registered highest concentrations up to 1.395 mg/L of CBZ 

detected along Trunk Bay in Virgin Islands. 

Another interesting point, relevant to the spread of this contaminant is the fact that UV 

filters have been identified in the Arctic, suggesting that water currents are dispersing the filters 

beyond their initial deposition (Schneider & Lim, 2019), which gives even more importance to the 

choice of appropriate treatment in WWTPs. 

 

7. Triclosan (TCS) 

Triclosan (TCS) is used as an antiseptic, disinfectant, or preservative in PPCPs such as 

hand soaps and shampoos, mouthwash, toothpaste, and cosmetics, and in household items such 

as cutting boards (Goodman et al., 2018). 

The primary route for triclosan to enter the environment after its use is through discharge 

of effluent from wastewater treatment plants and disposal of sludge on land. Research shows that 

triclosan has been detected in sewage effluents and sludge (biosolids) due to their incomplete 

removal during wastewater treatment (Liu et al., 2009; Coogan et al., 2007). Regarding TCS 
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concentrations in WWTPs effluents, the overall mean concentration found in North Texas by 

researchers Waltman et al., (2006) was 0.11 mg/L (range 0.03–0.25 mg/L), and the monthly 

means exhibited a seasonal pattern with summer and autumn concentrations reaching higher 

values than winter and spring. Concentrations of TCS from two activated sludge WWTPs in 

Columbus and Loveland, Ohio, USA, were 0.24 and 0.41 mg/L. This apparent seasonal pattern 

may be explained by the increase of usage of products with this compound in warmer months 

and also due to reduced infiltration during dry summer months. 

Sorption data obtained through Karnjanapiboonwong et al., (2010) indicate that 

oestrogens, TCS, and CAF had a moderate to strong tendency to partition from water to soil in 

the environment and TCS had a strong tendency to sorb to both sandy loam and silt loam soils. 

This tests also permitted to understand that TCS would not be mobile in the environment. 

Similar conclusions were found by the study of Ying et al., (2007), suggesting that TCS 

tend to sorb onto soil or sediment in the environment and biologically have a slow degradation 

rate. Also, TCS can be degraded by microbial processes in soil under aerobic conditions but is 

highly resistant to biodegradation in soil under anaerobic conditions. Research conducted by Ying 

et al., (2007) recorded no changes in concentrations of this compound in sterile soil within 70 

days. Which suggest that no degradation of TCS by chemical processes occurred in the sterile 

conditions. Therefore, biological processes were the main responsible for any loss in the 

nonsterile soil within 70 days.  

 

8. Diclofenac (DCF) 

The extensive use of diclofenac (DCF) with approximately 940 tons of the drug being 

consumed globally on an annual basis (Zhang et al., 2008) as a non-prescription, anti-

inflammatory drug in human and animal health care, and consequently the constant release of 

this compound, by body excretions into the environment, has raised a concern about its potential 

effects on nature, animal and human health (Facey et al., 2018). 

 Humans and animals excrete free and conjugated DCF and its metabolites are directed 

to municipal wastewater (Vieno & Sillanpää, 2014). This pharmaceutical has shown to be globally 

present in municipal WWTPs effluents as well as in the aquatic environment (Zhang et al., 2008; 

Langenhoff et al., 2013; Buser et al., 1998). In a review study led by Vieno & Sillanpää (2014), 

the measured maximum concentrations of DCF in municipal wastewaters vary between 0.44 and 

7.1 μg/L and the mean concentrations between 0.11 and 2.3 μg/L. The paper analysed data from 

18 different countries: Austria, Canada, China, Finland, France Germany, Greece, Pakistan, 

South Korea, Spain, Croatia, Sweden, Switzerland, Taiwan, UK and USA. In the previously cited 

article, by Fortuna & Costa (2014), regarding wastewater treatment efficacy in fifteen Portuguese 

WWTPs, DCF was the pharmaceutical compound that presented the lowest removal rate among 

the remaining drugs under study, with a mean percentage of 63% removal and a mean value of 

0.0249 μg/L. Therefore, these effluents represent a significant source of DCF entering the 



18 

environment, especially into the soil (Margon et al., 2009). This compound has shown to cause 

harmful effects on organisms and to bioconcentrate in fish and mussel at environmentally relevant 

concentrations (Vieno & Sillanpää, 2014; Chen et al., 2015). 

The research of Al-Rajab et al., (2010) concluded that DCF was rapidly mineralized 

without a detectable lag in three different textured agricultural soils: sandy loam, loam and clay 

loam, all incubated at 30°C, with this and other tests suggesting high biodegradation potential of 

DCF (Suarez et al., 2010). 

  

9. Caffeine (CAF) 

Caffeine (CAF) is an alkaloid whose basic structure is purine and exists widely in the 

leaves, seeds and fruits of a large number of plants. Among them, cocoa beans, tea, coffee, cola 

nut and guarana are the best known. It is extensively used in non-alcoholic beverages and also 

in pharmaceuticals preparations as an adjuvant to drugs like paracetamol (Lakshmi & Nilanjana, 

2013; Dash & Gummadi, 2006).  

This alkaloid is frequently detected at significant concentrations in municipal sewage 

treatment plants, and in rivers receiving discharge, indicating that it is incompletely destroyed 

during the sewage treatment process (Hendel & Chapman, 2006). WWTPs are able to essentially 

completely remove CAF before discharging into the environment (Busse & Nagoda, 2005). The 

majority of the CAF (51-99%) is removed during secondary treatment, where biological processes 

are often stimulated with the presence of oxygen (Thomas and Foster, 2005; Sui et al., 2010). 

CAF concentrations in influents and effluents of Swiss wastewater treatment plants (0.03−9.5 

μg/L, respectively) coincide with such observations, showing an elimination of 81−99.9%. Despite 

the efficient removal in most WWTPs, caffeine was ubiquitously found in Swiss lakes and rivers 

(6−250 ng/L) suggesting that untreated sewage is overflowing into the water and that CAF is so 

abundant and chemically stable that it remains detectable (Buerge et al., 2003). 

Soil is a primary environmental compartment receiving CAF through wastewater irrigation 

and fertilization application. Williams & McLain (2012), observed that the average CAF 

concentration after 3 years in the 0- to 5-cm layer was 1.2 ng/g soil, and the average concentration 

decreased with increasing depth from the surface (1.1 ng/g soil for 10–15 cm; 0.6 ng/g soil for 

25–50 cm). A study by Hendel et al., (2006) evidences that the mechanism of CAF dissipation in 

soil is microbial biodegradation. Their results showed that CAF was stable in autoclaved soil 

(sterile soil), the biphasic accelerating kinetics of CAF mineralization in the loam and sandy loam 

soils suggest that a competent population was improved after a brief lag and also the response 

of CAF mineralization in the loam soil to variation in temperature and moisture is consistent with 

the activity of a mesophilic aerobic biodegrading population.  
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10. Carbamazepine (CBZ) 

Carbamazepine (CBZ) is used for the treatment of seizure disorders, for relief of 

neuralgia, and for a wide variety of mental disorders. Approximately 72% of orally administered 

CBZ is absorbed, while 28% is unchanged and subsequently discharged through the faeces 

(Zhang et al., 2008).  

The fate of CBZ and five of its metabolites were assessed from five WWTPs in Berlin, 

Germany. The parent compound CBZ was considered to be very persistent during wastewater 

treatment. In five out of the six samples, the concentration of CBZ even increased by an average 

of 14% during treatment (Bahlmann et al., 2014). The same researchers, in Portugal, detected a 

median concentration of CBZ of 0.52 (0.03) mg/L from the two main WWTPs of Aveiro (“North” 

and “South”) in 2010. Another study accomplished by Sajwan et al., (2014) where water samples 

were collected from various water resources and five WWTPs from Georgia to study CBZ 

contamination levels. Measurable levels of CBZ were detected in all samples analysed and 

concentrations of CBZ ranged from 11.4 ng/L to 35.2 ng/L (WWTP effluent). The CBZ levels in 

effluent of WWTP were about two times higher than all other sites (range: 26.6-35.2 ng/L). 

 CBZ is a pharmaceutical with great environmental significance due to its limited removal 

efficiency during wastewater treatment processes and its high stability in the environment (Navon 

et al., 2011). The removal efficiency of CBZ in WWTPs is mostly below 10% (Zhang et al., 2008). 

CBZ has been reported to occur in surface waters, groundwater and treated wastewater effluents 

up to 6.3 µg/L and in biosolids up to 258 µg/kg (McClellan & Halden, 2001; Kahle et al., 2009). 

According to Shao et al., (2018) only approximately 5.82–21.43% of CBZ degraded in all 

different studied soil settings, with changes in the presence of composted sewage sludge during 

an incubation period of 120 days.  

 

2.3 Electrokinetic process 

2.3.1. Principles overview 

Electrokinetic (EK) remediation is a technology developed in the late 80s of the 20th 

century for the remediation of soils and other solid materials (Cameselle et al., 2013). This 

technique, also named electroreclamation, electrokinetic soil processing, and electrochemical 

decontamination, uses low level direct current (DC) on the order of mA/cm2 across electrode pairs 

that are implanted in the ground generally on each side of the contaminated soil mass (Acar & 

Alshawabkeh, 1993; Shenbagavalli & Mahimairaja 2003).  

This current simultaneously initiates many physical processes (heating, changes in 

viscosity, etc.), electrochemical processes (water oxidation and reduction, etc.), chemical 

processes (ion exchange, dissolution of precipitates, etc.) and electrokinetic processes (electro 

osmosis, electromigration, electrophoresis, etc.), which significantly change the soil (Rodrigo et 
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al., 2014). The main goal of this type of remediation is to affect the migration of subsurface 

contaminants in an imposed electric field via electroosmosis, electromigration and electrophoresis 

(Virkutytea et al., 2002). 

 Electroosmosis describes the movement of soil moisture or groundwater from the anode 

to the cathode of an electrolytic cell (Virkutytea et al., 2002). When DC is applied cations are 

driven towards the cathode and anions towards the anode. As both migrate, they carry water and 

they exert a viscous drag on the pore fluid round them (Mitchell, 1991; Ribeiro et al., 1999). This 

mechanism prevails in the removal of uncharged or weakly dissociated organic contaminants, like 

phenols. This component of transport is almost inexistent in coarse sands and high plasticity clays 

with lower water content (Ribeiro and Rodríguez-Maroto, 2006). 

Electromigration refers to the movement of ions under the action of an electric field. It is 

the dominant transport mechanism in soils when dealing with charged soluble species (Ribeiro et 

al., 1999). Positive ions are attracted and move toward the negatively charged cathode, and 

negative ions move to the positively charged anode (Virkutytea et al., 2002). 

 Electrophoresis refers to the movement of charged particles under an electric field (Acar 

& Alshawabkeh, 1999). The charged particles are attracted electrostatically to one of the 

electrodes and repelled from the other (negatively charged clay particles move in direction to the 

anode) (Ribeiro et al., 1999). In this manner contaminants bound to mobile particulate matter can 

be transported (Virkutytea et al., 2002). The described processes can be better comprehended 

through Figure 2.4.  

 

Figure 2.4 Scheme of EK remediation applied to a contaminated soil (Feng et al., 2015). 
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 In recent years, the process has been enhanced having integrated chemical surfactants, 

chemical amendments and 101 chelating agents to enhance metals or organics desorption from 

soil to increase the contaminant removal rates at the electrodes or to degrade contaminants at 

their source (Lima et al., 2017). The direction and quantity of contaminant movement is influenced 

by the contaminant concentration, soil type and structure, and the mobility of contaminant ions, 

as well as the interfacial chemistry and the conductivity of the soil pore water (Francisca et al., 

2012). Because of that, mechanisms and their effects can be altered in order to enhance the 

removal efficiency or lock in non-critical contaminants in the soil by immobilization.  

 

2.3.2. Periodic electric potential application 

Applying periodic electric power, with time intervals where voltage is not applied, allows 

high electroosmotic flow and promotes enough time for mass transfer or the diffusion of the 

contaminant from the soil matrix to occur and thus its removal (Maturi et al 2009; Cameselle, & 

Reddy, 2013), with the additional benefit of saving in electric power consumption.  

As stated by Cameselle & Reddy (2013), in the switch off intervals, the contaminant 

transfer from the solid (soil) to the liquid phase (interstitial fluid), as well as diffusion of the 

contaminant through the soil pores. This periodicity generates an electric current that follows an 

up-and-down pattern, and also when the voltage is switched off causes a higher current when the 

voltage is applied again (Ammami et al., 2015). 

An investigation with the goal to determine the contaminant mass removal using a 

periodic voltage application, accomplished by Reddy & Saichek (2004), concluded that 

considerable contaminant removal could be achieved by using a voltage gradient of 2.0 VDC/cm 

alongside a periodic electric potential application. The periodic voltage application consisted of a 

cycle of five days of continuous voltage application followed by two days where no voltage was 

applied. Results from these experiments showed that the test where a periodically voltage was 

applied, resulted in a much more sustained flow rate, that sustained for over 250 days with an 

average electroosmotic flow rate of over 7 mL/day, while another test in the same conditions but 

with continuously applied voltage, had diminished flow after less than 25 days, and although had 

high initial average flow rate of roughly 13 mL/day during the first 25 days, the average flow rate 

reduced to less than 1 mL/day.  

This consistent flow largely contributed to the high amount of contaminant removal, and 

also due to the solubilization and kinetic desorption reactions and/or the pulsing mechanisms, 

caused by the use of the periodic mode of voltage application (Reddy & Saichek, 2004). 
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2.3.3. EK coupled with bioremediation 

Numerous field studies have proven the commercial viability and technical effectiveness 

of EK remediation (Rodrigo et al., 2014; Guedes et al., 2014; Cameselle & Gouveia, 2008; Kim 

et al., 2001; Lopes, 2018; Lima et al., 2017). However, the usual EK technique may not have an 

efficient removal or migration of contaminants. To overcome EK limitations and increase its 

efficiency, enhancement techniques or their combination with other technologies have been 

tested (Saichek & Reddy, 2005; Saeedi et al., 2009; Yuan & Weng, 2004).  

These techniques may be applied to solubilize or mobilize the contaminants, control or 

adjust soil pH in the suitable range for EK and transform, breakdown, or destroy the contaminants 

(Yeung et al., 2011). Some of the techniques that may be applied with EK include the use of 

surfactant, chelants, complexing agents, controlling soil pH, bioremediation, permeable reactive 

barriers, and ultrasonication. Selecting the suitable combination technique depends on the soil 

type and on the contaminant or contaminants necessary to remove (Jamshidi-Zanjani & Darban, 

2017). 

 The use of EK in combination with bioremediation vastly improves the efficiency over 

that of EK remediation alone in removing pollutants from soil. 

Bioremediation requires environmental conditions which are favourable for the 

biochemical process and interaction between microorganisms, contaminants, nutrients and 

electron acceptors/donors (Gill et al., 2014). Consequently, this process may occur in the 

subsurface environment, but not at a rate to mitigate risks at a particular site. In most cases, the 

biodegradation rate is slow. EK enhances the degradation rate by using the transport mechanisms 

associated with electrokinetics to deliver nutrients and/or to introduce new bacteria if the 

indigenous microorganisms are not capable of degrading the contaminant (Hassan, 2016). 

EK remediation can significantly enhance nutrients delivery to indigenous bacteria, 

thereby providing a tremendous potential for cleaning contaminated soils including fine-grained 

soils, which are usually difficult to clean-up using conventional methods (Yeung and Corapcioglu 

1994; Alshawabkeh 2009; Reddy and Cameselle 2009). Many studies have investigated the use 

of EK to improve the outcome of bioremediation (Yeung et al., 2011).  

According to Hassan (2016) EK-bioremediation processes can be divided into two main 

aspects: microorganism related factors such as the existence of nutrients, and the 

microorganisms’ capability of surviving, persisting, and degrading the contaminant; influence of 

EK processes, such us electrolysis reactions, electric current, change in temperature, power for 

electrokinetics, the availability of power lines near the contamination sites and the cost of 

electricity. 

Results have shown that by coupling these two techniques it is possible to achieve better 

degradation rate values. A research conducted by Azhar (2016) verified that EK-bioremediation 

did facilitate the removal of heavy metals, using the EK technique 40% to 52% of mercury was 

removed from the soil, but when this process was combined with Lysinibacillus fusiformis, it could 
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remove up to 78% of mercury. Another study performed by Guo et al., (2014) showed how the 

degradation rate of petroleum in the BIO–EK test was significantly higher than that of EK process 

alone, indicating that the biological degradation was stimulated by electric field, and signifying a 

synergistic effect between biological degradation and electrochemical stimulation.  

 

2.4. Analytical techniques 

2.4.1. QuEChERS method 

A more recent and now widely used sample preparation method named QuEChERS was 

introduced in Rome in 2002 by Anastassiades, Lehotay, Stajnbaher, and Schenck. The 

abbreviation QuEChERS stands for quick, easy, cheap, effective, rugged and safe, describing 

the advantages this original analytical methodology combining the extraction/isolation of 

pesticides from food matrices and extract clean-up over the traditional liquid–liquid extraction 

(Zhang et al., 2012; Wilkowska & Biziuk, 2017). 

Originally, the QuEChERS was introduced for pesticides residues analysis in high 

moisture fruits and vegetables, but more recently it is gaining significant popularity in the analysis 

of broad spectrum of analytes in huge variety of samples (Rejczak &Tuzimski, 2015). 

According to Anastassiades et al., (2003), some of the most important characteristics of 

this method are the ones described below: 

• Rapid (8 samples in less than 30 min)  

• Simple (no laborious steps, minimal sources of errors)  

• Cheap (ca. 1 € per sample for the sample preparation)  

• Low Solvent Consumption (10 mL acetonitrile)  

• Practically No Glassware Needed  

• Wide Pesticide Range (polar compounds, pH-dependent compounds)  

• Extract in Acetonitrile (GC- and LC- amenable) 

The original procedure consists in the extraction a homogenized sample by hand-shaking or 

vortex mixing with the same quantity of acetonitrile (ACN) to result in a final extract sufficiently 

concentrated to remove the need for solvent evaporation.  

Small quantities of salts (4 g anhydrous magnesium sulphate, MgSO4) are then added to the 

sample, with mixing, to initiate partitioning of the analytes between the aqueous residue and the 

solvent. After centrifugation or simple vortex mixing, which leads to seamless physical separation 

of the phases, clean-up and removal of residual water is performed at the same time by use of a 

rapid procedure, dispersive solid-phase extraction (dSPE), in which a primary–secondary amine 

adsorbent and more anhydrous MgSO4 are mixed with the sample extract (Lambropoulou & 

Albanis, 2007). 



24 

The right selection of the extraction solvent is critical in QuEChERS, as it directly determines 

its efficiency. Although ACN is miscible with water, it can easily be separated from water by the 

salting-out effect and centrifugation. ACN is also responsible for higher recoveries and less 

interference than other solvents such as acetone and methanol while offering slightly better limit 

of detection and relative standard deviations (RSD) than acetone (Zhang et al., 2012) 

QuEChERS method has important advantages over most traditional extraction methods, 

since it enables high recovery rates for wide range of analytes and produces very accurate results 

thanks to the use of an internal standard for elimination of problematic commodity differences. 

Another important advantage of the QuEChERS is the fact that this technique has rapid character 

and high sample throughput, meaning through this method, a big batch of samples could be 

extracted in relatively short time interval, less than 60 min, by a single analyst. Due to low solvent 

consumption and absence of chlorinated solvents and a possible small waste generation, this 

method is also in accordance with so-called green chemistry (Rejczak & Tuzimski, 2015).  

Similarly, the need of using only basic laboratory devices make this sample preparation technique 

relatively inexpensive in comparison to most traditional extraction methods. 

Since QuEChERS requires fewer steps this is very significant, as every additional analytical 

step complicates the procedure and is also a potential source of systematic and random errors 

(Wilkowska & Biziuk, 2017). The scheme of the Figure 2.5 synthetizes the steps needed to 

accomplish this technique. 

 

 

Figure 2.5 QuEChERS method adapted for the determination of pesticides (Source: Tette et al., 2016). 

 

2.4.2. High Performance Liquid chromatography  

Chromatography is a technique to separate mixtures of substances into their components 

based on their molecular structure and molecular composition. It involves a stationary phase (a 

solid, or a liquid supported on a solid) and a mobile phase (a liquid or a gas), the latter, flows 

through the stationary phase and carries the components of the mixture with it. Components with 

weaker interactions will move faster through the column than those that display stronger 

interactions with the stationary phase. This difference in rates cause the separation of different 

components (Giri, 2019). 
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Chromatographic separations can be carried out using a variety of stationary phases, 

including immobilized silica on glass plates (thin-layer chromatography), volatile gases (gas 

chromatography), paper (paper chromatography) and liquids (liquid chromatography) 

(Giri, 2019). 

High performance liquid chromatography (HPLC) is an application of liquid 

chromatography. HPLC guarantees a high sensitivity, and, simultaneously, this technique has its 

gas analogue. The principle of HPLC is the same as that of liquid chromatography, liquid–solid 

chromatography and liquid–liquid chromatography. The stationary phase may be a solid or liquid 

on a solid support. The mechanisms responsible for distribution between phases include surface 

absorption, ion exchange, relative solubilities and steric affects (Aniszewski, 2007).  

There are many different stationary and mobile phases that can be used in HPLC, and 

for this reason there is a great variety of separation mechanisms. Studies on HPLC use different 

criteria in their attempt to classify the modes of this technique: type of stationary phase, 

predominant separation mechanism, type of groups of compounds it is aimed at. These criteria 

sometimes overlap; which means that is possible to work in several different chromatographic 

methods with the same stationary phase, and the same group of compounds can be separated 

using several different stationary phases, and so it is challenging to classify HPLC techniques 

into specific groups (Moreno-Arribas & Polo, 2003). 

A pump working with high-pressure leads the mobile phase from a reservoir through an 

injector. The mixture under analyses is injected into the column, passed through the particle bed, 

for component separation and after, the separated mixture moves into the detectors, as a mobile 

phase, where the absorbance is monitored by one or multiple detectors (e.g. diode array detector 

(DAD) and fluorescence detectors (FLD)) (Lopes, 2018).  

A single solvent is often used to carry out the separation (isocratic elution) but differing 

proportions of various solvents are also often used (gradient elution). Today most 

chromatographs are controlled by a computer, that is also used for data collection, making 

possible to achieve greater quality of quantitative data and enable automation of the system. 

(Moreno-Arribas, M. V., & Polo, 2003). 

HPLC systems provide key benefits such as the possibility to control and automate 

chromatography instrumentation, provide data management, security features, and reporting and 

instrument validation, they are powerful and adaptable, increase productivity by managing all the 

areas of analysis - from sample to instrument, and from separation to reporting results and more 

affordable (Thomas, 2013). 
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3. Materials and methods  

3.1. Soil sample 
 

The soil was collected in an organic tomato plantation, located in São Nicolau, Santarém, 

Portugal (39°12'42.6"N 8°42'41.5"W) managed by Marco Nunes productions, in October 2017, 

the location is depicted in Figure 3.1. 

The soil was collected between 0-15 cm depth, using a mattock and a stainless-steel shovel 

(coarse elements, roots, and tomato remains from previous crops were manually removed prior 

to sampling). Prior to use, the soil was sieved (No. 10 IS Sieve, 2.0 mm) to remove the coarse 

fractions, and its physiochemical characterization was undertaken at ex. Estação Agronómica 

Nacional, using standard methods (Lopes, 2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The experiments were conducted with non-sterile and sterile soil. The soil sterilizations 

were performed in a flow chamber under direct UV light for 2h. After, the soil was subjected to 6 

times 1h cycles at 121ºC in an autoclave. To confirm a complete sterilization, the soil was 

extracted in 1% peptone water (1:100) under 3 cycles of 2 min of vacuum extraction followed by 

rest of 30 min at 30ºC. The extract (100 µL) was then used to inoculate petri dishes with malt 

extract agar and potato dextrose agar mediums. The inoculated petri dishes were placed in an

Figure 3.1 Location of the soil sampling and photograph of the field; São Nicolau, Santarém, Portugal 
(39°12'42.6"N 8°42'41.5"W: Google Maps, 2018; Lopes, 2018. 
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incubator at 30ºC and 60% humidity for 7 days and daily monitored; no microbiological community 

development was observed in the sterile soil. 

 

3.2. Chemicals and solvents  

The organic compounds (analytical standard) SMX, IBU, CAF, BPA, CBZ, DCF, EE2, 

were acquired from Sigma-Aldrich (Steinheim, Germany), TCS (≥ 97%) from Labesfal Pharma, 

and E2 and OXY from Alfa Aesar (Massachusetts, EUA). All used solvents (gradient HPLC grade) 

and reagents were acquired from Sigma–Aldrich (Steinheim, Germany), Panreac (Barcelona, 

Spain), Merck (Darmstadt, Germany), Carlo Erba (USA), J.T.Baker (Germany) or Fluka (U.S.A). 

The deionized water used was purified with a Milli-Q plus system from Millipore (Bedford, MA, 

USA).  The safety data sheets of all standards and reagents used are presented in the annex 

1. All produced residues (liquids and solids) were discarded to appropriate containers and treated 

according the FCT NOVA Internal Waste Disposal specifications and procedures. 

 

3.3.  Electrokinetic experiments  

3.3.1. Electrokinetic set-up  

All experiments were performed in a microcosm established in a rectangular acrylic 

container (100x50x70 mm) with two metal mixed oxide meshes (MMO) as electrodes (IrO2/RuO2 

coated titanium, 20x970x1 mm; from Force) portrayed in Figure 3.2 (a). The MMO electrodes 

(inserted on each microcosm side at 5 mm from the edge) were connected to a power supply for 

direct current generation (Hewlett Packard E3612A, Palo Alto, USA). 

In the abiotic conditions, all material used (e.g. soil, the acrylic cells, electrodes, Mili-Q 

water, glass material, micropipette tips, etc.) was previously sterilized at ITQB NOVA facilities. 

Before measuring the temperature and watering the cell, the tools and gloves of the user were 

sprayed with ethanol (70%) to ensure a sterile environment (Figure 3.2 (b)).  

  

Figure 3.2 Experimental (a) microcosm scheme and (b) experimental setup used with power supplies (i) and 

electrodes and wires (ii). 

 

i ii 

(a) (b) 
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3.3.2 Experimental design 

To assemble the microcosms, the soil (total of 345 g dry weight) was poured in 3 

consecutive layers in which the two bottom layers were watered with 25 mL of deionized water 

(layer 2 and 3 in Figure 3.2 (a)) and the top layer (layer 1 in Figure 3.2 (a)) was spiked with 25 

mL of a solution containing the organic contaminants (each at 12 ppm), hereafter defined as the 

CECs mixture.  

To remediate the soil containing the CECs mixture, each EK process (duplicate) was run 

for 4 days, in a flow chamber at 24ºC and protected from direct UV light. The EK was set to 20 

mA with an ON/OFF switch of 12h, which consisted on the continuous application of identical 

periods of current and void. The experiments were performed with sterile (EK-Abiotic) and non-

sterile soil (EK-Biotic) to assess the contribution of the current and biological community to the 

CECs remediation (Table 3.1). The effect of a lower temperature (room temperature at 18ºC) on 

the bioremediation alone and couple to EK was also assessed (Table 3.1). In parallel, the time 

zero control was also analysed in which the soil sections were processed immediately after 

spiking the soil with the CECs mixture, and three negative controls where no current was applied 

during four days in sterile and non-sterile soil at 24 and 18ºC (i.e. abiotic and biotic controls) 

(duplicates in all cases). 

Each experiment was daily monitored for the current intensity, the voltage between the 

the working electrodes and the soil temperature. After four days, the 60 mm soil layer was 

carefully removed and segmented into 6 sections across distinct planes (Figure 3.3): transverse 

(layers 1, 2 and 3); tangential (anode section - A; cathode section - C); which were immediately 

processed and analysed for water content, pH, electric conductivity (EC) and organics 

contaminants concentration (see section 3.4).  

 

 

 

 

 

 

 

 
Figure 3.3 Soil division at the end of the experiments. 
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Table 3.1 Experimental parameters applied to each assay. 

 

3.4. Analytical Methodologies 

3.4.1.  Physicochemical parameters 

  The soil temperature was measured with a digital thermometer that was cleaned with 

paper towel and methanol prior measurements. 

 The water content of the soil was measured as the weight loss after at 105ºC till constant 

weight and calculated according to equation 3.1: 

% 𝑆𝑜𝑖𝑙 𝑊𝑎𝑡𝑒𝑟 =
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑤𝑒𝑡 𝑠𝑜𝑖𝑙 (𝑔)−𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)

𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑠𝑜𝑖𝑙 (𝑔)
𝑥100                   (3.1) 

 

The pH and conductivity were measured using a soil deionised water ratio of 1:5 (w:v), 

stirred for 1h (approximately 100 bpm), and then left aside to settle for another hour prior 

measurement with a pH meter (Metrohm-Solitrode with Pt1000) and a conductivity meter (Horiba-

LAQUAtwin). 

 

Experiment Soil 
Temperature 

(ºC) 

Current 

(mA) 
Variable tested 

Abiotic-24 

Sterile soil 24 

- Microbiota input to degradation 

EK-Abiotic-24 

20 

EK input to degradation in a 

scenario without organisms 

EK-Abiotic-24-W 
Irrigation contribution to 

degradation process 

Biotic-24 

Non-Sterile 

24 

 

- 
Microbiota input to degradation at a 

warmer temperature 

EK-Biotic-24 

20 

EK input to degradation in a 

warmer set with living organisms 

EK-Biotic-24- W 
Irrigation contribution to 

degradation process 

Biotic-18 

18 

- Microbiota input to degradation 

EK- Biotic-18 20 
EK input to degradation in a 

scenario with living organisms 
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3.4.2 Organic contaminants extraction 

The concentration of the organic compounds was determined using an adapted 

QuEChERS method previously described in Pinto et al., (2010). Briefly, the method is started by 

weighing and collecting 2.5 g of moist soil (collected right after 

the end of the experiment) into a 15 mL Falcon tube. Afterword 

1.5 mL of deionized water is added to the soil and vortexed for 

a few seconds (approximately 30 seconds). Then 2.5 mL of 

acetonitrile is added, and the mixture is vortexed again for 1 

minute. After mixing, 1 g of MgSO4 is added and manually 

stirred vigorously for a few seconds followed by vortex for 30 

sec. The samples are then centrifuged at 11000 rpm for 5 

minutes (23°C) which results in a good separation between the 

solid matter and the liquid (Figure 3.4). The supernatant is then 

collected and filtered through polytetrafluoroethylene syringe 

filter 0.45 m (previously passed through acetonitrile) and 

transferred to a vial. All soil sections were extracted and 

analysed in triplicate.   

 

 

3.4.2.1 HPLC analysis 

To determine the concentration of the organic compounds in the soil samples, a high 

performance liquid chromatography (HPLC) with diode array detector (DAD) (G1315B) and 

fluorescence detector (FLD) (G1321A), both from Agilent 1 100 Series, was employed. The 

analysis was performed on the 1260 Infinity II LC Systems (Agilent Technologies, USA) equipped 

with a 1260 Infinity Quaternary Pump (G7111B) and an automatic sampler 1 260 (G7129A). 

Separation of the analytes was performed on a Poroshell 120 EC- C18 2.7 µm column with 

4.6x100 mm from Agilent (California, USA), and an Onyx SecurityGuard C18 cartridges, with 

5x4.6 mm, from Phenomenex (Torrance, USA).  

The UV wavelength was set to full scan from 220 nm to 500 nm. Target compounds were 

measured at 282 nm for CAF, SMX, CBZ, DCF, OXY and TCS (channel DAD B), and 220-290 

nm of excitation-emission for BPA, E2, EE2 and IBU (channel FLD A). All operations and data 

analysis were processed by the LC OpenLab software. 

All HPLC runs were performed at a constant flow rate of 1.5 mL/min, in gradient mode. 

The eluents used were acetonitrile/Mili-Q water solutions (solution A: 35/65; solution B: 90/10), 

adjusted to pH = 2.8 using a formic acid solution (50% in water).  

All eluents were filtered through Nylon 66 membranes (pore size of 0.45 μm; Bellefonte, PA, 

USA). The gradient run was set to 1 min 5% B, after 95% B until 9 min, then 97% B until 10 min, 

Figure 3.4 Sample in a falcon tube 
before collecting the supernatant. 
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where it was held constant for 2 min and then to 5% B until 13 min (Table 3.2). Post run equilibrium 

was carried for 2 min and the oven temperature maintained at 36 °C. Preceding analysis, 200 μL 

of sample extracts were mixed with 100 μL of eluent A (2:1) in a vial with insert and analyzed. 

 

Table 3.2 HPLC gradient flow rate of 1.5 mL/min, in gradient mode. The eluents used were ACN/MiliQ 
water solutions (solution A: 35/65; solution B: 90/10). 

Time (min) A (%) B (%) Flow (mL/min) 

3.0 95.0 5.0 

1.5 

20.0 5.0 95.0 

22.0 3.0 97.0 

25.0 3.0 97.0 

27.0 95.0 5.0 

 

 

3.4.3 Method Validation 

3.4.3.1. HPLC calibration curve and limits 

For calibration purposes, individual stock solutions of the organic compounds were 

prepared in acetone:methanol (1:3, v:v) and kept at 4°C. Working solutions were prepared by the 

adequate mixture and dilution of the stock solutions into methanol:eluent A (2:1,v: v). 

Calibration curve was carried out using 7 stock solutions with different CECs 

concentrations (0.5; 1.5; 2.0; 2.5; 5.0; 7.5; 10 ppm) to determine the adjust between compound 

concentration and the corresponding compound area of the peak using linear regression. 

For the HPLC method limit of detection (LD) was calculated through the residual standard 

deviation (Sx) multiplied by 3, for each compound. The limit of quantification (LQ) is the value of 

the LD multiplied by 3 (Guedes, 2015). 

 

3.4.3.2. Methods recoveries and limits 

Recovery assays were performed to validate the extraction method. The exact method of 

calculation is determined by the following equation 3.2:  

                                         𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝑟𝑒𝑎𝑙

 𝑣𝑎𝑙𝑢𝑒

𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
× 100                                      (3.2) 

 

Where real value represents known concentration added in the present sample and the 

obtained value is the concentration that is obtained through HPLC analysis. 
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3.4.4. Statistical analysis 

The statistical analysis was carried out using GraphPad Prism 7 software through an 

ANOVA test and a Tukey test. A significance level of 5% was considered (95% confidence 

interval, p<0.05) to apply the Tukey test. In order to validate the results obtained, all the 

experimental values of pH, EC, moisture content, organic contaminants degradation percentages 

and distribution within the microcosm were comparatively examined.  

For the pH, EC, and moisture content the comparisons were carried out following three 

variables: (i) comparing to soil initial values; same experiment, different soil sections; (iii) different 

experiments, same soil section.  

Compounds degradation percentages were analysed in two variables: (i) same 

compound, different experiments; (ii) different compound, same experiment. Compounds spatial 

distribution was analysed in three variables: (i) same compound, same experiment, different soil 

sections; (ii) same compound, different experiments, same soil section; (iii) different compounds, 

same experiment, same soil section.  

For statistical purposes, samples which values were below MLD or MLQ (not detected, 

n.d.) were considered as zero. Cases that did not have SD associated (e.g. lost samples), were 

not considered while evaluating statistical differences. 
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4. Results and Discussion 

4.1. HPLC method validation 

The equation used is defined by a linear regression formula y=mx+b, y being the peak 

area, m the slope, x the concentration of the compound in ppm and b the y-intersect. The 

calibration curves that resulted from the regression are presented in the Table 4.1, as well as the 

retention times, determination coefficients (r2), detection (LD) and quantification (LQ) limits of 

each compound. As shown in Table 4.1, most of the fits were excellent with correlation coefficients 

r2 = 1.000, suggesting that the PPCPs calibration curve could be well described by a linear 

regression model.  

 

Table 4.1 HPLC-DAD-FLD method validation parameters. 

*LD=3Sx, where Sx is the residual standard deviation; **LQ=3LD; a Emission-Excitation  

 

4.2. Soil properties 

 The soil collected from an organic tomato plantation presented a clay texture class and 

the general properties can be found in Table 4.2. The soil, fraction <2.0mm, was extracted for 

PPCPs screening (n=6), through HPLC-DAD-FLD and GC-TOF-MS, and none of the organic 

compounds here under study were detected (<LD).   

Clay soils generally have a higher cation exchange capacity than sandy or silty soil, as 

they are negatively charged and can attract, retain and exchange cations (Bohn, 1979).  Because 

of this high cation exchange capacity (4-60 cmol/kg), very much dependent on the type of clay 

minerals presented, they are usually very fertile soils, and present a good nutrient bonding 

(Anthoni, 2000; Lopes, 2018). The clay particles have a large surface area per unit mass which 

allows the soil to hold a greater quantity of water and present low leaching level, particularly if the 

clay minerals are 2:1 type.

Compound 
Detection 
challenge 

Wave 
length 
(nm) 

Retenti
on time 
(min) 

Calibration 
Curve 

r2 LD * 
(mg/L) 

LQ ** 
(mg/L) 

CAF 

DAD-B 282 

2.8 y = 20.4x - 0.47 1.000 0.13 0.39 

SMX 4.5 y = 26.4x + 0.87 1.000 0.15 0.45 

CBZ 5.7 y = 24.3x + 1.04 1.000 0.14 0.41 

DCF 7.7 y = 17.1x + 0.80 1.000 0.18 0.55 

OXY 8.2 y = 28.9x + 1.07 1.000 0.15 0.44 

TCS 8.9 y = 8.31x + 14.8 1.000 0.16 0.48 

BPA 

FLD A 220-290a 

6.3 y = 11.0x + 0.88 1.000 0.20 0.59 

E2 6.5 y = 9.0x + 0.91 1.000 0.16 0.47 

EE2 6.8 y = 8.6x + 0.86 1.000 0.19 0.58 

IBU 7.9 y = 2.7x + 0.56 1.000 0.27 0.81 
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Table 4.2 Soil physical and chemical characteristics (soil fraction <2.0 mm). 

Parameter Value 

Particle size distribution (%)  

Clay (ɸ < 0.002 mm) 61 

Silt (0.002< ɸ < 0.02 mm) 29 

Sand (0.002 <ɸ< 2mm) 10 

 
Textural class: Clay 

Exchangeable cations (mg/kg)  

Ca 2245 

Mg 402 

Na 688 

K 250 

pH (H2O) 8.06 

Electrical conductivity (mS/cm) 0.71 

Organic carbon (g/kg) 27 

N organic (g/kg) 1.48 

 

4.3. Remediation treatment effects on soil physicochemical parameters 

EK phenomena and the success of EK-enhanced bioremediation treatment depends on 

environmental variables; therefore, adapting the treatment to the environment in which it is applied 

is important for managing electrode effects and predicting and sustaining EK phenomena (Gill et 

al., 2014). Bioremediation requires environmental conditions which are favourable for the 

particular biochemical processes and interaction between microorganisms, contaminants, 

nutrients and electron acceptors/donors (Sturman et al., 2004). 

With that in mind, after the fourth and final day of each assay, the pH, conductivity and 

moisture levels were measured. 

 

4.3.1. Temperature and moisture content 

In order to study the effect of temperature in the remediation processes, two average 

temperatures were tested, 24°C and 18°C.  The Table 4.3 displays the different set ups tested for 

each temperature and the mean temperature of each one. 

No major temperature variations were observed in the soil, except in experiment EK-

Abiotic-24 and EK-Abiotic-24-W, the data shows that soil temperature increased more than 3°C. 

This temperature increase may be related to the ohmic heating generated in the system by the 

electrical resistance of electrodes, the conductive elements, and of the soil itself (Ma et al., 2017). 

Electroheating may be used as an advantage since the increase of temperature and the final 

temperature in the soil can be easily controlled adjusting the intensity of the electric field. 

Furthermore, the heat is generated into the soil, in the whole volume at the same time, achieving 

a more uniform temperature in the area to be treated. The uniform temperature allows a uniform 
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removal of the contaminants and a more efficient use of the energy (Cameselle et al., 2013). Still, 

and although it is possible to observe slightly temperature fluctuations between experiments, no 

statistical differences were found (p>0.05). 

 

Table 4.3 Average soil temperature of each experiment. 

Room temperature 
(°C) 

Experiment 
Soil average temperature 

(°C) 

24 

Biotic-24 23.0 ± 0.1 

EK-Biotic-24 22.7 ± 0.1 

EK-Biotic-24-W 23.7 ± 0.1 

Abiotic-24 23.7 ± 0.1 

EK-Abiotic 24.5 ± 0.1 

EK-Abiotic-W 23.0 ± 0.1 

18 
Biotic-18 18.6 ± 0.1 

EK-Biotic-18 19.6 ± 0.1 

 

The soil moisture may affect the electroremediation since it alters the electroosmotic flow 

rate and hence the decontamination of the soil by EK process (Ma et al., 2017), making it relevant 

to study the changes in soil water content. In general, the experiments present a trend of moisture 

increase from anode to the cathode section, being this a possible indication of electroosmotic flux 

(EOF) developing towards the cathode end (Lopes 2018; Hou et al., 2018) and/or of a joule 

heating effect around the anode (Figure 4.1). 

The lowest values of soil moisture were registered in the shallower surfaces of the 

microcosms, since they were the ones more exposed to evaporation and to the heat generated 

during the electrokinetic remediation, particularly in the anode compartment, reaching a low of 

2.33% in section A1 of the EK-Abiotic-24 experiment. The highest value, 20.29%, was registered 

in section C2 in the EK-Abiotic-24-W assay, which was partially expected since this was an 

experiment with irrigation. This is corroborated by Tukey's multiple comparisons test (p<0.05), 

when comparing the same sections of the same experiment but with and without irrigation, the 

assay with no watering shows lower levels of moisture with a mean statistical difference of -15.14.  

The Biotic scenario when subjected to the same conditions as the Abiotic, irrigation and 

DC, reveals much lower levels of water content, revealing a statistical difference of -11.46 

between these experiments in section A1, -11.34 in section A2, -11.08 in section C1 and -11.15. 

in C2, Figure 4.1. 
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Figure 4.1 Water content (%) for the microcosms soil sections in all the experiments grouped by temperature, 
at the end of the 4 days. 

 

4.3.2. pH and conductivity 

Without applying DC, the pH values seem to be more constant showing a range of values 

from 7.84 to 8.10 in an abiotic setting, and from 7.89 to 8.27 when affected by living organisms.  

When EK is applied, complex physicochemical processes generate non-uniform pH, 

voltage and moisture gradients that can affect bioremediation and, as proven in different studies, 

pH changes can alter the properties of some contaminants (McLean & Bledsoe, 1992). According 

to Daud et al., (2014), the pH of the soil system is a very important parameter, directly influencing 

sorption/desorption, precipitation/ dissolution, complex formation and oxidation/ reduction 

reactions. 

Regarding pH, the lowest recorded level was 6.94 in EK-Abiotic-24, close to the natural 

pH value of the investigated soil (7.3±0.2), and the highest was 10.44 in EK-Biotic-24 experience 

(Figure 4.2).  The cell sections that are situated in the cathode compartment are the ones which 

display higher levels of pH, particularly C2 and C3, whilst the lower levels of pH belong to the 

anode compartment and can be found in the A3 and A1 sections. The soil pH of EK-Abiotic-24 

ranged from 6.94 near the anode to 10.44 near the cathode, making the pH fluctuate 3.5 units. In 

experiment EK-Abiotic-24-W, a difference of 2.61 between C2 and A2, and a difference of 2.4 

between C3 and A3 in experiment EK-Abiotic-24-W was registered, displaying both, as held 

before, higher values in cathode. Hung et al., (2018) reported analogous results, soil pH profiles 

along the EK cell illustrate that in a similar experience pH decreased to 3.4 near the anode side 

due to the H+ produced from the electrolysis of water. Near the cathode side, the cell pH was 

increased to 10.5 because of the production of OH– from water electrolysis. 

Also, when analysing the pH variation spatially, there is an increase of these values with 

the depth, deeper sections have higher pH values for cathode, while in the anode the contrary 

occurs (Figure 4.2). In experiment EK-Abiotic-24 when compared section C1 to C3, there is a 
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difference of -1.6 in the mean, supporting the idea of increasing pH with depth in the cathode 

compartment. Regarding anode compartment the multiple comparison test (p<0.05) showed that 

deeper section of anode seems to have lower values of pH, which are also lower that the 

shallower sections of cathode. The analysis of EK-Abiotic-24 between section C1 and A1 and EK-

Abiotic-24-W between section C2 and A2 demonstrate higher levels of pH for cathode 

compartment, registering a difference of 1.03 and 2.61, respectively. A bigger difference is 

attained when evaluating the section C3 and A3 in the same assay, EK-Abiotic-24-W, reaching a 

value of 2.4. Comparing to the respective controls (Biotic and Abiotic), a statistically significant 

difference of -0.92 in section C3, between experiment Biotic-24 and EK-Biotic-24-W, and of -1.7 

in the same section, in similar experiments however without biota (Abiotic-24 C3 vs. EK-Abiotic-

24-W C3) were observed. For easier understanding, the graphic 4.2 depicts the pH values for the 

different experiments. 

 

Figure 4.2 Soil pH for the different soil sections of the several performed experiments. 

 
Soil electric conductivity (EC) as defined by Grisso et al., (2009) is the ability of a material 

to transmit (conduct) an electrical current, affecting crop productivity, including soil texture, cation 

exchange capacity, drainage conditions, organic matter level, salinity, and subsoil characteristics. 

Since soil temperature influences EC readings, and temperature can fluctuate considerably in the 

upper 10cm of the soil during a day (Brevik and Fenton, 2003) but also because it has been 

shown that soil water and clay content can have the greatest influence on EC values, temperature 

and soil water content should also be considered when analysing EC.  

The assays where no electric current was applied were the ones which displayed a more 

even range of conductivity, diverging from 0.60 mS/cm to 0.74 mS/cm in Biotic-18 and 0.54 

mS/cm to 0.79 mS/cm in Biotic-24, revealing that temperature in these conditions does not 

severely affect the conductivity (Figure 4.3).   

In general, in the assays with EK process, the highest values of conductivity were 

recorded in the sections C1 and A1, but mostly in the anode compartments, which show lower 

levels of pH. The statistical analysis verifies this too, having registered a statistically difference of 

-0.46 between sections C1 and A1 in the EK-Biotic-18 assay (p<0.05). The highest value of 
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conductivity registered was 1.05 mS/cm and it coincides with the lowest pH value obtained, both 

belonging to EK-Abiotic-24 experience. The lowest of 0.33 mS/cm was registered on the EK-

Biotic-24-W near the cathode. According to Hou et al., (2018) the oscillations of EC are related to 

the soil pH, and generally the EC of soil increases with the decrease of pH.  

When evaluating the consequence of irrigation in the conductivity, comparing EK-Biotic- 

24-W to EK-Biotic-24, there is no noticeable change in the values, both displaying the same 

minimum of 0.33 mS/cm and a similar maximum of 0.79 mS/cm and 0.76 mS/cm, respectively.  

In the experiments with no biota present on the soil, EK-Abiotic-24-W and EK-Abiotic-24, the 

values showed a wider range but still similar, reaching 0.89 mS/cm and 1.05 mS/cm, being the 

lowest values 0.38 mS/cm and 0.33 mS/cm, respectively. Other studies, like the one performed 

by Costa et al., (2014), show that higher EC values were obtained when the mean soil moisture 

content was higher and that there is a strong correlation between the two attributes.  

 

 

Figure 4.3 Soil Electric conductivity (mS/cm) for the microcosms soil sections in all the experiments grouped 
by temperature, at the end of the 4 days. 

 

4.3.3. Voltage drop between the working electrodes 

Assays without irrigation displayed a significance difference between their initial voltage 

values and the values achieved in the end. As shown in Table 4.4, EK-Biotic-24 was the 

experiment with the highest initial voltage with 17.35 V and oppositely, EK-Abiotic-24 had 

simultaneously the lowest initial value and the highest final value, 7.5 and 90.2 V respectively. In 

general, voltage was almost constant throughout the first three days increasing gradually. 

 At the fourth day, assay EK-Abiotic-24 increased by 145% and on the fifth day reached 

90.2 V, which represented an augment in voltage of 82.7 V since day 1.  EK-Biotic-24 and EK-

Biotic-18, showed similar final voltage values 24.45 V and 21.25 V (approximately 10 V of 

increase), respectively, however, EK-Biotic-24 had an initial value 8.1 V superior to EK-Biotic-18 

(9.25 V) as shown in Table 4.4. 
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Table 4.4 Voltage measured daily for the experiments with EK remediation without irrigation. 

 Voltage (V) 

Days EK-Biotic-18 EK-Biotic-24 EK-Abiotic-24 

1 9.25 ± 0.01 17.35 ± 0.01 7.50 ± 0.01 

2 10.05 ± 0.01 - 8.25 ± 0.01 

3 12.45 ± 0.01 8.10 ± 0.01 11.50 ± 0.01 

4 14.85 ± 0.01 15.50 ± 0.01 28.25 ± 0.01 

5 21.25 ± 0.01 24.45 ± 0.01 90.20 ± 0.01 

 

The voltage of the experiments in which the soil was watered every day were much more constant 

throughout the test than the previous three referred assays. The two tests show similar initial 

voltages, only differing by 0.25 V (Table 4.5). From the beginning of the experiments until the end, 

voltage increased slightly, and usually watering the soil resulted in a minor decrease, as displayed 

in Table 4.5. The augment of voltage from the first day until the last was analogous in two 

experiments, EK-Biotic-24-W had an increase of 3.3 V and EK-Abiotic-W-24 of 4.5V before 

irrigation and 1.95 after. 

 

Table 4.5 Daily voltage before and after irrigation for the experiments EK-Biotic-24-W and EK-Abiotic-24-W. 

 Voltage (V) 

Days 
EK-Biotic-24-W EK-Abiotic-24-W 

before irrigation  after irrigation  before irrigation  after irrigation 

1 7.8 ± 0.01 7.8 ± 0.01 7.55 ± 0.01 7.55 ± 0.01 

2 9.7 ± 0.01 8.05 ± 0.01 10.3 ± 0.01 7.9 ± 0.01 

3 11.3 ± 0.01 8.9 ± 0.01 10.95 ± 0.01 8.45 ± 0.01 

4 12.2 ± 0.01 10.1 ± 0.01 12.05 ± 0.01 9.5 ± 0.01 

5 11.1 ± 0.01 11.1 ± 0.01 12.03 ± 0.01 10.1 ± 0.01 

 

4.4. Effect of remediation conditions on PPCPs removal from soil 

Initially, all experiments were conducted inside the flow chamber at a room temperature 

of approx. 24 ºC. After 4 days, the total mass of contaminants (sum of all PPCPs mass under 

study) removed from the soil can be seen in Figure 4.4. In abiotic conditions (sterile soil) 6% of 

the total mass load of PPCPs was removed whereas the Biotic removals achieved 20%. Thus, 

we can infer that 14% of the achieved degradation is due to biodegradation processes (Biotic vs 

Abiotic).  
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Figure 4.4 Contaminants mass (%) remaining in the soil after each assay grouped per soil condition, sterile 

and non-sterile. 

 

Although the total mass removed from the soil was similar between the EK-Biotic and EK-

Abiotic (Figure 4.4), the degradation per compound varied among experiments. For example, E2 

degradation was always above 90% in the biotic conditions independently of the application of 

EK, but its degradation decreased to values below 33% in abiotic conditions (Table 4.6). Overall, 

the contaminant more susceptible to degradation was E2 (<LD) followed by BPA and SMX that 

reached 60% when the EK was applied in the Biotic conditions (Table 4.6). On the other hand, 

the compounds that are more recalcitrant to degradation in the conditions here studied were CBZ, 

OXY with an overall maximum degradation of 20%. Guedes et al., (2015) reported a similar result 

using sewage sludge, in which the compound that presented higher degradation was E2, followed 

by BPA, CAF and EE2, whereas IBU was not degraded. The results achieved for degradation 

were mainly attributed to bioremediation mechanisms as by the end of the experiment biological 

activity was observed in the collected samples (visual observation – a fungi growing in the soil 

was identified). Still, more microbiological analysis should be performed to corroborate these 

observations. 

The application of an EK treatment allowed to decrease the total mass of contaminants 

in the soil to values below 70% when a daily irrigation was performed. A study conducted by 

Ferreira et al., (2017) concluded that water content of the soil may play a significant influence on 

the desorption of the compounds and their consequently mobilization. This may be explained by 

the creation of larger interaction surfaces between soil and PPCPs that by increasing their 

dissolution help to release PPCPs that are bound in soil fraction.   
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The increase of degradation is slightly higher in the non-sterile setting, which may indicate 

that in this setting the coupling of electro-degradation with enhanced bioremediation was positive 

for decreasing pollutants loads. 

 

Table 4.6 Percentage of compound degradation for each experiment. 

 

  

In the present study, the natural attenuation of each PPCPs, i.e. decay observed in the 

Biotic experiments, showed substantial differences as follows (Table 4.6): E2 (90%) >> SMX  

BPA  IBU > EE2 > OXY  DCF  TCS  CAF  CBZ (0%). In the Abiotic conditions, the highest 

decay was 19% E2 followed by SMX  BPA  TCS > IBU  DCF > EE2  OXY  CAF  CBZ.  

Due to the complexity and variation in the process mechanisms and degradation of the 

compounds here under study, a deeper discussion will be performed as follows: 

I. Overall assessment of the factors affecting PPCPs degradation 

a. Abiotic vs Biotic conditions 

b. Contribution of EK processes 

c. Influence of irrigation  

d. Influence of temperature 

II. A deeper discussion per compound, starting on the more biodegradable ones 

followed by the more recalcitrant to degradation. 

 

4.4.1. Factors affecting the PPCPs degradation 

4.4.1.1. Contribution of abiotic and biotic processes 

In general, the control conducted with sterilized soil (Abiotic-24) had lower levels of 

degradation compared to the non-sterilized soil (Biotic-24), which is shown in Table 4.7.  

In sterile conditions at 24 ºC (Abiotic-24) the decay levels were very low, below 19% 

(Table 4.7). Previous studies have shown that the degradation of PPCPs in soil or sediment was 

influenced by microbial activities (Yu & Wu 2012; Ferreira et al., 2017). Comparative experiments 

conducted by Yu et al., (2013), in sterilized soils showed that the sterilization treatment resulted 

RT 
(ºC) 

Soil Exp 
Degradation (%) 

E2 SMX BPA IBU EE2 OXY TCS DCF CAF CBZ 

24 

Sterile 

Abiotic-24 19 ± 3 14 ± 3 10 ± 4 5 ± 4 1 ± 3 1 ± 4 7 ± 3 5 ± 3 0 ± 2 0 ± 3 

EK-Abiotic-24 33 ± 1 43 ± 1 29 ± 6 19 ± 5 18 ± 1 9 ± 0 27 ± 4 14 ± 3 21 ± 6 6 ± 5 

EK-Abiotic-24-W 30 ± 7 81 ± 1 26 ± 5 37 ± 3 20 ± 6 18 ± 2 22 ± 8 28 ± 6 25 ± 4 14 ± 4 

Non-
sterile 

Biotic-24 90 ± 2 36 ± 7 29 ± 2 25 ± 3 13 ± 4 5 ± 4 0 ± 1 3 ± 7 1 ± 4 0 ± 4 

EK-Biotic-24 90 ± 0 51 ± 5 46 ± 2 19 ± 3 21 ± 7 9 ± 5 17 ± 4 16 ± 4 16 ± 3 4 ± 5 

EK-Biotic-24-W 100 ± 0 49 ± 6 67 ± 3 30 ± 5 41 ± 0 17 ± 6 0 ± 3 23 ± 5 27 ± 3 14 ± 2 

18 
Biotic-18 95 ± 1 45 ± 5 51 ± 5 16 ± 4 9 ± 1 0 ± 1 0 ± 7 0 ± 3 2 ± 4 0 ± 0 

Ek-Biotic-18 95 ± 0 65 ± 1 50 ± 4 12 ± 7 19 ± 4 15 ± 2 7 ± 4 10 ± 5 29 ± 8 2 ± 5 
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in a decrease in the degradation rates of PPCPs. The average t1/2 of BPA increased from 13.0 

to 17.2, indicating the contribution of microorganisms to BPA degradation. For CBZ and TCS, 

after incubating for 63 days, the average t1/2 in sterilized soils was 1.6 and 1.7 times longer, 

respectively. In the same study, it was settled that in sterilized soils, the concentration decreases, 

and the measured as decay was mainly attributed to aging and sequestration processes. Also, in 

2014, Nam et al., established that PPCPs behaviour vary from compound to compound and are 

difficult to predict, as their behaviour is often controlled by interactions with specific functional 

groups or complex pH-dependent speciation, which can help to explain the decay levels achieved.  

 

Table 4.7 Degradation of PPCPs in the Abiotic and Biotic experiments conducted at 24 ºC (cells in light 
yellow reflect the highest value achieved for each contaminant, considering a minimum 5% difference). 

 

PPCPs decay through volatilization from the moist soil surface is unlikely due to their low 

vapour pressures; the estimated Henry’s Law constant for SMX and IBU are 6.4x10-13 and 1.5x10-

7 atm-cu m/mole, respectively – lowest and highest values among the tested PPCPs (Table 2.3). 

In addition, in our setup their photodegradation should not be relevant, since the remediation 

experiments were conducted indoors and protected from direct UV radiation.  

When a non-sterilized soil was used, E2, SMX, IBU and BPA compounds show higher 

degradation values compared to the abiotic conditions, more 71, 22, 20 and 19%, respectively 

(Figure 4.5). On the contrary, CAF, CBZ, DCF and OXY did not suffer biodegradation in the 4 

days of this study (Table 4.7). Several studies have shown that biodegradation plays a major role 

in the removal of PPCPs from solid matrix (Karnjanapiboonwong et al., 2011; Xu et al., 2008; 

Rodarte-Morales et al., 2011). A study performed in 2013 by Yu et al., showed that CBZ is one of 

the most persistent pharmaceuticals in the aquatic and terrestrial environment, with t1/2 ranging 

from 28.0 to 39.1 days, showing high persistence in soils due to its stable heterocyclic structure 

(Table 2.3). The t1/2 of BPA in soils in the same study were between 11.7 and 14.4 days, and 

more than 50% of BPA were degraded within 7 days. For CBZ and TCS, after an incubation of 

63 days, the average t1/2 in sterilized soils was 1.6 and 1.7 times longer, respectively. A similar 

study conducted by Xu et al., (2019), showed that after 45 days of incubation, soil concentrations 

of IBU and DCF were below their detection limits, attesting that some pharmaceuticals, can 

undertake fast degradation processes, showing low persistence in soils when exists 

biodegradation. 

Experiment 
Degradation (%) 

E2 SMX BPA IBU EE2 OXY DCF TCS CAF CBZ 

Biotic-24 90 36 29 25 13 5 3 0 1 0 

Abiotic-24 19 14 10 5 1 1 5 7 0 0 
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Figure 4.5 Biotic processes contribution to PPCPs degradation comparing to Abiotic processes (green 
bars show a positive impact of biodegradation comparing whereas the orange shows a negative impact). 

 

4.4.1.2. Contribution of electrokinetic processes for PPCPs decay 

When the EK process is applied to a contaminated soil it is expected that EK application 

increases the remediation by either: 

(i) Enhancing bioremediation by making contaminants, nutrients, electron acceptors and 

electron donors more bioavailable to catabolically active microorganisms (Wick, 2009). 

(ii) Or by promoting electro-degradation through mobilization by electroosmosis and 

stimulating a directed movement of pollutants in response to the presence of an electric current. 

The applied current produces hydrogen ions (H+) at the anode and hydroxyl ions (OH-) at the 

cathode, with a resulting pH gradient. Electromobile contaminants are therefore stimulated to 

migrate to positions where they are amenable to removal (Lear et al., 2007). 

As it can be observed in Table 4.8, higher degradation levels were achieved in the 

presence of soil indigenous microbiota, biotic conditions (non-sterilized soil) comparing to the 

abiotic conditions (sterilized soil). 

Table 4.8 Degradation of PPCPs in the EK-Abiotic and EK-Biotic experiments conducted at 24 °C (cells in 
light yellow reflect the highest value achieved for each contaminant, considering a minimum 5% 
difference). 
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Experiment 

Degradation (%) 

E2 SMX BPA IBU EE2 OXY DCF TCS CAF CBZ 

EK-Abiotic-24 33 43 29 19 18 9 14 27 21 6 

EK-Biotic-24 90 51 46 19 21 9 16 17 16 4 
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The biotic process contribution to this rate is considerable, as shown in Table 4.8.  With 

presence of living organisms E2 and BPA show higher levels of remediation efficiency, more 57 

and 17% comparing to EK-Abiotic (Figure 4.6). Maintaining the viability of an active degrader 

species (e.g. bacteria, archaea) is important for bioremediation in the natural environment, where 

microbial populations exist as diverse communities (Gill et al., 2014). 

 

 

Figure 4.6 Influence of the biotic processes on EK applied to soil at 24 °C. The values represent the 
difference between the degradation values obtained for EK-Biotic-24 and EK-Abiotic-24 (green bars show a 
positive impact of biodegradation whereas the orange shows a negative impact). 

 

The more recalcitrant contaminants such as CAF, CBZ, DCF, OXY and TCS show similar 

degradations in the EK treatments independently of the presence of soil microbiota. Thus, one 

can infer that these compounds degradation is mainly achieved through direct and indirect redox 

reactions promoted by the application of the low-level direct current (20 mA). 

These compounds are environmentally recalcitrant and highly stable in soil, and during 

wastewater treatment. The biological degradation of CBZ and DCF was investigated under 

aerobic conditions by Thelusmond et al., (2018). While DCF exhibited rapid dissipation in all the 

aerobic soils, a limited decrease of CBZ was noted. Another study performed by Guedes et al., 

(2015), concluded that independently of the cell design used, the application of a low-level direct 

current, improved the degradation of CAF between 20 and 47%, comparing against the control 

experiment (Biotic setting). 

One possible explanation is that physicochemical properties of soils may also have 

contributed to the difference in PPCP degradation. Previous studies suggest that water content 

of the soil may play an important role on the desorption of the compounds and their consequently 

mobilization. This is attributed to the creation of larger interaction surfaces between soil and 

PPCPs that increase their dissolution helping to release PPCPs that are bound in soil fraction(s). 

In addition, the pH in the presence of soil is easily changed, which showed to be an important 

parameter in degradation/removal, as it increases the contaminant solubility (Ferreira et al., 
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2017). In general, EK showed potential to enhance the degradation of the contaminants being the 

process mainly dependent on the intensity of the applied DC field and the cell design.  

 

4.4.1.3. Influence of soil water content on removal efficiencies 

As soil moisture content highly influences EK efficiency, a daily irrigation of the soil was 

carried out to see how it impacts the PPCPs removals. As described in Guedes et al., (2014), in 

the specific case of organic contaminants, their removal by EK from the soil is mostly performed 

by electroosmosis.  

In all experiments the same current was applied, 20 mA, however different levels of 

voltage were detected Table 4.4. In the EK-Biotic-18 assay, there was an increase in voltage from 

the initial mean value of 9.25V to 21.25 V in the fourth and final day, which might be explained by 

the water content on the soil that decreased (as referred in section 4.3.1; Figure 4.1). This is more 

obvious in the top layers that started to crack (Figure 4.7) as the soil dried due to the temperature 

(24 ºC) or due to water leaching to the bottom layers. 

Taking this into account it felt pertinent to create a different set of tests which were 

watered every day with 20 mL of deionised water (type II) to evaluate the influence of moisture 

content in EK removal by increasing soil moisture and decreasing system resistance. The two 

experiments performed, coded EK-Biotic-24-W and EK-Abiotic-24-W, revealed that in general the 

contaminants reached higher degradation levels when the cell was watered and had the presence 

of microbiota (Table 4.6). 

 

 

Figure 4.7 Photo of the microcosm after 4 days of EK treatment showing that the soil is dried and cracked. 

 

 Through the analysis of the Table 4.6 it is possible to conclude that not all contaminants 

display the same behaviour when under the same conditions. Some of the compounds, such as 

TCS, are more easily degraded in the presence of lower water content in the soil when in Biotic 

+ - + - 
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conditions. On the other hand, E2, BPA EE2 are more easily degraded in the presence 

microorganisms in an irrigated system (EK-Biotic-W) but other pollutants such as CAF, CBZ, TCS 

seem to more easily degraded in an abiotic environment. 

 

Table 4.9 Degradation of PPCPs in the EK-Abiotic and EK-Biotic experiments conducted with and without 
daily irrigation, at 24 °C (cells in light yellow reflect the highest value achieved for each contaminant, 
considering a minimum 5% difference). 

 

 

 

 

 

 

4.4.1.4. Influence of temperature on electrokinetically enhanced bioremediation  

 As described by Killham (1994), increasing soil temperature to 30ºC is beneficial for 

microbial growth. For EK-Bio treatments it is an additional mechanism to enhance bioremediation, 

however, for EK applications close to the surface, ohmic heating may increase evaporation 

leading to reduced moisture content and increased electrical resistance (Virkutytea et al., 2002). 

To reach a better understanding of the influence of soil moisture and temperature in the 

contaminant’s removal, a set of experiments were conducted at a lower temperature, 18ºC.  

The total mass of contaminants removed from the soil in this temperature settings, can 

be found in Table 4.10. In general, at 18 ºC, degradation values were between 0 and 95% in the 

Biotic experiment and between 2 and 95% in EK-Biotic (Table 4.10).  After 4 days, in Biotic-18 

experiment the highest degradation was achieved by E2, followed by BPA >SMX> IBU> EE2 

>CAF TCS DCF OXY CBZ. The EK contributed significantly to the decrease of certain 

compounds concentration in soil (SMX, EE2, OXY, TCS, DCF and CAF). In EK-Biotic-18 assay, 

SMX, EE2 and OXY had approximately 15% more degradation, and CAF reached nearly 25% 

more. 

Table 4.10 Degradation of PPCPs in the Biotic conditions with and without EK application at 24 and 18 ºC 
(cells in light yellow reflect the highest value achieved for each contaminant, considering a minimum 5% 

difference). 

 

Experiment 
Degradation (%) 

E2 SMX BPA IBU EE2 OXY DCF TCS CAF CBZ 

EK-Biotic-24 90 51 46 19 21 9 16 17 16 4 

EK-Biotic-24-W 100 49 67 30 41 17 23 0 27 14 

EK Abiotic-24 33 43 29 19 18 9 14 27 21 6 

EK- Abiotic-24-W 30 81 26 37 20 18 28 22 25 14 

RT 
(ºC) Exp 

Degradation (%) 

E2 SMX BPA IBU EE2 OXY TCS DCF CAF CBZ 

24 Biotic-24 90 36 29 25 13 5  0 3 1 0 

EK-Biotic-24 90 51 46 19 21 9 17 16 16 4 

18 Biotic-18 95 45 51 16 9 0 0 0 2 0 

Ek-Biotic-18 95 65 50 12 19 15 7 10 29 2  
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The results show that in a scenario where no EK is applied, the degradation seems to be 

more efficient in a warmer soil, on the other hand, when EK is applied the contaminants removal 

seems to work better in the presence of moist soil (Figure 4.8). However, this is not a behaviour 

displayed by all the contaminants under study, CAF, SMX, TCS, BPA and E2 reached higher 

levels of removal in lower temperatures as is shown in Figure 4.8. SMX and TCS are better 

degraded in lower levels of soil moisture. 

For E2, the 18ºC allowed to slightly increase E2 degradation ca. 5% both in the Biotic as 

in the EK-Biotic (Figure 4.8), although no statistical differences were observed (p>0.05). SMX and 

BPA seem to benefit from the temperature of 18 ºC, being this more significant for BPA with 22 

% more degradation (p>0.05) in the Biotic microcosm (Figure 4.8.a). Still, this influence is less 

pronounced when EK is applied for BPA (only increased +4) whereas the impact on SMX was 

more pronounced, +14% (Figure 4.8 b).  

The rise of temperature also seemed to help reduce IBU in assay Biotic at 24ºC, 

compared to its equivalent at 18ºC by 9% with the same trend being observed in the EK settings 

(Figure 4.8). At 18°C, EK-Biotic degradation of EE2 reached 10% more degradation than 

compared to same conditions without DC (Table 4.10). 

For OXY, temperature seemed to exercise opposite influences with and without EK. The 

Biotic experiment at 18ºC decreased OXY degradation in 8% (p<0.05) (Figure 4.8 a).  However, 

in the presence of EK the degradation of OXY was improved in 6% (Figure 4.8 b).  

For TCS, is difficult to deduce the best settings since multiple comparison test only 

presented significant differences, of 10% between experiments EK-Biotic at 18ºC and at 24ºC, 

denotating that higher temperatures are more effective (Figure 4.8).   
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Figure 4.8 Difference between experiments conducted at 18 and 24°C in the Biotic (a) and in the EK-Biotic 
(b) microcosms (green bars show a positive impact of the 18°C comparing to the 24°C, whereas the 
orange show a negative impact). 

 

At 18°C DCF is one of the contaminants under study that is least degraded, consistently 

placing as one of the most recalcitrant three, with a low of 0 ± 3% in Biotic-18 (Table 4.6). There 

is a positive impact on DCF degradation in the warmer temperature of 24°C of the EK-Biotic 

experiment, more 6% (p>0.05) (Figure 4.8 b). 

The setup that proved to be the most efficient in removing CAF is EK-Biotic at 18°C, in 

which it achieved a degradation of 29 ± 8% (Table 4.10, Figure 4.8 b). Results also show a mean 

statistical difference of -27% between Biotic-18 and EK-Biotic-18, proving that CAF removal is 

more effective when a DC is applied. The EK treatment performed better at lower temperatures 

since EK-Biotic showed 13% more efficiency at 18ºC than at 24ºC (Figure 4.8 b). 

Even at 18ºC, CBZ is still very poorly degraded further supporting the conclusion that it 

is a recalcitrant PPCP in soil. Still, the higher temperature, 24°C, appears to be the most effective 

in degrading this type of compound (p>0.05), with an average 3% more CBZ degraded (Table 

4.10).  

 

4.4.2. Removal behaviour of each PPCP  

4.4.2.1. 17β-Estradiol (E2) 

Results show that E2 was the compound most susceptible to degradation in the studied 

conditions, with an average of 69 ± 2%. In the sterile soil were as follows: Abiotic-24 (19%) < EK-

Abiotic-24-W (30%)  EK-Abiotic-24 (33%) (Table 4.6). The application of EK resulted in 

increases in the overall removal with statistical differences (p<0.05) compared to the experiment 

without current (Abiotic-24, Table 4.6). Higher degradations of E2 were obtained presence of 

living organisms, since the three assays with microorganisms (non-sterile soil, biotic conditions) 

were the ones that displayed higher levels of degradation, average of 94 ±1%, about 70% more 
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that in the sterile soil (Table 4.6). The complete degradation of E2, 100% (final concentration in 

soil below LD), was obtained in EK-Biotic-24-W, being this value statistically different from the 

EK-Biotic were no irrigation was performed (p>0.05). These results show that EK enhanced 

bioremediation is very effective technology for this PPCP remediation. 

 

4.4.2.2. Sulfamethoxazole (SMX) 

The highest level of SMX degradation attained was 81 ± 1% in a setting with electric 

current and no microorganisms (EK-Abiotic-24-W), whereas the lowest, 14 ± 3% was recorded in 

a soil that also had no microorganisms. However, without irrigation and DC (Abiotic-24), only 14% 

of the SMX was removed. In general, all the assays with EK resulted in higher degradation values.  

Has held before, it is possible to attain higher degradation values with the synergy of 

biodegradation, degradation results increased 22% in the Biotic-24 compared to the Abiotic-24, 

and 8% in EK-Biotic-24 compared to EK-Abiotic-24. However, when the system was irrigated the 

same tendency was not observed, as EK-Biotic-24-W degraded 32% less SMX that EK-Abiotic-

24-W (p<0.05). A possible explanation for these results, is the existing difference of water content 

between these assays. EK-Abiotic-24-W has approximately 19% water content, whilst EK-Biotic-

24-W only reaches 5%. Water content is very important to promote electro-degradation, 

influencing the process efficiency even without the presence of microorganisms. In a study 

executed by Liu et al., (2010) the half-life of SMX was 2 days in non-sterile soil under aerobic 

conditions. Under anoxic conditions, half-life in non-sterile soil was 7 days, showing that SMX 

dissipated more rapidly in non-sterile soil than in sterile soil. These authors then concluded that 

biodegradation played a major role in the dissipation of SMX in the soil (Liu et al., 2010). 

 

4.4.2.3.  Bisphenol A (BPA) 

Removal of BPA increased 17% and 19% when a DC was applied in the biotic and abiotic 

conditions, respectively (Table 4.6, EK-Biotic-24 and EK-Abiotic-24). The presence of soil’s biota 

improved BPA degradation by 19%, analogous values were achieved in assay EK-Biotic-24, 

revealing 17% more in comparison to EK-Abiotic-24. The assay that revealed to be the most 

suitable to degrade BPA was EK-Biotic-24-W with 67 ± 3%, whilst Abiotic losses were only 10 ± 

4%, being this the experiment that showed the lowest values of remediation.   

 Similarly, to previous results, the increased water content contributed positively to EK 

enhanced bioremediation of BPA, EK-Biotic-24-W increased degradation by 21% through 

irrigation. 

 



52 

4.4.2.4. Ibuprofen (IBU) 

Without the application of EK, higher degradation was found in the Biotic experiment 

comparing to the Abiotic (20% more at 24ºC), suggesting that bioremediation was beneficial to 

degrading IBU. Applying DC allowed to increase IBUs removal by 14% in EK-Abiotic-24, other 

assays did not reveal the same behaviour, although said results did not present differences with 

statistical meaning (p>0.05).  

Controlling soil’s water content, trough irrigation, allowed to obtain higher removal 

efficiency in assay EK-Abiotic-24-W and EK-Biotic-24-W. In these conditions the removal 

increased 18 and 11% respectively. The highest degradation percentage of IBU in this study was 

37 ± 3% found in experiment EK-Abiotic-24-W, probably due to the higher soil moisture content 

(Figure 4.1). This result follows the same trend as the one obtained for SMX. 

Similar findings were reported by Hiller & Šebesta, (2017), that concluded that the 

sorption of IBU in soil was shown to be pH- and temperature- dependent. The effect of soil pH on 

IBU sorption was more pronounced than that of temperature. The sorption of the test compound 

in soil decreased with increasing pH from 4.0 up to 8.0 and the same held for the temperature 

effect, indicating that the sorption of IBU in soil was exothermic  

 

4.4.2.5. 17α-Ethinylestradiol (EE2) 

In the presence on soil biota, the synthetic oestrogen, EE2, only degraded 13 ± 4%, 

whereas in the abiotic conditions the removal was almost null (Table 4.6). This result is contrary 

to the one obtained for the natural oestrogen, E2 that degraded 85% more in the presence of 

microorganisms. The higher stability of EE2 against microbial degradation is attributed to the 

presence of the ethynyl group which is introduced into the molecule for this specific reason 

(Stumpe et al., 2009). 

When EK treatment was applied to the soil, EE2 was removed more efficiently. Under DC 

EK-Biotic-24 had 8% more and EK-Abiotic-24 17% more when compared to same conditions 

without DC (Biotic and Abiotic, respectively, all at 24ºC). 

Regarding the influence of bioremediation through microorganisms, once more, although 

with fewer significant differences, it is possible to assume that EE2 is more susceptible to 

elimination under the effect of biotic in a soil with higher water content, as EK-Biotic-24-W showed 

21% more degradation.  

 

4.4.2.6. Oxybenzone (OXY) 

Oxybenzone was the second least degraded compound (simultaneously with TCS) 

(Table 4.6). In average only 9% of OXY was degraded in all experiments, EK-Abiotic-24-W being 

the most effective 18 ± 2% (closely followed by EK-Biotic-24-W, 17 ± 6%), although Abiotic also 
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displayed very low levels of degradation 1 ± 4%.  The EK treatment proved to be beneficial to the 

elimination rates, when applied in Abiotic settings EK improved OXY removal by 8%. Also, Biotic-

24 reached 4% higher values under EK, even though without statistical significance (p>0.05).  

Throughout the experiments, no major influence from living organisms was detected, 

since the difference between Biotic and Abiotic was only 4%, at 24ºC (Table 4.6), and among EK-

Biotic-24 and EK-Abiotic-24 was 0%, neither displaying significant difference (p>0.05). 

Water content seemed to employ some influence, since it affected the degradation by 

approximately 10%. As similarly to what happen in the previous compounds, watering seems to 

improve the degradation rate, in both biotic and abiotic scenario, which resulted in more efficient 

electro-degradation processes. 

 

4.4.2.7. Triclosan (TCS) 

As formerly held, TCS proved to be a compound difficult to eliminate from the soil in the 

here studied settings. The highest removal efficiency was detected in EK-Abiotic-24 with a 

percentage of 27 ± 4%. Contrarily, Biotic-24 and EK-Biotic-24-W, in which the lowest of 0 ± 4% 

was registered.  

Once more EK is responsible for higher levels of degradation, in assays with living 

organisms like the natural attenuation control (Biotic-24, Table 4.6), but also in the Abiotic-24 

system where it was registered an improve of 22 and 20% in the elimination rate. Unlike before, 

microcosms with living organisms caused the remediation of TCS to be less effective, since in 

Biotic-24 the removal was 12% lower than in Abiotic-24 (Table 4.6). Equivalent values were found 

in experiment EK-Biotic-24 that had 10% less degradation than the equivalent assay with biota, 

and EK-Biotic-24-W that decreased the remediation by 25% when compared to EK-Abiotic-24-

W.   

About soil’s humidity influence on TCS removal, it is difficult to deduce the best settings 

since multiple comparison test only presented significant differences of 17% between EK-Biotic-

24 vs. EK-Biotic-24-W, denotating that higher humidity content only seems to hinder TCS 

degradation in a non-sterile setting.   

 

4.4.2.8. Diclofenac (DCF) 

Similarly, to what happened to the previous compounds this PPCP was easier degraded 

when exposed to DC, showing a removal efficiency increase of 9 and 13% (p<0.05) in comparison 

to Abiotic and Biotic set ups at 24ºC (Table 4.6). The highest degradation, 28 ± 6%, is reached in 

the EK-Abiotic-24-W set up in which DCF is the third most degraded compound, although the 

rates in this assay have revealed to be relatively constant. The difference of 2% in DCF 

degradation between Biotic and Abiotic conditions (Table 4.9), but also of EK-Abiotic-24 and EK-

Biotic-24, implies that biota is not very substantial for the elimination of this compound, however 
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these are non-significant differences(p>0.05). Somewhat contrary results were found in the study 

of Al-Rajab et al., (2010) which showed that in heat-sterilized soils the dissipation of DCF is much 

slower, indicating that dissipation is mostly due to biodegradation. Also, Tran et al., (2009) noted 

that DCF is moderately biodegradable in experiments that used enriched nitrifying activated 

sludge. 

 Concerning water content, their effect is harder to assess, since Tukey's multiple 

comparisons test, did not show a significant difference (p>0.05), except in EK-Abiotic-24, where 

watering increased the degradation value by 14%. In agreement with what was previously 

described, a non-significant rate growth of 7% (p>0.05) was registered in the irrigated EK-Biotic-

24 experiment.  

  

4.4.2.9. Caffeine (CAF) 

After 4 days, abiotic and biotic losses of CAF were negligent showing that this PPCP is 

recalcitrant in the soil (Table 4.6). The application of EK promoted the degradation of CAF in 21% 

in sterile conditions (EK-Abiotic-24) and 16% in non-sterile conditions (EK-Biotic-24), being these 

removals statistically significant from each respective control (p<0.05). This shows that CAF 

degradation is mainly due to electro-degradation processes and not to biodegradation.  

No statistical differences (p>0.05) were found among the experiments in which EK was 

used, even in the irrigated microcosms. Thus, in the here tested conditions and in 4 days, CAF 

removal was not affected by the soil microbial community nor by the irrigation. 

 

4.4.2.10. Carbamazepine (CBZ) 

Carbamazepine has been found to be highly persistent in the environment (Calisto & Esteves, 

2012), and in the present study was the least susceptible compound to degradation, with an elimination 

average of 4%, only reaching 14 ± 3% in two sets of experiments: EK-Biotic-24-W and EK-Abiotic-24-

W, and a low of 0 ± 2% in two assays: Biotic, Abiotic.  

Tukey's multiple comparisons test found few significant differences amongst all the assays to 

which CBZ was subjected. Nevertheless, is possible to deduce based on the results, that soils with 

higher water content seem to be beneficial for the electro-degradation process. EK-Biotic-24-W showed 

10% more degradation than EK-Biotic-24, similarly to EK-Abiotic-24-W which had 8% more than EK-

Abiotic-24 (p<0.05).  

 

4.5. PPCPs spatial distribution  

 The different layers of the cell showed different degradation values. Depth and the soil 

layers influence by either the anode or cathode, are some of the characteristics that affect removal 

rates, since these can vary with the amount of water present in the soil, the type of compound to 
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be degraded, temperature and the value of the applied electric current. The results obtained in 

this study are displayed in Figure 4.9. 

 The presence of these compounds occurred mainly in the first level, C1 and A1, and 

punctually in the second level, C2 and A2. None of the contaminants were detected at the deepest 

level of the cell, corresponding to C3 and A3, suggesting that there was no deep infiltration by 

these PPCPs. This is explained by the way the soil spiking was carried out, that is, the 

contaminants were essentially placed on the surface of the cell, through irrigation with spiked 

water at time zero.  

 No major conclusions were drawn on PPCPs mobilization towards the cathode or 

anode as the differences found between both compartments were mainly attributed to an 

inhomogeneous spiking procedure (manual irrigation with spiked deionised water). Still, a more 

detailed analysis was performed per compound in only two experiments: Biotic-18 and EK-Biotic-

18. These experiments were chosen because: (i) no daily irrigation was performed (thus 

minimizing the errors added by an inhomogeneous irrigation) and (ii) the soil temperature is more 

realistic. 

 

 

Figure 4.9 Spatial distribution of the studied compounds in experiment Biotic-18 and EK-Biotic-18, through 
the two top levels of the cell (C1, C2 and A1, A2). None of the contaminants were found in C3 and A3. 

 

4.5.1.  17β-Estradiol (E2) 

When studying the results of Biotic-18 obtained in C2 an C3 sections, the values for the 

deepest sections of the cathode side, showed no presence of the contaminant, and in C1 only 

0.03 mg were detected. Section A1 presented 0.06 mg of E2 compared, with none being detected 

in layers A2 and A3, suggesting that E2 is easily retained in the superficial areas of the soil or it 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

B
io

ti
c
-1

8

E
K

-B
io

ti
c
-1

8

E2 SMX BPA IBU EE2 OXY TCS DCF CAF CBZ

P
P

C
P

 m
a
s
s
 (

m
g
)

C1

C2

A1

A2



56 

is easily degraded upon arrival to A2 and A3 layers. Regarding EK-Biotic-18 influence on E2 

migration no results were found.  

 

4.5.2.  Sulfamethoxazole (SMX) 

When comparing the different cathode sections in Biotic-18 experience, C1 showed 

presence of SMX as well as C2 although, with 0.28 mg less than C1 which had 0.43 ± 0.03 mg.  

Similar results were obtained in the anode side of the cell, with A1 exhibiting 0.39 ± 0.04 mg of 

SMX in this section. In the deeper sections of the cell, the compound was not detected, suggesting 

that it did not enter deep in the soil. In EK-Biotic-18, C1 and C2 registered small amounts of SMX, 

0.26 ± 0.02 mg and 0.03 ± 0.10 mg respectively, while in section C3 no presence was registered. 

Regarding the side of the cell under the anode influence, A1 and A2 both registered presence of 

this contaminant, but at different concentrations, A1 had 0.18 ± 0.04 mg and A2 0.02 ± 0.01 mg. 

This suggests that either SMX is more easily degraded in the anode section or it migrates towards 

the cathode side, most probably via electroosmosis, where it is degraded. 

 

4.5.3.  Bisphenol A (BPA) 

In Biotic-18 assay, BPA’s presence was detected in the most superficial sections of the 

cell, with C1 showing 0.31 ± 0.03 mg and A1 0.29 ± 0.07 mg. Section C2 also exhibited very small 

levels of this compound with 0.01 ± 0.02 mg. Regarding EK-Biotic-18, the compound was 

detected in C1 and C2 and A1 and A2. The sections on the second level, C2 and A2, displayed 

very small amounts of BPA with 0.04 ± 0.0 mg and 0.01 ± 0.0 mg, whilst the first level of the cell, 

C1 and A1, exhibited higher amounts of this compound with 0.32 ± 0.01 mg in C1 and 0.26 ± 0.01 

mg in A1. BPA was not present in the deeper sections C3 and A3 in both experiments. Similarly, 

to SMX, these results suggest that either BPA is more easily degraded in the anode section or it 

migrates towards the cathode side, most probably via electroosmosis, where it is degraded. 

 

4.5.4. Ibuprofen (IBU) 

In Biotic-18 test IBU was not detected in the deeper sections of the cell (C2, C3, A2 and 

A3), in A1 registered the highest value of 0.61 ± 0.09 mg and 0.49 ± 0.04 mg in C1. In EK-Biotic-

18, like the previous results, IBU was present in the first two section levels, though in the second 

level (C2 and A2) presented much fewer amounts, with a difference of 0.59 mg and 0.35 mg less, 

between their adjacent surface sections, which displayed 0.65 ± 0.02 mg and 0.43 ± 0.05 mg, 

correspondingly. Contrary to SMX and BPA, this compound is more concentrated in the anode 

side than in the cathode side.  
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4.5.5.  17α-Ethinylestradiol (EE2) 

In both studied tests, Biotic-18 and EK-Biotic-18, EE2 was found in the first two levels of 

the cell, and as before, C2 and A2 showed much smaller quantities, almost inexistent. For Biotic-

18, 0.07 ± 0.03 mg and 0.02 ± 0.03 mg where the corresponding values detected in C2 and A2. 

C1 and A1 reached higher values, with A1 being the highest with 0.85 ± 0.20 mg, and C1 having 

0.28 mg less than the latter. In EK-Biotic-18 the maximum quantities were found in C1, 0.60 ± 

0.07 mg, followed by A1, 0.45 ± 0.00 mg. The values detected in C2 and A2 were very below the 

previous, with 0.05 and 0.03 ± 0.01 mg, respectively. No presence of EE2 was found in the lowest 

level of the cell, C3 and A3, in both experiments. 

 

4.5.6.  Oxybenzone (OXY) 

Oxy was detected in Biotic-18 and EK-Biotic-18, with more persistence in the first setting 

addressed. The values registered in the sections were cathode was inserted, were quite similar, 

in Biotic-18 C1 had 0.63 ± 0.19 mg and C2 0.07 ± 0.03 mg. Equally in EK-Biotic-18, C1 displayed 

0.65 ± 0.06 mg and C2 0.05 ± 0.01 mg. In the sections most affected by anode, in the A1 section 

of Biotic-18 the value of 0.94 ± 0.20 mg was the highest detected, followed by A1 in EK-Biotic-18 

0.50 ± 0.03 mg. In both assays, section A2, displayed the same value for OXY, 0.05 ± 0.02 mg. 

Just like before, no OXY was present in the deeper sections of both trials.  

 

4.5.6.1 Triclosan (TCS) 

In Biotic-18, TCS could be found in C1 and C2, but with significantly different values, and 

also in A1. Similarly, to the before analysed compounds, the surface sections of C1 and A1 

presented the higher values, with 0.65 ± 0.18 mg and 0.82 ± 0.13 mg, respectively. In the second 

level of the cell, no TCS was found in A2, but it was traceable in C2 with 0.04 ± 0.10 mg. 

Regarding EK-Biotic-18, TCS was only detected in C1 and A1, with the first one showing 

0.14 mg more than A1 that displayed 0.57 ± 0.05 mg. 

 

4.5.6.2. Diclofenac (DCF) 

Equivalently to what occurred with OXY, the values registered in the sections were 

cathode was inserted, were quite close, in both experiments. Section C1 in Biotic-18 had 0.62 ± 

0.20 mg and C2 0.08 ± 0.01 mg, while EK-Biotic-18 had 0.66 ± 0.04 mg in C1 and 0.04 ± 0.01 

mg in C2. The values in the sections affected by the anode, were greater in the shallowest 

sections of both experiments, although a traceable amount of 0.04 ± 0.01 mg was detected in A2 

of EK-Biotic-18, and 0.02 ± 0.04 mg in the same section of Biotic-18. The value of 0.88 ± 0.22 mg 

was the highest detected, and it was registered in A1 of Biotic-18, the matching section in EK-
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Biotic-18 registered a presence of DCF in the order of 0.51 ± 0.00 mg.  No presence of DCF was 

detected in the deeper sections of both assays. 

 

4.5.6.3. Caffeine (CAF) 

CAF seemed to be more degradable under the influence of EK process, and for that 

reason Biotic-18 showed higher values for this compound than its contender EK-Biotic-18. This 

contaminant was mostly detected in C1 and A1, but it could be found in residual amounts, 0.02 ± 

0.05 mg, in section C2 of Biotic-18 assay. The highest value was registered was 0.74 ± 0.35 mg 

in A1 of Biotic-18, followed by section C1 of the same experiment, 0.68 ± 0.08 mg. In EK-Biotic-

18 CAF could only be found in C1 and A1, with 0.52 ± 0.04 mg and 0.47 ± 0.12 mg, 

correspondingly.   

 

4.5.6.4.  Carbamazepine (CBZ) 

 As one of the most recalcitrant PPCPs here studied, CBZ was found in both experiments 

in the first two levels. Just like CAF, this compound was more easily removed when on the effect 

of EK treatment, and so it was more present in the sections of Biotic-18. In sections C1 and A1 

the compound existed at higher values, and in Biotic-18 reached 0.85 ± 0.14 mg and 0.80 ± 0.43 

mg, respectively. It was also possible to detect it in the second level of the cell, with C2 being 

more likely to display it since it had 0.11 ± 0.02 mg more than A2 with 0.01 ± 0.02 mg. Regarding 

EK-Biotic-18, similar measures were found, with the bigger amounts being registered in C1 and 

A1, with the values of 0.69 ± 0.05 mg and 0.62 ± 0.04 mg respectively, followed by residual values 

of 0.05 ± 0.01 mg and 0.07 ± 0.02 mg in C2 and A2.  
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5. Conclusion 

The main objective of this dissertation was to study the electrokinetic remediation of soils 

spiked with a mixture of ten common PPCPs, in different environmental conditions, aiming to 

decrease the risk of organic contaminants uptake by crops. The said PPCPs were CAF, SMX, 

CBZ, DCF, OXY, TCS, BPA, E2, EE2 and IBU. Overall, the contaminant more susceptible to 

degradation was E2 (<LD) followed by BPA and SMX that reached 60% when EK was applied in 

non-sterile conditions. On the other hand, the compounds more recalcitrant to degradation in the 

studied conditions were CBZ, OXY with an overall maximum degradation of 20%. 

EK process showed to be a reliable choice for the removal of these organic compounds, 

showing an improvement of approximately 10% in degradation rates in comparison to the assays 

with similar characteristics but without EK, in only 4 days. 

Regarding the different removal mechanisms, the contribution of soils microbiota proved 

to be a significant factor for the degradation of several PPCPs; in sterile soil 6% of the total mass 

load of PPCPs was removed whereas the Biotic removals achieved 20%, which means that 

ca.14% of the achieved degradation is due to biodegradation processes.  

No major temperature variations were observed in the soil, except in experiment EK-

Abiotic-24 and EK-Abiotic-24-W, where soil temperature increased more than 3°C, which may be 

related to the ohmic heating generated in the system by the electrical resistance of electrodes. 

Electroheating may be used as an advantage since the uniform temperature may allow a uniform 

removal of the contaminants and a more efficient use of the energy. Concerning water content in 

the soil, the lowest values were registered in the shallower surfaces of the cells, more exposed 

to evaporation and to the heat generated during the electrokinetic remediation.  

The results show that in a scenario where no EK is applied, the degradation seems to be 

more efficient in a cooler soil; on the other hand, when EK is applied the contaminants, removal 

seems to work better in the presence of lower temperatures and moist soil. However, this is not 

a behaviour displayed by all the contaminants under study, as CAF, SMX, TCS, BPA and E2 

reached higher levels of removal in lower temperatures. SMX and TCS are better degraded in 

lower levels of soil moisture. 

It is important to understand that these results are directly related to the physicochemical 

properties of simultaneously the soils and the contaminants studied, so if another soil with 

different properties or another contaminant is used, it is imperative to understand its 

characteristics and choose the most suitable remediation technique. 

Still, in this study EK showed to be a promising in situ technology for CECs removal from 

soil, consequently decreasing human and environmental associated risks, and thus reducing the 

chance of organic contaminants uptake by crops.
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6. Future developments 

The results achieved in this research support EK as an important remediation option for 

soil contaminated with PCPPs, although further studies and process optimization should be 

made.  

In order to achieve quality remediation of contaminated soil it is important to understand 

the type of soil and physiochemical characteristics associated with it, and conduct a contamination 

inventory as accurate as possible, that is, to determine the state and reason of soil contamination. 

With that in mind, studying how the compound mobilization behaves in the environment, when 

subjected to severe temperature changes, different water conditions and sunlight is also of 

significant importance. To achieve it, long-term tests with soils subjected to real environmental 

conditions in relevant sites should be promoted.  

Changes in the experimental design, such as other electrodes to promote better PPCPs 

degradation, or natural enhancing agents and techniques, should be tested to improve the 

efficiency of EK remediation.  

In the present study, soil samples were collected and frozen immediately after the end of 

each assay to enable further analysis on the evolution of the microbiological community (bacteria 

and fungi) present in the soil. These samples may also be used to ascertain which 

physicochemical and biological changes may have occurred after EK process, like changes in 

infiltration rate, redox status, salinity and respiration rate. 

Added care must be given to the comprehension of the degradation process of this type 

of compounds, to assess the formation of possible by-products and their characteristics, as well 

as their effect on soil, which are still relatively unknown. 
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Annex 1 The safety data sheets of all standards and reagents  

1.1. Caffeine 
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1.2  Acetonitrile 
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1.3 Bisphenol A 
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1.4 Carbamazepine 
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1.5 Diclofenac 
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1.6 β-Estradiol 
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1.7 17α-Ethynylestradiol  
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1.8 Ibuprofen 
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1.9 Oxybenzone 
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1.10 Sulfamethoxazole 
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1.11 Triclosan 
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1.12 Magnesium Sulfate 

 

 


