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Abstract 

Wavelength-structured transparent conductive oxide (TCO) electrodes are highly 

promising to improve both the optical and electrical performance of photovoltaic (PV) 

devices, due to wave-optical light-trapping (LT) effects and higher TCO volume without 

increasing optical losses.  

Herein we present a complete study of the benefits of microstructured IZO contacts 

applied on amorphous-silicon (a-Si) thin film solar cells. The IZO LT structures were 

integrated by an innovative colloidal lithography process on the front contact of the cells, 

resulting in enhancements of 26.7% in photocurrent, with respect to planar reference 

cells, when using an ultra-thin (30 nm) flat IZO layer between the LT structures and the 

a-Si absorber. However, the best efficiency enhancement (23.1%) was attained with an 

optimized thickness of 190 nm for this layer, due to a more favorable combination of 

optical and electrical gains.  

In view of the application of this LT strategy in flexible PV devices operating under 

bending, the angular response of the cells was studied for 0-90º incidence angles. This 

showed that the LT enhancements are generally higher at oblique incidence, reaching 

53.2% and 52%, respectively in photocurrent and efficiency, at ±70º angles with the 
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optimized flat IZO thickness of 190 nm; and 52.2% in efficiency at ±40º with the ultra-thin 

thickness of 30 nm. These results are among the highest gains reported thus far for LT-

enhanced thin film solar cells. 

Keywords: thin film photovoltaics, wave-optical light management, photonic-structured 

transparent electrodes, amorphous silicon solar cells, angular response of light trapping. 

 

1 Introduction 

Thin film solar cells (TFSC) have acquired notorious attention from the energy industry 

due to their thin absorber dimension, e.g. hundreds of nanometers thick in the case of 

hydrogenated amorphous silicon (a-Si:H), which favors their exploitation as photovoltaic 

(PV) devices for consumer-oriented portable and potentially-flexible power sources1,2. 

Nevertheless, mainly due to the low thickness of their absorber layer, the photocurrent 

(and, thus, efficiency) of such devices is severely limited by insufficient sunlight 

absorption. To address this issue, different optical solutions have been proposed for light 

absorption enhancement in TFSCs3–8. High refractive index (n) particles and structures 

with wavelength-scale dimensions have been considered the preferable light trapping 

(LT) solutions for integration in the illuminated face of the PV devices,3,9,10,4 due to their 

remarkable ability for light in-coupling (anti-reflection) plus scattering towards the 

absorber medium. Recent theoretical works11,12 have demonstrated that up to ~50% 

current enhancement is possible in TF Si cells using arrays of TiO2 (n=2.5-2.7) 

pyramidal-like microstructured features patterned on the cells’ front. This optimized TiO2-

based LT geometry has been engineered by the authors, via a low-cost colloidal 

lithography (CL) procedure, and optically-tested on a-Si:H thin film absorbers which 

allowed the demonstration of pronounced broadband absorption enhancement (27.3% 

on spectral average) in the Si medium.9 CL is a particularly advantageous soft-

lithography technique for application in PV, as it that can be adapted to precisely 
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nano/micro-pattern any material with the dimensions appropriate for efficient light 

trapping, and implemented in any type of solar cell with different absorbers (e.g. based 

in perovskites13,14, CIGS15, etc). In a subsequent work the authors have shown that, when 

integrated on a-Si TFSCs, such TiO2-based LT structures fabricated by CL can lead to 

notorious increments (up to 21.5%) in the short-circuit current density (JSC) but to less 

pronounced enhancements (up to 13%) in the efficiencies, with respect to flat reference 

cells16. Although TiO2 is an optically-favorable LT material for application in the cells’ 

front, due to its high real part of the refractive index and low imaginary part (little parasitic 

absorption), it is a dielectric with very low conductivity and, therefore, it is difficult to 

integrate with the front transparent conductive oxide (TCO) contact layer of the devices. 

When the microstructured TiO2 is applied over the cells’ front TCO, a refractive-index 

mismatch is created which reduces the light in-coupling towards the absorber and 

increases reflection losses. 

Therefore, a promising solution to circumvent this issue is to develop optically-enhanced 

TCO materials that can perform the double role of front electrode and LT medium17, 

which can bring several advantages: 1) optically, this avoids refractive index mismatches 

when the light enters the cell, thus eliminating the aforementioned reflection losses; 2) 

electrically, the use of a microstructured TCO allows higher volume of electrode material 

without optical losses, thus enabling lower sheet resistance of the front contact; 3) 

industrially, it avoids the use of another distinct material for the LT medium, since the 

front TCO can assume such role, thus reducing the process complexity and costs.  

The work presented here studies this solution, focusing on microstructured IZO top 

contacts applied on a-Si TFSCs, and evaluating the impact on the photovoltaic 

performance of the devices. Given the important potential of this technology in the field 

of portable/flexible electronics, in which the cells are mainly illuminated at oblique 

incidence during operation, a complete analysis of the angular response of the devices 
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has also been performed, comparing the response of LT-enhanced cells with that of flat 

(unpatterned) references.  

2 Experimental methods 

2.1 Solar cell fabrication 

Substrates preparation 

Glass slides were cut with 2.5 x 2.5 cm, followed by washing with a MICRO-90 

concentrated cleaning solution and rinsed with distilled water. After sonication in distilled 

water for 15 minutes, the substrates were rinsed in acetone and ethanol. Finally, they 

were dried under a nitrogen flow. 

Deposition of rear contact 

The aluminum (Al) rear electrode of the SCs, with a thickness of 120 nm was deposited 

on glass substrates using resistive thermal evaporation, applying a current of 160 A 

under 10−6 mbar vacuum. The deposition rate was 0.3 nm/s. 

The Al film was coated with an aluminum zinc oxide (AZO) layer of 60 nm, deposited by 

radio frequency (RF) magnetron sputtering for 18 min using the conditions listed in Table 

1. 

 

TCO 

Material 

O2 Gas 

Pressure 
(mbar) 

Ar Gas 

Pressure 
(mbar) 

Power 
(W) 

Deposition 
rate 

(nm/min) 

Distance to 
the sample 

(cm) 
Target 

AZO 1x10-6 1.8x10-3 75 3.3 15 
Al2O3/ZnO 99.99% 

purity, 2.8” diameter 

IZO 1x10-5 1.5x10-3 50 2.9 15 
In2O3/ZnO 99.99% 
purity, 3” diameter 
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Table 1. Experimental conditions used during the different RF sputtering deposition processes of 

the TCO materials composing the devices. A 20 min pre-sputtering was performed before each 

deposition. 

 

Deposition of a-Si:H layers 

The samples were then transferred to an Electtrorava plasma-enhanced chemical vapor 

deposition (PECVD) system where the silicon layers were deposited according to the n-

i-p structure to form the cell junction. A mixture of SiH4 and H2 defines the hydrogen 

dilution parameter (DH (%) = [H2/(H2+SiH4 )] ×100). In the case of the intrinsic silicon thin 

film a DH = 95% was used with a deposition pressure (Pgas) of 1 Torr and a power 

density (PW) equal to 69.4 mW/cm2 to obtain a thickness of ~230 nm. Adding 

trimethylboron (TMB,B(CH3)3) or PH3to the mixture of SiH4 and H2 produced p- or n-

layers, respectively. A p-a-Si:H layer of 12 nm was deposited with a DH = 74.9%, RTMB 

= TMB/(TMB+SiH4) = 1.3%, a Pgas = 1.05 Torr and a PW = 48.6 mW/cm2. As for the n-

a-Si:H layer, the parameters were: DH = 95.0%, RPH3 = PH3 /(PH3+SiH4) = 1.3%, Pgas 

= 1 Torr, PW = 55.5 mW/cm2 and the corresponding thickness was 30nm. 

Deposition of front contact and SC area delimitation 

Transparent conductive oxide layers made of IZO with different thicknesses (see Table 

3) were deposited by RF magnetron sputtering over the a-Si layers, for time periods 

comprised between 4 and 80 min employing the conditions listed in Table 1. 

To delimit SCs of 3 mm of diameter, the deposition of the IZO front electrodes was carried 

out using a metallic mask with circular holes of that diameter. Afterwards, SF6 plasma 

etching treatment was conducted to remove the a-Si material all over the substrate 

except in the SCs areas, defined by the IZO contact, which allow access to the AZO-Al 

back contact.18 This plasma etching process is performed to finalise the devices, namely 

to remove the a-Si material in the regions of the sample between the solar cells, i.e. 

between the areas where the top IZO layer (acting as an etch-stopper) was deposited 
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via the predefined mask. In this way, this step delimits the areas of the solar cells to 3 

mm circles on the sample and reveals the AZO-Al rear contact in the inter-cells regions. 

SF6 was chosen because it does not affect the IZO in the dry etching process. Finally, to 

assist in the external connection to the front TCO contact, two Al pads were deposited 

at both sides of each SC using another mask. 

 

2.2 Colloidal lithography patterning of photonic coatings 

The soft-lithography method used in this work to fabricate the microstructured TCO 

contacts is briefly explained below, but more detailed descriptions can be found in 

previous works by the authors9,16. 

Assembly of the colloidal monolayer 

Colloidal suspensions of polystyrene (PS) spheres were used, purchased from 

Microparticles GmbH, with a diameter of 1.6 µm dispersed in a mixture of water and 

ethanol (1:3) at a solution concentration of 2.5% wt. A monolayer of such microspheres 

was directly deposited on the top flat IZO-coated surface of the SCs following a 

Langmuir-Blodgett (LB)19 wet-coating methodology. This process started by depositing 

400 µl of the colloidal suspension in the interface between water and air, using a syringe. 

The barriers of the LB system were then closed at a controlled speed of 10 mm/min, 

driving the floating spheres to self-assemble at such interface in an ordered close-packed 

hexagonal array. Afterwards, the obtained monolayer was transferred to the surface of 

the prepared samples by dip coating, with a withdrawal speed of 2 mm/min. 

Shaping of colloidal array 

The geometry of the colloids, 1.6 µm initial diameter, was tuned by exposing the 

deposited monolayer to O2 reactive ion etching (RIE) for 150 seconds employing the 

conditions in Table 2. The monolayer array of etched colloids acts as the mask to shape 

the material deposited in the subsequent step. 
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RIE gas 
Etched 
Material 

Time 
(s) 

RIE Power 
(W) 

GasPressure 
(mTorr) 

Plasma Flow 
(sccm) 

O2 Polystyrene 150 90 250 20 

Ar/CF4 IZO 90 100 15 4/16 

SF6 a-Si:H 240 30 30 10 
 

Table 2. Conditions used during the different reactive ion etching (RIE) processes. 

 

IZO infiltration 

The IZO material of the photonic front structures was then deposited by RF sputtering 

for 4.5 hours, employing the conditions given in Table 1, infiltrating in the inter-spaces 

between the etched PS colloids. 

Lift-off of colloids 

The last step of the microstructure fabrication procedure consisted in removing the 

etched PS particles by sonicating the samples in a toluene bath for 1 minute. Previously, 

an Ar/CF4 RIE process (see Table 2, row 2) was applied to remove the top capping layer 

of IZO over the colloids and facilitate the subsequent dissolution of their PS material in 

the toluene bath.  

 

2.3 Characterization 

Scanning Electron Microscopy 

The morphological characterization of the geometrical dimensions of the different 

components of all fabricated samples was performed by Scanning Electron Microscopy 

(SEM) measurements using a CARL ZEISS AURIGA Cross Beam workstation. 

Spectrophotometry 
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The optical measurements were performed with a UV-VIS-NIR scanning 

spectrophotometer (PERKIN ELMER lambda 950), using a 15 cm diameter integrating 

sphere to obtain the total reflectance (RT) spectra of the solar cells. Total absorptance 

spectra were estimated by using the general formula: AT (%) = 100 - RT (%). The optical 

angular measurements were taken by adapting a sample holder with a goniometer inside 

the integrating sphere. 

Photovoltaic response 

The measurements of the I-V curves of the fabricated solar cells were performed with a 

LED Sun Simulator (Oriel VeraSol LSH-7520) composed of multiple LEDs at 19 

individual wavelength intervals spaced over the spectrum from 400 to 1100 nm, 

supplying a 1-Sun illumination certified AAA in a 51 x 51 mm area. The external quantum 

efficiency (EQE) measurements were performed using a Newport QuantX-300 system, 

equipped with a Xenon lamp of 100 W, at wavelength intervals of 10 nm with a nominal 

illumination spot size of 0.8 x 1.1 mm. In both cases, angular measurements were taken 

by adapting the sample holder with a goniometer. 

3 Results and discussion 

Figure 1 depicts the microstructured IZO top contact layer patterned on the a-Si TFSCs, 

following the colloidal lithography (CL) process described in the experimental section 

and in previous contributions9. Briefly, it consists in depositing a monolayer of close-

packed colloidal polystyrene (PS) microspheres by Langmuir Blodgett19. Then, the 

microspheres are reduced and shaped by applying an O2 reactive ion etching (RIE) 

process, thus resulting in a non-closed-packed hexagonal array of spheroids that acts 

as mask. The voids between spheroids were infiltrated with IZO deposited by sputtering. 

The last step consists in lifting off the PS microspheres by combining a CF4 RIE with a 

toluene sonication bath, thereby leaving only the microstructured IZO material on the 
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cells’ top surface. The resulting hexagonal arrays of ~850 nm tall pyramidal-shaped 

features uniformly cover the full active area of the solar cells, with a pitch defined by the 

1.6 µm initial diameter of the PS microspheres, as seen in Fig. 1. 

Figure 1.(a) Tilted SEM image of a solar cell, composed of the layer structure: glass 

(substrate)/Al+AZO (rear contact)/a-Si:H (n-i-p absorber)/IZO (front contact), coated with the top 

LT structure (made of IZO) that uniformly covers the entire illuminated area of the solar cell. The 

pyramidal-like features of the LT structure have an average height of 850 nm, and they were 

fabricated using a mask of PS spheres with 1.6 µm diameter.(b-c) SEM cross sections of devices 

with two different thicknesses of the flat IZO layer (30 and 190 nm, respectively) between the a-

Si:H absorber and the front LT structures. 
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These wavelength-sized pyramidal microstructures can exhibit strong anti-reflection and 

light scattering effects at the cells’ front, as described in previous theoretical studies11,12, 

such optical effects are maximized when the base of the pyramidal features is directly 

attached to the high-index Si absorber medium. Nevertheless, as observed in previous 

experimental tests16, such optically-optimum case does not allow an electrically-effective 

front contact, which can only be realized with an additional flat IZO layer deposited prior 

to the patterning of the microstructured IZO. Therefore, a planar IZO thin film is required 

between the base of the pyramidal LT structures and the a-Si layer (see Fig. 1b, c), which 

reduces the LT effects but is necessary to allow a sufficiently low sheet resistance at the 

front contact. As such, a crucial compromise must be found in the present LT design, 

since the thicker is this flat IZO layer the higher will be the conductance of the top 

electrode but the lower will be the optical gains provided by the LT structure.  

To evaluate the role played by the flat IZO layer, and to find the optimum electrical vs. 

optical compromise, a set of seven TFSCs were fabricated with different thicknesses of 

this layer separating the a-Si absorber from the LT features, which are indicated in Table 

3. The performance of these devices is compared further below with that of seven 

reference cells produced in the same batches, having the same thicknesses of the flat 

IZO layer but with no LT microstructure patterned on top. The minimum thickness tested 

was 30 nm since it is necessary to have a conductive flat layer, covering the entire 

surface beneath the LT structures, to realize reasonably transparent electrodes at the 

cell front. It was observed that lower thicknesses would hardly allow measurable I-V 

characteristics of the cells. 

 

Solar cell label: S30 S60 S95 S130 S190 S220 S250 

IZO deposition time 
(min) 

4 14.5 25 47 58 70 80 

IZO thickness (nm) 30 60 95 130 190 220 250 
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Table 3. Sputtering deposition time and resulting thickness of the different flat IZO layers, 

composing the top contact of the solar cells, located between the a-Si:H absorber and the IZO LT 

structures.  

 

Figure 2 presents an analysis of the variation of the short-circuit current density (JSC) and 

power-conversion efficiency (PCE) of these test cells, extracted from their JV 

characteristic curves measured under 1-Sun illumination (see section 2.3). The SCs 

integrating the LT structures produce currents and efficiencies consistently higher than 

the non-structured reference SCs, as expected, with only one exception for the case of 

the 250 nm thickness of the flat IZO in which there is still a JSC gain but an overall 

efficiency loss. Nonetheless, there is in general a considerable gain in PCE due to LT, 

which is higher in some cases than the JSC gain. This contrasts with most LT applications 

so far, in which the enhancements have been chiefly attained in the photocurrent (due 

to increased light absorption), while the electrical parameters (open-circuit voltage, VOC, 

and fill-factor, FF) are usually reduced4,10,16. However, here the fact that the PCE is even 

more enhanced than the JSC shows that our innovative strategy, based on a wavelength-

structured TCO, produces both optical and electrical benefits. This is because it enables 

the application of a higher volume of TCO material at the front transparent contact (thus 

decreasing its sheet resistance) while also creating LT effects (anti-reflection plus light 

scattering) that boost the broadband absorption in the a-Si layer. This is most notorious 

in the case of the 95 nm flat IZO, where the PCE enhancement is superior to the JSC 

enhancement due to the fact that the improvement attained with the inclusion of the LT 

structure is mainly of electrical (rather than optical) nature. Here the efficiency gain is 

chiefly a consequence of the reduction of the sheet resistance of the front IZO contact 

due to the presence of additional IZO material composing the LT structure; while the 

photonic effects caused by such structure have relatively less expression in the light 

absorption occurring in the a-Si layer. Also, in the case of the thinner flat IZO thickness 
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(S30), the LT structure is implemented quite close to the a-Si absorber and highly 

reinforces the conductance of the ultra-thin (30 nm) TCO top contact.  

Looking at the trends of the gains attained in JSC and PCE, shown in Fig. 2b as a function 

of the thickness of the flat IZO layer beneath the LT structures, it is notorious that the 

enhancements are not monotonous with increasing thickness. The JSC and PCE 

enhancement curves first decrease up to an IZO thickness of 95 and 60 nm, respectively, 

and then increase up to 190 nm where there is a local maximum in the curves. Such 

variation is a consequence of two optical effects:  

1) The flat IZO layer acts as an anti-reflection coating (ARC) mainly in the planar regions 

between the pyramidal features of the LT structures. As is known for planar single-layer 

ARCs applied on a-Si TFSCs11,20, they lead to a first minimum in reflection for a layer 

thickness around 70 nm (corresponding to λ/4nARC) and to a second minimum around 

200 nm thickness. Therefore, the JSC of the reference cells is highest at the 60 nm and 

190 nm IZO cases, since these are the deposited thicknesses closer to the 

aforementioned values; 

2) The thicker the flat IZO layer the higher is the separation between the LT structures 

and the Si absorber, so the lower are the LT gains. This second effect is most prominent 

for the thinner IZO layers, establishing a small separation, so the highest enhancement 

in JSC (26.7%) is attained for the minimum 30 nm thickness. Here the gain in broadband 

light absorption in a-Si is highest, leading to a quite remarkable photocurrent 

enhancement value in comparison with the current state-of-art of photonic-enhanced a-

Si SCs.12,21 

For the thicker IZO layers, effect 2) is less dominant, so the enhancement curves present 

a local peak at 190 nm thickness due to the second maximum of the ARC effect 1). 
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Figure 2. a) Measured values of photocurrent (JSC) and efficiency (PCE) for the test solar cells 

of Table 3 with distinct thickness of the flat IZO top layer separating the a-Si absorber from the 

front LT structures (see Fig. 1). The dashed bars correspond to the respective planar references 

without the photonic structures. b) Evolution of the enhancement of the JSC and PCE with the flat 

IZO layer thickness. The value below the horizontal dotted line corresponds to negative 

enhancement. 

 

Considering now the absolute values of JSC and PCE in Fig. 2a, there are two prominent 

cases highlighted in color, corresponding to the 30 nm (S30) and 190 nm (S190) flat IZO 

thicknesses. Table 4 summarizes the parameters of the I-V curves of these cases. In 

S30, the LT features are placed quite close to the a-Si layer, so the attained JSC is high, 

but the electrical performance (VOC, FF) of the devices is poor due to the ultra-thin flat 
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IZO layer connecting the front contact. The application of the IZO-based LT structures 

reinforces the conductance of such contact due to the incorporation of additional IZO 

material, so the PCE of this cell is highly enhanced due to both optical and electrical 

improvement. In the case of S190, the larger separation between the LT features and 

the a-Si is compensated by both the electrical reinforcement of the IZO top contact and 

the optimized ARC action of the flat IZO layer, thereby enabling the highest PCE gain 

(23.1%) and highest absolute values in JSC (14.8 mA/cm2) and PCE (7.2%) attained in 

this study. 

 S30 with LT S30 Ref S190 with LT S190 Ref 

VOC (V) 0.76 0.75 0.84 0.83 
PCE (%) 5.8 4.9 7.1 5.8 

JSC (mA/cm2) 14.4 11.4 14.8 12.2 
Fill Factor (%) 53.2 57.9 57.4 57.5 

 

Table 4. Main parameters of the I-V characteristics of the most relevant LT-enhanced TFSCs 

analyzed in this work, and of their respective reference SCs (Ref) without LT. 

 

For a more in-depth analysis, Fig. 3 shows the J-V characteristic curves as well as the 

total absorption and quantum efficiency (QE) spectra of the reference and LT-enhanced 

cells of samples S30 and S190. Figs. 3c, d reveal that the LT structures lead to a 

remarkable broadband enhancement of the total light absorbed by the devices, along 

most of the wavelength range of study (350-1400nm). Nevertheless, the “useful” 

absorption occurring in the a-Si layer can only be ascribed to the lower (<800 nm) portion 

of the spectrum, corresponding to the photocurrent-generation wavelength range 

indicated by the QE spectra of Fig. 3c, d. The total absorption at larger NIR wavelengths 

is mostly parasitic, occurring chiefly at the front and rear contacts. The gains in useful 

absorption due to the LT structures translate into a general increment of the QE spectra 

and of the JSC value. 
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Figure 3. J-V curves, in a,b), external quantum efficiency, in c,d), and optical absorptance, in e,f), 

obtained for samples S30 (blue lines) and S190 (red lines). In all plots the solid lines correspond 

to the photonic-structured solar cells and the dashed ones to their respective planar references, 

being the enhancements represented by the grey lines in c-f). Horizontal dashed lines in c, d, e 

and f) indicates 0% of enhancement. 

 

Angular response 

The previously analyzed opto-electronic response of the solar cells was measured under 

illumination incident normal to the cells. Nevertheless, for practical PV applications it is 

important to analyze the cells’ response for oblique incidence, particularly with thin film 

devices that are usually not mounted on sun-tracking platforms. In addition, if the cells 

are integrated on flexible substrates, they can operate in a bent state having a range of 

incidence angles shining throughout their active area. Therefore, if their response is not 

omnidirectional, a JSC reduction in one portion of the active area can cause an overall 

drop in the total current supplied by the cells. In view of this, it is advantageous to 

implement LT structures able to provide JSC values as high and independent as possible 

of the incidence angle12,22. Such aspect is especially relevant for the ultra-thin a-Si 
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TFSCs, as they can be much more flexible than those with thicker absorbers such as c-

Si wafer-based cells. 

The results of the angle-resolved opto-electronic response are summarized in Fig. 4 for 

the samples S30 (blue lines) and S190 (red lines) analyzed in Fig. 3. Figs. 4a, b presents 

the evolution of the J-V curves with the incidence angle, showing that the generated 

current and voltage are maximum for 0º (light impinging normally to the cells’ surface) 

and minimum for 90º (light impinging parallel to the surface). As expected, when the 

incidence angle increases there are increased loses by reflection which reduce the 

power output. The dependence of the JSC, PCE and VOC with the incidence angle are 

shown by the polar plots of Figs. 4c, d, e respectively, while the enhancements in JSC 

and PCE are depicted in Fig. 4f. When looking at Figs. 4c-e, it may appear that the 

presence of the LT structures has little influence on the angular response of the devices, 

as the angular trends of the JSC, PCE and VOC appear similar when comparing the LT-

enhanced (solid lobes) and reference (dashed lobes) devices. However, when observing 

the angular response of the enhancement values in Fig. 4f, it is clear that the LT 

structures are even more beneficial for oblique illumination. For S190, the gains in PCE 

and JSC are quite similar and increase for angles away from the normal incidence (0º), 

reaching respectively 52% and 53.2% at ±70º angle. For S30 the gain in JSC follows a 

similar trend, but the PCE enhancement becomes even higher with increasing angle, 

peaking in 52.2% at ±40º angle, which is mainly due to the fact that the efficiency of the 

planar reference cell decreases more with increasing angle than that of the LT-enhanced 

cell. In this case it is particularly evident the superior PCE gains relative to the JSC ones, 

which is not common when implementing LT schemes, as previously commented, since 

they are mainly targeted for absorption (hence photocurrent) enhancement. 

Nevertheless, here the high PCE gains result from the pronounced improvement 

produced in the conductance of the front transparent contact while also boosting 

absorption in the underneath Si material.  
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Figure 4. (a,b) Evolution with the incidence angle (from 0º to 90º relative to the cells’ surface 

normal incidence with a step of 10º) of the J-V curves corresponding to samples S30 (a) and 

S190 (b). (c-e) Polar plots representing the angular response of the solar cells S30 (blue lines) 

and S190 (red lines) in terms of JSC (c), PCE (d) and VOC (e). The solid lines correspond to the 

photonic-structured solar cells and the dashed ones to their respective planar references. f) Polar 

plot of the enhancements of JSC (solid lines) and PCE (dashed lines) for solar cells S30 (blue 

lines) and S190 (red lines). 

 

4 Conclusions  

An innovative class of photonic-structured TCO contacts is proposed here for application 

in thin film solar cells, and an in-depth analysis of their combined electrical and optical 

role in the photovoltaic performance of the devices has been presented.  
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The cells with a flat IZO spacer layer of 30 and 190 nm, between the LT-structured TCO 

and the a-Si absorber, resulted in the highest JSC and PCE, presenting enhancements in 

these quantities of, respectively, 26.7% and 18.2% (for 30 nm) and 21.4% and 23.0% 

(for 190 nm). In a previous contribution of the authors, only more modest enhancements 

were attained, namely up to 21.5% in JSC with TiO2 photonic structures and 14.4% in 

PCE with IZO structures, since this work employed a conventional (not optimized) 

thickness of the flat IZO separating the LT structures from the Si absorber16. This 

highlights the importance of optimizing not only the parameters of the photonic structures 

but also their precise location in the device. 

A key outcome of light trapping schemes, as that investigated here, is the achievement 

of optically thick TFSCs with physically thin absorber materials; therefore they are 

essential for the development of portable and flexible photovoltaic devices. In view of 

such type of applications, the angular response of our photonic-enhanced solar cells was 

also studied. As expected, for all cases the PCE and JSC decrease linearly with the 

incidence angle, but this reduction in generally lower for the LT-structured cells. 

Therefore, the top gains due to LT are attained at oblique angles, reaching 53.2% 

enhancement in photocurrent (at ±70º incidence angles) for the cell with the optimized 

190 nm thick flat IZO, and 52.2% in efficiency (at ±40º) with the ultra-thin (30 nm) flat 

IZO. 

The novel photonic-structured ZnO-based front contacts presented here are promising 

and can be straightforwardly applied in a wide range of thin-film photovoltaic 

technologies, for instance those based in perovskite materials as already predicted in 

recent modelling works.13,14 
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