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Abstract

Experiments in synthetic biology and microbiology can benefit from protein expression sys-

tems with low cell-to-cell variability (noise) and expression levels precisely tunable across a

useful dynamic range. Despite advances in understanding the molecular biology of micro-

bial gene regulation, many experiments employ protein-expression systems exhibiting high

noise and nearly all-or-none responses to induction. I present an expression system that

incorporates elements known to reduce gene expression noise: negative autoregulation

and bicistronic transcription. I show by stochastic simulation that while negative autoregula-

tion can produce a more gradual response to induction, bicistronic expression of a repressor

and gene of interest can be necessary to reduce noise below the extrinsic limit. I synthesized

a plasmid-based system incorporating these principles and studied its properties in Escheri-

chia coli cells, using flow cytometry and fluorescence microscopy to characterize induction

dose-response, induction/repression kinetics and gene expression noise. By varying

ribosome binding site strengths, expression levels from 55–10,740 molecules/cell were

achieved with noise below the extrinsic limit. Individual strains are inducible across a

dynamic range greater than 20-fold. Experimental comparison of different regulatory net-

works confirmed that bicistronic autoregulation reduces noise, and revealed unexpectedly

high noise for a conventional expression system with a constitutively expressed transcrip-

tional repressor. I suggest a hybrid, low-noise expression system to increase the dynamic

range.

Introduction

Experiments in microbiology commonly call for recombinant expression of a protein of inter-

est with expression levels typical of endogenous proteins (~10–10,000 molecules/cell) [1].

However, many experiments today utilize expression systems that are best suited for one-time

induction of protein overexpression—systems that exhibit nearly all-or-none response to

induction and, often, interference with cellular metabolic networks. For example, consider one

single-molecule experiment requiring the expression of two different fluorescent proteins,
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each on the order of 100 molecules per Escherichia coli cell [2]. The complicated growth proto-

col required optimizing media choices, inducer concentration, washing steps, and induction

times. Yet, in the subsequent experiment, only a small fraction of cells contained a useful

amount of both proteins of interest. In this case and many like it, a protein expression system

with low noise at low expression levels would reduce the time needed to optimize sample prep-

aration protocols and increase data throughput. A low-noise expression system could also

improve yields in applications where protein aggregation is a challenge [3] by making it easier

to tune expression so most cells are producing as much protein as possible without being so

high as to trigger aggregation; some commonly used induction systems exhibit large cell-to-

cell variation even at high expression levels when analyzed at the single-cell level [4].

Autoregulation is a common motif in prokaryotic gene regulatory networks [5]. Steady-

state fluorescence experiments have shown that negative autoregulation by the tetracycline-

inducible transcriptional repressor TetR-EGFP can reduce gene expression noise in Escheri-
chia coli [6,7], which was suggested to result from dosage compensation for plasmid copy

number [8]. A similar network was implemented in Saccharomyces cerevisiae and compared to

regulation of EGFP by constitutively expressed TetR; negative autoregulation reduced expres-

sion noise and linearized the inducer dose-response [9]. With some caveats, noise can be

decomposed to the sum of factors “intrinsic” to expression of the gene of interest (arising from

the randomness of binding, transcription, translation, and degradation) and “extrinsic” cell-

wide properties (e.g. gene dosage and global transcription/translation rates) [8]. Timelapse

experiments showed that negative autoregulation can counter long-lived extrinsic noise [10].

Negative autoregulation has also been shown to shift noise in gene expression to higher fre-

quencies [11] (i.e. an autoregulated gene can respond more quickly to fluctuations, and down-

stream processes that respond to the integrated signal of the autoregulated gene over time can

exhibit less noise).

In cases where autoregulation can reduce noise in the expression of a transcriptional repres-

sor, relatively little attention has been paid to whether or not this is an effective strategy for

reducing noise in downstream genes regulated by the same repressor. Such a network was

found to reduce noise in Saccharomyces cerevisiae [9], but in Escherichia coli repressor expres-

sion noise could be relatively high (e.g. from relatively small cell volume, short mRNA lifetime,

and high extrinsic noise), and amplified downstream in transcriptional cascades [12,13,14]. To

ensure that noise reduction in repressor expression propagates to the gene of interest, one

could express it in fusion with a repressor and proteolytically cleave to achieve one-to-one

expression [10]. Alternatively, bicistronic expression can allow for different expression levels

of repressor and the gene of interest while eliminating transcriptional noise. Polycistronic

transcription is a common motif in operons shown to reduce noise in genetic networks

[15,16] and to be especially important in efficient production of heteromeric protein com-

plexes [17,18].

Autoregulatory, bicistronic expression systems have been implemented in cell-free expres-

sion systems [19] and shown to partially compensate for plasmid copy number variation in

Escherichia coli [6]. However, gene expression noise for such systems has not been analyzed

experimentally and, despite the apparent potential for reducing noise in the expression of a

gene of interest, autoregulatory, bicistronic gene expression is not commonly used to control

recombinant protein expression. I will show with stochastic simulations using parameters typi-

cal for Escherichia coli gene regulation that such an expression system produces a relatively

linearized inducer dose-response, with noise below the “extrinsic noise limit” observed for

chromosomal Escherichia coli genes [1]. I will then introduce one such system implemented

on a plasmid and characterized its dose-response and noise level, showing that ribosome

binding site modification can predictably expand the available dynamic range. Experimental
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comparison to alternative regulatory circuits confirms that bicistronic autoregulation reduces

gene expression noise. Finally, I propose a hybrid system that reduces noise to the extrinsic

noise limit while greatly expanding the available dynamic range.

Methods

Stochastic simulations

Custom MATLAB (The MathWorks, Inc.) scripts were made to simulate exact trajectories of

the reactions in Table 1 using the Gillespie next-reaction stochastic simulation algorithm [20]

with unit volume. Note that with unit volume, concentrations and molecule numbers are

equivalent, and all reactions have units of s–1. An exact algorithm is important as many species

are at low numbers. All reactions were included in all simulations, and the configurations

shown in Fig 1A could be realized within the same framework by setting rates of some reac-

tions to zero (Table 1 indicates the reactions included for each configuration). Table 1 lists

reaction rates used. The bimolecular association rate of 10−5 s–1 is within the range of those

used for typical microbial cell volumes on the order of 1 μm3. Transcription rate kTX1 was set

to 1.7x10−3 s–1 for all simulations except for when it was lowered to simulated weakened, con-

stitutive expression by lowering kTX1 to 6.5x10−6 s–1. Transcription rate kTX2 was also set to

1.7x10−3 s–1 except for in the hybrid repressor scheme where it was 6.7x10−4 s–1. Degradation

rates for mRNA and protein were chosen to match typical Escherichia coli mRNA lifetimes cell

growth rates, respectively. Degradation of inducer-bound repressor results in liberation of one

inducer molecule; DNA-bound repressor is protected from degradation. The translation rate

kTL was set to 0.67 s–1 except when reduced to simulate weakened ribosome binding sites.

Simulations started with 10 unrepressed DNA copies, specified numbers of inducer mole-

cules, and no additional molecules. Inducer molecules were maintained at a constant free

concentration, consistent with rapid equilibration of intracellular and extracellular volumes.

Simulations at the limit of slow equilibration (repressor-bound inducer is never replaced) gave

qualitatively similar results, with a larger noise reduction for the bicistronic, autoregulated sys-

tem (Figure A in S1 Text). Simulation were run for 101,000 minutes with the system state

stored every 1 minute. To implement extrinsic noise, an Ornstein-Uhlenbeck process with

Table 1. List of chemical reactions in stochastic simulations and reaction rates. The network schemes in Fig 1A can be simulated by including the reac-

tions with black squares for (i) constitutive expression, (ii) constitutive repressor, (iii) autoregulated repressor and (iv) bicistronic autoregulation. Rates fixed in

all simulations (when not set to zero) are listed below along with names of variable reaction rates. The number of free inducer molecules was kept constant.

Reaction Type Reaction Scheme Rate (forward/reverse)

i ii iii iv

Transcription D1! D1 + M1 ◼ ◼ ◼ ◼ kTX1

D2! D2 + M2 ◼ ◼ kTX2

Repression D1 + R$ D1: R ◼ ◼ ◼ 10−5 s–1 / 10−4 s–1

D2 + R$ D2: R ◼ 10−5 s–1 / 10−4 s–1

Translation M1!M1 + P ◼ ◼ ◼ ◼ kTL

M1!M1 + R ◼ 0.0333 s–1

M2!M2 + R ◼ ◼ 0.0333 s–1

Induction R + I$ R: I ◼ ◼ ◼ 10−5 s–1 / 10−7 s–1

Degradation M1!Ø ◼ ◼ ◼ ◼ 0.0033 s–1

M2!Ø ◼ ◼ 0.0033 s–1

P!Ø ◼ ◼ ◼ ◼ 1.6667×10−4 s–1

R!Ø ◼ ◼ ◼ 1.6667×10−4 s–1

R: I! I ◼ ◼ ◼ 1.6667×10−4 s–1

https://doi.org/10.1371/journal.pone.0187259.t001
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parameters τ = 200 min, c = 2.5x10−5 was generated [21]. Following previous work [22], this

time series was exponentiated and scaled by its mean. The resulting value was used to scale all

translation rates. The first 1,000 minutes of all simulations were excluded from analysis to

allow simulations to reach equilibrium, which occurs after a few hundred minutes (Figure B

in S1 Text). 100,000 minutes of simulation time was chosen to balance computer time with

acquiring continuous and reproducible noise measurements.

Plasmid engineering

A plasmid was synthesized by Genewiz (New Jersey, USA) by inserting a synthetic sequence

into the pUC57-Amp vector. The high-copy pUC origin of replication was replaced by p15a

(estimated at ~18–30 copies per cell [23,24]). In the pZH501 plasmid, a non-fluorescent pro-

tein is expressed (a fusion of the bacteriophage lambda protein CI and SNAP-tag [25]). The

CI-SNAP ORF in this plasmid was replaced by GFPmut2 [26] to create pZH509; GFPmut2 is

referred to as “GFP” throughout this manuscript. The full DNA sequence of region encoding

inducible GFP expression is included in S1 Text. It includes the hybrid PLtetO-1 promoter (con-

taining bacteriophage λ PL promoter overlapped by two copies of the tetO2 sequence) [23],

open reading frames with independent ribosome binding sites and double stop codons for

GFP and tn10 TetR [27], and the rrnB T1 transcription terminator [28]. Weakened ribosome

binding sites were designed using an online ribosome binding site calculator [29] to generate

plasmids pZH510, pZH511, pZH512 and pZH513 (Table A in S1 Text). Estimated RBS

strengths were calculated using the reverse engineering mode of the RBS Calculator (v2.0,

available at http://www.denovodna.com) using the first 839 bp of the mRNA sequence tran-

scribed from PLtetO-1 including the GFP CDS and the first 50 bp of the TetR CDS. The

Fig 1. Simulated gene expression dose-response and noise in different regulatory circuits. (A)

Schematics of the regulatory schemes explored by stochastic simulation. Genes of interest (including coding

sequence and translation start/stop signals) are shown as rectangles colored black (constitutive expression),

red (repressed by a constitutively expressed transcriptional repressor), green (repressed by an autoregulated

transcriptional repressor) and blue (autoregulated, bicistronic expression). White rectangle, transcriptional

repressor. Gray circle, inducer. Black arrow, promoter. Purple square, transcription terminator. (B) Response

to inducer for all regulated networks in the absence (dashed lines) and presence (solid lines) of extrinsic

noise. Lines are colored according to the gene colors in Fig 1A. (c) Dependence of gene expression noise on

average expression. Line style same as in Fig 1B.

https://doi.org/10.1371/journal.pone.0187259.g001
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predicted RBS strength for TetR was 867, so the number of TetR molecules per cell is predicted

to range from 6.7% (pZH509) to 59% (pZH511) of the number of molecules of GFP (taking

into account only the predicted RBS efficiencies for each CDS). Plasmid modification was

done using PCR and 1- or 2-fragment isothermal assembly [30]. Plasmids were transformed

into Escherichia coli TOP10 (Invitrogen) for fluorescence experiments.

Constitutive GFP expression plasmids pZH514, pZH515 and pZH516 were generated from

inverse PCR of templates pZH509, pZH511 and pZH512, respectively, to eliminate TetR.

Monocistronic, autoregulated plasmids pZH517, pZH518 and pZH519 were generated by

isothermal assembly of one fragment amplified by inverse PCR of pZH509, pZH511 and

pZH512, respectively, and another fragment containing the rrnB T1 terminator and the

PLtetO-1 promoter. Plasmids pZH520, pZH521 and pZH522 with constitutively expressed TetR

were generated following the same protocol except the inserted contained the moderate-

strength, constitutive proB promoter [31]. Insert DNAs were synthesized by IDT (Iowa, USA).

All plasmids were verified by sequencing and sequences are available in S1 Text.

Growth conditions

For most experiments, cells were grown in 1 mL cultures of M9A minimal media (48 mM

Na2PO4, 22 mM KH2PO4, 8.6 mM NaCl, 19 mM NH4Cl, 2 mM MgSO4, 0.1 mM CaCl2) sup-

plemented with 50 μg/ml carbenicillin, 1X MEM amino acids (Without L-Glutamine, Life

Technologies 11130–051) and 0.4% glucose (“M9A” medium) at 30˚C with shaking in 14-mL

polypropylene culture tubes. Overnight cultures were diluted to OD600 = 0.02 and maintained

in exponential growth until observation by flow cytometry or microscopy. For steady-state

induction experiments cells were grown at least 4 h in the presence of inducer before

observation. TetR and GFP expression was induced by the addition of anhydrotetracycline

hydrochloride (ATc, diluted from 100 μM stock in 50% ethanol). When necessitated by long

experiments (e.g. timelapse flow cytometry), cell cultures were occasionally diluted in fresh

media kept at 30˚C to maintain exponential growth. For flow cytometry experiments using the

BioRad S3e cell sorter, cells were grown in M9A media supplemented with 1% rich SOB media

(2% tryptone, 0.5% yeast extract, 8.6 mM NaCl, 2.5 mM KCl, 10 mM MgCl2) and 50 μg/ml car-

benicillin at 37˚C.

Flow cytometry (BD Accuri C6)

Flow cytometry experiments utilized the BD Accuri C6 sampler equipped with a 24-tube

robotic sampler; this device has a linear response to fluorescence intensity and is regularly

calibrated using standardized fluorescent beads. Samples were harvested during exponential

growth (OD600 = 0.1–0.3), diluted between 1:33 and 1:100 in 1 mL PBS pH 7.4 depending on

culture density, and sampled using the “fast” flow setting to capture 100,000 events above a for-

ward scattering height threshold of 7,000. Samples were agitated between each collection time.

The sum of the autofluorescent background and GFP expression was taken to be proportional

to peak area of the FL1 detector using 488-nm laser excitation and a 533/30 nm emission band-

pass filter.

For induction and repression kinetics experiments, ATc was added to uninduced TOP10/

pZH509 cells to 4 nM and samples were taken every ten minutes, increasing ATc to 8 nM and

then to 16 nM after 90 and 170 minutes, respectively. The 16-nM ATc sample was then centri-

fuged and washed twice in media lacking ATc before taking samples every 10 minutes to

observer repression kinetics; there was a 10-minute delay between beginning the wash proto-

col and acquiring the first flow cytometry sample.

A low-noise E. coli gene expression system
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For all flow cytometry experiments, events were gated after data acquisition to fall near the

peak in the histogram for forward-scattering area (FSCA) and side-scattering height (SSCH)

(Figure C in S1 Text). FSCA and SSCH were empirically found to maximize the ability to dis-

criminate between weakly scattering Escherichia coli cells and background events. For all sam-

ples approximately one third of events satisfied the criteria:

FSCA � PeakFSCA

FSCA

� �2

þ
SSCH � PeakSSCA

SSCH

� �2

< 0:25

All analysis shown in Fig 2 used the mean fluorescence intensity from this gated sample,

without subtracting the autofluorescence background of 191 (Figure D in S1 Text). When

comparing ribosome binding sites, fluorescence intensity distributions were fit as the convolu-

tion of the autofluorescence distribution (from non-fluorescent strain pZH501) and a log-nor-

mal distribution (Figure D in S1 Text). The reported GFP expression mean is the mean of the

fit log-normal distributions.

Flow cytometry (BioRad S3e)

Noise comparison to alternative regulatory constructs was measured using the BioRad S3e cell

sorter to assay cellular GFP fluorescence (488 nm excitation with 525/30 nm bandpass filtered

emission). This device has a linear response to fluorescence intensity and is calibrated daily

using fluorescent beads. Overnight cultures were diluted 1:100 and grown for 2.5 hours at 0, 1,

2, 4, 8, 16, 24, 32, 40, 64, 128 and 256 nM ATc (the negative control, pZH501, and the constitu-

tive expression strain pZH514 was grown at 32 nM aTc). Samples were collected at a target of

2,000 events per second for 30,000 events (FSC gain 400, threshold 0.5; SSC gain 280; FL1 gain

Fig 2. Characterization of induction dose-response and dynamics for bicistronic autoregulation

circuit. (A) Schematic of autoregulatory construct, carried on a plasmid. The PLtetO-1 promoter encodes the

bicistronic transcript for GFP and TetR and is terminated at rrnB T1. TetR binding to either of two tetO2 sites

represses transcription. (B) Flow cytometry analysis of pZH509 induction. Approximately a 50-fold change in

expression level across induction range (0–128 nM ATc), with an 8-fold change in ATc (8 to 64 nM) giving a

6-fold increase in GFP expression. (C) Induction kinetics for pZH509 measured by flow cytometry; mean GFP

fluorescence with ATc increased from 0 to 4 nM at 0 min, 4 to 8 nM at 90 min, 8 to 16 nM at 170 min. In all

cases the half-time of approaching equilibrium is ~30 min (occurring at ~30, 120, and 200 min). (D)

Repression kinetics. Cells grown in 16 nM ATc were washed starting at at t = –10 min and observed starting at

t = 0 min. The decrease in fluorescence from t = 10 min to t = 120 min is well fit by exponential decay with a

half-time of 64.1 min.

https://doi.org/10.1371/journal.pone.0187259.g002
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650). Data was gated according to the procedure above, except that a FSCA/SSCH threshold of

0.5625 rather than 0.25 was used to gate approximately one third of events. Noise and mean

were estimated directly from the integrated GFP intensity (FL1A) of events. All samples except

for 0 nM ATc, pZH509 were well above background so it was unnecessary to account for

autofluorescence.

Microscopy

Cells growing exponentially were spotted onto M9A agarose gel pads (3% SeaPlaque GTG,

Lonza) also containing ATc and imaged on a Elyra PS1 microscope (Zeiss) using a 100 mW,

488 nm excitation laser, 100x/1.46 a-plan apochromat oil immersion objective, and Andor

Ixon DU 897 EMCCD. To quantify the intensity of single GFP molecules, cells were imaged

continuously at 100% laser power with 17.5 ms integration times in a 128x128 pixel2 area.

Although most GFP molecules were rapidly diffusing in the cytoplasm, a sufficient number of

molecules produced diffraction limited spots that were detected and fit to a Gaussian PSF

using Fiji [32] with the ImageJ [33] plug-in Thunderstorm [34] (v1.3) with standard parame-

ters for wavelet (B-spline) decomposition with a 4-pixel fitting radius and a detection threshold

of “std(Wave.F1)�1.5”. Integrated fluorescence intensities for 858 detected spots were fit to a

gamma distribution giving a mean spot intensity of 3,669 counts (Figure E in S1 Text). After

verifying that in vivo fluorescence intensity was linear with respect to integration time and

laser intensity, this was scaled to intensities of 1,101 and 110.1 counts for 35-ms images at 15%

and 1.5% laser power, respectively.

Dark background was subtracted from fluorescence images and images were flattened to

adjust for uneven illumination following a previously reported procedure [1]. Cells were man-

ually segmented from brightfield images in Fiji [32] and the integrated fluorescence was calcu-

lated from the same region in the fluorescence image before being divided by number of

counts per single GFP molecule to estimate the total number of molecules per cell. To normal-

ize for cell size to allow comparison with a previous measurement of extrinsic noise [1], the

number of molecules per cell was divided by the cell area and then multiplied by the mean cell

area (area in brightfield images is approximately proportional to cell volume for cylindrical

Escherichia coli cells). Following the procedure for flow cytometry, data was also collected for

the non-fluorescent pZH501 strain, and distribution statistics were estimated by fitting the

convolution of the background fluorescence histogram and a log-normal distribution. Error in

log-normal fitting was assessed by fitting 100 equally sized data sets generated by bootstrap

sampling with replacement (Table B in S1 Text).

Results

Simulating inducer dose-response and gene expression noise

Four gene regulatory circuits (Fig 1A) were modeled in stochastic simulations incorporating

transcription, translation, repressor binding, inducer binding and mRNA/protein degrada-

tion. Reaction rates were chosen to give protein and mRNA numbers and lifetimes typical for

prokaryotic cells, with maximal repressor expression levels similar to those reported (1,000 per

cell) for typical inducible gene expression systems [23]. Repression was modeled as a monomer

binding DNA to inhibit transcription, with the binding of one inducer molecule to the repres-

sor preventing DNA binding, and all simulations included 10 DNA copies to mimic plasmid-

based gene expression. Extrinsic noise was simulated as a stochastic variation in translation

rate(s) [22]. The four modeled regulatory circuits include constitutive expression, repression

by a constitutively expressed transcriptional repressor (a common system used for inducible
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gene expression), repression by an autoregulated transcriptional repressor, and autoregulated,

bicistronic expression of a gene of interest and transcriptional repressor.

One advantage of autoregulated gene expression is a less steep inducer dose-response (i.e. a

“linearized” dose response), which can make it easier to achieve intermediate expression levels

between maximal repression and maximal induction. Gene expression controlled by autoregu-

lated TetR has been observed experimentally in yeast, Escherichia coli, and cell-free systems to

have a linearized inducer dose-response relative to systems with constitutively expressed TetR

[7,9,19,23]. Fig 1B shows the inducer dose-response for simulated, inducible systems. Indeed,

adding negative feedback expands the inducer dose-response by about 1 order of magnitude of

inducer concentration. The bicistronic system exhibits slightly lower expression at low-to-

intermediate inducer concentrations, but otherwise exhibits a similar inducer dose-response

monocistronic system. Inducer dose-response is unaffected by extrinsic noise in translation

rate.

In Fig 1C, the regulated systems are compared to unregulated expression in which the tran-

scription rate is varied to adjust mean expression levels. Protein noise in this simple, unregu-

lated network depends on the number of proteins produced per transcript [8], b, which is the

same for all simulations. The dashed black line for unregulated expression without extrinsic

noise is the intrinsic noise limit [8], s2

m2 �
1þb

m
. In the absence of extrinsic noise, all regulated

schemes exhibit noise above the intrinsic noise limit. However, bicistronic expression is

required to achieve noise levels near the limit, while an autoregulated repressor that separately

represses the gene of interest exhibits as much or more noise than with a constitutively

expressed repressor.

Extrinsic noise leads to a plateau in gene expression noise at high expression levels [10].

This is evident in Fig 1C with all simulations including extrinsic noise converging on the same

noise value. A proteomic study in Escherichia coli found that gene expression noise converges

to a global extrinsic noise limit of ~0.1 [1]. Again, the constitutive repressor and autoregulated

repressor simulations exhibit similar noise levels above the extrinsic noise limit; even though

autoregulation can combat extrinsic noise [10], this noise reduction is not transmitted to the

downstream gene. However, implementing bicistronic expression again reduces noise—this

time below the extrinsic noise limit. In the limit of slowly equilibrating inducer (inducer is not

replenished from the environment after binding repressor), there exists a U-shaped inducer

response that has been observed experimentally for autoregulated gene expression (Fig A in S1

Text) [7]. These simulations omit many molecular details of gene regulation and cellular het-

erogeneity that influence gene expression noise, so the principles of bicistronic autoregulated

gene expression were implemented experimentally to see if noise could be reduced below the

extrinsic limit.

Construction and characterization of an autoregulatory, bicistronic gene

expression system

A schematic of the bicistronic, autoregulated system is shown in Fig 2A in which TetR and GFP

are bicistronically expressed from a TetR-repressible promoter. It is harbored on a plasmid with

the p15a origin of replication, and it is similar in many aspects to systems previously used in

Escherichia coli, Saccharomyces cerevisiae, and cell-free gene expression [7,9,19,23]. GFP expres-

sion during exponential growth (doubling time 63 minutes grown in M9A medium at 30˚C)

was monitored by flow cytometry and fluorescence microscopy. Here, expression was induced

by anhydrotetracycline (ATc), a tetracycline analog that binds TetR more tightly [35], in order

to avoid tetracycline toxicity. However, tetracycline or other weaker-binding analogs may be

preferable in order to minimize the effect of noise in intracellular inducer concentrations.
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The inducer dose-response (Fig 2B) for the system was measured by flow cytometry. It is

similar to that observed for autoregulated TetR expression in Escherichia coli [7], with a

response from ~1–100 nM ATc of almost two orders of magnitude of protein expression. This

response is linearized compared to that of the same promoter regulated by constitutively

expressed TetR [23], where a 5-fold increase in ATc gave over a 5000-fold change in protein

expression. Induction and repression kinetics were also characterized by flow cytometry. Equi-

librium is re-established approximately 30 minutes after stepwise increases in ATc concentra-

tion (0, 4, 8, 16 nM), showing this system could be useful for experiments requiring dynamic

transgene expression (Fig 2C). Cultures with 16 nM ATc were washed and GFP fluorescence

decayed with a half-time of 64.1 min (Fig 2D). Reduction in GFP at the nearly same rate as cell

growth indicates that repression is quickly re-established after ATc removal. These results con-

firm the utility of the bicistronic autoregulatory construct for precisely expressing a transgene

at a desired level and rapidly changing induction levels. However, this comes at the cost of

greatly reduced dynamic range.

Expanding dynamic range through ribosome binding site modification

In order to expand the dynamic range of the bicistronic autoregulated expression system to

cover the useful range for Escherichia coli transgene expression (~10–10,000 molecules/cell),

weakened ribosome binding sites were designed [29] for GFP in order to have a lower relative

level of GFP expression versus TetR from the bicistronic transcript. Simulation results in Fig

3A show the predicted results of weakening ribosome binding sites by reducing translation

rates. In the absence of extrinsic noise, noise as a function of mean expression decreases

because of the reduced number of proteins produced per mRNA. In the presence of extrinsic

noise, noise is observed to go below the extrinsic noise limit (noise at fully induced expression

level) at intermediate inducer concentrations for all translation rates.

This strategy was implemented by designing 4 new ribosome binding sites for a total of 5

different strains. Fig 3B shows expression levels at 3 different ATc concentrations compared to

the predicted translation efficiencies, which are expected to scale linearly with protein expres-

sion level [29]. Experimental expression levels were observed to monotonically increase with

predicted translation efficiencies (Table A in S1 Text). Three plasmids with different expres-

sion levels were chosen to use to measure GFP expression noise and expression levels by

fluorescence microscopy: the original construct pZH509, plus pZH511 and pZH512 with

expression levels of 15% and 43% those of pZH509, respectively.

Reducing gene expression noise below the extrinsic noise limit

GFP expression noise in pZH509, pZH511 and pZH512 was quantified by fluorescence

microscopy calibrated by single-molecule GFP intensities following a protocol previously

applied to the Escherichia coli proteome [1]. Mean GFP expression and expression noise were

estimated by fitting the observed fluorescent signal to the convolution of a log-normal distri-

bution of single-cell GFP expression and autofluoresence of a negative control. Comparing

unrelated cells spotted onto an agarose gel pad, it was immediately apparent that GFP expres-

sion noise was much lower than that typical for constitutive expression from a plasmid at a

range of ATc concentrations for the high-expression pZH509 strain (Fig 3C, 283–7,990 mole-

cules/cell). Low expression noise was evident even for the lowest expression level where auto-

fluorescence significantly contributes to the total signal (Fig 3D, 55 molecules/cell).

Gene expression noise was estimated from the distributions of GFP molecules per single

cell, normalized by cell size (Fig 3E). Remarkably, noise was below the previously observed

extrinsic noise limit for chromosomal genes of ~0.1 [1], across the expression range
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investigated (55–7,990 molecules/cell). This is despite the fact that gene-dosage noise is

expected to be greater for expression from a plasmid than from the chromosome. Combining

mean expression level measurements from flow cytometry and microscopy expression levels, a

range of 55 (pZH511, 0 nM ATc) to 10,740 (pZH509, 128 nM ATc) is achievable. It is outside

the scope of this manuscript, but it is expected that an increase in noise will be observed at

high ATc concentrations; where there is effectively no autoregulation, noise will increase to

the extrinsic limit. It is possible to design a stronger ribosome binding site than that in

pZH509, but expression levels of a single gene beyond ~10,000 molecules/cell could perturb

behavior. It is also possible to design a weaker ribosome binding site than that in pZH511, but

Fig 3. Induction dose-response and noise characterization for bicistronic autoregulation circuits with

a range of expression levels. (A) Simulated gene expression mean and noise for the bicistronic,

autoregulatory construct with different translation rates in the absence (dashed lines) and presence (solid

lines) of extrinsic noise. (B) GFP expression means for strains with mutated GFP ribosome binding sites at

various 2, 8, and 32 nM ATc. Strains are colored by predicted ribosome binding site efficiencies. (C) GFP

expression in unrelated cells for the highest-expression strain pZH509 at 0, 0.5, 8 and 32 nM ATc. Maximum

fluorescence intensities normalized by the mean number of GFP molecules per cell (Table B in S1 Text).

Scale bar 2 μm. (D) Fluorescence of the non-GFP-expressing plasmid pZH501 is compared to the lowest-

expression-level plasmid pZH511 without induction. Intensity scaling identical for both images. Scale bar

5 μm. (E) GFP expression mean (molecules/cell normalized by cell area) and noise for plasmids pZH509,

pZH511, and pZH512 at 0, 0.5, 8 and 32 nM ATc. Dashed line indicates the approximate global extrinsic noise

limit [1].

https://doi.org/10.1371/journal.pone.0187259.g003

A low-noise E. coli gene expression system

PLOS ONE | https://doi.org/10.1371/journal.pone.0187259 October 30, 2017 10 / 15

https://doi.org/10.1371/journal.pone.0187259.g003
https://doi.org/10.1371/journal.pone.0187259


in that case it is very important to control for possible alternative, in-frame ribosome binding

sites.

Although this experiment shows lower noise than the previous measurement of ~0.1, differ-

ences between cell growth protocols and fluorescent proteins could affect measured gene

expression noise. To address this concern, I created plasmids with the alternative regulatory

constructs shown Fig 1A. Constitutive expression was observed from the strong, unrepressed

PLtetO-1 promoter; other constructs were observed at a range of induction levels. I compared

GFP induction (Fig 4A) and found that the inducer dose-response was linearized in both

strains with autoregulated TetR expression. Notably, the bicistronic autoregulation circuit

Fig 4. Comparison of regulatory circuits and increased dynamic range with a hybrid circuit. (A) GFP induction is

measured by flow cytometry and fit using the Hill equation for pZH509 (blue, nh = 0.60 +/- 0.16), pZH517 (green, nh = 0.65

+/- 0.14) and pZH520 (red, nh = 2.24 +/- 0.22). Data and fit curves are normalized to the fit value at 256 nM ATc. Data not

shown for 0 nM ATc (Figure F in S1 Text). (B) Noise dependence on mean expression level; coloring identical to Fig 4A.

Black dot, pZH514 at 32 nM ATc. Noise cannot be calculated for pZH509 at 0 nM ATc because of low expression

(Figure F in S1 Text). (C) A hybrid scheme is proposed (inset) in which repressor (white box) expression occurs both

from autoregulated (black arrow) and relatively weak (gray arrow) promoters that share a transcription terminator (black

box). This achieves an inducer dose-response in the gene of interested (orange) that is less steep than in the absence of

autoregulation (red) while increasing the dynamic range relative to bicistronic autoregulatory circuit (blue). (D) The hybrid

system reduces noise relative to the system with constitutively expressed repressor, with noise at or below the extrinsic

limit (black). All simulations include extrinsic noise.

https://doi.org/10.1371/journal.pone.0187259.g004
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exhibited lower maximal expression than other strains (Figure F in S1 Text), possibly indicat-

ing lower stability or a lower translation initiation rate for the polycistronic mRNA. Noise for

the bicistronic autoregulation circuit was lower than that of the circuit in which GFP and TetR

are transcribed separately, and below the extrinsic noise limit for strong, constitutive expres-

sion (Fig 4B). Unexpectedly, noise in the circuit with constitutively expressed TetR was very

high at intermediate ATc concentrations, reflecting a bimodal distribution in GFP expression

(Figure F in S1 Text). This deviation from the simulated results (Fig 1) possibly results from

slow kinetics of ATc/TetR and TetR/DNA association as well as not accounting for cooperativ-

ity in the simplified network that was simulated.

Discussion

The bicistronic, autoregulatory expression system can be easily adopted to many experiments

and implemented in other organisms; replacing GFP with a gene of interest using modern

polymerases requires two PCR reactions and one isothermal assembly step requiring a few

hours and having nearly 100% efficiency. It is trivial to construct orthogonal systems using

alternative transcriptional repressors for expressing multiple genes. Care must be taken to cali-

brate expression levels in all experiments: one cannot simply replace GFP in one of these plas-

mids with a gene of interest and assume similar expression rates, because translation efficiency

of both the gene of interest and TetR is dependent upon sequences near the ribosome binding

sites. However, these concerns apply to all recombinant gene expression systems.

The largest noise reduction relative to unregulated expression (Fig 1C) occurs at intermedi-

ate induction levels. Thus, to minimize noise one should choose a ribosome binding site that

gives desired expression level within the intermediate induction range (~20–30 nM ATc). This

contrasts with systems regulated by constitutively expressed TetR, where bimodal expression

at intermediate ATc concentrations can lead to a peak in gene expression noise [7,9]. It is strik-

ing that one of the most common methods for inducing a targeted level of recombinant gene

expression—induction by inhibition of a constitutively expressed transcriptional repressor—

utilizes a motif proven to increase gene expression noise. Despite the potential for an underly-

ing bimodal gene-expression distribution, countless experiments using this induction method

employ population averaged assays to measure protein expression levels that are then applied

to cellular-scale models. Autoregulated, bicistronic expression avoids this problem. Here, I

implement this bicistronic, autoregulation approach in Eschericia coli, where polycistronic

expression is common. In principle, it can also be implemented in other organisms using

internal ribosome entry sites (IRES) or by inserting small, self-cleaving amino acid sequences

between the induced gene and the transcriptional repressor [36].

I have shown that negative autoregulation is valuable for linearizing the inducer dose-

response and reducing gene expression noise. However, this comes at the expense of dramati-

cally reduced dynamic range (compare over 5,000-fold for the PLtetO-1 promoter repressed by

constitutively expressed TetR [23] to approximately 50-fold for pZH509, with similar results in

the simulations in Fig 2B). In Fig 4C and 4D I suggest a hybrid gene expression system in

which a repressor is transcribed both constitutively and from a bicistronic, autoregulated pro-

moter along with the gene of interest. The behavior of the system is expected to transition

from that of the bicistronic, autoregulated system (with an infinitely weak constitutive pro-

moter) to that of a system with a constitutively expressed repressor (with a relatively strong

constitutive promoter). Simulations with the addition of a constitutive promoter that has a

transcription rate 40% that of the bicistronic promoter show that this system recovers much of

the lost dynamic range while still exhibiting reduced noise at or below the extrinsic noise limit.

Engineering such an expression system will benefit from the development of promoters
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insulated from surrounding sequences [31] so that the transcription rate from the constitutive

promoter is minimally affected by either transcription from the inducible promoter or the

upstream sequence. Such an expression system would be valuable in experiments requiring

both low gene expression noise and a wide range of expression levels.

Supporting information

S1 Text. Supporting Material. DNA sequences for all constructs, Tables A and B, Figures

A—F.

(PDF)
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