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Abstract 

Cardiovascular diseases represent the leading cause of mortality and disability worldwide. 

Besides, it is estimated that these numbers will increase significantly in the future. More 

specifically, atherosclerosis is present in most of the main cardiovascular diseases, making its 

study urgent and important to develop new diagnostic tools. 

The most relevant limitation in the current investigation of the evaluation of atherosclerosis 

is the impossibility to distinguish stable and prone to rupture (unstable) plaques in coronary 

arteries. Associated with the instability phenomena, in plaques prone to rupture, are increased 

thickness of tissue layers (already detectable but not provide an unequivocal diagnosis) and 

inflammatory processes (not yet detectable but only present when the lesion evolves higher risk 

to rupture).  

Aiming to detect the precise location of inflammatory processes, two types of contrast agents 

(nano probes) were synthetized, gold nanoparticles and microbubbles. Also, to replicate the 

behavior of human arteries, three-dimensional tissue simulating structures (phantoms) were 

fabricated and optimized.  

To evaluate the performance of the contrast agents, both in the phantoms and post-mortem 

human arteries, optical coherence tomography (OCT) images were acquired in a clinical 

environment, and other techniques were performed (confocal microscopy, scanning electron 

microscopy, atomic force microscopy) to characterize the samples.  

Microbubbles revealed to be a better contrast agent than gold nanoparticles having a clearly 

noticeable enhancement of the OCT signal. After the acquisition of several OCT images on both 

types of samples (arteries and phantoms) an automatic imaging processing software was 

developed to detect the presence of the contrast agents and its posterior location.      

 The software uses MATLAB as a programming language and with a user-friendly 

interface the user can access numerous parameters of the analyzed image and even edit them 

manually. In the end of the automatic processing, the user has the information of the number 

of regions of interest as well as their visual location.      

 

Key words: atherosclerosis, inflammation, contrast agents, optical coherence tomography, 

imaging processing software 
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Resumo 

As doenças cardiovasculares constituem a principal causa de morte a nível mundial e 

estima-se também que esses números aumentem de forma significativa num futuro próximo. 

Mais especificamente, a aterosclerose está presente na maioria das principais doenças 

cardiovasculares, tornando-se cada vez mais urgente o estudo da sua evolução para o 

desenvolvimento de novas ferramentas de diagnóstico. A limitação mais significativa na 

avaliação da aterosclerose é a impossibilidade de distinguir entre as placas ateroscleróticas 

estáveis e as que apresentam elevada propensão para romper (instáveis) nas artérias 

coronárias. Associado ao fenómeno de instabilidade, característico de uma placa em risco de 

romper, ocorrem um aumento da espessura das várias camadas de tecido da artéria (fenómeno 

já detectável mas que não fornece um diagnóstico inequívoco) e de processos inflamatórios 

(ainda não detectáveis, mas presentes apenas quando a lesão evolui para maior risco de 

ruptura). 

Com o objetivo de detectar a localização precisa dos processos inflamatórios nas artérias, 

foram sintetizados dois tipos de agentes de contraste, nanopartículas de ouro e microbolhas. 

Além disso, para replicar o comportamento das artérias humanas, foram fabricadas e 

optimizadas estruturas tridimensionais artificiais, denominadas de fantomas. Com o intuito de 

avaliar o desempenho dos agentes de contraste, tanto em artérias humanas post-mortem como 

nos fantomas, foram adquiridas em ambiente clínico imagens de tomografia por coerência óptica 

(TCO). Foram também realizadas outras técnicas (microscopia confocal, microscopia eletrónica 

de varrimento, microscopia de força atómica) para caracterização das amostras.  

As microbolhas revelaram ser um melhor agente de contraste do que as nanopartículas 

de ouro verificando um aumento claramente visível do sinal de TCO. Após a aquisição de várias 

imagens de TCO em ambos os tipos de amostras (artérias e fantomas), foi desenvolvido um 

software de processamento automático de imagens para detectar a presença dos agentes de 

contraste e a sua localização.  

  O software utiliza como linguagem de programação MATLAB e, através de uma 

interface user-friendly, o utilizador consegue aceder a diversos parâmetros da imagem, bem 

como editá-los manualmente. Concluído o processamento automático, o utilizador possui a 

informação do número de regiões de interesse detectadas, assim como a sua localização.    

  

Palavras Chave: Aterosclerose, inflamação, agentes de contraste, tomografia por coerência 

óptica, software de processamento de imagem    
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1. Introduction 

1.1. Context and Motivation 

Cardiovascular diseases (CVDs) are currently the leading cause of mortality and disability 

worldwide[1] and not only in industrialized countries like in 2002[2]. The numbers are 

overwhelming, and it is estimated that by the year 2030, 23.3 million people will die from CVDs. 

CVDs can be separated into five groups[1], with the following characteristics: 

• Coronary heart disease occurs when a plaque/blood clot blocks the coronary blood flow;  

• Stroke appears when there is not enough oxygen reaching the brain due to a blocked 

blood vessel;    

• Peripheral arterial disease occurs when a plaque/blood clot blocks the blood flow 

supplying arms and legs; 

• Aortic aneurysms are defined as arterial enlargement with loss of arterial wall 

parallelism; 

• Deep vein thrombosis occurs when a blood clot is formed in the deep leg vein.  

From the five diseases presented above, three of them (coronary heart disease, stroke, and 

peripheral arterial disease) involve atherosclerosis as the primary cause of underpinning 

CVDs[1].   

The rupture of vulnerable atherosclerotic plaques is responsible for about half of the 

diagnosed cases of acute coronary syndromes; however, conventional methods cannot identify 

when a plaque is prone to rupture[2]. As so, it is urgent to understand the mechanisms that lead 

to plaque instability as well as the inflammatory process behind the plaque evolution in order 

to predict the moment of rupture in high-risk plaques. 

1.2. State of the Art 

According to the literature (list of references), atherosclerosis is defined as a multifactorial 

and slowly progressing disease in large and mid-sized arteries characterized by a disturbed 

blood flow dynamics[1].  

The evolution of atherosclerosis is considered a dynamic process where early and stable 

lesions (fibroatheroma) prograde to advanced and unstable plaques (thin cap fibroatheroma – 

TCFA)[3]. It is known that more than two-thirds of acute coronary events, a consequence of 

coronary heart disease, are associated with plaque erosion or rupture[3]. As so, it is essential to 
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understand the clinical events and mechanisms associated with the transition to vulnerable 

lesions as well as to define plaque characteristics in the several stages of the disease. The index 

manifestation of atherosclerotic disease is an intimal xanthoma[3], characterized as an 

accumulation of smooth muscle cells, originating a deposit rich in cholesterol, without the 

presence of inflammation.  

According to the American Heart Association, the first distinguishable plaque is 

fibroatheroma, a stable plaque composed by a lipid-rich necrotic core surrounded with fibrotic 

tissue[3]. Fibroatheroma is divided into two stages, characterized by: 

• Early-stage, where macrophages start to infiltrate in the lipid pool; 

• Late-stage, where the increased amounts of free cholesterol and the depletion of the 

extracellular matrix can result in luminal stenosis, due to episodes of intraplaque 

hemorrhage. 

Fibroatheroma usually evolutes to thin-cap fibroatheroma (TCFA) which is already 

considered a vulnerable atherosclerotic plaque with high-risk to rupture. However, 

vulnerability is much more connected with an inflammatory process than with the plaque 

morphology itself. As so, it is even more urgent to characterize the molecular profile of 

atheromas in order to understand the inflammatory process[4]. The signature of TCFA is a thin 

and inflamed fibrous cap overlying a large lipid pool[5]. The necrotic core of the plaque is 

considered large since it occupies more than 25% of the plaque area, and macrophages massively 

infiltrate it. An essential precursor to plaque rupture is the weakening of the fibrous cap. When 

the necrotic core occupies more than 30% of the plaque area, and there is luminal thrombus 

formation, TCFA evolutes into ruptured plaque[3]. The thrombus results from the infiltration of 

inflammatory cells within the elements of the extracellular matrix. 

Several studies showed that in patients diagnosed with acute coronary syndrome (ACS), the 

presence of plaque rupture is the most frequent and most significant event causing a lesion[3]. 

As so, it is the fibrous cap thickness that discriminates between TCFA (intact thin fibrous cap 

vulnerable to rupture) and fibroatheroma (thick fibrous tissue)[3].  

Initially, coronary plaques are not detectable in coronary angiography because they do not 

cause hemodynamically stenosis[6]. Coronary angiography is a cardiovascular imaging 

technique used in diagnosis or therapy guidance after diagnosing atherosclerosis[1]. This 

technique provides 2D imaging of blood vessels with a high spatial resolution. Moreover, it 

presents some limitations that difficult the discrimination between the two natures of the 

atherosclerotic plaques: low sensitivity, exposure the patient to radiation and possible allergies 

to iodinated contrasts[1]. Also, the most significant limitation of this technique is, due to the 

remodeling of the vessels, the insensitivity to quantify plaque and thrombus burden, a critical 
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predictor of ACS[7]. 

One of the most common and with a higher degree of precision of noninvasive imaging 

techniques is Computerized Tomography (CT). Since CT has an excellent spatial resolution (50 

– 200 μm) and deep tissue penetration, it allows fast 3D anatomic images. Although used 

worldwide, the need for iodinated contrast agents in several diagnoses represents a limitation 

for CT imaging. The main reasons are: 

• Impossibility to conjugate the contrast agent with biological markers for specific targets;  

• Short imaging window due to the rapid clearance of the contrast agent by the kidney.  

A recent study using CT imaging[1] tried to track the recruitment of monocytes, which is one 

of the first steps in the development of the atherosclerotic plaque, in order to evaluate the 

evolution of the coronary lesion. It is essential to comprehend how the inflammatory process 

begins and as so, which cells are recruited to the development of the plaque.      

A study published by the American College of Cardiology[6], using Gadofosveset-enhanced 

cardiac magnetic resonance (GE-CMR), demonstrated for the first time the noninvasive 

detection of coronary lesions and TCFA present in the coronary arteries. Gadofosveset was the 

first intravascular contrast approved for biological use and its accumulation within the matrix 

of atherosclerotic plaque makes it a suitable marker of endothelial permeability[6]. Since it is a 

gadolinium-based probe, the use of ionizing radiation represents its major limitation. The use 

of targeting probes in molecular imaging represents innovative possibilities to better 

understand the stages of plaque formation as well as early diagnosis of atherosclerosis. In the 

mentioned study, TCFA was considered as a vulnerable plaque when cap thickness was less 

than 65 μm, and the lipid core had an arc more than 90º degrees. Image analyses, in patients 

previously diagnosed with ACS, showed a significantly higher signal enhancement after 

contrast application, allowing the identification of TCFA with high diagnostic accuracy. Three 

significant limitations were identified in the present study[6]: 

• A long scan time to be used in a clinical environment (32 minutes); 

• Misregistration errors due to the fusion of data sets (from CMR angiography and vessel 

wall imaging sequence) and respiratory pattern; 

• Impossibility to identify TCFA in plaques containing severe calcification.   

Recently, surface-enhanced Raman scattering (SERS) was used with the same purpose to 

detect inflammation[1] and consequently, determine plaque instability. SERS is a spectroscopic 

nonlinear optical technique which detects biomolecules with an outstanding capacity. The 

significant limitations of the technique are due to the limited depth and sensitivity (minimal 

molecular cross-section) as well as long scanning times. Although the presence of some 

limitations, it was possible to detect ICAM-1, a protein that is expressed by endothelial cells 
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when inflammation is present[1].     

Since inflammation increases cell metabolic activity, studies using positron emission (PET)[8] 

were able to identify glucose utilization, and as so detecting lesion vulnerability due to 

inflammation. However, this technology presents some limitations that do not make it suitable 

for clinical diagnosis of high-risk atherosclerotic plaques: 

• Poor spatial resolution; 

• Respiratory and cardiac motion difficulties accurate localization of plaque inflammation; 

• Background noise due to glucose consumption by the myocardial muscle.                 

In order to fill the limitations of the techniques mentioned above, some studies started to 

apply Optical Coherence Tomography (OCT) in cardiovascular disease diagnosis, instead only 

in ophthalmological context to retinal imaging[1].  Intravascular OCT’s high sensitivity allows 

discrimination between three types of plaques[8]: 

• Fibrous, which has a high and homogenous backscattering signal[5]; 

• Fibrocalcific, which shows a weak signal due to the presence of calcification[5]; 

• Lipid-rich, which have poorly delineated borders and lipids are present for more than 90º 

in any cross section[5].  

Its major limitation is due to limited tissue penetration (1 – 3 mm) that does not allow a 

complete reflection of light from the deeper arterial layers[3].   

In comparison to intravascular ultrasound (IVUS), which has the same principle of 

operation, OCT exceeds by one order of magnitude the spatial resolution of the equipment, 

allowing more precise measurement of the cap thickness, but cannot penetrate as far as the 

IVUS. Currently, OCT is the only imaging technique with enough resolution to measure in a 

precise way the fibrous cap thickness[5], one of the characteristics to distinguish plaque 

vulnerability, but not in an unequivocal way. Although the significant advantages and progress 

brought by OCT systems, a reliable assessment at plaque level[3] and, as a consequence, the 

discrimination between high-risk and stable plaques is not yet possible.  

One of the limitations transverse to all of the techniques reported above is the lack of 

contrast enhancement in the characterization of vascular layers[1] and as so the identification of 

changes through time within the atherosclerotic plaques. In order to solve this limitation, 

several studies using metallic nanoparticles[9], especially gold nanoparticles (GNPs), are being 

done to improve the diagnosis of high-risk plaques. 

Gold nanoparticles are proved to scatter light very efficiently[1] depending on their size and 

shape[9] and represent an excellent alternative to endogenous materials (like proteins or types 

of cells already existing in the human body), which present the following limitations[9]: 
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• High cost; 

• Low photostability, essential when working with OCT; 

• Difficulty in tuning into de NIR region (the region on where the OCT operates).  

Metallic nanoparticles present high photostability and can be tuned into the NIR region by 

changing particle morphology[9]. Also, gold nanoparticles present specific characteristics[9] that 

makes them suitable to fill the limitations of the endogenous materials presented above: 

• Biocompatibility; 

• The possibility of functionalization to target specific biomarkers of cells mechanisms; 

• Increased contrast in OCT images; 

• Plasmon resonance wavelength not far from 1300 nm, the wavelength operating in the 

OCT equipment[10].  

• Easily synthesized; 

• Inert. 

Not all geometries allow a better contrast improvement in OCT images. As so, spheres, 

cages, and rods were proved not to be the best shape of GNP since their plasmon band does not 

match the central wavelength of the IV-OCT[9]. The same study showed that stars and branched 

GNPs provided a reliable and very efficient light scattering, making them suitable candidates 

for contrast agents[9]. Nevertheless, the best contrast enhancement for clinical OCT equipment 

was obtained using gold nanoshells (GNS)[1]. When compared to gold nanorods (GNR), GNS 

present scattering cross-sections two orders of magnitude above GNR[10] and a much broader 

spectrum. The concentration of the GNP varies inversely with the obtain signal[1], as it is only 

possible to visualize different spikes of GNS in the image at low concentrations[10]. Also, GNS 

resonate in the NIR region, where clinical OCT system usually operates. The limitation reported 

to this type of GNP is the possibility of a nonuniform distribution of GNS in the plaque may 

induce false diagnosis[1].  

Although nanoparticles present enormous advantages, toxicity concerns in the biological 

environment need to be taken into account due to potential health risk[11]. The toxicity results 

from the potential interference of the nanoparticles with vital cellular functions due to the 

similar size between nanoparticles and organelles. One of the most important factors to take in 

consideration is size since nanoparticles larger than 9 nm are retained in liver and kidneys[11], 

which makes them toxic and may cause many side effects[12]. Nanoparticles can also react with 

other metals in the bloodstream or produce free radicals, which induces oxidative stress, 

inflammation, or even cell destruction[11]. Another limitation with gold nanoparticles is the 

leakage to the surrounding tissues, which decreases contrast[12].  

Interestingly, microbubbles are biocompatible particles already used as contrast agents for 
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ultrasound imaging, which have also been demonstrated to act as OCT contrast enhancers[13]. 

Currently, and after experiencing significant progress since firstly produced in 1990, it is 

already possible to produce a broad size distribution[14] from 1 to 20 μm diameter. Relatively to 

particle size, it has already been established both upper and lower limits[15]. In order to avoid 

embolic events, the maximum diameter that the microbubble should have is between 3 and 

5μm[15]. The lower limit is defined by the Rayleigh scattering, where the scattering produced by 

a particle is proportional to the sixth power of its diameter[15]. Shell stability has also already 

been studied, since there are several materials available, and it has been proved bubbles float 

and remain stable in aqueous media[15]. Biocompatible and biodegradable polymers used in 

surgical sutures[15] have chemical structures similar to those that compose the microbubble’s 

shell.         

As so, the next step will be identifying molecular activities within the OCT images due to 

functionalizing inflammation biomarkers previously identified[15]: over-expressed selectins 

(both E and P), vascular cell adhesion molecule (VCAM-1) and intracellular adhesion molecule 

(ICAM-1).                     

1.3 Objectives 

This project aims to detect the inflammation regions in the arteries through the analysis of 

OCT images (morphological information) and molecular labeling (biomarkers). As so, it will be 

necessary to develop: 

• Methods of synthesis and functionalization of contrast agents, to optimize signal 

acquisition and cell targeting;  

• Methods of immunochemistry using an emulator of the human arteries in vivo conditions 

(temperature and circulation), immunofluorescence and molecular labeling; 

• Acquisition of images imaging using different techniques of microscopy (scanning 

electron microscopy, atomic force microscopy and confocal optical microscopy), in order 

to maximize the acquired signal; 

• Acquisition protocol to process optical coherence tomography images (OCT); 

• Automatic algorithm to extract information of OCT images and validate the use of 

contrast agents in human arteries.    
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2. Theoretical Concepts  

2.1 Cardiovascular System  

The cardiovascular system consists of the heart (the body’s hardest-working organ), blood 

vessels, and the blood that vessels transport. Throughout the blood flow, it is the system 

responsible for transporting oxygen, nutrients, hormones, and cellular waste products. In order 

to pump the approximately 5 liters of blood that circulate in the human body, the heart needs 

to be adequately supplied with oxygen, which is assured by the two main coronary arteries (left 

coronary artery and right coronary artery)[16]. 

Coronary arteries branch off from the base of the aorta and encase the surface of the heart 

with smaller vessels that penetrate the walls of the heart and provide the oxygenated blood, 

necessary to the dynamic behavior of the heart[16].      

According to the figure below (Figure 2.1) is possible to analyze the different ramifications 

of both left (LCA) and right (RCA) coronary arteries. On average, each main coronary artery is 

2 to 4 mm wide.    

 

 

 

 

 

 

 

 

On the one hand, LCA divides into two main branches (left anterior descending and left 

circumflex) which are responsible for supplying: two-thirds of the interventricular septum, 

majority of the left ventricle, left atrium, posterior parts of the left ventricle, back of the heart. 

On the other hand, RCA and its numerous ramifications are responsible for supplying: right 

ventricle, right atrium, sinoatrial, and atrioventricular nodes.  

The coronary artery wall is divided into three layers[16] that are composed of different types 

of cells as it is possible to confirm in the figure below (Figure 2.2): 

Figure 2.1: Anatomy of the coronary circulation 

Adapted from [16] 
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• Intima, is the inner layer, mainly composed of endothelial cells and connective tissue is 

responsible for coating the luminal surface of the artery;  

• Media, is the middle layer, composed by connective tissue and smooth muscle cells are 

responsible for maintaining the capability of the artery to expand and contract; 

• Adventitia, is the outer layer, composed by fibrous tissue to provide support to the artery.   

 

 

 

 

 

 

 

 

2.2 Development of the Atherosclerotic Plaque 

Atherosclerosis is mainly characterized by a chronic inflammatory process[17] in large and 

mid-sized arteries initiated by cell dysfunction in the arterial wall, where lipoproteins undergo 

modifications leading to the formation of oxidized LDL (oxLDLs) cholesterol molecules. The 

newly formed molecules induce the inflammatory process manifested by the recruitment of 

monocytes. As so, monocytes penetrate subendothelial space and differentiate into macrophages 

that will recognize the oxLDSs and will start to ingest them[1]. 

In an advanced atherosclerotic plaque, cytokines will promote smooth muscle cells (SMC) 

proliferation that will participate in the fibrous cap development. When SMC die, the necrotic 

core is formed within the plaque and promote an even more inflammatory environment 

characterized by defective and fragile blood vessels[1]. The contact between the necrotic core and 

blood vessels induce luminal thrombosis that can lead to myocardial infarction and stroke. It is 

possible to resume the pathological mechanisms of plaque instability[3] in four related steps: 

• Extensive remodeling of the necrotic core with macrophage infiltration; 

• Increased inflammation of a thin fibrous cap, without thickening of the cap; 

• Increased size of the necrotic core; 

• Intraplaque hemorrhage. 

Figure 2.2: Cross-section of coronary artery 

Adapted from [16] 

Intima 

Media 

Adventitia 



 

9 

Figure 2.3 shows the different features that characterize a vulnerable plaque.    

 

 

 

 

 

 

 

 

 

 

 

When an atherosclerotic plaque is present, the media layer of the artery becomes thinner in 

ranges between 16 to 190 μm whereas the average thickness of the normal media layer is 

between 125 and 350 μm[16].  

2.3 Tissue Optical Properties 

The interaction between light and tissue assumes five distinct types: reflection, refraction, 

absorption, fluorescence, and scattering, and depends on three main factors[18]: 

• Tissue constituents (type of cells, percentage of minerals and water, oxygen saturation); 

• Optical properties of each type of tissue; 

• Propagation of the light inside the tissue and surrounded medium.  

The two most relevant interactions[19] that contribute to the OCT signal are backscattering 

and absorption. Backscattering refers to the light scattered and reflected into the tissue[20] due 

to the mismatch between the refractive index of tissue constituents and particle size. In tissue, 

the two types of scattering, Mie and Rayleigh, are mixed.  

Referring to the OCT signal, the higher the reflection the brightest the image[19] becomes, 

and so does the opposite, darker images are associated with lower values of reflection. Also, 

fibrous tissue produces higher reflection[19] (so brighter spots in the image), contrarily to lipidic 

tissue, which produces darker spots due to lower reflection. 

 

Figure 2.3: Features exhibited by a vulnerable plaque. 

Adapted from [17] 
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Absorption[19] refers to the light that penetrates the tissue and is converted into other form 

of energy, for example thermal radiation. The main absorbers in human tissue in the NIR region 

are water, hemoglobin, and lipids (most significant plaque component). Referring to the OCT 

signal, when a high absorption is verified, a shadow appears. Shortly, bright points in images 

refer to light reflection, and shadows refer to attenuation of the light beam due to reflection or 

absorption.  

Human coronary arteries[20] present tubular geometry, multilayer composition and since 

each layer as its behavior (different cells constitution) it becomes possible to compare different 

behaviors to NIR light to distinguish healthy from atherosclerotic arteries. In table 2.1 is 

possible to analyze standard measurements already performed in the three layers of a healthy 

artery.  

Table 2.1: Healthy coronary artery behavior to NIR light [Adapted from [20]] 

Layer Area Reflection signal 

Intima Homogeneous Strong signal near the lumen 

Media Homogeneous Low signal 

Adventia Heterogeneous Strong signal 

  

When analyzing the differences between healthy and diseased arteries, one important 

parameter to analyze is intimal layer thickening[19]: 

• Physiological thickness ≤ 300 μm;  

• Pathological thickness = 300 – 600 μm; 

• Fibrous plaque thickness > 600 μm; 

• Thick-cap fibroatheroma > 600 μm.     

As intimal thickening indicates a probable presence of fibrotic plaque, differences in the OCT 

signal are verified with the appearance of few shadows[19] due to the fibrous tissue (note that 

intimal layer appears bright and homogeneous as previously). Contrarily, when the plaque is 

composed by lipids[19], diffuse borders of each layer appear accompanied with strong absorption 

and low reflection. 

In severe atherosclerosis diagnosis, where plaques are always located underneath the cap, 

fibroatheromas appear in two possible ways[19], with a difference of 65μm in thickness:  

• Thick cap, characterized by a sharp border and a dark color, due to low reflection;   

• Thin cap, characterized by the presence of shadows with diffuse borders.  

Calcifications appear in advanced stages of the disease and are characterized as sharply 

delineated dark deposits[19].     
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2.4 Contrast Agents 

In order to develop personalized medical applications, “molecular imaging probes are being 

developed to determine the expression of specific molecular markers at different stages of 

diseases”[15]. Also, molecular imaging stands for non-invasive detection and quantification of 

specific disease receptors which are expressed in the endothelium allowing accurate diagnosis 

and therapeutic efficacy[15]. The requirements[15] needed for a proper contrast agent are 

presented above: 

• Stable on storage; 

• Fully biocompatible and biodegradable; 

• Easily eliminated from the body with minimal injected dose; 

• High detection sensitivity; 

• In the case of molecular imaging, ligands need to assure firm adhesion on the targeted 

vessel wall.  

2.4.1  Microbubbles (MB) 

Over the past decades, microbubbles have experienced remarkable progress as contrast 

agents in three main domains[14]: ultrasound imaging, molecular imaging, and targeted drug 

and gene delivery. Microbubbles fit as therapeutic agents since they provide a precise location 

of the contrast (for imaging) as well as specialized functions in drug delivery[14].     

As presented in figure 2.4, microbubbles are composed of gas or air-filled core stabilized with 

various shell compositions[21] such as protein, surfactant, lipid, or polymer[14]. Each microbubble 

has an average diameter of a red blood cell[14] (less than 10 μm) to maintain a similar behavior 

in the blood flow.  

 

 

 

 

 

 

 
Figure 2.4: Basic microbubble structure 
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The shell is divided into soft or hard, according to the possibility to be destroyed by 

ultrasound waves. Soft-shell is used with non-destructive ultrasounds, whereas hard-shell is 

used with destructive pulses using ultrasound higher frequencies[21]. Polymeric shells present 

the following properties[14], becoming the most suitable for biomedical applications:  

• Average thickness of 100 – 200 nm; 

• High stability accompanied by low compliance; 

• Increased resistance to area compression; 

• Variable acoustic pressure, grating the correct location of the microbubble when it is 

decreased and eliminating the contrast agent through fragmentation when it is 

increased; 

Some of the characteristics that show the potential of microbubbles as an intravascular 

contrast agent for molecular imaging are: 

• their size[21], since it is too large for extravasation and guarantees that only endothelium 

is imaged[14]; 

• functional aspect[21] since it allows the quantification of blood flow and blood velocity[12]; 

• molecular aspect since it allows the functionalization with anti-bodies that recognize not 

only inflammatory markers but also cell adhesion molecules (ICAM and VCAM), E and 

P selectins and ανβ3 integrins[15]; 

• lifetime between 10 and 40 minutes allowing the possibility to image molecular 

interactions[12]; 

• easily destroyed through a fragmentation pulse[14].  

One of the biomedical applications of microbubbles is imaging the inflamed atherosclerotic 

endothelium (always present in an atherosclerotic plaque) by modifying the surface of a specific 

polymer[21], to allow the recognition of specific inflammatory biomarkers such as E-selectin or 

VCAM-1.  

In order to assure that the microbubble’s functionalization correctly recognizes the target 

(inflammatory markers) it is essential to take into consideration the high specificity of the 

targeted microbubble and that the chemical modification of the shell facilitates the specific 

binding. The process of binding the targeted microbubble to activated endothelial cells is 

evaluated through fluorescence measurements[21] and is a constant balance between adhesion 

and flow forces[15]. The microbubble will remain adherent to the endothelium if the force applied 

by the blood flow is lower than the adhesion force[15].   
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2.4.2  Gold Nanoparticles (GNP)   

The primary goal of nanotechnology is to signalize and study the numerous biological 

processes that occur at the nanometer scale.  

Nanoparticles are by definition[22] “particles between 1 and 100 nm that have a range of 

unique properties including surface chemistry, size, shape-dependent electronic, optical 

properties, bioimaging, vaccine development, biosensors, and therapies.”  

The optical and electronic properties of gold nanoparticles are based on the presence of 

localized surface plasmon resonance (LSPR) which can be tuned to NIR applications by merely 

changing the size, shape, surface chemistry, or aggregation state of GNP[23]. In order to promote 

bioconjugation, where nanoparticles bond to biomolecules by biological or chemical means, the 

first ones need to have properties that promote the specific bonding, in particularly, rich surface 

chemistry, low toxicity and be readily synthesized[9].  

2.5 Principles of Optical Coherence Tomography (OCT) 

In order to improve diagnosis and to develop innovative therapies, new medical imaging 

technologies have been advanced over the past decades. Most traditional techniques like MRI, 

CT or ultrasound, still have an enormous impact in everyday diagnosis, but their low spatial 

resolution[24] (in the range of half millimeter) represents a negative impact in accurate detailed 

applications. To solve this limitation and to achieve spatial resolutions in the order of 

micrometers are used optical methods such as conventional and confocal microscopy. Although, 

these techniques cannot penetrate much deeper under the surface of biological tissues[24].  

And so, it has been proved the need for an imaging modality that is fast and contactless, and 

mostly fills the need between cellular and full-body modalities by operating in μm and mm 

scales. Therefore, optical coherence tomography fulfils the previous requirements and allows a 

whole new world of applications providing better morphological information on, particularly to 

this study, atherosclerotic plaques[10]. Figure 2.5 represents a comparison between the 

mentioned imaging methods.   
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Optical coherence tomography (OCT) is an intravascular imaging technique that processes 

backscattering light in a range of wavelengths absorbed by biological tissues. More particularly, 

the processing of backscattered near-infrared light (1280 to 1350 nm)[25][7] allows the acquisition 

of high-resolution cross-sectional[7] tomographic images of inhomogeneous and highly scattering 

samples, like biological tissues[26].  

Also, OCT’s physical principles are analogous to ultrasound imaging with respect to wave 

mechanics but instead of sound uses light, more particularly, low coherence and interferometry 

phenomena[27]. In order to understand OCT’s acquisition mode, it is important to understand 

the operation mode of a Michelson interferometer[26] (Figure 2.6) since their basic setup is 

similar.  

  

 

 

 

 

 

 

 

 

 
Figure 2.6: Michelson's interferometer basic setup 

Figure 2.5: Comparison of various imaging methods according to 

their resolutions and penetration depths 
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The light source emits a beam with a near-infrared wavelength (λ infrared range between 

700nm and 5000nm) that the beam splitter divides into two paths: the reference (Er) and the 

sample path (Es). The reference beam travels a path and is reflected by a moving mirror[26], 

whereas the sample beam is reflected by the multiple layers of the sample[26]. After driving 

their proper paths, both beams return to the beam splitter where the reflected beams are 

recombined (Eout). The photodetector obtains an interference pattern, only observed when both 

optical path lengths (reference and sample) match the coherence length of the light[26]. The 

interference pattern allows the identification of intensity peaks due to sharp variations in the 

refractive index between the several layers of the sample[26] and consequently, the structure of 

the sample itself.      

  The axial resolution (penetration depth) of an OCT equipment up to 10 μm is determined 

by the spatial coherence of the light source[26], which provides the information on how 

monochromatic the source is, whereas the lateral resolution is located in a range of 20 to 40 μm, 

depending on the optical elements used in the equipment.   

Intravascular OCT (IV-OCT) is widely used in the clinical environment to guide procedures 

providing anatomical information during trans-catheter coronary interventions (atherectomies 

and stent placements). OCT imaging alone can provide morphological information[9] but does 

not directly provide molecular specific information, as so it is necessary the use of contrast 

agents with specific biomolecular targets[10]. A clinical OCT system operates with a 1350 nm 

swept-source laser, coupled with a single-mode fiber (SMF) which is incorporated into a 

catheter[10]. The catheter’s diameter commercially used is 0.9mm[19]. For further information on 

optical coherence tomography principles please search reference [24].  

It is possible to establish a comparison with other intravascular imaging techniques, in order 

to explore OCT’s advantages. Although coronary angiography is the golden standard for guided 

procedures[7] it has a major drawback of not being able to evaluate and quantify intracoronary 

thrombus. However, OCT is able to detect and characterize coronary thrombosis with great 

accuracy and sensitivity (around 100%). Also, OCT shows greater sensitivity in diagnosis plaque 

rupture[7] (about 73%) than angioscopy (about 47%) and IVUS (about 40%).  

2.6 Antibody – Properties and functions   

Antibodies are proteins carried by plasma cells and produced by the immune system when 

an unknown substance (antigen) is detected. After being produced, antibodies are released and 

bind to specific antigens, which are expressed by different types of cells. The five classes (IgM, 
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IgD, IgG, IgA, and IgE) of antibodies have the same basic structure[28], as presented in the figure 

2.7, resulting in a Y shaped molecule.  

The variable region adapts into various structures according to the differences of the 

antigens.  Particularly, IgG is the most common type of immunoglobulin in human circulation, 

allowing better control of tissue infection .  

 

 

 

 

 

 

 

 

 

2.7 Confocal Microscopy  

Confocal microscopy is an imaging tool which generates distinct images of samples which 

would appear blurry under a conventional microscope[29], by excluding light that does not belong 

to the microscope’s focal plane. When compared to conventional techniques, confocal microscopy 

generates less hazed and higher contrasted thin cross-sectional[29] images.  

Currently, and due to the progress in innovative technologies, confocal microscopes are 

considered completely integrated electronic systems and are composed of the following 

components[29] as it is possible to verify in figure 2.8:  

• Light source, usually 3 to 5 laser systems to regulate with high precision the beam’s 

wavelength;  

• Filters, used to separate multiple light beams based on their wavelengths; 

• Acoustic optical deflectors (AOD), used to increase scanning time of images per second 

(from 3 times per second to 30 times per second on 512x512 pixels images); 

• Scanner, to collect the sequential beams of light passing through the sample (stage 

scanning and beam scanning);    

Figure 2.7: Antibody basic structure 

Adapted from [28] 
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• Spectral detector (PMT, APD), used to identify with high resolution fluorophores 

spectrum (example: Alexa Fluor488, Alexa Fluor532, Alexa Fluor546 or DAPI);  

• Spatial pinhole, used to eliminate out-of-focus light on samples thicker than the focal 

plane.   

In this microscopic technique the image is generated by scanning multiple collimated 

light beams focused by an objective lens and detected by a photomultiplier through a pin 

hole. The sequence of points of light is then converted to an image and displayed by a 

computer. Since the microscope only has one focal plane at a time, it is never possible to 

have a complete image of the sample[29], so in each instant only one point of the sample is 

analyzed. 

 

 

 

 

 

 

 

 

 

 

 

In order to demonstrate the benefits of using this microscopic technique instead of other 

conventional techniques, table 2.2 presents the advantages and disadvantages of a laser 

scanning confocal microscope. 

Table 2.2: Vantages and disadvantages of laser scanning confocal microscopy 

Technique Advantages Disadvantages 

Laser 

Scanning 

confocal 

microscopy 

Ability to scan thin optical sections (0.5 – 

1.5 μm); 

Control depth of field and provide high 

level of confocality; 

Isolate and collect a full plane of focus 

while eliminating the blurry out of focus; 

Since the image is acquired point 

by point it consumes a lot of time 

to complete one image; 

The slightest movement can result 

in image poor definition; 

Figure 2.8: Schematic representation of laser scanning 

confocal microscope 

Adapted from [29] 
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Technique Advantages Disadvantages 

Laser 

Scanning 

confocal 

microscopy 

Reduce background information outside 

the focal plane; 

Accurate signal discrimination due to 

improved z-resolution; 

Illuminate one single point to avoid 

undesired scattering; 

Minimum sample preparation or 

instrument configuration. 

Phenomena of co-localization, 

meaning the overlap of 2 or more 

fluorescence emission signals; 

High level of confocality 

compromises detectible 

fluorescence of the sample. 

2.8 Atomic Force Microscopy (AFM) 

It is notable the recent and most common application of atomic force microscopy to study 

nanoscale phenomena, with an emphasis on biomedical applications. With this kind of 

equipment, it has become possible to measure non-conductive samples and its surface 

topography with a sub-nanometer resolution[30]. In order to obtain the sample morphology (only 

at the surface) at an atomic scale, AFM uses a flexible cantilever that goes through the sample’s 

surface to recognize its topography. By monitoring the deflection of the laser beam in the 

cantilever (detected in the photodiode above the sample), it is possible to measure the force 

between the tip and the sample. Figure 2.9 represents the general presentation of AFM 

equipment.  

 

 

 

 

 

 

 

 

During scanning, in order to ensure that the only measured forces are the ones in interest, 

it is crucial to separate the contributions of the different forces in action and to eliminate the 

undesired ones. 

Figure 2.9: Schematic presentation of AFM 

Adapted from [30] 
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Since the analyzed samples can have various properties, AFM can be operated in different 

modes that are exposed in Table 2.3.   

Table 2.3: AFM modes 

AFM Mode Operating Mode Advantage Disadvantage 

Contact 

The tip moves across 

the surface of the 

sample, and the beam is 

deflected according to 

its topographic profile. 

It can be operated in 

both constant force and 

height mode. 

In constant force mode, 

the height movement of 

the sample results in the 

surface morphology of 

the sample. 

In constant height 

mode, quicks scans are 

acquired with small 

height differences. 

The presence of 

frictional forces can 

destroy biological 

samples because the 

tip of the cantilever is 

always in touch with 

the sample’s surface. 

Non-contact 

Using big spring 

constant cantilevers, it 

is possible to recognize 

the surface of the 

sample in the analysis. 

The negligible frictional 

forces make this method 

capable of measuring 

biological samples 

without damaging its 

surface. 

Low lateral and z 

resolution of the 

measurements. 

Force 

modulation 

The existence of 

repulsive forces is used 

to determine the 

sample’s properties. 

High-resolution 

measures and absence of 

destruction of the 

surface’s sample. 

Difficulty to find the 

exact distance where 

repulsive forces act. 

Phase 

imaging 

Comparing the phase 

shift of the cantilever 

and the driving signal 

is possible to identify 

the properties 

influenced by the 

interactions with the 

AFM tip – friction, 

adhesion, and high 

elasticity. 

Sometimes the unique 

way to identify 

differences between 

local regions of the 

samples. 
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Amplitude 

modulation 

A force gradient is 

created above the 

surface of the sample, 

where the cantilever 

oscillates and moves 

through. 

Eliminates the major 

weakness of the non-

contact mode related to 

lack of resolution. 

It is the most used 

method in biological 

applications due to its 

high resolution and 

absence of destruction of 

the surface. 

 

2.9 Scanning Electron Microscopy (SEM) 

Scanning electron microscopy (SEM) stands for a technique that uses high energy electron 

beams instead of light to obtain an image[31]. The accelerated electrons that compose the beam 

carry kinetic energy, which is dissipated when the beam reaches the solid sample, producing 

numerous signals[32]. Figure 2.10 illustrates a common SEM assembly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Common SEM assembly 

Adapted from [31] 
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According to the figure 2.11 interactions between the electrons and the sample include the 

production of secondary electrons, backscattered and diffracted electrons and Auger electrons, 

as well as X-Ray quanta[31].  

 

The interactions between the electrons and the sample generate signals at the surface of the 

sample that allows the identification of several parameters:  

• Surface’s texture (morphology and topography) due to the signal provided by the 

secondary electrons;  

• Chemical composition due to the elemental analysis provided by the photons (X-Ray); 

• Crystalline structure due to the signal provided by the diffracted electrons; 

• The orientation of the materials in the surface due to the signal provided by the 

backscattered electrons.  

In the table presented below (Table 2.4) are discussed the advantages and disadvantages of 

this microscopic technique. 

Table 2.4: Advantages and disadvantages of SEM technique 

Advantages 

Possibility to characterize solid materials 

Higher control in the degree of magnification due to the use of 

electromagnets (instead of lenses) 

Minimal sample preparation and large depth of field 

High speed in data acquisition (mostly less than 5 minutes) 

Disadvantages 

Radiation (X-Ray) is produced during the process 

Samples must be solid and small enough to fit in the chamber 

Stability in the vacuum must be guaranteed 

Impossibility to detect elements with an atomic number under 11 

Figure 2.11: SEM interactions 

SE – secondary electrons ; BSE – backscattered electrons ; AE – Auger electrons ; X – photons (X-Ray); 

PE – primary electrons (initial beam) 

Adapted from [31] 



 

22 

 

  



 

23 

3. Experimental Methods   

3.1 Tissue Simulator Phantom Design 

Phantoms are artificial structures (physical or computational) used to replicate certain 

conditions or behaviors of the human body. In this scope, phantoms were developed to reproduce 

optical properties[33] of a range of tissues present in human arteries.    

Previously, phantoms were made of hydrogel and resin but entailed disadvantages[33] like 

short durability and impossibility to form complex configurations (in the case of hydrogel) or 

higher stiffness than soft tissue (in the case of resin). 

 Alternatively, silicone, fibrin, and PVA-C (poly (vinyl alcohol) cryogel) represent the most 

promising materials[33] to reproduce tissues properties in OCT imaging. The two most critical 

optical properties to analyze in OCT imaging are backscattering and absorption. The chosen 

material to produce the phantom was silicone, with a mixture of polydimethylsiloxane (PDMS).   

PDMS phantoms are relatively easy to produce and have the leading advantage of being 

adjustable to various purposes:  

• The phantom's optical properties can be customized by incorporating scattering agents 

like titanium dioxide (TiO2);   

• The phantom's mechanical/elastic properties allow it to be shaped into the required 

format for analysis. 

As well as the advantages presented previously, PDMS high toughness and low viscosity 

before curing represent important characteristics for its ready compatibility with, for example, 

scattering agents[33]. 

The primary difficulty in this process is to obtain a homogeneous distribution of the polymer 

in the chosen mold without aggregates or air bubbles. As so, to overcome this obstacle, three 

processes were applied to the phantom: sonication of the mixture to avoid aggregates, degassing 

under vacuum to remove air bubbles and, after curing, thinning the silicone with hexane to 

remove impurities from the surface.  

The following components compose each silicone kit and the phantom is combined in the 

ratio of 10:1[20]: 

• A compound – PDMS Sylgard 184 silicone elastomer kit; 

• A catalyst – curing agent. 
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In order to accelerate curing, the samples were heated at 65ºC for 1 hour and 30 minutes.    

As so in order to replicate tissue’s behavior to NIF light, multiple versions of the phantom 

were developed, as it is possible to verify in figure 3.1: 

• One layer 2 mm thickness of PDMS  

• One layer 2 mm thickness of PDMS incorporated with TiO2 (0.5% , 1% and 2%) 

• Double layer 2 mm thickness of PDMS incorporated TiO2 (0.6% and 3%)    

 

 

 

 

 

 

The double layer phantom was shaped to replicate the different layers that constitute human 

arteries and it was taken in consideration the different scattering each one produces. A 

schematic is presented in figure 3.2 with the 2 steps of phantom shaping. 

 

 

 

 

3.2 Titanium Dioxide Synthesis (TiO2) 

Titanium dioxide (TiO2) is an inorganic scatterer[33] which can be integrated into silicone-

based phantoms. TiO2 nanoparticle synthesis was performed on CENIMAT laboratories. A 

hydrothermal-microwave assisted method was performed on a CEM Discover SP – Microwave 

Synthesizer. The following procedure was followed:  

1. In a 100 mL beacon, 55 mL of H2O were mixed with 5 mL HNO3 and 2 mL C12H28O4Ti 

(titanium (IV) isopropoxide) and mixed under RT until all reactants were dissolved. 

2. 20 mL of the solution was transferred into a 35 mL Pyrex pressure vessel which was then 

placed in the microwave synthesizer.  

(a) (b) 

Figure 3.1: Developed phantoms - (a) one-layer clear PDMS (b) one-layer PDMS 

incorporated with TiO2 

Figure 3.2: Schematic of double layer phantom shaping and the two replicated layers 
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The parameters used in the process were the following: 

 

 

 

 

 

 

3. The resulting material was transferred to falcon tubes and centrifuged to remove 

supernatant. 

4. The powder was then dried at 50ºC. 

In later phantoms, TiO2 powder was not synthetized and commercial powders were used due 

to higher accessibility and lower cost.   

3.3 Gold Nanoparticles Synthesis and Immobilization (GNPs) 

Citrate stabilized gold nanoparticles used as contrast agents were synthesized using the 

Turkevich method[34].  

Reagents:  

 Solvent: DMF 

[PVP-10000]= 10 mM 

[HAuCl4]= 0.5 mM 

[Au-citrate-PVP]= 1.96655 mM GOLD SEEDS (15 nm diameter but can change with new 

synthesis)   

*Final size with these concentrations should be around 70 nm 

Procedure: 

a) Dissolve the 2.5 g PVP in the 25 mL DMF and sonicate for 15 min or until it is fully 

dissolved. 

b) The stock solution of gold precursor (HAuCl4) is at 0.1268 M, and since it is needed at 

0.5 mM, it will be used a volume of 99.15 µL.      

c) Under magnetic stirring, add the HAuCl4 and wait around 2 minutes (the solution gets 

a bit lighter).  
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d) For 25 mL of final solution volume (PVP/DMF/ HAuCl4) at 250 mM, it is necessary 317.82 

µL of 1.96655 mM seeds stock solution (Au-citrate-PVP).    

e) Under magnetic stirring, add the 317.82 µL gold seeds coated with PVP 

(Au@Citrate@PVP) and wait for 1h or until full reduction is observed – UV-vis and 

blueish color.   

f) Perform one washing cycle for 60 min at 5500 rpm and redisperse the solution in 

isopropanol.  

g) Measure the concentration of the final solution by UV-Vis, Abs400. 

The absorption spectrum was performed at 400 nm since, at this spectral region, organic 

molecules and the surface plasmon resonance have only minor influence[35]. The absorbance is 

mainly due to interband transitions of gold and therefore can serve as a more robust measure 

of the gold concentration. 

The resulting nanoparticles were then encoded with specific dyes, namely TB (Toluidine 

blue), NB (Nile blue), MB (Methylene blue) and 1NAT (1 – napthalenethiol). To the 1NAT dye, 

0.8mL of gold nanostar solution was mixed with 2.6667μL of MUA, 4.25μL of NH4OH 29%, 10μL 

of 1NAT and IPA until reaching 1 mL of final solution. To the remaining 3 dyes (TB, NB and 

MB) the same volumes of gold nanostar solution, MUA and NH4OH 29% were used, only varying 

the volume of dye – 100μL. After continuous magnetic stirring for 2 hours, each of the solutions 

passed through 2 washing cycles composed by: an ultrasound bath for 2 minutes, centrifuge at 

4000 rpm for 30 minutes, remove supernatant and centrifuge at 4000 rpm for 60 minutes. The 

solutions before and after magnetic stirring are shown in figure 3.3.     

       

 

 

 

 

 

 

 

 

The resultant gold nanostars where characterized using a FEI Quanta 650 FEG Electron 

microscope and absorbance measurements were performed in a Perkin-Elmer LAMBDA 950 

UV-VIS-NIR Spectrophotometer.    

 

 After activating the PDMS surface with O2 plasma, effect shown in figure 3.4, a silanization 

process was performed to attach nanoparticles to the oxidized PDMS. The silane used was γ-

APTES (Sigma Aldrich) which has carboxyl-binding active groups on one side and amine 

(a) (b) 

Figure 3.3: Solutions before (a) and after (b) magnetic stirring 



 

27 

termination on the other one. The PDMS substrates were immersed in several concentrations 

of ethanol solutions with APTES followed by washing and annealing at 80ºC for 1 hour and 30 

minutes. Finally, the substrates were immersed into the colloid coded gold nanoparticles 

solution for 1 hour and 30 minutes and washed with deionized water annealed at 80ºC for 1 

hour.    

 

 

 

 

 

 

 

 

 

At the end of this process it was assured that the gold nanoparticles were attached to the 

surface of the PDMS through electrostatic forces (schematic shown in figure 3.5).  

The characterization of the distribution of the coded gold nanoparticles at the PDMS surface 

was performed on a Zeiss LSM 780 Confocal Microscope.   

Activated substrate 

Hydrophilic 

Non-Activated substrate 

Hydrophobic 

Figure 3.4: PDMS substrates after oxygen plasma activation. Sample with half the 

surface exposed to oxygen plasma and half covered 

Figure 3.5: Schematic of gold nanoparticles immobilization into the PDMS 
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3.4 Microbubbles Synthesis  

PBCA (poly (n-butyl cyanoacrylate)) microbubbles were not synthetized at INL facilities but 

were kindly provided by Prof. Twan Lammers (ExMI, Helmholtz Institute for Biomedical 

Engineering, Germany) investigation group. Figure 3.6 shows the target ready batch received 

and the schematic illustrates the microbubbles function.  

 

 

 

 

 

 

 

 

 

 

Initially, the first batch of PBCA[21] microbubbles were received in Triton-X without any 

surface-active groups and varied in a size range of 1.8 to 2.5 μm diameter. The second batch 

consisted of Vevo MicroMarker® Target-Ready Contrast Agent (from Fujifilm Visualsonics) 

produced by Bracco Research SA. Vevo marker agents are lyophilized microbubbles with a lipid-

based outer shell containing polyethylene glycol, phospholipids and fatty acids, used to enhance 

tissue and vascular imaging. Since the microbubbles are lyophilized it is needed to reconstitute 

them with saline (0.7 mL of solution).      

3.5 Functionalization Methods  

In order to the microbubble to be recognized by the secondary antibody a biotinalization step 

was performed on unconjugated goat anti-rabbit IgG (Novex by Life Technologies™, Lot. 62-10-

092817) with a biotin labelling kit (Thermo Scientific™ EZ-Link™ Sufo-NHS-LC-Biotin, 

Molecular Weight: 556.59, Lot. Number A39257 21335). The followed protocol was provided by 

the user’s guide (MAN0016133, Pub. Part. Nr. 21611855).  

(a) (b) 

Figure 3.6: Lyophilized VeVo Micromarker stored in a glass vial (a) Schematic representation of non-

targeted and target-ready surface modified microbubbles (b) 
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Initially, a 10 mM biotin solution was prepared with ultra-pure water. Then, an antibody 

solution was prepared by adding 250μg of antibody stock solution (2.5mg/mL) and 3.65mL of 

saline. 10μL of biotin solution (initially prepared – 10mM) were then added to the antibody 

solution and incubated for 1 hour at 4ºC. The process is completed after filtering the incubated 

solution with an 100k Amicon Ultra-0.5 Centrifugal Filter Unit.   

From now on secondary antibodies are prepared to bond with streptavidin present in the 

microbubbles surface.   

3.6 Immunohistochemistry 

In order to recognize endothelial cells, primary antibodies (rabbit anti-VE-cadherin - Thermo 

Fisher, code: V1514-200UL, Lot. 016M4804V) passed through the first step of 

immunohistochemistry process.  

As so, a PBS solution containing 1% of bovine serum albumin (BSA) was prepared. To 4mL 

of the prepared solution were added 20.4μL of rabbit anti-VE-cadherin (primary antibody). The 

positive sample was submerged in the solution containing primary antibodies while the negative 

sample was submerged in a PBS blocking solution with 3% BSA. Both samples were left 

incubating overnight (8 hours) at 4ºC. After, the samples were washed 3 times and placed in a 

PBS solution. According to the user’s guide, further microbubble functionalization was 

performed.   

 Using a syringe, 0.3mL of the filtered biotin-labeled antibodies solution were drawn and 

injected into the microbubble vial (already prepared), followed by gentle agitation for 1 minute. 

The solution was left to rest at room temperature for 15 minutes. From now on, the microbubbles 

are fully assembled and ready to use.  

Thus, the second step on the immunohistochemistry process was performed by 

transferring the target-ready microbubbles solution into the positive artery vial. The solution 

was left to incubate while agitating for 1 hour at 4ºC, followed by 3 washing cycles in PBS.  
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4. Phantom Characterization Methods 

Multiple characterization methods (confocal microscopy, scanning and transmission electron 

microscopy and atomic force microscopy) were applied in order to assure the physical properties 

of the synthetized contrast agents (gold nanoparticles and microbubbles) and scatters (titanium 

dioxide) as well as the immobilization and functionalization of the phantoms with the already 

referred contrast agents.    

4.1 Confocal Microscopy 

At INL facilities, a Zeiss LSM 780 Confocal Microscope, was used to: 

a) visualize with detail different dilutions (stock, 1:4 and 1:40) of the original stock solution 

of microbubbles, as presented in figure 4.1;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) 

(2) (3) 

Figure 4.1: Microbubbles confocal images (1) stock solution (2) 1:4 dilution (3) 1:40 dilution 
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b) visualize the border of a drop of a microbubble’s solution in a blade, as shown in figure 

4.2; 

 

 

 

 

 

 

 

 

 

 

 

c) assure the existence of an interface between the functionalized and non-functionalized 

part of the phantom containing immobilized gold nanoparticles, as shown in figure 4.3.  

Using a laser with a wavelength of 633nm, a fluorescence process occurs in the nile blue 

dye present at the surface of gold nanoparticles emitting a signal at 660 nm, visible as 

red dots in the image.  

 

 

 

 

 

 

 

 

 

(1) (2) 

Figure 4.3: Interface created showing the difference between 

functionalization (1) and non-functionalization (2) in the 

immobilization of gold nanoparticles in the phantom  

(2) (1) (3) 

Figure 4.2: Dried drop of microbubbles’ solution showing a clear aggregation 

of microbubbles on the edge (2) forming an interface between the interior of 

the drop (1) and the blade itself (3) 
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4.2 Scanning and Transmission Electron Microscopy (SEM and TEM) 

At INL facilities, a Fey Quanta 650 FEG Scanning Electron Microscope was used to: 

a) visualize the differences between laboratory synthetized titanium dioxide (protocol 

mentioned above) and commercial titanium dioxide, as shown in figure 4.4;  

It was chosen to use the commercial titanium dioxide due to the lower cost, higher 

quantity available and no need for particle uniformity.    

 

 

 

 

 

 

 

 

 

 

 

b) ensure the star shape of synthetized gold nanoparticles with the protocol mentioned 

above, as presented in figure 4.5.  

 

 

Figure 4.4: SEM images of titanium dioxide acquired commercially (left) and synthetized (right) 

Figure 4.5: TEM images of synthetized star-shaped gold nanoparticles 
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Posteriorly was performed a size distribution of the star-shaped synthetized gold 

nanoparticles, batch named MC01 in the histogram presented in figure 4.6, leading to an 

average particle diameter of 55 nm. Considering that the nanostars have an amorphous shape, 

they will probably have a much higher diameter from one end to the other, but the average 

diameter provided by the histogram is particularly useful to calculate the average volume of the 

particles.   

 

 

 

 

 

 

 

4.3 Atomic Force Microscopy (AFM) 

At Cenimat facilities (Faculty of Science and Technology – NOVA University), an 

atomic force microscope was used to assure the immobilization of gold nanoparticles at 

the surface of the PDMS phantoms. Although an increased roughness was verified at 

the surface of the phantom, as presented in figure 4.7, comparatively to the surface of 

the clear phantom, it was impossible to assure the nanoparticles were immobilized. 

 

 

 

 

 

  

Figure 4.6: Histogram presenting gold nanoparticles size distribution 

Figure 4.7: AFM roughness measurements comparing clear PDMS (maximum 10.4 nm surface) and PDMS with 

gold nanoparticle at the surface (maximum 86 nm detected) 
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5. Image Acquisition  

5.1 Acquisition Methods 

To perform optical coherence measurements were used at Vigo’s Hospital a Lunawave 

Coronary Imaging Consola with Fast view coronary catheter (Terumo Corporation™, 

ASHITAKA, Japan) and at Hospital de Braga a ILUMEN FD-OCT System from ABBOTT 

(formally Saint Jude Medical, St. Paul, MN) with a c7 dragonfly catheter.     

 Firstly, were performed at Hospital de Braga, measurements with one layered 

phantoms, according to the assembly presented below, as well as calibration measurements. 

The original assembly used microtubes to contain the phantom adhered to its inner walls. So, 

as illustrated in figure 5.1, the first step of the assembly was the preparation of the sample (A) 

followed by the necessary arrangement of the phantom to fit in the tube (B). Finally, the 

phantom is placed inside the Eppendorf tube to fit its inner walls (C). Note that, in case of 

calibration were used empty Eppendorf tubes so step A and B were not performed.      

 

 

 

 

 

 

 

Also, a photograph taken in Hospital de Braga, at the same time a measurement was 

performed, is presented in figure 5.2 to visualize the sample assembly with the optic fiber of the 

OCT equipment.  

 

 

 

 

 

 

 

 

 

(1step A) (1step B) step C 

Figure 5.1: Original sample preparation to perform OCT measurements 

Figure 5.2: Complete assembly of an OCT measurement 
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Posteriorly, it was adopted a new assembly, presented in figure 5.3, to perform the OCT 

measurements in arteries (Vigo’s Hospital) and in double layered phantoms (Hospital de Braga). 

Instead of an Eppendorf’s tube was used a larger plastic tube and it was assured an 

immobilization of the optic fiber.    

 

Figure 5.4 represents a schematic of the order in which an OCT measurement is 

performed and how the image is obtained.  

 

 

 

Figure 5.3: Final OCT measurement assembly (left) schematic including arteries and phantoms (right) 

photograph taken in the moment of an OCT measurement in Hospital de Braga, with a upper vision of 

the complete assembly with a phantom  

Figure 5.4: Schematic of OCT imaging acquisition mode 
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Firstly, a map of the reflectivity of the sample along an axial depth direction is obtained 

composing an A-scan. In the obtained image, an A-scan represents one radial line. Then, 

through the combination of a series of axial depth scans (A-scan), are obtained the cross-

sectional scans of the sample, composing the B-scan. The final image if a composition of a series 

of radial lines. Three dimensional (3D) reconstructions are obtained by scanning series of B-

scans. 

In the case of the phantom’s measurements, calibration procedures of the OCT 

equipment were performed with an empty Eppendorf tube to measure the air response to NIR 

light and with an Eppendorf tube filled with deionized water. The obtained images after 

calibration are presented in image 5.5. For further reference, the optical fiber always remains 

at the center of the image (independently of the equipment used).  

 

 

 

 

 

 

 

 

 

Relatively to the measurements with post-mortem arteries, calibration procedures of the 

OCT equipment were also performed with air and water but additionally with PBS (Phosphate-

buffered saline) since its solution preserved the viability of the arteries.  

As mentioned before, titanium dioxide (TiO2) was used has a light scatterer to replicate 

biological tissue behavior to NIR light. According to Figure 5.6, the increased brightness 

compared to the clear PDMS assures the titanium dioxide elevated scattering of light in a PDMS 

medium. 

Besides calibration procedures were also performed individual measurements of the 

phantoms or arteries without the contrast agent to establish negative (without contrast agent) 

and positive (with contrast agent) controls. Figure 5.6 represents negative controls preformed 

at Hospital de Braga with OCT measurements of clear PDMS, one-layer phantom of PDMS and 

TiO2, double-layer phantom of PDMS and TiO2.   

Figure 5.5: Calibration procedures with deionized water (left) and air (right) 
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5.2 Processing Tools   

After calibration procedures and negative control measurements, were acquired images in 

order to evaluate which of the synthetized contrast agents (gold nanoparticles and 

microbubbles) provided the best contrast enhancement in OCT measurements.  

The comparison between the obtained images are presented in figure 5.7 and it is clear a 

considerable difference between the signal provided by the gold nanoparticles and the 

microbubbles.  

 

 

 

 

 

 

 

 

 

  

Figure 5.6: OCT measurements of negative controls with clear PDMS (left) and one-layer 

phantom of PDMS and TiO2 (right) 

Figure 5.7: Comparison between the provided signal of gold nanoparticles (left) and 

microbubbles (right). The yellow arrows show the exact location of the contrast agent 
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Not only microbubbles are larger in diameter than gold nanoparticles (1.2μm to 60nm) 

but also provide better signal in OCT images, increased brightness and more pronounced 

shadow. Also, microbubbles present less side biological effects, as analyzed in chapters 1 and 2, 

proving to be the best contrast agent. Further analysis and all the measures presented after 

will consider microbubbles as the contrast agent. Gold nanoparticles were no longer analyzed 

after the discovery of a better contrast enhancer.  

After concluding which of the contrast agents would be used to further acquisitions and 

finishing OCT measurements in different conditions (phantoms and human arteries), was 

developed an algorithm to automatically detect the regions where the microbubbles were 

located. It is important to reinforce that by detecting with precision the location of the 

microbubbles, the algorithm is providing the location of a possible unstable lesion when, in the 

future, is used in real time procedures. The software used to develop the algorithm was Matlab 

version 2019.  

As mentioned in chapter 2.5, the basic principle of optical coherence tomography is the 

analysis of backscattered light. If the material is highly scattering, the OCT image will appear 

very bright because when light is emitted in every direction, the material allows the beam to 

get through it. Contrarily, if the analyzed material is a low scatterer, the OCT image will appear 

darker, because the material retains the light in a single point (highly bright) and blocks its 

spreading.  

Keeping these differences in mind, is possible to analyze figure 5.8 and clearly notice the 

difference between a high scattering medium (marked as I in the image), titanium dioxide, and 

a low scattering material (marked as II in the image), microbubbles. It also becomes possible to 

visualize that the contrast agent (microbubbles) retains light, producing a very bright region 

followed by a shadow.  

As so the developed algorithm, in order to detect the location of the contrast agent, 

localizes the regions that present increased brightness (higher intensity) followed by a shadow 

through its profile of intensity. Regions of interest (with shadow) will present a very well-defined 

peak of intensity and remaining signal with low intensity. Contrarily, regions without a shadow 

will present several consecutive less intense peaks and a remaining signal with low intensity.   

Further will be explained how the algorithm evaluates if these 2 conditions were fulfilled.  

Besides that, the analysis of the OCT images performed currently by physicians is purely 

visual and not confirmed by any type of software. As so, it is important to provide an algorithm 

that confirms the visual analysis previously done but also a complete tool to improve physician’s 

diagnosis to patients.       
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Figure 5.8 presents, both in a phantom and in a human artery, the regions of interest 

the algorithm aims to detect.  

 

 

 

 

 

 

 

 

 

 

 

Consequently, and as presented in Figures 5.7 and 5.8, the two main characteristics in 

the OCT signal provided by the microbubbles are increased brightness in a specific spot and 

pronounced shadow (behind the area, meaning in the opposite direction of the fiber). Since there 

are two characteristics to be analyzed, the algorithm will be divided in two main steps:  

1. The detection of regions with increased brightness (higher intensity); 

2. The isolation of profiles which the human eye recognizes as shadow.  

 

STEP 1: The detection of regions with increased brightness (higher intensity) 

Since the images obtained in Vigo and Braga come from different equipment, was firstly 

calculated to each image its dimensions and its center (by dividing both the size in 𝑥 and in 𝑦 

by 2) to establish the first standard to normalize the processing.  

Then, and intending to analyze intensity variations in the images, these were converted 

from RGB code to grey scale (pixel normalization from 0 to 255 levels of grey) using the rgb2gray 

function. 

Posteriorly, was necessary a conversion from cartesian coordinates to polar coordinates 

(figure 5.9) because the images were acquired radially and the software by default assumes the 

bottom left corner as the starting point to process pixel by pixel.  

 

Figure 5.8: Identification of the regions of interest both in and phantom (left – region 1) and in a 

human artery (right – regions 1 and 2). The red lines establish the boundaries of each region. 
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Figure 5.9: Polar coordinates 

Originally, polar coordinates regard the following trigonometric equations:  

 

{
𝑥 = 𝑟 cos  (𝜑)

𝑦 = 𝑟 sin  (𝜑)
  where 𝑟 =  √𝑥2 + 𝑦2 , 𝑟 ≥ 0 and 𝜑 ∈  [−𝜋 , 𝜋] 

 

 

 

This formulation is correct considering 𝑥 and 𝑦 initially equal to 0, but in the case of 

the analyzed images, the original values of 𝑥 and 𝑦 are defined by the coordinates of the center 

of the image (𝑐𝑒𝑛𝑡𝑒𝑟𝑥 and 𝑐𝑒𝑛𝑡𝑒𝑟𝑦). So, to take this in consideration the equations were adapted 

as follows and a new axle system, presented in figure 5.10, was implemented:  

 

{
𝑥 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑥 +  𝑟 cos  (𝜃)

𝑦 = 𝑐𝑒𝑛𝑡𝑒𝑟𝑦 − 𝑟 sin  (𝜃)
 where 𝑟 =  √𝑥2 +  𝑦2 , 𝑟 ≥ 0 and 𝜃 ∈  [0 , 2𝜋] 

 

 

In order to analyze the image radially and trace a profile intensity for each line, it is 

necessary for each angle variation (radians) obtain the maximum number of 𝑟 values and the 

intensity for each one of the values. Initially, a degree variation of 0.1º was considered, meaning 

the image was separated in steps of 0.1 degrees, equivalent to 3600 profiles of intensity (
360°

0.1
 ). 

Considering a 1024 x 1024 image, and dividing it radially as mentioned before with a 

maximum radius of 512 pixels, and using a degree variation of 0.1º, is obtained a p value (𝑝 =

512 × sin 0.1), presented in figure 5.11, of 0.89 pixels. Meaning that this degree variation of 0.1º 

represents an approximate resolution of 1 pixel.  

 

 

 

 

 

 

Figure 5.10: Implemented 

axle system 

𝒙 

𝒚 

512 
p 

0.1º 

Figure 5.11: Schematic of degree variation 

and pixel resolution 
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The algorithm performs this analysis through a 𝑓𝑜𝑟  cycle where, in the end, the 

maximum value taken by 𝑟 is the radius of a circumference that is contained inside a square 

with the size of the image. Also, a matrix is filled with the maximum value taken by 𝑟 (𝑟𝑚𝑎𝑥) 

columns and a number of lines according to the analyzed degree variation. The formula used to 

convert degrees in radians is the following: 𝑣𝑎𝑟𝑎𝑛𝑔𝑙𝑒 =  
(𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒=0.1) × 𝜋

180°
 .    

The schematic presented in figure 5.12 illustrates the areas which are analyzed, and the 

ones left out starting from the center of the image, proving the excluded areas do not contain 

relevant information for the analysis of the image.  

 

 

 

 

 

 

 

 

 

 

 

The obtained matrix traces the intensity profile of each line and each value of intensity 

is obtained by intersecting the value of 𝑟  with the angle. After having a complete matrix 

(example of an image acquired in Hospital de Braga where each image has 1024 x 1024 pixels 

and with a degree variation of 0.1 = obtained matrix M (3600,512)) is calculated the maximum 

intensity value present with max function.  

After the maximum intensity value of the analyzed image is obtained, the profiles 

containing points with a range of 95% to 100% of the maximum intensity are isolated and saved 

in a different matrix. This parameter can be later be adjusted by the user (for further 

information please read User’s Interface Guide). With this filter the step 1 of the algorithm is 

complete and it is possible to start step 2. The main goal of step 2 of the algorithm is to 

distinguish profiles like the ones presented in Figure 5.13 where an increased brightness is 

verified but only one of them presents a shadow.   

 

Figure 5.12: Schematic of the analyzed areas by the algorithm (blue) and the ones 

excluded (black) maintaining the same number of columns in the matrix  
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STEP 2: The isolation of profiles which the human eye recognizes as shadow    

According to the last image presented (Figure 5.13) it is crucial to distinguish each of the 

profiles that present increased intensity values, relatively to the remaining image, have in fact 

a shadow or an absence of bright nearby. As so, the next filter applied consisted in the evaluation 

of the number of peaks in each profile using the function findpeaks, which returned parameters 

like the number of peaks, the intensity and the location of each peak.  

More importantly, was the use of the parameter minPeakHeight which established the 

condition of only analyzing the peaks which had minimum 90% of the highest intensity of the 

profile. Meaning that, it was only analyzed the profiles which had a very well-defined peak and 

it were excluded the peaks that had similar intensities and occurred in higher number.  

A new matrix was created including only the lines of the profiles which fulfilled every 

requirement presented above. Also, one of the observable characteristics of the profiles of 

interest is the fact that both before and after the peak the average of intensity is considerably 

lower than the maximum intensity peak value.     

The profiles translate the location of regions of interest that may contain valuable 

information for future diagnosis. Figure 5.14 represents the difference between two profiles, 

where one represents the location of a contrast agent, where a very well-defined peak is 

observed, and the other a generic region of the sample.  

 

 

Figure 5.13: Comparison between 2 types of profiles. Profile A presenting and homogenous 

distribution of scattering and profile B presenting a shadow and a well-defined intensity peak 
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To be possible for the user to interact with the developed algorithm was simultaneously 

developed an interface, also using MATLAB software, which allowed both automatically and 

manually detect regions of interest. When the user decides to use a manual mode for the 

detection it is possible to replace 3 of the parameters presented above: the degree variation (by 

default 0.1), the range of maximum intensity analyzed (by default 0.95) and the minimum peak 

height of the profile (by default 0.9).  

It was developed, as a tool of the main Interface, an auxiliary interface 

(REFERENCE_AREA INTERFACE) that contained reference images used in the medical 

community to realize current diagnosis. The images used were based on the OCT 

Compendium[19] used by cardiologists worldwide.  

A User’s Guide is also provided as an appendix of the document as a tutorial of use of 

both the main and the auxiliary interface.         

5.3 Accuracy tests  

Tests with the interface were performed to validate the accuracy of the algorithm both in 

phantoms and arteries. Alongside with the algorithm to detect regions of interest was developed 

another algorithm to correctly trace lines that delimitate the region of interest. Since it was 

established a new axial system, different trigonometric equations need to be taken in 

consideration when the detected angles were inferior and superior to 180 degrees.     

Figure 5.14: Difference in profiles where Profile A represents a generic region and Profile B 

represents the location of a contrast agent 
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Considering that the algorithm only detects one or zero regions of interest, it will be detected 

a maximum of 2 values of degrees. If it is detected one region of interest, to trace both lines, are 

necessary three pairs of coordinates:  

• [x1 y1] that establish the point where the line starts, and it is equal for both the detected 

angles; 

• [x2 y2] that establish the point where the line ends for the first detected angle; 

• [x3 y3] that establish the point where the line ends for the second detected angle.  

The first pair of coordinates [x1 y1] corresponds to the center of the image in the axes x and 

y. Then the second pair of coordinates [x2 y2] is obtained in function of the first detected degree 

(variable init_degree) which is initially converted to radians and the maximum considered 

radius (𝑟𝑚𝑎𝑥) of the image. If the initial degree is higher than 𝜋 then the values of x2 and y2 

are calculated using the following considerations: 

{
𝑥2 =  𝑥1 +  𝑟𝑚𝑎𝑥 × (sin(𝑖𝑛𝑖𝑡𝑑𝑒𝑔𝑟𝑒𝑒 −  𝜋))

𝑦2 =   𝑦1 − 𝑟𝑚𝑎𝑥 × (cos(𝑖𝑛𝑖𝑡𝑑𝑒𝑔𝑟𝑒𝑒 −  𝜋)) 
 

Otherwise, if the initial degree is lower than 𝜋 then the values of x2 and y2 are calculated 

using the following considerations:  

{
𝑥2 =  𝑥1 − 𝑟𝑚𝑎𝑥 × (sin(𝑖𝑛𝑖𝑡𝑑𝑒𝑔𝑟𝑒𝑒))

𝑦2 =   𝑦1 + 𝑟𝑚𝑎𝑥 × (cos(𝑖𝑛𝑖𝑡𝑑𝑒𝑔𝑟𝑒𝑒)) 
 

Similarly, the third pair of coordinates [x3 y3] is obtained with the same considerations but 

replacing the value of the (init_degree) for the value of the second detected angle (variable 

final_degree).  

Firstly, it was assured that in calibration images were not displayed any lines to delimitate 

regions and the number of regions of interest appears as zero, as presented in figure 5.15.   

 

 

 

 

 

 

 

 
Figure 5.15: Detection of regions of interest in calibration measurements. Phantom without microbubbles 

(left) and water (right).  
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After assuring that calibration measurements were correctly identified in the algorithm, 

tests started to be performed in phantoms. Figure 5.16 presents the first example of the correct 

delimitation (lines in blue) of the region of interest using a phantom’s image.   

 

 

 

 

 

 

 

 

 

 

A second image of a phantom was also tested but a less successful result was obtained. 

The algorithm was only capable of detecting partially the region of interest. This partial 

detection occurred due to a breach in the deposition of the microbubbles causing a significant 

loss of signal in the region. Figure 5.17 presents the detection performed by the algorithm (in 

blue) and the zoom in the image showing the occurrence of a breach. The green dashed line 

represents the limit that the algorithm should have detected if the breach didn’t exist.    

  

 

 

 

 

 

 

 

 

 

 

Figure 5.16: Correct detection of region of interest in phantom 

Figure 5.17: Partial detection of region of interest in phantom (left) and zoom in the breach (right) 
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This limitation may be exceeded by creating a range of degrees (for example 10) where the 

algorithm continues to run even if finds a gap of intensity. Meaning that, if the decrease of 

intensity is only detected in a gap of 10 steps (in 3600 steps by default) and after this time the 

algorithm detects again the same value of intensity as before the gap, it ignores the gap and 

considers the region as one. Although this method wasn’t fully implemented, figure 5.18 shows 

that if the image mentioned before didn’t contain a breach the algorithm would be fully 

functional.  

 

 

 

 

 

 

 

 

 

Posteriorly, were performed the same tests in images of human arteries also marked with 

microbubbles. Although the results weren’t as correct as in phantoms it is visually easy to 

understand that arteries have much more complicated anatomies and it is not as clear what are 

the regions of interest. Figures 5.19 and 5.20 presents some cases with arteries. The green 

dashed line represents where the limit of the region should end.      

      

Figure 5.18: Correct detection of region of interest in phantom after eliminating 

the pre-existing breach  

Figure 5.19: Partial detection of region of interest in human artery 
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Finally, figure 5.21 presents a case where the algorithm is unable to detect any region of 

interest. Although the region is hard to detect visually it is expected in the future the algorithm 

to detect hard cases like this one.  

  

Figure 5.20: Partial detection of region of interest in human artery 

Figure 5.21: Incorrect detection of region of interest in human artery 
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6. Conclusions 

The work developed throughout this thesis has proven the applicability of microbubbles, in 

a range of 1.2 to 1.5 μm of diameter (functionalized and up to 3 μm non functionalized), as 

contrast agents in intravascular optical coherence tomography (IV-OCT) images. Comparison 

with gold nanostars with an average diameter of 55 nm as contrast agents was performed and 

verified a higher contrast in images presenting microbubbles.  

Microbubbles placed on the surface of single and double layered PDMS phantoms containing 

titanium dioxide (TiO2) as a scatterer were used to replicate the behavior of human arteries to 

infrared light. PDMS higher affinity to microbubbles to maintain them at the surface of the 

phantom, its malleability and ease of access as well as the use of different concentrations of TiO2 

to reproduce the scattering of different tissues, confirms the need of using phantoms to optimize 

OCT measurements before stepping into postmortem arteries.  

To confirm the use of microbubbles as contrast agents, besides the successful measurements 

of the location of the contrast agent in IV-OCT images of phantoms, images with human arteries 

were acquired. Microbubbles marked with antibodies recognizing endothelial cells were injected 

in postmortem arteries and a higher contrast followed by a shadow was observed in the intima, 

where endothelial cells are located, providing a positive confirmation that microbubbles fit as 

localizers of specific types of cells.       

The precise location of the contrast agent in the OCT images was obtained by developing an 

analysis software with a user-friendly interface in MATLAB. The software analyzes the image 

and identifies the regions with higher contrast followed by a shadow, as a region of interest 

where the microbubbles are probably located. Then presents several analyzed parameters: 

maximum intensity peak detected, number of regions of interest detected, variation degree 

(meaning which interval was used between the analyzed profiles), percentage of maximum 

intensity in order to isolate areas with the highest peaks of intensity, minimum peak height to 

isolate the profiles that presented a shadow.  

A manual detection of regions of interest was also possibly by the modification of the last 

three parameters present above. The interface also allows the user to modify basic parameters 

in the OCT image like brightness, contrast and gamma at the same time that analyzes the 

histogram of the processed image. A parallel interface was also developed with reference images, 

accessed in the main interface by a button, in case the user has doubts of the image that is 

currently analyzing.  
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In future research, more specific functionalization methods need to be applied to the 

microbubbles in order to recognize not endothelial cells, but inflammation markers present 

when the atherosclerotic lesion is ready to prone and is considered unstable. Additionally, more 

precise measurements of the microbubbles’ concentration used to achieve the best contrast 

enhancement need to be performed. Also, it will be necessary to figure out how to use 

functionalized microbubbles in the PDMS phantoms. Besides, the streptavidin-biotin bond 

works perfectly in laboratorial medium, but it cannot be used in the human body due to the non-

specificity of the biotin with the blood components.     

Regarding the analysis software, an optimization in the isolation of the profiles of interest 

by analyzing a higher number of parameters like, width to half height of each peak, first 

derivative and signal-to-noise ratio. Also, an improvement of the algorithm to identify more 

than one region of interest, which is particularly interest when analyzing images of postmortem 

arteries. Additionally, produce quality tests on the software using more images of postmortem 

arteries in order to assure the accuracy of the software. Finally, converting the MATLAB script 

to an open source and more robust programming language will be necessary when producing 

the final product to be delivered in hospitals and clinics.  

With the aim that in the future is possible to distinguish the nature of atherosclerotic 

plaques, identify each ones are ready to prone and consequently prevent a cardiac event, I 

consider this thesis has presented significant advances since it has identified a contrast agent 

that can be used with no harm in the human organism but also provides a clear identification 

of its location in the OCT images.         
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Appendix I – User’s Guide   

The interface developed during this project is a tool to process intravascular cardiologic 

images acquired with an OCT equipment. The purpose of developing a user’s guide for the 

interface is to document the functionalities provided by the software as well as the possibilities 

of interaction with the user.  

Firstly, an overall view of the interface is presented in figure I.1, where it is possible to 

visualize 3 main areas: 

• one area to adjust basic parameters of the image, like brightness, contrast and gamma 

and visualize the effect on a histogram; 

• another area to test automatically the existence of regions of interest as well as the 

parameters used in the algorithm to process the image or manually insert the 

parameters of interest; 

• lastly an area that generates an automatic report with the parameters used to process 

the image.      

    

 

First, the user presses the Load Image button and chooses the image that would like to 

process from a range of types of files (.png, .jpg, and .bmp). Then decide if wants to adjust the 

basic parameters of the image or to test automatically the existence of regions of interest.  

Figure I.1: Overall view of the interface 
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In case the user decides for the first option, has the possibility to adjust 3 parameters: 

brightness, contrast and gamma. Figure I.2 will consider the original image and the histogram 

of reference. 

 

Then, the images presented below will show the following effects on the histogram of the 

loaded image: 

• Increase brightness, the image becomes more intense and the histogram is displaced 

right (pixels intensity become closer to 255) – figure I.3; 

• Decrease brightness, the image becomes darker and the histogram is displaced left 

(pixels intensity become closer to 0); 

 

• Increase contrast, the difference of intensity between the pixels of the image becomes 

more visible and the intensity values appear more spread in the histogram – figure I.4;  

Figure I.2: Original image and corresponding histogram of reference 

Figure I.3: Processed image with increased brightness and corresponding histogram 

Figure I.4: Processed image with increased contrast and corresponding histogram 
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• Decrease contrast, the difference of intensity between the pixels of the image becomes 

less visible and the histogram appears denser; 

• Gamma < 1, the contrast increases in the dark areas and decreases in the bright ones 

and the evidences on the histogram aren’t easy to detect because the relation is not linear 

– figure I.5;  

 

• Gamma > 1, the contrast increases in the bright areas and decreases in the dark ones 

and the evidences on the histogram aren’t easy to detect because the relation is not 

linear.      

After processing and adjusting basic parameters of the image it’s time to test automatically 

the existence of regions of interest. By pressing the button Test presence of Unstable Lesion 

Automatically, the algorithm presented in chapter 5 analyzes the loaded image previously. If 

the algorithm detects any region of interest 2 blues lines will appear in the image setting out 

the boundaries of the region. Also, the parameters used to run the algorithm (maximum 

intensity value detected, degree variation used, percentage of the maximum intensity analyzed, 

minimum peak height) will be presented as well as the number of regions of interest detected 

(in case any region is detected blue lines will not appear and the number of regions of interest 

is 0). Figure I.6 shows both cases presented above.  

  

 

 

 

 

 

 

 

Figure I.5: Processed image with gamma < 1 and corresponding histogram 

Figure I.6: Automatic detection of regions of interest (1 – left and 0 right) 



 

57 

Until this point, all the parameters editor boxes are disabled and are only accessible when 

the user presses the button for the manual detection of regions of interest Unstable Lesion 

Manual Detection. After pressing this button, the user has the option of altering only 3 of the 5 

presented parameters (degree variation, percentage of the maximum intensity analyzed and 

minimum peak height) since the maximum intensity value is a property of each image and the 

number of regions of interest is updated every time the algorithm runs the image. To choose 

this option the user should press the radio button Revise Automatic Parameters, as presented 

in figure I.7.  

 

 

 

 

 

 

 

 

The user has also the possibility to zoom in a specific area of the image by pressing the radio 

button Select Area Manually. The value of the selected area will also appear on the interface 

above the number of regions of interest detected, as presented in figure I.8.   

 

 

 

 

 

 

 

Figure I.7: Activation of editable parameters by manual detection 

Figure I.8: Example of a crop and zoom in the analyzed image 
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In order to provide the best support to the most accurate diagnosis was simultaneously 

developed an auxiliary interface Reference Images, which contains images of reference of both 

healthy and pathological arteries. The images presented in the interface were not acquired 

during the project but were provided by an OCT Compendium[19] used in clinical practice. 

The interface contains images of a healthy artery, stable fibrous plaque, thin cap fibrous 

atheroma (TCFA), thick cap fibrous atheroma (ThCFA), plaque rupture, thrombus and stent, as 

presented in figure I.9.   

 

 

 

 

 

 

 

 

 

      

After choosing the reference image, a pop-up message appears on the screen with an 

explanation of the image and some of the characteristics of the pathology in study. Figure I.10 

presents an example of the pop-up of an image of a plaque rupture. 

  

 

 

 

 

 

 

 

 

 

Figure I.9: Overall view of the auxiliary interface for reference 

Figure I.10: Pop up message and corresponding reference image 
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Finally, and after the acquisition of all the parameters of the analyzed image, a report is 

automatically generated by pressing the Edit Report button. The report contains the values of 

maximum intensity value detected, degree variation used, percentage of the maximum intensity 

analyzed, minimum peak height and regions of interest previously calculated by the algorithm. 

It is also possible to save this report using the Save Report button in a .txt file. Figure I.11 

presents that values appearing in the report are the ones calculated previously by the algorithm.    

 

 

 

 

    

Figure I.11: Report generated after running the algorithm 


