
João Pedro Valadares Barrulas

Bachelor in Computer Science

Analysis of Code Blocks for
Concern Detection in MATLAB Systems

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Miguel Pessoa Monteiro, Assistant Professor,
Faculdade de Ciências e Tecnologia da
Universidade Nova de Lisboa

Co-adviser: Nuno Miguel Cavalheiro Marques, Assistant
Professor, Faculdade de Ciências e Tecnologia
da Universidade Nova de Lisboa

Examination Committee

Chairperson: Professor Artur Miguel Andrade Vieira Dias, PhD
Members: Investigator João Carlos Viegas Martins Bispo, PhD

Professor Miguel Jorge Tavares Pessoa Monteiro, PhD

December, 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositório da Universidade Nova de Lisboa

https://core.ac.uk/display/288868751?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Analysis of Code Blocks for Concern Detection in MATLAB Systems

Copyright © João Pedro Valadares Barrulas, Faculty of Sciences and Technology, NOVA

University Lisbon.

The Faculty of Sciences and Technology and the NOVA University Lisbon have the right,

perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my family and pumpkin

Acknowledgements

Ao longo da elaboração desta dissertação, recebi um apoio e assistência enormes de diver-

sas pessoas a quem quero agradecer. Em primeiro lugar, gostaria de agradecer ao meu

orientador e coorientador, o Dr. M. Monteiro e o Dr. N. Marques, cujas experiências

foram inestimáveies na formulação do tópico e metodologias a considerar. Agradeço a

vossa paciência face às minhas dificuldades e perguntas e também por sempre me terem

oferecido uma perspectiva positiva.

Gostaria de agradecer aos meus colegas, em particular o Bruno e o António, pela co-

laboração, pelos conselhos e ouvidos críticos, apoiaram-me e sempre estiveram dispostos

ajudar. Também aos colegas que conheci numa visita à FEUP por terem contribuído para

a escolha da direção certa.

Aos grupos de anhados (DQHSLN, Habitus est Omnia, anTUNiA) com quem muito

cresci, só mostro arrependimento por não vos ter conhecido mais cedo. Obrigado por

terem contribuído com um pouco de vós para a pessoa que está neste momento a terminar

uma fase crítica e decisiva da sua vida. Na ausência dos nossos momentos de existência e

partilha sei que não estaria aqui assim.

Finalmente, à minha família e cara metade, que me deram todo o apoio na deliberação

sobre o que era certo para mim, além de me darem toda a motivação, comida caseira e

recursos financeiros para descansar o meu sentido fora dos meus estudos. Nunca vos

poderei agradecer o suficiente por todo o apoio que me deram ao longo da vida e de todos

estes anos de faculdade.

vii

Abstract

It is known that the support provided by MATLAB for module decomposition is

limited. Such limitations give rise to code symptoms, which can be explored for the

development of techniques for the detection of concerns, namely unmodularised concerns.

Recent work in the area of concern detection in MATLAB systems identified several

recurring code patterns that can be associated to the presence of specific concerns. Some

of the concerns detected proved to be unmodularised: they cut across the MATLAB

system’s modular decomposition.

The techniques already developed for detecting unmodularised concerns in MATLAB

systems still lack precision and accuracy. As proposed in previous work, the techniques

and tools for pinpointing and representing concern-detection patterns need maturing.

This thesis contributes with a more accurate structure for representing MATLAB code

bases in an intelligent repository for MATLAB code, developed prior to this work. It

perfects the structure representing MATLAB code on which the repository is based, by re-

fining the notion of code block, and collects code patterns found in previous publications

aggregating them into a catalogue. Subsequently, a preliminary study is made on the

application of codes of blocks for the detection of concerns, validating previous concern

related patterns and evaluate the existence of new ones.

Keywords: MATLAB; modularity; concern; cross-cutting concern; token; block; aspect-

oriented programming; aspect mining; aspect; refactoring; SQL; LARA.

ix

Resumo

Sabe-se que o apoio fornecido pelo MATLAB para a decomposição modular é limitado.

Tais limitações dão origem a sintomas no código, que podem ser explorados por técnicas

para a detecção de concerns, nomeadamente, concerns não modularizados. Trabalhos

recentes na área de detecção de concerns em sistemas MATLAB identificaram vários pa-

drões de código recorrentes que podem ser associados à presença de concerns específicos.

Alguns dos concerns detectados mostraram-se não modularizados, isto é, atravessam a

decomposição modular do sistema MATLAB.

As técnicas já desenvolvidas para a detecção de concerns não modulares em sistemas

MATLAB ainda carecem de precisão e exatidão. Conforme proposto em trabalhos anteri-

ores, as técnicas e ferramentas para identificar e representar padrões para a detecção de

concerns precisam de maturação.

Esta tese contribui com uma estrutura mais precisa para representar bases de código

MATLAB num repositório inteligente para código MATLAB desenvolvido antecedente-

mente. Aperfeiçoa a estrutura que representa o código MATLAB no qual o repositório se

baseia, refinando a noção de bloco de código, e coleta padrões de código identificados em

publicações anteriores, agregando-os num catálogo. Posteriormente, é feito um estudo

preliminar sobre a aplicação dos blocos de código na detecção de concerns, validando

padrões e concerns previamente estudados e avaliando a existência de novos.

Palavras-chave: MATLAB; modularidade; concern; concern não modular; símbolo; bloco;

programação orientada a aspectos; mineração de aspetos; aspecto; refabricação; SQL;

LARA.

xi

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Glossary xxiii

Acronyms xxv

1 Introduction 1

1.1 Problem and Motivation . 1

1.2 Approach . 3

1.3 Objectives . 3

1.4 Document Structure . 4

2 MATLAB 5

2.1 About MATLAB . 5

2.2 Syntax . 6

2.2.1 Variables . 6

2.2.2 Matrices and Arrays . 6

2.2.3 Operators . 7

2.2.4 Statements and Statement blocks 8

2.2.5 Functions and Function blocks . 10

2.3 Object-Oriented MATLAB . 12

2.3.1 Class definition blocks . 12

2.3.2 Properties blocks . 13

2.3.3 Methods blocks . 13

2.3.4 Events blocks . 13

2.3.5 Enumeration blocks . 13

2.4 M-Files . 14

2.4.1 Script files . 14

2.4.2 Function files . 14

2.4.3 Class files . 14

xiii

CONTENTS

2.5 Toolboxes . 15

2.6 Summary . 15

3 Concerns and Software Modularity 17

3.1 What is Modularity? . 17

3.2 Concerns . 18

3.3 Cross-Cutting Concerns . 19

3.4 Scattering and Tangling . 19

3.5 Aspect Mining and Aspect-Oriented Programming 20

3.5.1 Cross-Cutting Concern Identification 21

3.5.2 Cross-Cutting Concern Modularization 21

3.6 Summary . 22

4 A Study on Modularity in MATLAB 23

4.1 Cross-Cutting Concerns in MATLAB . 23

4.2 A Token-based Aspect Mining Approach 25

4.2.1 CCCExlorer Tool . 25

4.2.2 M-file Repository . 25

4.2.3 Concern-token mapping . 25

4.2.4 Token patterns . 27

4.2.5 Schizophrenic functions . 27

4.2.6 Intelligent MATLAB code repository 29

4.3 Aspect-Oriented Extensions of MATLAB 30

4.3.1 LARA - MATISSE . 30

4.3.2 AspectMatlab . 31

4.4 Summary . 31

5 System Extension Implementation 33

5.1 Revising CCCExplorer . 33

5.1.1 Refactoring decision . 34

5.1.2 Block feature addition . 34

5.1.3 Considerations and documentation 34

5.2 Extending the Intelligent Repository . 35

5.3 Summary . 36

6 Code Block Analysis and Results 37

6.1 Repository Overview . 37

6.1.1 Blocks . 38

6.1.2 Concern Tokens . 38

6.2 Blocks and Concerns . 40

6.2.1 For and If Statement Blocks . 41

6.2.2 While Statement Block . 42

xiv

CONTENTS

6.2.3 Switch Statement Block . 43

6.2.4 Try-Catch Statement Block . 44

6.3 Schizophrenic Functions . 45

6.4 Summary . 46

7 Conclusions and Future Work 47

7.1 Summary . 47

7.2 Future Work . 49

Bibliography 51

I MATLAB Code Examples 55

II SQL Schema and Queries 71

III Supplementary Data 77

xv

List of Figures

1.1 MATLAB code examples for implementing two versions of a Discrete Fourier

Transform (DFT) function [6] . 2

2.1 Folder organization example . 15

3.1 Figure elements class schema [31] . 19

3.2 Migrating a legacy system to an aspect-oriented system [16] 20

4.1 Illustrative example of a CCC in MATLAB [31] 24

4.2 Intelligent repository systems ER diagram for token related entities [34] . . . 29

4.3 The MATISSE compiler framework [4] . 30

5.1 Partial structure of the class diagram that represents CCCExplorer 35

5.2 Intelligent repository revised . 36

6.1 Token ratio vs Concern - Repository . 39

6.2 Token ratio vs Concern - if and for blocks . 41

6.3 Token ratio vs Concern - while blocks . 42

6.4 Token ratio vs Concern - switch blocks . 43

6.5 Token ratio vs Concern - try-catch blocks . 44

6.6 Token ratio vs Concern - if and for blocks . 45

III.1 Token ratio vs Concern - Parallel Statement Blocks 77

xvii

List of Tables

2.1 Arithmetic Operations . 7

2.2 Relational Operations . 7

2.3 Logical Operations . 8

4.1 Mapping between Concerns and corresponding Tokens revised [15] 26

4.2 Relation between tokens of distinct concerns [15] 27

4.3 Relation between tokens and reserved words [15] 27

6.1 Repository composition . 37

6.2 Block occurrences . 38

6.3 Occurrence of a block with a concern token 40

III.1 Mapping between Concerns and corresponding Tokens [8] 78

xix

Listings

2.1 Value assignment examples . 6

2.2 Array declaration examples . 6

2.3 If statement example . 8

2.4 Elseif statement example . 8

2.5 Switch statement example . 9

2.6 For statement example . 9

2.7 While statement example . 9

2.8 Try-catch example . 10

2.9 Anonymous functions example . 10

2.10 Local functions example . 11

2.11 Nested function example . 11

2.12 Class definition syntax - Properties methods and events 12

2.13 Class definition syntax - enumeration . 13

3.1 Point class [31] . 18

4.1 Schizophrenic function example [31] . 28

I.1 Class Definition Example [11] . 55

I.2 Example 1 - for if and data type verification 60

I.3 Example 2 - for if and data type verification 61

I.4 Example 1 - while and control flow . 62

I.5 Example 2 - while and control flow . 63

I.6 Example 1 - switch and verification of function arguments 65

I.7 Example 2 - switch and verification of function arguments 65

I.8 Example 1 - try-catch and console messages 66

I.9 Example 2 - try-catch and console messages 67

I.10 Example 1 - try-catch and file i/o . 68

I.11 Example 2 - try-catch and file i/o . 69

II.1 Partial schema of the intelligent repository 71

II.2 Repository content - files, tokens, lines and blocks 73

II.3 Repository content - amount of blocks of each type 73

II.4 Repository content - block and token co-occurrence 73

II.5 Number of files with for if and DTV . 74

II.6 Number of files with while and Sys-CF . 74

xxi

LISTINGS

II.7 Number of files with switch and VFArg . 74

II.8 Number of files with try-catch and CM . 74

II.9 Number of files with try-catch and FIO . 74

II.10 Number of files with if+nargin blocks . 75

II.11 Number of directly associated concern tokens to if+nargin blocks 75

II.12 Number of hierarchically associated concern tokens to if+nargin blocks . 75

II.13 Number of files with switch+nargin blocks 76

II.14 Number of directly associated concern tokens to switch+nargin blocks . . 76

II.15 Number of hierarchically associated concern tokens to switch+nargin blocks 76

III.1 GitHub project fetcher . 79

III.2 Non-m-file remover . 84

III.3 Empty folder remover . 85

xxii

Glossary

aspect A modular representation of a cross-cutting concern.

concern A program functionality or set of coherent operations.

cross-cutting concern A concern that cuts across the modular structure of a program.

module Set of routines that make up unique and independent operations.

token A lexical element extracted from code.

weaver Takes instructions specified by aspects and generates the final imple-

mentation code.

word-token A string lexical element extracted from code.

xxiii

Acronyms

AOP Aspect-Oriented Programming.

AST Abstract Syntax Tree.

CCC Cross-Cutting Concern.

DFT Discrete Fourier Transform.

DSL Domain-Specific Language.

ER Entity Relation.

IR Intermediate Representation.

OOP Object-Oriented Programming.

PDG Program Dependence Graph.

PMI Pointwise Mutual Information.

SOM Self-Organizing Map.

UbiSOM Ubiquitous Self-Organizing Map.

xxv

C
h
a
p
t
e
r

1
Introduction

This chapter focuses on introducing this thesis. It starts with a summary of the topic assessed
in this thesis and the premises that motivated this study. Following, a brief description of the
approach used and its objectives. It concludes with an overview of the remaining structure of
the document.

1.1 Problem and Motivation

Analysing and breaking a complex problem or system into parts that are easier to under-

stand, program, and maintain helps to attain a clear separation of concerns at the source

code level. A concern is a concept or cohesive set of functionalities that, along with more

concerns, define the overall behaviour of a system. Modularity is the degree to which a

software system can be divided in modules. Ideally, a system should enclose each concern

in its own module, however programming languages come with some level of modularity

limitations [35, 41].

Bruntink [5] states that no matter how well a software system is decomposed into mod-
ular units, some concern will always cross cut its modular decomposition, in other words,

co-occurrence of concerns within the same module will continue to exist in software

systems, restricting the extent to which one can benefit from the advantages of mod-

ularization. Concerns that cut across a modular decomposition of a software system,

or unmodularized concerns, are named cross-cutting concerns (CCCs). These types of

concerns show symptoms of being tangled with other concerns in the same module or

scattering across multiple modules. Concern detection techniques explore source code

for the identification of these code symptoms, consequently evaluating the presence of

unmodularized concerns [16, 31].

MATrixLABoratory (MATLAB) is a procedural programming language designed with

1

CHAPTER 1. INTRODUCTION

the intention of reflecting the mathematical language and enable fast system development.

Until recently, MATLAB was overlooked by cross-cutting concern detection and modu-

larization studies. Despite the growing attention, current concern detection approaches

still lack much needed efficiency, keeping the door open for further research [31].

Examples of polluted code and bad coding practices as the one presented in figures

1.1a and 1.1b have guided and motivated previous studies on concern detection in MAT-

LAB. This example shows that MATLAB users tend to develop different versions of the

same functions with little differences between them, mostly to adapt the execution of

those functions improving the cost and efficiency of the hardware used to run them,

which can be an indication of bad coding practices [13].

function [y] = dft(x)
y=zeros(size(x));
N=length(x);
t=(0:N-1)/N;
for k=1:N

y(k) = sum(x.*exp(-j*2*pi*(k-1)*t));
End

(a) Code example needed to model a simple
DFT

function [y] = dft_specialized(x)
y=zeros(size(x));
N=length(x);
t=(0:N-1)/N;
quant1=quantizer('fixed','floor','wrap', [18 16]);
t=quantize(quant1, t);
quant2=quantizer('fixed','floor','wrap', [23 20]);
pi_fix = quantize(quant2, pi);
quant3=quantizer('fixed', 'floor', 'wrap', [20 8]);
quant4=quantizer('fixed','floor', 'wrap', [23 10]);
quant5=quantizer('fixed','floor', 'wrap', [24 10]);
quant6=quantizer('fixed','floor', 'wrap', [26 12]);
quant7=quantizer('fixed','floor', 'wrap', [28 14]);
quant8=quantizer('fixed','floor', 'wrap', [32 16]);
for k=1:N

v1 = quantize(quant3, (k-1)*t);
v2 = quantize(quant4, pi_fix*v1);
v3 = quantize(quant5, -j*2*v2);
v4 = quantize(quant6, exp(v3));
v5 = quantize(quant7, x.*v4);
y(k) = quantize(quant8, sum(v5));

end

(b) Code example needed to model specialized
fixed-point bit-widths to parcels of the DFT

Figure 1.1: MATLAB code examples for implementing two
versions of a Discrete Fourier Transform (DFT) function [6]

Source code can be studied and manipulated in many ways and enable extraction of

diverse amounts of information that can be used for detecting those little differences that

add extra functionalities (or concerns) to the code (Chapter 3). Figure 1.1b presents an

implementation of the DFT function with extra code to model specialized fixed-point

bit-widths to parcels of the DFT, which can be identified by the tokens (i.e. lexical ele-

ments extracted from the source code) ’quantizer’ and ’quantize’, an example showing

an additional unmodularized concern entangled with the main concern, the DFT. Con-

cern detection techniques rely on understanding the programming language’s syntax and

modular structures, and plenty of room for research and investigation is still available

for techniques focused on MATLAB systems [6, 31].

2

1.2. APPROACH

1.2 Approach

This thesis proposes to follow up on a token-based approach for concern detection in

MATLAB sources proposed by Monteiro et al. [31] (Section 4.2). The approach relies

on the extraction of tokens with help of a tool, CCCExlorer. This tool developed for the

approach had two main objectives: tokenize MATLAB source code repositories; extract

token metrics from those repositories. The approach also associates specific groups of

tokens to specific concerns, in which case patterns of occurrence of such tokens could be

used to detect the presence of corresponding concerns or CCCs.

CCCExplorer is a metrics-extraction tool for MATLAB mainly based on code tokeniza-

tion capabilities used by Relvas et al. for the development of an intelligent repository for
MATLAB code [34]. The intelligent repository is an SQL database that accommodates

code and concern data in one place, enabling the extraction and study of more complex

information from the code repository [8].

In this thesis, MATLAB is studied at a source code level and the token-based tools are

studied and revised. Sets of files or lines of code have been used as contexts from which

metrics were extracted for consequent evaluation of the presence of concerns. This thesis

focuses on how MATLAB systems can be organized in sets of code blocks, how metrics can

be extracted from those code block structures and how those metrics can be indicators of

the presence of concerns.

1.3 Objectives

This thesis aims to evaluate if MATLAB code blocks can be indicators of the presence of

CCCs and also how they indicate it based on token metrics extracted from within each

type of block. Consequently, it is expected to validate previous conclusions and results

related to the token-based approach, with an emphasis on schizophrenic functions (Subsec-

tion 4.2.5). Also, it contributes with a code block context that is expected to improve the

representation of MATLAB code repository in the database, in view of facilitating future

studies following the present work. Ideally, it will develop further and more complex

patterns beyond tokens and their relation to concerns. The objectives for this thesis are

as follows:

• Study the MATLAB language from a structural, token-based perspective, evaluating

how the language is structured in blocks and hierarchies of nested blocks, as the

role of each type of block in MATLAB systems;

• Study the token-based approach and the tools (CCCExplorer and Intelligent Repos-

itory) developed in previous studies and adapt them to the problem of concern

detection using MATLAB code blocks;

• Refine the concept of MATLAB code block, conceptualize the structures needed to

handle MATLAB code blocks and implement them in the token-based tools;

3

CHAPTER 1. INTRODUCTION

• Tokenize, extract metrics, evaluate results and study the presence of unmodularized

concerns in a MATLAB open source code repository using the revised tools;

1.4 Document Structure

This document addresses the MATLAB language and the detection of concerns as two

complementary subjects, firstly analysing the language for, in the second, studying the de-

tection of cross-cutting concerns. Then follows with a study focused on modularity issues

extant in MATLAB. Subsequent to the current chapter, the structure of the document is

as it follows:

• Chapter 2 is an overview of the MATLAB language, starting with a short description

of its uses and history. It then follows with an introduction to the programming

language’s syntax and components it provides to represent and support modules,

namely how the code can be structured from a perspective of blocks and hierarchies

of nested blocks.

• Chapter 3 overviews concepts related software modularity and concern modular-

ization. It starts by introducing some of the issues that motivated past studies of

software modularity, followed by descriptions and examples of some of the concepts

accessed in this thesis.

• Chapter 4 focuses on the software modularity problem within the MATLAB lan-

guage, describing the state of the art on MATLAB aspect mining and AOP. It

presents a few CCC examples that motivated previous studies on aspect mining

and refactoring of MATLAB systems, followed by tools and methods developed in

a token-based approach.

• Chapter 5 describes the motives that guided the extension and implementation of

blocks of code into the previously mentioned tools. Then it discusses the system

(CCCExplorer) refactoring decisions to enable the implementation of the extension

(code blocks) into the system, providing technical information about the system,

design decisions and structure.

• Chapter 6 analyses the MATLAB repository from the perspective of blocks of code

with the help of the developed extension to the intelligent repository. It presents

a brief overview of the repository and, based on the tailored notion of CCC in

MATLAB, it follows with an analysis on each type of block and the particular case

of schizophrenic functions.

• Chapter 7 presents a summary of the work conducted during this thesis, including

results obtained and opportunities for future work.

4

C
h
a
p
t
e
r

2
MATLAB

The following chapter is an overview of the MATLAB language, starting with a short description
of its uses and history. It then follows with an introduction to the programming language’s
syntax and components it provides to represent and support modules, namely how the code can
be structured from a perspective of blocks and hierarchies of nested blocks.

2.1 About MATLAB

The MATLAB programming language was originally designed as an interactive interface

to numerical libraries and had only one data type, matrices. Over the years the language

has been extended and used for substantial programming projects, becoming on of the

most popular dynamic programming languages [13].

MATLAB has a very large and increasing user base world-wide, comprising scientists,

engineers and students. In 2018 it was estimated that its user base counted on aprox. 3

million users. Also, it has the support of a large and increasing community, currently

with 365.000 contributors and a daily activity of 120 answers, 25.000 downloads and 730

solvers. It is one of the key languages used in education, research and development for

scientific and engineering applications. There are currently over 2000 books based on

MATLAB and its companion software, Simulink, for teachers, students, and professionals.

The large and increasing collection of books reflects the growing use of these tools for

research and development within many scientific areas [9, 26].

MATLAB is a numerical computing environment, designed for fast prototyping and

quick application development. However, this makes it unpractical to write in-depth code

and has a negative impact on developing reliable and reusable programs, and negative a

impact on performance [13].

5

CHAPTER 2. MATLAB

2.2 Syntax

2.2.1 Variables

MATLAB variables do not have type declaration and they have only one data type, which

are matrices. For example, a string in Java is the equivalent of a character array in MAT-

LAB. Variables can either be global or local. They are usually local variables, which

means that they can only be accessed in the function where they are defined. In the case

of global variables, those variables are declared once and all the functions that call it,

share a single copy of the variable. There are some example variable value assignments

displayed in Listing 2.1 [23].

Listing 2.1: Value assignment examples

1 % Numeric value

2 x = 1;

3

4 % String value

5 myText = ’Hello World’;

6

7 % Array with four elements

8 a = [1 2 3 4];

9

10 % Matrix 3-by-3

11 m = [1 2 3; 4 5 6; 7 8 10];

12

13 % Function value assignment to f

14 f = myfun();

2.2.2 Matrices and Arrays

Arrays are matrices that only have one column and each cell of the array is indexed and

can store any type of data. One can also declare arrays in different ways as presented in

Listing 2.2 [23].

Listing 2.2: Array declaration examples

1 % Array with four elements

2 a = [1 2 3 4]

3

4 % Matrix 3-by-3

5 a = [1 2 3; 4 5 6; 7 8 10]

6

7 % Matrix 5-by-1 of zeros

8 z = zeros(5,1)

9

10 % Matrix 2-by-2 of complex numbers

11 c = [3+4i, 4+3j; -i, 10j];

6

2.2. SYNTAX

2.2.3 Operators

Operators are symbols that tell the compiler to perform a certain mathematical or logical

operation. Each operator symbol has its correspondent function that acts as if using the

operator. These operators and elementary operations can be divided into five different

groups [24]:

• Arithmetic Operations are array type operations that perform element-by-element

operation, or matrix type operations, following the rules of linear algebra (Table 2.1);

Table 2.1: Arithmetic Operations

Opt. Array Opt. Matrix Func. Array Func. Matrix
Addition A+B A+B plus(A,B) plus(A,B)
Subtraction A-B A-B minus(A,B) minus(A,B)
Multiplication A.*B A*B times(A,B) mtimes(A,B)
Right Division B./A B/A rdivide(A,B) mrdivide(B,A)
Left Division A. A ldivide(B,A) mldivide(A,B)
Exponentiation A.^B A^B power(A,B) mpower(A,B)
Transpose A.’ A’ transpose(A) ctranspose(A)

• Relational Operations perform element-by-element comparisons between arrays

with the same size or an array with a scalar (Table 2.2);

Table 2.2: Relational Operations

Operator Function
Less than A<B lt(A,B)

Greater than A>B gt(A,B)
Less than or equal to A<=B le(A,B)

Greater than or equal to A>=B ge(A,B)
Equal to A==B eq(A,B)

Not equal to A∼=B ne(A,B)
Array equality - isequal(A,B, ...)

Array equality (treating NaN values) - isequaln(A,B, ...)

• Logical Operations check if a condition was fulfilled, returning 0 (false) or 1 (true)

(Table 2.3);

• Set Operations are used to perform joins, unions and intersections between two

arrays;

• Bit-Wise Operations are used to set, shift or compare a specific bit/value in one

array.

7

CHAPTER 2. MATLAB

Table 2.3: Logical Operations

Operator Function
Logical AND A&B and(A,B)
Logical OR A|B or(A,B)

Logical AND (with short-circuiting) A && B Logical Operators:
Short-Circuit && ||Logical OR (with short-circuiting) A||B

Logical NOT ∼A not(A)

2.2.4 Statements and Statement blocks

Statements require that the programmer use one (or more) condition(s) to evaluate the

code. Each statement block is identified by its corresponding keyword and all require the

’end’ keyword for delimiting the block of code affected by the statement. One line of code

can include several statement blocks, as long as they remain correctly delimited [25].

Conditional statements (Listings 2.3, 2.4 and 2.5) evaluate the condition and control

the flow of the program. For both ’if’ and ’switch’, MATLAB executes the code correspond-

ing to the first true condition, and then exits the code block [25].

Listing 2.3: If statement example

1 % Generate a random number

2 a = randi(100, 1);

3

4 % If it is even, divide by 2

5 if rem(a, 2) == 0

6 disp(’a is even’)

7 b = a/2;

8 end

Listing 2.4: Elseif statement example

1 yourNumber = input(’Enter a number: ’);

2 if yourNumber < 0

3 disp(’Negative’)

4 elseif yourNumber > 0

5 disp(’Positive’)

6 else

7 disp(’Zero’)

8 end

Loop control statements (Listings 2.6 and 2.7) guarantee that the program executes the

same block of code while the condition is evaluated as true. These statements allow the

repetitive execution of a block of code, to create more complex algorithms in MATLAB [25,

28].

8

2.2. SYNTAX

Listing 2.5: Switch statement example

1 [dayNum, dayString] = weekday(date, ’long’, ’en_US’);

2 switch dayString

3 case ’Monday’

4 disp(’Start of the work week’)

5 case ’Tuesday’

6 disp(’Day 2’)

7 case ’Wednesday’

8 disp(’Day 3’)

9 case ’Thursday’

10 disp(’Day 4’)

11 case ’Friday’

12 disp(’Last day of the work week’)

13 otherwise

14 disp(’Weekend!’)

15 end

Listing 2.6: For statement example

1 % conventional for-loop

2 x = ones(1,10);

3 for n = 2:6

4 x(n) = 2 * x(n - 1);

5 end

6

7 % for-loop executed in parallel on M workers (threads)

8 M = 1;

9 y = ones(1,100);

10 parfor (i = 1:100,M)

11 y(i) = i;

12 end

Listing 2.7: While statement example

1 n = 1;

2 nFactorial = 1;

3 while nFactorial < 1e100

4 n = n + 1;

5 nFactorial = nFactorial * n;

6 end

The ’try-catch’ statement (Listing 2.8) is used to catch errors occurring after the ’try’

keyword and before the ’catch’ keyword and specify the alternative behaviour after the

’catch’ keyword, overriding the default error behavior for a set of program statements.

If any statement in a ’try’ block section generates an error, program control goes to the

’catch’ block section, which usually contains error handling statements [22].

9

CHAPTER 2. MATLAB

Listing 2.8: Try-catch example

1 % Catch any exception generated by calling the nonexistent function,

notaFunction.

2 % If there is an exception, issue a warning and assign the output a value

of 0.

3 try

4 a = notaFunction(5,6);

5 catch

6 warning(’Problem using function. Assigning a value of 0.’);

7 a = 0;

8 end

2.2.5 Functions and Function blocks

There are several types of functions available with MATLAB, including local functions,

nested functions, private functions, and anonymous functions. For readability, the ’func-

tion’ and ’end’ keyword are used to delimit the code of each function in a file. The ’end’

keyword is required when: any function in the file contains a nested function; the function

is a local function within a script file (Subsection 2.4.1); the function is a local function

within a function file, and any local function in the file uses the ’end’ keyword [29].

• Anonymous functions are functions that are not stored in a program file, but are

associated with a variable whose data type is of function_handle. Anonymous func-

tions can accept inputs and return outputs, just as standard functions do. However,

they can contain only a single executable statement.

Listing 2.9: Anonymous functions example

1 % Creating a handle to an anonymous function that

2 % finds the square of a number.

3 sqr = @(x) x.^2;

4

5 % Integral of the sqr function from 0 to 1, passing

6 % the function handle to the integral function.

7 q = integral(sqr,0,1);

• In a function file, the first function in the file is called the main function. This

function is visible to functions in other files, or you can call it from the command

line. Additional functions within the file are called local functions, and they can

occur in any order after the main function.

10

2.2. SYNTAX

Listing 2.10: Local functions example

1 % Main function

2 function [avg, med] = mystats(x)

3 n = length(x);

4 avg = mymean(x,n);

5 med = mymedian(x,n);

6 end

7

8 % Local function mymean

9 function a = mymean(v,n)

10 a = sum(v)/n;

11 end

12

13 % Local function mymedian

14 function m = mymedian(v,n)

15 w = sort(v);

16 if rem(n,2) == 1

17 m = w((n + 1)/2);

18 else

19 m = (w(n/2) + w(n/2 + 1))/2;

20 end

21 end

• Nested functions are functions that are syntactically enclosed within a parent func-

tion. Any function in a program file can include a nested function.

Listing 2.11: Nested function example

1 function parent

2 disp(’This is the parent function’)

3 nestedfx

4

5 function nestedfx

6 disp(’This is the nested function’)

7 end

8 end

• Private functions are useful for limiting the scope of a function. A function is pri-

vate when stored in a sub-folder with the name ’private’. This makes the functions

visibility limited to functions or scripts in the folder immediately above the private

sub-folder.

11

CHAPTER 2. MATLAB

2.3 Object-Oriented MATLAB

Object-oriented programming promises to increase MATLAB’s modularity, allowing for

code maintenance reduction and an improvement to code reusability, scalability, reliabil-

ity and flexibility. Major enhancements have been made to MATLAB since 2008 regarding

object-oriented programming to deal with its modularity issues [27].

Creating classes can simplify programming tasks that involve specialized data struc-

tures or large numbers of functions that interact with particular kinds of data. MATLAB

classes support function and operator overloading (i.e. different functions/operators have

different implementations depending on their arguments), controlled access to properties

and methods, reference and value semantics, and events and listeners [9].

Object-oriented programming in MATLAB involves using: class definition files, en-

abling definition of properties, methods, and events; classes with reference behavior,

aiding the creation of data structures such as linked lists; events and listeners, allowing

the monitoring of object property changes and actions. For this purpose, MATLAB or-

ganizes class definition in five modular blocks, each identified and delimited by its own

keyword and the termination with the ’end’ keyword (see detailed example of a class

definition in Listing I.1) [27].

2.3.1 Class definition blocks

Class definition blocks are identified with the ’classdef’ keyword. A ’classdef’ block

contains the class definition and the specification of the class’s attributes and superclasses.

The ’classdef’ block also contains the ’properties’, ’methods’, ’events’ and ’enumeration’

subblocks (Listing 2.12) [27].

Listing 2.12: Class definition syntax - Properties methods and events

1 classdef (Attributes) ClassName < SuperclassName

2 properties (Attributes)

3 PropertyName

4 end

5 methods (Attributes)

6 function obj = methodName(obj,arg2,...)

7 ...

8 end

9 end

10 events (Attributes)

11 EventName

12 end

13 end

12

2.3. OBJECT-ORIENTED MATLAB

2.3.2 Properties blocks

A ’properties’ block defines properties having the same attribute settings. A class block

may have multiple ’properties’ blocks with different attribute settings. The ’properties’

block can specify a default value for each property individually, assign property values

in a class constructor, define properties with constant values, assign property attribute

values on a per block basis, define methods that execute when the property is set, define

the class and size of property values and define properties that do not store values, but

whose values depend on other properties (Listing 2.12) [27].

2.3.3 Methods blocks

Class definitions can contain multiple ’methods’ blocks, each specifying different at-

tribute settings that apply to the methods in that particular block. Methods are functions

that implement the operations performed on objects of a class and are specified in the

’methods block’. Methods, along with other class members, support the concept of encap-

sulation, i.e. class instances contain data in properties and class methods operate on that

data (Listing 2.12) [27].

2.3.4 Events blocks

Events are notifications that objects transmit as a response to something that happens,

such as changing a value of a property or a user interaction with an application. Listeners

execute functions when notified that the event of interest occurs. Class definitions can

contain more than one ’events’ block each with a different attribute settings specification

(Listing 2.12) [27].

2.3.5 Enumeration blocks

Enumerations are used to represent fixed sets of named values, where all the values are

of the same type. MATLAB recommends that enumerations should be put in separate

classes, where a ’classdef’ block would contain a single ’enumeration’ block. These are

called enumeration classes, which can be derived from other classes, inheriting arithmetic

and ordering operations of the superclass (Listing 2.13) [27].

Listing 2.13: Class definition syntax - enumeration

1 classdef (Attributes) ClassName < SuperclassName

2 enumeration

3 EnumName

4 end

5 end

13

CHAPTER 2. MATLAB

2.4 M-Files

M-files are the MATLAB program files, identified with the .m extension, and they can

be scripts, functions or classes. All types of m-files allow the reusing of sequences of

commands by storing them in program files. Scripts are the simplest type of program,

since they store commands exactly as you would type them at the command line. Func-

tions are more flexible and more easily extensible and can be called in other m-files, if

in accordance with MATLAB’s file structuring rules. Classes define a set of objects with

common traits and behaviors. A subclass defines both a subset of objects that exhibit the

traits and behaviors defined by the superclass and additional traits and behaviors not

exhibited by all instances of the superclass [27, 29].

2.4.1 Script files

Scripts are the simplest kind of program file because they have no input or output argu-

ments. They are useful for automating series of MATLAB commands, such as computa-

tions that have to be performed repeatedly from the command line or series of commands

that need referencing. Sometimes they adopt the behaviour similar to a ’main’ function

in Java or C, becoming the entry point to the programs execution [29].

A script can include valid MATLAB expressions, control flow statements, comments,

blank lines and function calls. When execution of the script completes, the variables

remain in the MATLAB workspace [29].

2.4.2 Function files

Function files allow for a practical structuring of a MATLAB program. Instead of having

all operations in a single file there is the possibility of separating each functionality in

separate function files. This facilitates the interpretation and editing of the code, as well

as the programs maintainability, which are similar symptoms to the use of objects in

object-oriented programming (OOP) [29].

The body of a function can include valid MATLAB expressions, control flow state-

ments, comments, blank lines and nested functions. Any variables that you create within

a function are stored within a workspace specific to that function, which is separate from

the base workspace, opposite to scripts [29].

Program files can contain multiple functions. If the file contains only function defini-

tions, the first function is the main function, and is the function that MATLAB associates

with the file name. Functions that follow the main function or script code are called local

functions. Local functions are only available within the file [29].

2.4.3 Class files

Class files describe the characteristics shared by a set of objects. The values contained

in an object’s properties are what make an object different from other objects of the

14

2.5. TOOLBOXES

same class. The functions defined by the class, or methods, are what implement object

behaviors that are common to all objects of a class [27].

pathfolder

@MyClass

MyClass.m

ClassMethod.m

Figure 2.1: Folder organization ex-

ample

There are two ways to make class files de-

tectable by the workspace environment: a folder

that is on the MATLAB path; a folder inside a path

folder named with the ’@’ character and the class

name (Figure 2.1) [27].

An object is an instance of a class. When a pro-

gram executes, the object is created based on its

class and behaves in the way defined by the class.

The values stored in MATLAB variables all belong

to a class. These values include not only what you

might normally consider objects, such as a time series or state space object, but also simple

doubles [27].

Mathworks claims that building MATLAB applications using OO techniques leads to

robust and maintainable applications for others to use and integrate with other related

applications throughout an organization [27].

2.5 Toolboxes

Toolboxes are a set of functions designed for a related purpose provided as packages. A

toolbox is composed of several function files merged into a single file represented by the

file-name extension .mltbx [20].

For example, Parallel Computing Toolbox helps solving computationally and data-

intensive problems using multi-core processors. It adds more functions and statement

blocks for the purpose, such as ’parfor’, which behaves like a ’for’ statement but for multi-

threaded processing, and ’spmd’, a statement block that delimits the code to be processed

in parallel. Toolboxes can be purchased as enhancements for the MATLAB programming

environment. However, in the context of this thesis, they will be referred as a set of

m-files, with the .m file extension, associated to the same project folder.

2.6 Summary

MATLAB is a fast prototyping language that is intuitive and easier to learn thanks to

its similarity to mathematical logic. Like any other programming language, MATLAB

system developers rely on the languages components in order to create mathematical

tools, functionalities and features. This study focuses on MATLAB source code as a

set of blocks and hierarchies of nested blocks, showing MATLAB from a perspective of

structures of blocks. Statement blocks allow the development of more complex algorithms

and can be found on any type of MATLAB source files. Blocks related to classes or

functions provide better modular structures to build MATLAB systems.

15

C
h
a
p
t
e
r

3
Concerns and Software Modularity

This chapter overviews concepts related software modularity and concern modularization. It
starts by introducing some of the issues that motivated past studies of software modularity,
followed by descriptions and examples of some of the concepts accessed in this thesis.

3.1 What is Modularity?

In software engineering, decomposing a large software system into smaller parts is an

essential way of facilitating the management and evolution of complex software systems.

Separating system functionalities in modules facilitates independent simultaneous work

on the same system, team specialization, localized change, systematic testing and quality

assurance, and work planning [40].

Modularity is the degree to which a system’s components may be separated and re-

combined. The concept of modularity is mainly used to reduce complexity by dividing a

system into varying degrees of interdependence and independence and hiding the com-

plexity of each part behind an abstraction and interface [3].

Tarr et. al. point out that we can decompose a software system in small modular com-

ponents, however, some functionality will always cut across the module decomposition.

In other words, some functionality will persist in not being captured cleanly within a

single module and, consequently, its code will be scattered throughout other modules,

which is a clear indicator of limitations in the system’s modular decomposition. In an

ideal scenario, a single concern is what is intended to be captured in a single module [39].

17

CHAPTER 3. CONCERNS AND SOFTWARE MODULARITY

3.2 Concerns

A concern is defined as any abstraction, concept or cohesive set of functionalities that is

ideally enclosed in its own module, for the sake of comprehensibility, ease of maintenance

and evolution. It can be a feature, functionality, property, requirement or, for example,

as in OOP, an object. Essentially, a program consists of multiple concerns that define its

overall behaviour [31, 32, 41].

The Java code example in Listing 3.1 depicts the main concern of class Point, related

to the variables, functions and/or lines of code that deal with the values of x and y. These

variables represent the coordinates of an object of class Point in the 2-dimensional space.

It is also represented another concern that addresses, as the variable name suggests, the

display of an object of class Point in the 2-dimensional space, which is highlighted in

grey.

Listing 3.1: Point class [31]

1 public class Point implements FigureElement {

2 private int x, y;

3 private Display display;

4 public Point(int x, int y) {

5 this.x = x;

6 this.y = y;

7 }

8 public Point(int x, int y, Display display) {

9 this(x, y);

10 setDisplay(display);

11 }

12 public void setX(int x) {

13 this.x = x;

14 display.update(this);

15 }

16 public void setY(int y) {

17 this.y = y;

18 display.update(this);

19 }

20 public void setDisplay(Display display) {

21 this.display = display;

22 }

23 public void moveBy(int dx, int dy) {

24 x += dx; y += dy;

25 display.update(this);

26 }

27 }

These concerns are easily identified, however, they coexist in the same modular struc-

ture that is the class Point. Ideally, both concerns should be decomposed in their respec-

tive modules, being for example, separated in two classes: one deals with the coordinate

values; the other is responsible for displaying the coordinates in a 2-dimensional space.

18

3.3. CROSS-CUTTING CONCERNS

3.3 Cross-Cutting Concerns

Cross-cutting concerns (CCCs) are concerns that do not align with the primary decom-

position and tend to cut across the decomposition units. Most CCCs cannot be cleanly

decomposed from the rest of the system in both the design and implementation. This

is due to the lack of modularization capabilities of programming languages regarding

some concerns. The usual symptoms of the presence of a CCC in source code are code

scattering and code tangling, which are explained further in section 3.4 [31, 43].

In the example code in Listing 3.1 is highlighted in grey the display concern, which is

tangled with the main concern of class point. Knowing that the display concern presents

an entanglement symptom, it is designated as a CCC.

3.4 Scattering and Tangling

Tangling is a phenomenon that is observed when other concerns are mixed in the code

with the main concern, which makes it difficult to read and comprehend all the module’s

concerns. An extreme case of the presence of this symptom is presented in Figure 1.1b.

Scattering refers to code regarding some concern that is fragmented throughout several

source files, sometimes related to sections of code that are similar, placed in different

locations but with little differences [31].

Display

*

2Point

getX()
getY()
setX(int)
setY(int)
moveBy(int, int)

Figure

makePoint(..)
makeLine(..)

FigureElement

moveBy(int, int)

Line

getP1()
getP2()
setP1(Point)
setP2(Point)
moveBy(int, int)

Figure 3.1: Figure elements class schema [31]

To better understand what scattering is, the example in Figure 3.1 is analyzed. Consid-

ering that the display concern would also be present in another class, for instance, a class

’line’ which is also a figure element. Assuming a programmer would want to change the

’update’ method - change the method call names from ’update’ to ’render’ and to include

some extra information. These changes become a nightmare since the display concern is

scattered across the system’s code base. In more complex software systems there could be

hundreds of places where this change would have to be made instead of just one.

19

CHAPTER 3. CONCERNS AND SOFTWARE MODULARITY

3.5 Aspect Mining and Aspect-Oriented Programming

Aspect mining is a fundamental activity that software developers and maintainers perform

and results in the identification and location of CCCs as latent aspects of the code. An

aspect is a modular representation of a CCC that otherwise would not be modularized,

depending on the system, mechanism or language available. Aspects tend to be properties

that affect the performance or semantics of the components in systemic ways rather than

units of the systems functional decomposition [16, 31].

The display concern from Listing 3.1 is an example of a CCC. Although aspect min-

ing techniques are used to detect the display concern, it does not necessarily need to be

modularized using aspects. Aspects are complementary composite modules that serve

as extensions to the system’s programming language, containing integral specifications

that implement complementary functionalities of the system. The display concern imple-

mented using aspects would be as simple as writing the specifications needed to insert the

code regarding the concern in the correct lines, but it could also be implemented using

the Java language’s capabilities. Imagining that there is additional code in the example

to specify unit types, changing how the value is stored for each coordinate, x and y, and

the specification is different between each method. This code would add an additional

concern regarding data type specifications, cutting across the module’s main concern,

therefore another CCC. Such a concern would probably need the help of aspects to be

modularized [18, 31].

There are several aspect mining techniques that allow for the location and identifica-

tion of CCCs 3.5.1. Typically, software developers and maintainers try to locate source

code related to a concern using a variety of ad-hoc techniques such as scrolling through

files, following call graph links, analyzing dynamic information or searching files using

mechanisms that perform repetitive searching tasks[31, 36].

LEGACY system LEGACY system BASE system

Aspect Aspect Aspect

Aspect
Mining

Refactoring
to Aspects

Figure 3.2: Migrating a legacy system to an aspect-oriented system [16]

Aspect-Oriented Programming (AOP) came up in the 90s as a paradigm aimed at

making CCCs explicit using code generation techniques designed to take instructions

specified by aspects, generate the final implementation code and including it in the appli-

cation logic. This was proposed as an approach to modularize CCCs and thus eliminate

the negative symptoms of scattering and tangling in systems [6, 13, 14, 16, 31, 40].

20

3.5. ASPECT MINING AND ASPECT-ORIENTED PROGRAMMING

3.5.1 Cross-Cutting Concern Identification

Aspect mining techniques seem to have in common the search for symptoms of CCCs,

using either techniques from data mining and data analysis, like formal concept analy-

sis and cluster analysis, or more classic code analysis techniques, like program slicing,

software metrics and heuristics, clone detection and pattern matching techniques, dy-

namic analysis, and so on. Bruntink et al. evaluated the suitability of clone detection

techniques that deal with source code of the system, data that is acquired by executing or

manipulating the code, for the identification of CCCs [5, 16]:

• Text based - perform little or no transformation to the ‘raw’ source code before

attempting to detect identical or similar (sequences of) lines of code. Typically,

white space and comments are ignored;

• Token based - apply a lexical analysis (tokenization) to the source code, and subse-

quently use the tokens as a basis for detection (technique application in previous

work carried out by Monteiro et al. [32]);

• AST based - use parsers to first obtain a syntactical representation of the source

code, typically an abstract syntax tree (AST). The detection algorithms then search

for similar sub-trees in this AST;

• PDG based - go one step further in obtaining a source code representation of high

abstraction. Program dependence graphs (PDG’s) contain information of semantical

nature, such as control and data flow of the program (technique application in

previous work carried out by Shepherd et al. [36]);

• Metrics based - are related to hashing algorithms. For each fragment of a program

the values of a number of metrics is calculated, which are subsequently used to find

similar fragments (technique application in previous work carried out by Monteiro

et al. [31]).

Data extracted from these techniques can also be used for developing more sophisti-

cated aspect mining techniques, using machine learning algorithms, as already studied

by Marques et al. [8]

3.5.2 Cross-Cutting Concern Modularization

As previously implied, conventional programming techniques lack modularization capa-

bilities for some CCCs, which lead to the development of aspect-oriented tools to help

with that problem, such as language extensions and aspect-oriented features [13, 17].

The most well known aspect-oriented languages are AspectJ [2], for Java, and As-

pectC++ [38], for C++. They serve as extensions of the programming language and

provide support for modular implementation of a range of CCCs. MATLAB has also

21

CHAPTER 3. CONCERNS AND SOFTWARE MODULARITY

been a study subject to aspect-oriented extensions. Aslam et al. contributed with Aspect-

Matlab [1], a novel aspect-oriented language that serves as an extension to MALTLAB.

These three extensions are language dependent, meaning that aspects written with these

extensions can only be applied to each ones respective language.

However, Cardoso et al. contributed with LARA [7], a Domain-Specific Language

(DSL) for source-to-source transformations and analysis, inspired by AOP concepts. LARA

explores the idea of the possibility of having a single AOP language capable of selecting

points of interest and apply source code transformations agnostic to the target language.

LARA aspects are applied using weavers, translating the abstract concerns described in

LARA aspects to a concrete language [4].

When writing an aspect with these language extensions, the structure of a CCC is

expected to be more clear and easy to understand. Aspects also yield a more modular

structure, making it possible to develop implementations of crosscutting functionality

that can be plugged and unplugged into the system [18].

3.6 Summary

No matter how well structured a software system is, some functionality, or concern, will

persist on not being enclosed in its own module. This tenacity comes with many prob-

lems that motivate the development of techniques for solving those problems. Existing

aspect mining and concern modularization techniques focused on the MATLAB language

still have some limitations, making room for further researching and expansion of those

techniques.

22

C
h
a
p
t
e
r

4
A Study on Modularity in MATLAB

The following chapter focuses on the software modularity problem within the MATLAB lan-
guage, describing the state of the art on MATLAB aspect mining and AOP. It presents a few
CCC examples that motivated previous studies on aspect mining and refactoring of MATLAB
systems, followed by tools and methods developed in a token-based approach.

4.1 Cross-Cutting Concerns in MATLAB

Currently aspect mining is well advanced for systems that follow the OOP paradigm,

but for procedural languages like MATLAB it is a different situation. Due to the specific

characteristics and different typical uses of MATLAB, a need to rethink the notion of CCC

emerged, which also required fresh approaches for their identification in MATLAB code

bases. It should be noted that object-oriented MATLAB (Section 2.3) is a technology that

still needs maturing [31].

Figure 1.1a presents the code needed for the implementation of the Discrete Fourier

Transform (DFT) algorithm, widely used in signal processing systems. Figure 1.1b another

implementation of the same DFT algorithm but with specialized fixed-point bit-widths to

different parameters (or sets of parameters) of the algorithm. This is a common practice

for MATLAB users since these specifications are usually needed to satisfy various require-

ments, namely low power dissipation, low energy consumption, better performance and

fewer use of hardware resources, therefore, it is very common to hold different versions

of the same algorithm [6].

As implied in sections 3.2, 3.3 and 3.4, a single module should hold a single concern,

otherwise other concerns might cut across the module’s main concern. These other con-

cerns are CCCs, since are not enclosed within their own module. The example in figures

1.1a and 1.1b is an extreme case of code polluted with a secondary concern, the data type

23

CHAPTER 4. A STUDY ON MODULARITY IN MATLAB

specification of each portion of the DFT function, and cramps the comprehension of the

function itself. This concern can be identified by the functions ’quantizer’ and ’quantize’

that are used for specializing fixed-point bit-widths in MATLAB.

Figure 4.1 shows an example of a MATLAB function in two versions where the value

returned for a given parameter value is the same in both cases. At the left a clean version

is shown, whose code relates to its core concern exclusively, which is to compute the result

of the exponential function applied to a specific parameter value using the first N terms

of the power series expansion. At the right, a tangled version is shown also including a

Visualization concern (see entry 7. in Table 4.1), which in this case means preparing a

call to function ’plot’, since ’plot’ pops open a new window with the plotted data. The

code pertaining to this secondary concern is highlighted in grey. The extra code is mostly

about building the vector data required for building a two-dimensional representation of

the function within a given range, which will feed the ’plot’ function at the end [31].

function z = expo(x,n)
y = 1;
for i = 1:n

y = y + x^i/factorial(i);
end
z = y;

function z = expo(x,n,p)
P(1) = 1; Y(1) = 1;
for i = 1:n

P(i+1) = P(i)+1;
Y(i+1) = Y(i) + x^i/factorial(i);

end
z = Y(n+1);
if (p) plot(P,Y) end

Figure 4.1: Illustrative example of a CCC in MATLAB [31]

The tangled version defines an additional (and of optional use) parameter to support a

choice between creating and not creating the plot representation. The sole motivation for

this parameter, like the distinct constructors in the Java example from Listing 3.1, is sup-

port to one of the primary advantages of modularity: (un)pluggability of the functionality

concerned [31].

24

4.2. A TOKEN-BASED ASPECT MINING APPROACH

4.2 A Token-based Aspect Mining Approach

Monteiro et al. describe an exploratory, use of the token-based approach to concern

detection for MATLAB systems [32]. They propose a notion of CCC tailored for the

specific characteristics of MATLAB code bases. An analysis of data obtained from a tool,

CCCExplorer, using the approach in a 35 thousand MATLAB m-file repository indicated

that the approach was valid for detecting several kinds of CCCs in MATLAB systems.

4.2.1 CCCExlorer Tool

CCCExplorer is a tool written in Java and it was developed and introduced by Monteiro

et al. [31] as a concern detection, token-based aspect mining tool in MATLAB systems.

Initially, it parsed and decomposed MATLAB source files into sequences of tokens, i.e.,

lexical elements (words, punctuation and grammar rules of the language) extracted from

the code, and allowed the computation of metrics based on those tokens.

The need for maturing the concern detection technique raised and it has been reflected

in the evolution of CCCExplorer. Now, it can generate a series of SQL insert commands

to create an SQL database that reflects the m-file repository, settling it as An intelligent
repository for MATLAB code developed by Relvas et al. [34]. This intelligent repository

opens the door to studies on more complex aspect mining techniques.

4.2.2 M-file Repository

The m-file repository is composed of publicly available MATLAB files extracted from

open source platforms like Sourceforge [30] and GitHub [12]. For the study conducted

during this thesis, the need to acquire more recent m-files that could also contain OO

MATLAB code examples emerged, increasing the previous 35 thousand m-file repository

to approximately 65 thousand m-files.

This was achieved with an open source script, GitHub project fetcher, adapted to

download projects that contain any m-files and delete any other files and empty folders

(Scripts III.1, III.2 and III.3). This script may also be used to continuously enrich the in-

telligent code repository and take advantage from UbiSOM’s data streaming capabilities.

4.2.3 Concern-token mapping

The extraction of lexical elements allowed a study where they were able to associate

specific groups of tokens to specific concerns, in which case patterns of occurrence of

such tokens could be used to detect the presence of the corresponding concerns [31, 32].

The tokens considered are mostly function names from MATLAB libraries and tool-

boxes, since they provide stronger guarantees that the meaning assigned to each token is

consistent across the repository analysed, thus providing coherent associations to specific

25

CHAPTER 4. A STUDY ON MODULARITY IN MATLAB

concerns. The analysis resulted in a first version of the concern-token association pre-

sented in Table III.1. During this thesis, the tokens included in this table are designated

as concern tokens [32].

Table 4.1: Mapping between Concerns and corresponding Tokens revised [15]

Concern Sub-concern Tokens
1. Verification of
function arguments
and return values

nargchk, nargin, nargout, nargoutchk, varargin, varargout

Data type handling
2. Specialization

double, fi, int8, int16, int32, int64, quantize, quantizer, single,
uint8, uint16, uint32, uint64

3. Verification
Identification and
numeric types

cast, class, intmax, intmin, isa, isboolean, iscell, ischar, isfloat,
isinf, isinteger, islogical, isnan, isnumeric, isobject, isreal, isstr,
isstruct, realmax, realmin, typecast

Matrices
and arrays

isempty, isfield, isrow, isscalar, isvector, length, ndims, numel,
range, size

4. Dynamic properties eval, evalc, evalin, feval, inline
5. Console messages annotation, assert, disp, display, error, last, lastwarn
6. Printing orient, print, printdlg

7. Visualization

2D and
3D plots

Animation getframe, movie
Contour plots clabel
Data distribution
plots

hist, histogram, scatter

Line plots errorbar, fplot, gplot, loglog, plot, plot3, semilogx, semilogy
Polar plots polar
Surfaces, volumes
and polygons

mesh, meshgrid, surf

Formatting and
Annotation

Axes appearance axis, box, datetick, figure, grid, plotyy, subplot
Titles and labels legend, line, rectangle, text, title, xlabel, ylabel, zlabel

Graphic
objects

Identification gca, gcbf, gcbo, gco
Properties reset, set
Programming /
output

cla, clf, close, hold, ishold, newplot

Images frame2im, image, iminfo, imread, imwrite
Visual
exploration

datacursormode, pan, rotate, rotate3d, zoom

8. File I/O
diary, fgetl, fgets, fopen, fprintf, fread, fscanf, fwrite, hgload,
hgsave, load, save, saveas, uisave

9. System

Code analysis run, timerfind
Control flow break, next, pause, wait, xbreak
Data import and export clear, who, whos
Dates and time addtodate, clock, date, etime, now, step
Debugging dbstop, echo
Entering commands ans, slist, stop
Files and folders exist, rehash
Functions inputname, isvarname, mfilename, mislocked, mlock, symvar
Performance and memory cputime, memory, pack, profile, tic, toc
Scripts batch, input
Startup start
Using external libraries calllib, libisloaded, loadlibrary, mex, mexext, unloadlibrary

10. Memory allocation /
deallocation

delete, global, ones, persistent, zeros

11. Parallelisation
cancel, codistributed, codistributor, gather, labindex, labProbe,
matlabpool, numlabs, parfor, pload, pmode, promote, resume,
sparse, spmd, subsasgn, subsref

For every file in the repository, a number of metrics was computed, such as the number

of times a given token appears, the number of different tokens in each m-file, etc. These

metrics allowed a top-level observation of the symptoms (scattering and tangling) within

the MATLAB code base with insigth on Table III.1. It indicated a significant proportion

of MATLAB code that comprised promising candidates for extraction to future aspectual

extensions of MATLAB [31].

26

4.2. A TOKEN-BASED ASPECT MINING APPROACH

Jota [15] improved the table of concerns and concern tokens (Table III.1). Table valida-

tion was performed using pointwise mutual information metric (PMI) [44] as a linguistic

computation method, excluding tokens that presented few occurrences, thus focusing the

aspect mining technique in more relevant points of interest. Furthermore, it clarified and

improved the token-concern relationships, resulting in Table 4.1, more focused on the

m-file repository.

4.2.4 Token patterns

Concurrently with the validation of the token-concern relation table, Jota [15] also stud-

ied token patterns in m-files. The study was focused on calculating the PMI from the

co-occurrence of pairs of tokens belonging to different concerns, also deeming more in-

teresting candidates for detecting CCCs. Co-occurrence of concern tokens belonging to

the same concern initially seem weaker candidates for evaluating the presence of CCCs,

although some have been already identified (Figure 1.1b).

Table 4.2: Relation between tokens of
distinct concerns [15]

Tokens PMI Co-occurrences
matlabpool - spmd 16 6
error - nargchk 8 1005
zeros - size 4.8 4106
ones - size 4.7 2053
nargin - error 4.7 1725
ones - length 3.9 1316
zeros - length 3.4 1944

Table 4.3: Relation between tokens and
reserved words [15]

Token and keywords PMI Co-occurrences
otherwise - error 7.1 2488
elseif - isnumeric 5.6 415
disp - try 5.4 1001
catch - disp 5.3 875
elseif - iscell 5.2 273
elseif - isa 5.0 343
elseif - isstruct 5.0 208
elseif - ischar 4.9 427
if - nargin 4.9 15196

Table 4.2 presents the pairs of concern tokens from distinct concerns that presented

higher PMI value. The higher PMI value the more frequent a concern token is accom-

panied by the other concern token. The first row (corresponding to the pair of con-

cern tokens ’matlabpool’ and ’spmd’) shows too few co-occurrences in the file repository,

but when they occur it is usually in compliance. Although concern tokens ’error’ and

’nargcheck’ demonstrate lower PMI, they occur more times together, deeming a strong

candidate for studying aspectual features.

4.2.5 Schizophrenic functions

As previously demonstrated, a practice familiar to MATLAB users is to create functions

with (un)plugable functionalities, sometimes with several functionalities. In Figure 4.1 is

one example of a function that its additional functionality depends on a variable (p)

treated as boolean to toggle on or off the additional functionality, which is the data

plotting. This function has no knowledge on how it is going to behave until it is called, a

behaviour referred in this thesis as schizophrenic.

27

CHAPTER 4. A STUDY ON MODULARITY IN MATLAB

Schizophrenic functions are functions that hold several behaviours in their implementa-

tion, but the execution flow varies according to the arguments it is called with. Studying

and observing this behaviour showed that the use of conditional statements, such as ’if’

and ’switch’ statements, are essential to verify the function’s arguments and define the

function’s flow. Listing 4.1 presents another example of a schizophrenic function that

includes several CCCs. The ’feedback’ input variable is responsible for toggling some

form of feedback/messages to the user and its value depends on the number of arguments

the function is called with.

Listing 4.1: Schizophrenic function example [31]

1 functionEO = gaborconvolve(im, nscale, norient, minWaveLength, mult,

sigmaOnf, dThetaOnSigma , feedback)

2 if nargin == 7

3 feedback = 0;

4 end

5 ... % original code removed

6 if ~isa(im,’double’)

7 im = double(im);

8 end

9 ... % original code removed

10 clear x; clear y; clear theta; % save a little memory

11 ... % original code removed

12 for o = 1:norient, % For each orientation.

13 if feedback

14 fprintf(’Processing orientation %d \r’, o);

15 end

16 ... % original code removed

17 end

18 if feedback, fprintf(’ \r’); end

Several function examples presenting the use of conditional statements concurrently

with ’Verification of function arguments and return values’ functions (entry 1. in Table

4.1) (mainly the ’nargin’ function, which returns the function’s number of input argu-

ments) confirmed the relation between these patterns and the schizophrenic behaviour

(Listing I.6). Jota [15] validated this practice and use of such patterns during his study,

where he observed a relevant number of occurrences of the token pattern ’if + nargin’

(Table 4.3).

Functions such as the plotting example (Figure 4.1) do not contain any token-based

information that can be considered consistent throughout MATLAB systems, except for

the token ’plot’ (entry 7. in Table 4.1). The pattern ’if + nargin’ is consistent in MATLAB

systems and a more accurate indicator of the presence of schizophrenic functions, which

receive further attention in this thesis (Section 6.3).

28

4.2. A TOKEN-BASED ASPECT MINING APPROACH

4.2.6 Intelligent MATLAB code repository

The intelligent repository was developed by Relvas et al. [33, 34] with the purpose of

accommodating in one place all the data needed to perform exploratory analyses on the

MATLAB code base, by means of advanced analysis components. Figure 4.2 shows the

entity-relation diagram (ER diagram) that partially makes the structure of the intelligent

MATLAB repository. Searching token patterns in the code repository tended to become

increasingly elaborate and structured, since we are always interested in finding new pat-

terns, perform studies and check results. This opens the door to wider metric extraction

from the code base [33].

Lines_tokensLines_mfiles Tokens

ConcernsAnnotations

hashasin

identifydescribe

Blocks_mfiles

Models Clusters

tag by

detect

is amodel desc cluster text

id_block mfile id_line line code ci id_token name

id_concern

name

annotation

text

Figure 4.2: Intelligent repository systems ER diagram for token related entities [34]

The repository management system supports intelligent queries over code files asso-

ciating them to higher level concepts, supported by a web interface. This is achieved by

the synergistic combination of a token extraction system, a relational database and the

advanced exploratory capabilities of a Self-Organizing Map (SOM) [19]. The database is

built on top of a variation of the SOM algorithm, the Ubiquitous Self-Organizing Map

(UbiSOM) [37], that allows data streaming into the database of future MATLAB files [8].

The part responsible for storing information related to source code and code structur-

ing, which is the most relevant for this thesis, is composed of the following tables:

• Concerns - holds information about the concerns from Table 4.1;

• Tokens - holds information on individual (unique) tokens in the repository and

associates tokens with the ’Concerns’ table as presented in Table 4.1. Tokens not

related to a concern have no association to the ’Concerns’ table;

• Blocks_mfiles - holds information about an m-file, treating it as a single block;

• Lines_mfiles - holds information on each line of a an m-file (Blocks_mfiles), its line

number and the code string for ease of display in the web interface. ’Blocks_mfiles’

and ’Lines_mfiles’ are sufficient to re-write each m-file of the repository;

29

CHAPTER 4. A STUDY ON MODULARITY IN MATLAB

• Lines_tokens - links the token-concern mapping (Tokens and Concerns) to the lines

of each m-file (Lines_mfiles), associating a token to a line with the help of its weak

key, ’ci’, that stands for "coluna inicial"(initial column). It is the most important

table that connects the aspect mining technique to the source code and enables the

extraction of metrics.

4.3 Aspect-Oriented Extensions of MATLAB

Previous studies on aspect mining and AOP focused on MATLAB demonstrated sub-

stantial development of aspect-oriented extensions for modularization of CCCs in the

procedural language. Aslam et al. [1] and Cardoso et al. [7] contributed with two of the

most relevant languages that serve as aspectual extensions to MATLAB.

4.3.1 LARA - MATISSE

MATISSE is LARAs weaving engine for MATLAB code and relies on LARA aspects for

specifying data types, shapes, and code instrumentation and specialization. Currently, in

MATLAB to IR
(matlab2ir)

Weaver
(ir2ir)

MIR

IR to MATLAB
(ir2matlab)

MATLAB Code LARA Aspects

MATLAB Code

MATISSE

IR to C
(ir2c)

C Code

Type/Shape Assignments

MIR

Figure 4.3: The MATISSE compiler

framework [4]

addition to being an aspect-oriented extension

to MATLAB, it supports a subset of MATLAB

as its input, and generates MATLAB and C

programming language code (Figure 4.3). It

uses LARA aspects to guide the application of

source-to-source transformations in its internal

high-level code representation, as well as vari-

able type and shape definitions when generat-

ing C code from a data structure or code used

internally by the compiler to represent source

code, or intermediate representation (IR) [4,

42].

LARA is connected to the weaving engine,

MATISSE, that is responsible for building the

IR, an AST of the code, for the target applica-

tion, using it to select the points where the as-

pect is to be inserted and generate the modified

code. ASTs can be exploited for aspect mining techniques, as previously mentioned in

subsection 3.5.1, making LARA a viable tool for aspect mining in MATLAB code bases.

30

4.4. SUMMARY

4.3.2 AspectMatlab

Aslam et al. developed AspectMatlab, an AOP language specific to the MATLAB lan-

guage. In AspectMatlab, aspects are defined using a syntax similar to MATLAB classes,

typically containing properties, methods, events and enumerations (Section 2.3). Taking

advantage of a MATLAB class structure, an aspect in AspectMatlab retains the properties

and methods, while adding two aspect-related constructs: patterns and actions. Patterns

specify where to exactly apply the action and of course, actions correspond to the aspect

instructions. This choice of terminology was intended to convey that patterns specify

where to match and actions specify what to do [1].

4.4 Summary

Previous studies adapted and matured a token-based aspect mining approach for MAT-

LAB systems, relating some tokenized function names and reserved words to certain

concerns. CCCExplorer is the tool developed and used for tokenizing MATLAB source

code and extract token metrics from MATLAB repositories, which enabled such studies.

This chapter presented a study on the MATLAB language from a token-based perspec-

tive based on previous studies:

• Token-concern relations - Tokens that maintain consistent meaning throughout sev-

eral MATLAB systems can be explored for the detection of unmodularized concerns;

• Detection of CCCs based on the co-occurrence of pairs of tokens - Frequent token

co-occurrences show points of greater interest and more complex code symptoms,

such as the co-occurrence of tokens ’if’ and ’nargin’ that show a strong relation with

schizophrenic functions;

• Development of an intelligent repository for MATLAB code - The need to contin-

uously refine and adapt the existing tools has led other studies to develop better

tools for code exploration and metric extraction, such as an intelligent repository

for MATLAB code.

31

C
h
a
p
t
e
r

5
System Extension Implementation

The following chapter describes the motives that guided the extension and implementation of
blocks of code into the previously mentioned tools. Then it discusses the system (CCCExplorer)
refactoring decisions to enable the implementation of the extension (code blocks) into the system,
providing technical information about the system, design decisions and structure.

5.1 Revising CCCExplorer

The initial purpose of the Java written tool, CCCExplorer, was to decompose MATLAB

source files into sequences of tokens extracted from the code and allowed the compu-

tation of metrics based on those tokens. Relvas [34] used CCCExplorer’s tokenization

capabilities to create the intelligent repository, enriching CCCExplorer with additional

code responsible for generating a series of insert commands that would reflect the MAT-

LAB source file repository in an SQL database format.

As in many instances mentioned by Martin Fowler [10], systems often have to be

refactored in order to retain a more convenient structure for adding new features:

When a software system is successful, there is always a need to keep enhancing
it, to fix problems and add new features. (...) Often enhancements are applied on
top of each other in a manner that makes it increasingly harder to make changes.
Over time new work slows to a crawl. To combat this change, it is important to
refactor code so that added enhancements do not lead to unnecessary complexity
(Fowler 2000).

The code responsible for generating the SQL insert commands was scattered through-

out several classes in the system and needed to be enclosed in its own class. Also, not all

MATLAB syntax elements studied during this thesis were contemplated as Java objects

33

CHAPTER 5. SYSTEM EXTENSION IMPLEMENTATION

in the system. Tokens, files and toolboxes were the essential entity objects to fulfill the

initial purpose of CCCExplorer, however, the new system requirements require exposing

blocks and lines of code as first class entities. The study on the MATLAB language from

chapter 2 was an essential part of the refactoring and integration of the block context into

the system.

5.1.1 Refactoring decision

To refactor CCCExplorer, the system was studied and its behaviour analysed with the

help of unitary tests developed in previous studies. The code responsible for generat-

ing the SQL inserts was not covered by tests and was hindering the readability of the

remaining system’s code in a way that led to the decision of restructuring the system by

re-implementing the SQL insert generator feature in a previous and more stable version

of CCCExplorer, respecting good programming practices. This way CCCExplorer was

more easily interpreted, consequently facilitating the addition and isolation of the SQL

generator feature, which was included in an ’SQLProducer’ class.

5.1.2 Block feature addition

Both lines and blocks were classes developed and integrated in CCCExplorer’s parsing

process. Initially, blocks were thought to be neatly organized and have their respective

lines associated, however, statement blocks (Sub-section 2.2.4) have a particular charac-

teristic: a single line of code can hold several statement blocks, as long as they remain

correctly delimited. Therefore, blocks are considered aggregations of tokens, as lines are,

and other blocks. A block contains tokens (at least its identifier keyword) and may or not

contain other blocks.

Lines of code are divided in two types and can be considered MATLAB code or com-

ments. MATLAB block types cluster statement types (Subsection 2.2.4), class related

blocks (Section 2.3), functions (Subsection 2.2.5) and, the top-most block, the m-file

(Section 2.4).

5.1.3 Considerations and documentation

The implementation and refactoring of the new requisites improved CCCExplorer’s scala-

bility, maintainability and notion of MATLAB sources. Also, the new system’s structure is

partially represented by the class diagram in figure 5.1, documentation developed during

the process. Now, CCCExplorer can generate a series of SQL insert commands to create

an SQL database that better reflects the m-file repository as a pluggable/unpluggable

functionality.

34

5.2. EXTENDING THE INTELLIGENT REPOSITORY

SQLProducer

-_outputPath: String
-_toolboxes: List<String>
-_mFiles: Integer
-_blocks: Integer
-_lines: Integer
-_tokens: List<String>

+processParser(Parser): void
-string2Sql(String): String
-containsToken(Token): Boolean
-tokenIndex(Token): Integer

Block

-_elements: List<Object>
-_tokens: List<Token>
-_blocks: List<Block>
-_mFileName: String
-_type: Block Type

+getAllTokens(): List<Token>
+numBlocks(): Integer

Line

-_mFileName: String
-_code: String
-_mFileLoC: Integer
-_type: Line Type
-_tokens: List<Token>

+hasTokes(): Boolean
+hasBlockWord(): Boolean

Token

-_string: String
-_type: Lexical Elem
-_concern: Concern
-_column: Integer
-_mFileLoC: Integer

+isBlockword(): Boolean
+isEnd(): Boolean
+isKeyword(): Boolean

Lexical Analyser

-_keywords: Set<String>
-_blockwords: Set<String>
-_mFile: File
-_tokenList: List<Token>
-_lineList: List<Line>
-_mainBlock: Block
-_latestToken: Lexical Elem

-string2Token(String): Lexical Elem
-token2Block(Token): Block Type
+numberOfLines(): Integer
+numberOfTokens(): Integer
+isKeyword(String): Boolean
+isBlockword(String): Boolean
-isDigit(char): Boolean
-isSpace(char): Boolean
-isAlfanum(char): Boolean
-isTwoCharPrefix(char): Boolean
-isSingleCharToken(char): Boolean
-isCharId(char): Boolean
+analyseLine(String, Integer): void
-registerLine(Line): void
-registerToken(Line, Token): void
+analyseBlock(Block, Integer): void
-isEndBlock(Token, Token): Boolean
+analyseMFile(): void

Parser

-_mFile: File
-_mainBlock: Block
-_lines: List<Line>
-_vars
-_funcs
-_args
#_taggedTokens

+processFunctionHeader(): Token
+processVarCreation(): Token
+concernWordTokens(): void
+tagWordTokens(Lexical Analyser): void
+parseTokens(Lexical Analyser): void
+processMFile(): void

«enumeration»
Block Type

MFile
Function
If
While
For
Switch-case
Parfor
Spmd
Try-catch
Classddef
Properties
Methods
Events
Enumeration

«enumeration»
Lexical Elem

Comment
Identifier
String
Number
Keyword
Symbol

«enumeration»
Line Type

Code
Comment

«enumeration»
Concern

0- No Concern
1- Verification func.args.
2- Data type spec.
3- Data type verf.
4- Dynamic properties
5- Console messages
6- Printing
7- Visualization
8- File input and output
9- System
10- Memory alloc.dealloc.
11- Parallelization

0..*

0..*

0..*

0..*

0..1

0..*

Figure 5.1: Partial structure of the class diagram that represents CCCExplorer

5.2 Extending the Intelligent Repository

The refactoring performed on the Java written tool also allowed the extension of the in-

telligent repository with a context of blocks of code. The extension offers a more accurate

reflection of MATLAB source code in the database, refining the notion of MATLAB code

blocks.

The position of each individual token in the repository is stored in the ’Lines_tokens’

table, which links the token to a line with the help of a weak key that represents the initial

column (ci) of the token on its line. Each individual token can be identified with the weak

entity ’Lines_tokens’ and its weak relations to ’Token’ and ’Lines_mfiles’, therefore it

does not need a key from ’Blocks_mfiles’ for that purpose. Figure 5.2 shows the revised

35

CHAPTER 5. SYSTEM EXTENSION IMPLEMENTATION

has

Lines_tokensLines_mfiles Tokens

Concerns

hashas

isBlocks_mfiles

id_block

id_line line code ci

id_token name

id_concern

name

Block_types

id_typename

identify

in

Mfiles

id_mfile name

in

Figure 5.2: Intelligent repository revised

ER diagram that partially makes the structure of the intelligent MATLAB repository.

Two tables were added to maintain consistency and assure the system’s continuous

evolution. Table ’Block_types’ holds the information about the different types of blocks

in MATLAB (classdef, properties, methods, events, enumeration, function, if, while, for,

switch, parfor, try, spmd), including the block type related to the whole m-file. Table

’Mfiles’ acts as ’Blocks_mfiles’ from the diagram in Figure 4.2, except now the block

information representing the whole m-file (and other blocks) is stored in ’Blocks_mfiles’

and associated to the m-file information through the ’Lines_mfiles’ table.

5.3 Summary

CCCExplorer, the token-based aspect mining system, was refactored for the purpose

of adding new features. It was extended with a context of code blocks which enables

the extraction of a wider range of metrics. Furthermore, the intelligent repository was

extended with the same context, offering a more accurate reflection of MATLAB source

code to the token-based aspect mining tool.

36

C
h
a
p
t
e
r

6
Code Block Analysis and Results

The following chapter analyses the MATLAB repository from the perspective of blocks of code
with the help of the developed extension to the intelligent repository. It presents a brief overview
of the repository and, based on the tailored notion of CCC in MATLAB, it follows with an
analysis on each type of block and the particular case of schizophrenic functions.

6.1 Repository Overview

As previously mentioned in section 4.2, the m-file repository was expanded to 65 thou-

sand m-files (Subsection 4.2.2), was subjected to the same tokenization process by CCC-

Explorer (Subsection 4.2.1) and the suitably converted data inserted into the intelligent

repository database (Subsection 4.2.6). This process simplified the tasks of analysing the

content of those m-files, where a user may deploy simple queries to obtain an overview

on the repository.

M-Files 65.732
Tokens 46.234.286
Concern Tokens 996.933
Distinct Tokens 321.903
Lines 3.937.807
Blocks 619.955

Table 6.1: Repository composition

Table 6.1 presents the dimension of the repository in its total (Listing II.2). Concern

tokens are the total number of occurrences of concern tokens (tokens related to the con-

cerns from table 4.1). Distinct tokens are, as the term implies, the number of distinct

tokens in the repository.

37

CHAPTER 6. CODE BLOCK ANALYSIS AND RESULTS

6.1.1 Blocks

The approximately 620 thousand blocks in the repository (Table 6.1) are distributed

amongst the existing MATLAB code block types as presented in table 6.2 (Listing II.3). As

a verification measure, the amount of ’m-file’ blocks is presented and also

Block type Occurrences

m-file 65.732

function 104.303

if 305.390

while 8.728

for 102.342

switch 13.393

parfor 644

spmd 44

try 9.625

classdef 1.662

properties 2.321

methods 3.103

events 2.655

enumeration 13

Table 6.2: Block occurrences

corresponds to the amount of m-files in the reposi-

tory.

Nearly 50% of the blocks are ’if’ blocks, with a

ratio of 4-5 ’if’ statement blocks per m-file and al-

most 3 per function. ’Switch’ statement blocks can

also control the flow of a program, even in a more

structured way when facing several flows in a single

function or file. However, as opposed to the amount

of ’if’ statements, ’switch’ statements make just 2%

of the total blocks in the repository. These values

are a promising indicator of bad coding practices.

About 2,5% of of the blocks are ’classdef’ blocks,

but since a single class file contains a single ’class-

def’ block, approximately 15% of the m-files are

class files. This is a strong indicator of the emerging

MATLAB user’s need to develop more reliable and

maintainable MATLAB systems, as opposed to the

scripting and fast prototyping features MATLAB

mainly offers.

Only 1% of the blocks belong to the Parallel

Computing Toolbox (’parfor’ and ’spmd’), which is too small an amount to reliably derive

conclusions based in token densities and concerns. Acquiring official MATLAB toolboxes

has a certain cost associated that most likely justifies the scarce amount of open source

code related to such toolboxes.

6.1.2 Concern Tokens

Nearly 1 million of all the tokens in the repository are concern tokens (Table 6.1). The

distribution of each concern in those 1 million tokens can be observed by their token ratio

in the graph presented in figure 6.1.

The graph presents a few different token ratios between concerns, where a little over

30% of the concern tokens are related to the data type verification concern (DTV - entry

3. from table 4.1), and approximately 20% of the concern tokens being related to the

visualization concern (Vis - entry 7. from table 4.1). Other concerns make the remaining

50% of the total concern tokens, some nearing to 10% and others not even reaching 2%

of that total.

38

6.1. REPOSITORY OVERVIEW

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ke

n
ra

tio

Repository

Figure 6.1: Token ratio vs Concern - Repository

Although not approached in this study, these discrepancies are good indicators of

the necessity of more in-depth studies on each concern and possibly the refinement of

the notion of CCC introduced by Monteiro et al. [8, 31, 32]. This chapter focuses on the

general perspective of the presence of these concerns in blocks of code, specifically the

detection of concern tendencies in certain types of blocks.

39

CHAPTER 6. CODE BLOCK ANALYSIS AND RESULTS

6.2 Blocks and Concerns

The study conducted by Jota [15] on the relation between tokens and reserved words

reported a few relevant points of interest, which are presented partially in table 4.3.

These particular relations in table 4.3 were selected from the study since they contained

block-related keywords and could be transposed to the objective of this thesis.

Observing table 4.3, ’otherwise’ is a keyword that is reserved for the ’switch’ statement,

used to indicate the flow of the program if none of the other conditions in the statement

are verified (Listing 2.5). ’Elseif’ is a keyword reserved for ’if’ statements (Listing 2.3).

Finally, ’try’ and ’catch’ are keywords reserved for the ’try-catch’ statement.

As a result, this thesis verified the occurrence of the tokens inside the respective blocks

in the expanded repository, presenting the obtained values in table 6.3 (Listing II.4).

Symptoms of the presence of schizophrenic functions, i.e. ’if’ statement blocks with the

’nargin’ token, remain as one the most relevant patterns, one that is focused further in

section 6.3.

Block + token Co-occurrences Token occurrences
if + nargin 26.928 29.312
if + iscell 3.417 3.596
if + isa 3.916 4.437
if + isstruct 2.463 2.708
if + ischar 4.854 5.424
try + disp 2.161 35.705
switch + error 4.079 38.105
switch + disp 968 35.705

Table 6.3: Occurrence of a block with a concern token

During the following subsections several density bar graphs are presented. The token

ratio (Y axis) of each numbered concern from table 4.1 (X axis) was calculated for partic-

ular block types. Each graph presents the concern token ratio metric for three distinct

domains:

1. the entire repository (blue). This ratio will serve as a reference for the entire repos-

itory’s concern token ratio and is used to facilitate the comparison between the

overall concern tendency of the repository with the type of block under discussion,

therefore its value is the same in every graph (as in figure 6.1);

2. tokens directly associated to blocks of the type under discussion (red);

3. tokens associated to sub-blocks of blocks (or hierarchically associated) of the type

under discussion (green). Tokens hierarchically associated to a particular block are

those directly associated to blocks that are contained in the particular block at any

level of containment, thus the term ’hierarchical’.

40

6.2. BLOCKS AND CONCERNS

6.2.1 For and If Statement Blocks

Statement blocks ’if’ and ’for’ are the most common in the repository and present concern

token ratios similar to the repository, which does not expose any clear tendency from

using these types of blocks. However, when compared to other types of blocks, they

are the ones of utmost importance that present concern token ratios slightly above the

repository’s ratio regarding the DTV concern (Figure 6.2).

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

To
ke

n
ra

tio

Block if
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.0

0.1

0.2

0.3

0.4

To
ke

n
ra

tio

Block for
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Directly associated concern tokens = 466.355 Directly associated concern tokens = 124.800

Hierarchically associated concern tokens = 584.057 Hierarchically associated concern tokens = 206.603

Figure 6.2: Token ratio vs Concern - if and for blocks

Together with the metrics in table 6.3, this pattern (’for’, ’if’ and DTV) is a strong

evidence supporting a behaviour where both statements deal with function input arrays

storing different data types (Subsection 2.2.2). Not only these statement blocks make the

majority of blocks in the repository, this ’data type schizophrenia’ behaviour is present in

6.995 out of the 65.732 m-files, corresponding to over 10% of the files in the repository

(Listing II.5). These are relevant observations that support the use of these types of

patterns of statements and tokens to implement the mentioned behaviour.

Two random MATLAB file examples presenting the stated behaviour were extracted

from the repository (Listings I.2 and I.3). In both, a ’for’ statement block is used for

iterating the function’s input array and the program will behave differently according to

what type of data is stored on each cell of the array, using ’if’ statements to verify the data

type of the cell and implement the function’s desired flow for that data type.

41

CHAPTER 6. CODE BLOCK ANALYSIS AND RESULTS

6.2.2 While Statement Block

Figure 6.3 presents the concern token ratio values extracted from ’while’ statement blocks

in the repository. The graph presents ratios rather similar to the repository’s, with the

exception of the system concern (Sys - entry 9. from table 4.1). Among all statement

block types, the use of this statement is the one that presents the highest ratio of tokens

related to this concern. The system concern was analysed more thoroughly and the ratios

of its sub-concerns are also presented in figure 6.3.

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

To
ke

n
ra

tio

Block while
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

CA CF DIE DT Debug EC FF Func PM ScripStart ELib
"System" Sub-Concern

0.00

0.02

0.04

0.06

0.08

0.10
To

ke
n

ra
tio

Block while
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Directly associated concern tokens = 12.486

Hierarchically associated concern tokens = 40.371

Figure 6.3: Token ratio vs Concern - while blocks

The higher ratio of tokens hierarchically associated to ’while’ blocks regarding the

control flow sub-concern (Sys-CF) is a promising indicator of a consistent behaviour in

’while’ statement blocks. The amount of m-files in the repository that have Sys-CF concern

tokens inside blocks hierarchically associated to ’while’ blocks is equal to 1.699 m-files

(Listing II.6) from which two random MATLAB file examples were extracted from the

repository (Listings I.4 and I.5). Both examples present a pattern where Sys-CF concern

tokens appear inside ’if’ statement blocks, and these ’if’ statement blocks are inside the

’while’ statement block.

This pattern reflects a behaviour where these types of tokens are used to control

’while’ statement iterations and the program’s flow. Moreover, token ’continue’ is also

present and used in the code as a function with the purpose of controlling loops and

loop iterations [21], one that could also be inserted into the concern-token relation table’s

Sys-CF sub-concern (Table 4.1).

42

6.2. BLOCKS AND CONCERNS

6.2.3 Switch Statement Block

Figure 6.4 presents the concern token ratio values extracted from ’switch’ statement

blocks in the repository. The ratio of verification of function arguments concern tokens

(VFArg - entry 1. from table 4.1) associated to ’switch’ statement blocks is twice as the

repository’s ratio, which supports the possibility of ’switch’ statements also presenting a

schizophrenic behaviour.

The ratio of directly associated console messages concern (CM - entry 5. table 4.1)

tokens supports the use of ’switch’ statement blocks with ’error’ token, as presented in

table 6.3, which validates the occurrence of the pattern ’otherwise + error’ studied by

Jota [15], presented in table 4.3.

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ke

n
ra

tio

Block switch
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Directly associated concern tokens = 38.617
Hierarchically associated concern tokens = 85.046

Figure 6.4: Token ratio vs Concern - switch blocks

About 1.466 MATLAB files in the repository present ’switch’ statement blocks with

schizophrenic symptoms (Listing II.7), from which two examples were extracted (Listings

I.6 and I.7). Not only these symptoms can be confirmed by the presence of ’nargin’

keyword, both examples also present ’switch’ statements with the ’error’ token after the

’otherwise’ keyword of the statement. This corresponds to a behaviour implemented to

send customized error messages to the user if none of the other conditions in the statement

are met.

43

CHAPTER 6. CODE BLOCK ANALYSIS AND RESULTS

6.2.4 Try-Catch Statement Block

Figure 6.5 presents the concern token ratio values extracted from ’try-catch’ statement

blocks in the repository. Compared to the repository, this statement presents a higher

ratio of directly associated tokens related to CM and file I/O concerns (FIO - entry 8.

respectively from table 4.1).

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ke

n
ra

tio

Block try-catch
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Directly associated concern tokens = 11.744
Hierarchically associated concern tokens = 24.167

Figure 6.5: Token ratio vs Concern - try-catch blocks

There are 940 m-files presenting ’try-catch’ statement blocks with CM concern to-

kens. Example I.9 supports the use of these statements with the ’disp’ token, as noted

in table 6.3. Furthermore, it was also observed the use of the ’error’ token for the same

purpose, as presented in example I.8. This pattern refers to the customization of error

messages if MATLAB encounters an error while executing the code after the ’try’ keyword

and before the ’catch’ keyword.

’Try-catch’ statements are also commonly used for reading files and, in case of failure

due to missing input files, implement an alternative. A total of 781 m-files present a

pattern with ’try-catch’ statements including FIO concern tokens. Observed alternative

behaviours include simply sending error messages to the user (Example I.10), initialize

variables (Example I.10) or read other files that the programmer estimates they exist

unconditionally.

44

6.3. SCHIZOPHRENIC FUNCTIONS

6.3 Schizophrenic Functions

As in the previous section, the following density bar graphs present three density metrics:

the concern token ratio from the entire repository (blue); the concern token ratio of tokens

directly associated to the block under discussion (red); the concern token ratio of tokens

hierarchically associated to the block under discussion (green).

In figure 6.6 is presented the token ratio of each concern in blocks that present the

schizophrenic symptom, identified by the ’if’ statement block (on the left) and ’switch’

statement block (on the right) containing the ’nargin’ token directly associated to it. For

each statement, one occurrence of ’nargin’ token per statement block was excluded from

the ratio to better study behaviours beyond the main one, the schizophrenia.

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

To
ke

n
ra

tio

Block if+nargin
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.0

0.1

0.2

0.3

0.4

0.5

To
ke

n
ra

tio

Block switch+nargin
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Directly associated concern tokens = 25.100 Directly associated concern tokens = 1.997

Hierarchically associated concern tokens = 59.817 Hierarchically associated concern tokens = 13.712

Figure 6.6: Token ratio vs Concern - if and for blocks

There are 12.962 m-files presenting ’if’ statement blocks containing the ’nargin’ token

and 500 m-files presenting ’switch’ statement blocks containing the ’nargin’ token in

the repository (Listings II.10 and II.13). In other words, about 20% of the files in the

repository present function schizophrenia symptoms, validating the same observations

made by Jota [15].

Even though one occurrence of ’nargin’ was excluded from the calculated ratios, the

VFArg concern token ratio presents a much larger value when compared to regular ’if’

and ’switch’ statement blocks. This is an indicator of functions that present schizophrenic

symptoms have a decreased ability to understand their reality and plausibly holding

multiple (more than two) behaviours on which they may be called.

45

CHAPTER 6. CODE BLOCK ANALYSIS AND RESULTS

6.4 Summary

The m-file repository was tokenized and analyzed from a code block perspective. Observa-

tions show that the repository has too few blocks of certain types and more m-files should

be added for future studies. Also, some block types are use more frequently than others

and some patterns of usage of such blocks present consistent behaviours throughout the

repository.

The token ratios observed inside function files with schizophrenic symptoms indi-

cate that these functions tend to have multiple behaviours implemented. These tangled

behaviours are promising signs of bad programming practices and/or limitations in the

MATLAB language. The use of the patter consisted of ’for’ and ’if’ statement blocks with

data type verification MATLAB functions relates to the code necessary to deal with the

possibility of storing different data types in the same array. ’Try-catch’ and ’switch’ state-

ment blocks are strongly related to the implementation of customized error messages and

feedback messages.

46

C
h
a
p
t
e
r

7
Conclusions and Future Work

This last chapter presents a summary of the work conducted during this thesis, including results
obtained and opportunities for future work.

7.1 Summary

As software systems grow in size and complexity a need for developing tools to help in

management and further develop those systems also grows. Problems regarding concern

detection and modularization will continue to exist up to some level or granularity in

programming languages. MATLABs components limit in some way the structure of a

system, having a negative impact on maintainability, reliability and performance. The

need to study its syntax comes apace with its limitations, barging the door to studying and

adapt already existing methods for, ultimately, solving some of these issues. Symptoms

of the presence of unmodularized concerns, or CCCs, persist in existing at some level

in software systems regardless of how a system is divided in modules. Therefore, more

effort should be aimed towards continuously develop, research and refine CCC detection

techniques.

This thesis studied a token-based approach for detecting concerns tailored specifically

for MATLAB systems. CCCExplorer is a tool used for tokenizing MATLAB source files

and compute metrics based on the tokens generated, recently upgraded to an intelligent

repository for source files. Consequently, it increased the degree to which MATLAB

source code can be analysed. This research analysed the intelligent repository, revealing

imprecise reflection of MATLAB code sources by not contemplating its ’code blocks’. A

refactor was made to CCCExplorer, enhancing it with a notion of MATLAB block of code,

represented by the diagram in Figure 5.1, and implementing a code block context in the

intelligent repository, represented by Listing II.1.

47

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The study on MATLAB code blocks contributed with a better analysis of its syntax

and structure chapter 2. It confirmed that language offered more possibilities beyond the

initially implemented structures and contexts, noting some of the to-be-made contribu-

tions to the token-based approach. Results extracted during this thesis have confirmed

that the implemented MATLAB code block context is a promising addition to the tool

and an improvement to CCCExplorer and the token-based approach.

Results regarding concern-related token metrics and blocks show that particular

blocks tend to have some type of relation with certain concerns. Some blocks were ex-

cluded from the observations due to low number of occurrences, particularly the ’parfor’

and ’spmd’ parallel statement blocks.

Considering the detected patterns, the most significant one is composed of ’for’ and

’if’ statement blocks with data type verification MATLAB functions. It is used for imple-

menting several behaviours in a single function and its flow is different according to the

type of data in each cell of the function’s input array. As schizophrenic functions, the dis-

covered patterns are strong evidence supporting the existence of modularity limitations

in the MATLAB language and should be thoroughly analysed in future studies.

Schizophrenic functions were targets of interest to the extraction of token and block

metrics. Promising results showed that ’if’ statement blocks with the ’nargin’ token tend

to have even more tokens related to verification of function arguments and return values

(entry 1. from Table 4.1), possibly increasing their level of schizophrenic behaviour.

’Switch’ statements with the ’nargin’ token present similar behaviour, although at an

inferior level, however, they also show a relevant presence of tokens related to console

messages, possibly related to the implementation of different behaviours for sending

feedback or error messages to the system user.

48

7.2. FUTURE WORK

7.2 Future Work

Separation of concerns in MATLAB systems is still considered a path to follow in subse-

quent studies, regardless of the information gathered. One of the main reasons is that the

current m-file repository is modest and lacks representativeness of MATLAB systems in

a global perspective.

The python scripts presented in this thesis can be used to further increase the m-file

repository, so that more MATLAB source code can be studied and consequently improve

CCCExplorer with more precise structures to represent the code. This will favor further

studies focused on refining the notion of concern initially developed by Monteiro et al.

or perhaps rethink it. However, an implementation of cloned file detectors is needed to

avoid repetitive information and maintain and unbiased repository.

CCCExplorer was studied and refactored in a way that it would be easier to include

new features and functionalities to the tool. It has grown to a relevant degree of com-

plexity and it is expected that further studies will continue to use it, which will require

spending some effort in its comprehension. It is also imperative to develop documen-

tation and improve CCCExplorer’s readability and maintainability, as well as keeping

CCCExplorer a well modularized tool.

This study also presented an analysis on object-oriented programming in MATLAB

that can be relevant towards the CCC matter. Documented refactoring techniques take

in consideration the use of objects to modularize systems in a series of ways, leaving

room for exploration and, ideally, application towards solving some of the patterns and

CCCs studied. A relevant example supporting their application would be transforming a

schizophrenic function into a class, separating each of its modes into different functions.

The token-based approach still needs refinement, but other techniques can still be

study subjects to concern mining in MATLAB sources, such as ASTs. The AOP language

LARA handles MATLAB source code using ASTs and can be used as a tool for incorporate

future approaches to concern detection. However, the language is still scarcely docu-

mented and preliminary analysis has shown difficulties on manipulating a large number

of m-files.

49

Bibliography

[1] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. “AspectMatlab: An aspect-

oriented scientific programming language.” Doctoral dissertation. McGill Univer-

sity, 2010.

[2] Baeldung. Intro to AspectJ. https://www.baeldung.com/aspectj. [Online;

accessed 21-February-2019].

[3] C. Y. Baldwin and K. B. Clark. Design rules: The power of modularity. Vol. 1. MIT

press, 2000.

[4] J. Bispo, P. Pinto, R. Nobre, T. Carvalho, J. M. Cardoso, and P. C. Diniz. “The

MATISSE MATLAB compiler.” In: Industrial Informatics (INDIN), 2013 11th IEEE
International Conference on. IEEE. 2013, pp. 602–608.

[5] M. Bruntink, A. Van Deursen, T. Tourwe, and R. van Engelen. “An evaluation of

clone detection techniques for crosscutting concerns.” In: Software Maintenance,
2004. Proceedings. 20th IEEE International Conference on. IEEE. 2004, pp. 200–209.

[6] J. M. Cardoso, J. M. Fernandes, and M. P. Monteiro. “Adding aspect-oriented fea-

tures to matlab.” In: Fifth International Conference on Aspect-Oriented Software De-
velopment (AOSD 2016). 2006.

[7] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz, and Z. Petrov.

“LARA: an aspect-oriented programming language for embedded systems.” In:

Proceedings of the 11th annual international conference on Aspect-oriented Software
Development. ACM. 2012, pp. 179–190.

[8] N. Cavalheiro Marques, M. Monteiro, and B. Silva. “Analysis of a token density

metric for concern detection in Matlab sources using UbiSOM.” In: Expert Systems
35.4 (2018), e12306.

[9] M. Cleve Moler. A Brief History of MATLAB. https://www.mathworks.com/

company/newsletters/articles/a-brief-history-of-matlab.html. [Online;

accessed 30-July-2019].

[10] M. Fowler. Refactoring: improving the design of existing code. Addison-Wesley Pro-

fessional, 2018.

[11] S. Gaiarin. doxymatlab. commit: 9aa1ab07d07c84950db7f5254423864afb74804.

2017. url: https://github.com/simgunz/doxymatlab.

51

https://www.baeldung.com/aspectj
https://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://www.mathworks.com/company/newsletters/articles/a-brief-history-of-matlab.html
https://github.com/simgunz/doxymatlab

BIBLIOGRAPHY

[12] I. GitHub. GitHub. https://github.com/. Accessed: 2019-08-31.

[13] L. Hendren. “Typing aspects for MATLAB.” In: Proceedings of the sixth annual
workshop on Domain-specific aspect languages. ACM. 2011, pp. 13–18.

[14] R. Hilliard. “Aspects, concerns, subjects, views.” In: First Workshop on Multi-
Dimensional Separation of Concerns in Object-oriented Systems (at OOPSLA’99). Cite-

seer. 1999, p. 59.

[15] B. Jota. “Métodos para o tratamento de tokens na identificação de concerns em

código MATLAB.” Master’s thesis. Faculdade de Ciências e Tecnologia da Universi-

dade Nova de Lisboa, 2019.

[16] A. Kellens, K. Mens, and P. Tonella. “A survey of automated code-level aspect

mining techniques.” In: Transactions on aspect-oriented software development IV.

Springer, 2007, pp. 143–162.

[17] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and

J. Irwin. “Aspect-oriented programming.” In: European conference on object-oriented
programming. Springer. 1997, pp. 220–242.

[18] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. “Getting

started with AspectJ.” In: Communications of the ACM 44.10 (2001), pp. 59–65.

[19] T. Kohonen. “The self-organizing map.” In: Proceedings of the IEEE 78.9 (1990),

pp. 1464–1480.

[20] MathWorks. Advanced Software Development - MATLAB. https://www.mathworks.

com/help/matlab/software-development.html. [Online; accessed 21-February-

2019].

[21] MathWorks. Documentation. https://www.mathworks.com/help/matlab/ref/

continue.html. [Online; accessed 20-September-2019].

[22] MathWorks. Error Handling - MATLAB. https://www.mathworks.com/help/

matlab/error-handling.html. [Online; accessed 19-July-2019].

[23] MathWorks. Getting started with MATLAB. https://www.mathworks.com/help/

matlab/getting-started-with-matlab.html. [Online; accessed 21-February-

2019].

[24] MathWorks. Language Fundamentals - MATLAB. https://www.mathworks.com/

help/matlab/language- fundamentals.html. [Online; accessed 21-February-

2019].

[25] MathWorks. Loops and Conditional Statements - MATLAB. https://www.mathworks.

com/help/matlab/control-flow.html. [Online; accessed 21-February-2019].

[26] MathWorks. MATLAB Central. https://www.mathworks.com/matlabcentral/.

[Online; accessed 21-February-2019].

52

https://github.com/
https://www.mathworks.com/help/matlab/software-development.html
https://www.mathworks.com/help/matlab/software-development.html
https://www.mathworks.com/help/matlab/ref/continue.html
https://www.mathworks.com/help/matlab/ref/continue.html
https://www.mathworks.com/help/matlab/error-handling.html
https://www.mathworks.com/help/matlab/error-handling.html
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
https://www.mathworks.com/help/matlab/getting-started-with-matlab.html
https://www.mathworks.com/help/matlab/language-fundamentals.html
https://www.mathworks.com/help/matlab/language-fundamentals.html
https://www.mathworks.com/help/matlab/control-flow.html
https://www.mathworks.com/help/matlab/control-flow.html
https://www.mathworks.com/matlabcentral/

BIBLIOGRAPHY

[27] MathWorks. Object-Oriented Programming in MATLAB. https://www.mathworks.

com/discovery/object- oriented- programming.html. [Online; accessed 01-

August-2019].

[28] MathWorks. Parallel Computing Toolbox - MATLAB. https://www.mathworks.com/

help/parallel-computing. [Online; accessed 19-July-2019].

[29] MathWorks. Programming Scripts and Functions - MATLAB. https://www.mathworks.

com/help/matlab/programming-and-data-types.html. [Online; accessed 21-

February-2019].

[30] S. Media. SourceForge. https://sourceforge.net/. Accessed: 2019-08-31.

[31] M Monteiro, J Cardoso, and S. Posea. “Identification and characterization of cross-

cutting concerns in MATLAB systems.” In: Conference on Compilers, Programming
Languages, Related Technologies and Applications (CoRTA 2010), Braga, Portugal.
Citeseer. 2010, pp. 9–10.

[32] M. P. Monteiro, N. C. Marques, B. Silva, B. Palma, and J. Cardoso. “Toward a

Token-Based Approach to Concern Detection in MATLAB Sources.” In: Portuguese
Conference on Artificial Intelligence. Springer. 2017, pp. 573–584.

[33] A. Relvas. “Uma Interface Web para Comparação de Métricas Utilizando Mapas

Auto-Organizados.” Master’s thesis. Faculdade de Ciências e Tecnologia da Univer-

sidade Nova de Lisboa, 2019.

[34] A. Relvas, N. Marques, M. Monteiro, and G. Carneiro. “An intelligent repository

for MATLAB code.” unpublished, submitted to the 2019 edition of the Mining

Software Repositories (MSR) conference. 2019.

[35] R. Sanchez and J. T. Mahoney. “Modularity, flexibility, and knowledge management

in product and organization design.” In: Strategic management journal 17.S2 (1996),

pp. 63–76.

[36] D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K Vijay-Shanker. “Using natural

language program analysis to locate and understand action-oriented concerns.” In:

Proceedings of the 6th international conference on Aspect-oriented software development.
ACM. 2007, pp. 212–224.

[37] B. Silva and N. C. Marques. “The ubiquitous self-organizing map for non-stationary

data streams.” In: Journal of Big Data 2.1 (2015), p. 27.

[38] O. Spinczyk, D. Lohmann, and M. Urban. “AspectC++: an AOP Extension for

C++.” In: Software Developer’s Journal 5.68-76 (2005).

[39] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. “N degrees of separation: multi-

dimensional separation of concerns.” In: Software Engineering, 1999. Proceedings of
the 1999 International Conference on. IEEE. 1999, pp. 107–119.

53

https://www.mathworks.com/discovery/object-oriented-programming.html
https://www.mathworks.com/discovery/object-oriented-programming.html
https://www.mathworks.com/help/parallel-computing
https://www.mathworks.com/help/parallel-computing
https://www.mathworks.com/help/matlab/programming-and-data-types.html
https://www.mathworks.com/help/matlab/programming-and-data-types.html
https://sourceforge.net/

BIBLIOGRAPHY

[40] A. Van Deursen, M. Marin, and L. Moonen. “Aspect mining and refactoring.” In:

Proceedings of the 1st International Workshop on Refactoring: Achievements, Challenges,
Effects (REFACE), with WCRE. 2003, pp. 11–21.

[41] Wikipedia contributors. Concern (computer science) – Wikipedia, The Free Encyclope-
dia. [Online; accessed 24-January-2019]. 2018. url: https://en.wikipedia.org/

w/index.php?title=Concern_(computer_science)&oldid=867665311.

[42] Wikipedia contributors. Intermediate representation — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 21-February-2019]. 2018. url: https://en.wikipedia.

org/w/index.php?title=Intermediate_representation&oldid=875112602.

[43] Wikipedia contributors. Cross-cutting concern — Wikipedia, The Free Encyclopedia.

[Online; accessed 21-August-2019]. 2019. url: https://en.wikipedia.org/w/

index.php?title=Cross-cutting_concern&oldid=905886088.

[44] Wikipedia contributors. Pointwise mutual information — Wikipedia, The Free Ency-
clopedia. [Online; accessed 29-August-2019]. 2019. url: https://en.wikipedia.

org/w/index.php?title=Pointwise_mutual_information&oldid=892384067.

54

https://en.wikipedia.org/w/index.php?title=Concern_(computer_science)&oldid=867665311
https://en.wikipedia.org/w/index.php?title=Concern_(computer_science)&oldid=867665311
https://en.wikipedia.org/w/index.php?title=Intermediate_representation&oldid=875112602
https://en.wikipedia.org/w/index.php?title=Intermediate_representation&oldid=875112602
https://en.wikipedia.org/w/index.php?title=Cross-cutting_concern&oldid=905886088
https://en.wikipedia.org/w/index.php?title=Cross-cutting_concern&oldid=905886088
https://en.wikipedia.org/w/index.php?title=Pointwise_mutual_information&oldid=892384067
https://en.wikipedia.org/w/index.php?title=Pointwise_mutual_information&oldid=892384067

A
n
n
e
x

I
MATLAB Code Examples

Listing I.1: Class Definition Example [11]

1 %> @file classdefExample.m

2 %> @brief File used to show an example of class definition

3 % ==

4 %> @brief Here we have a brief description of the class.

5 %

6 %> And here we can put some more detailed informations about the class.

7 % ==

8 classdef (InferiorClasses = {?class1,?class2}) classdefExample

9

10 properties (Access = protected)

11 %> Description of a protected property

12 protectedProperty

13 end

14 properties (Access = public)

15 %> Description of a public property

16 publicProperty

17 end

18 properties (Access = private)

19 %> Description of a private property

20 pivateProperty

21 end

22 properties (Constant = true)

23 %> Description of a constant property

24 constantProperty = {’1’, ’2’, ...

25 ’trois’};

26 end

27 properties

28 %> Description of the first property of the class

29 first_property = []

55

ANNEX I. MATLAB CODE EXAMPLES

30 %> Description of the second property of the class

31 second_property = []

32 %> Description of the third property of the class

33 third_property = [1 2];

34 end

35 events

36 %> Description of first event

37 FirstEvent

38 %> Description of second event

39 SecondEvent

40 end

41 %> Description of the enumeration.

42 enumeration

43 %> Description of the first item

44 one (1)

45 %> Description of the second item

46 two (2)

47 %> Description of the third item

48 three

49 end

50 methods

51 % ==

52 %> @brief Class constructor

53 %>

54 %> More detailed description of what the constructor does.

55 %>

56 %> @param param1 Description of first parameter

57 %> @param anotherParam Description of the second parametere

58 %>

59 %> @return instance of the classdefExample class.

60 % ==

61 function obj = classdefExample(param1, anotherParam)

62 end

63

64 % ==

65 %> @brief Brief description of the exampleMethod1 method

66 %>

67 %> @param obj instance of the classdefExample class.

68 % ==

69 function exampleMethod1(obj)

70 end

71

72 % ==

73 %> @brief Brief description of the exampleMethod2 method

74 %>

75 %> @param obj instance of the classdefExample class.

76 %> @retval ret return value of this method

77 % ==

78 function ret = exampleMethod2(obj)

79 end

56

80 end

81 methods (Static=true)

82 % ==

83 %> @brief Brief description of the exampleStaticMethod method

84 %>

85 %> This method is static and public, with an inused (~) argument

86 %> @param param1 Description of the parameter

87 %> @param param2 Description of the parameter

88 %> @retval out return value of this method

89 % ==

90 function out = exampleStaticMethod(param1, ~, param2)

91 end

92 end

93 methods (Static, Access=private)

94 % ==

95 %> @brief Brief description of the exampleStaticPrivateMethod method

96 %>

97 %> This method is static and private

98 %> @param param1 Description of the parameter

99 %> @param param2 Description of the parameter

100 %> @retval out return value of this method

101 % ==

102 function out = exampleStaticPrivateMethod(param1, param2)

103 end

104 end

105 methods (Access=protected, Static)

106 % ==

107 %> @brief Brief description of the exampleStaticProtectedMethod method

108 %>

109 %> This method is static and protected

110 %> @param param1 Description of the parameter

111 %> @retval out return value of this method

112 % ==

113 function out = exampleStaticProtectedMethod(param1)

114 end

115 end

116 methods (Access=public, Static = true)

117 % ==

118 %> @brief Brief description of the exampleStaticPublicMethod method

119 %>

120 %> This method is static and public

121 %> @param param1 Description of the parameter

122 %> @retval out return value of this method

123 % ==

124 function out = exampleStaticPublicMethod(param1)

125 end

126 end

127 methods (Access=private)

128 % ==

129 %> @brief Brief description of the examplePrivateMethod method

57

ANNEX I. MATLAB CODE EXAMPLES

130 %>

131 %> This method is private

132 %> @param param1 Description of the parameter

133 %> @retval out return value of this method

134 % ==

135 function out = examplePrivateMethod(param1)

136 end

137 end

138 methods (Access=protected)

139 % ==

140 %> @brief Brief description of the exampleProtectedMethod method

141 %>

142 %> This method is protected

143 %> @param param1 Description of the parameter

144 %> @retval out return value of this method

145 % ==

146 function out = exampleProtectedMethod(param1)

147 end

148 end

149 methods (Access=public, Static=false)

150 % ==

151 %> @brief Brief description of the examplePublicMethod2 method

152 %>

153 %> This method is public and not static

154 %> @param param1 Description of the parameter

155 %> @retval out return value of this method

156 % ==

157 function out = examplePublicMethod2(param1)

158 end

159 end

160 methods (Access=public, ~Static)

161 % ==

162 %> @brief Brief description of the exampleNonStaticPublicMethod3 method

163 %>

164 %> This method is public and not static

165 %> @param param1 Description of the parameter

166 %> @retval out return value of this method

167 % ==

168 function out = exampleNonStaticPublicMethod3(param1)

169 end

170 end

171 methods (Abstract = true)

172 % ==

173 %> @brief Brief description of the exampleAbstractMethod method

174 %>

175 %> This method is abstract : only the signature of this function is

176 %> declared.

177 %> @param param1 Description of the first parameter

178 %> @param param2 Description of the second parameter

179 %> @retval out return value of this method

58

180 % ==

181 out = exampleAbstractMethod(param1, ...

182 param2);

183 end

59

ANNEX I. MATLAB CODE EXAMPLES

Listing I.2: Example 1 - for if and data type verification

1 function res = struct2xml(s)

2 res = [];

3 names = fieldnames(s);

4 nl_char = sprintf("\n");

5 for i = 1:length(names)

6 if isempty(s.(names{i}))

7 continue;

8 end

9 if isnumeric(s.(names{i}))

10 if length(s.(names{i})) > 1

11 else

12 res = [res tagged_string(num2str(s.(names{i})), names{i}) nl_char];

13 end

14 elseif ischar(s.(names{i}))

15 res = [res tagged_string(s.(names{i}), names{i}) nl_char];

16 elseif isstruct(s.(names{i}))

17 for j = 1:length(s.(names{i}))

18 res = [res tagged_string(struct2xml(s.(names{i})(j)), names{i}),

nl_char];

19 end

20 else

21 error("unsupported field type")

22 end

23 end

24 end

25 function res = tagged_string(str, tag)

26 res = ["<" tag ">" str "</" tag ">"];

27 end

60

Listing I.3: Example 2 - for if and data type verification

1 function [olib] = add_struct(ilib, varargin);

2 if nargin < 2

3 error("gds_library.add_struct : must have at least two arguments.");

4 end

5 olib = ilib;

6 for k=1:length(varargin)

7 S = varargin{k};

8 if isa(S, "gds_structure")

9 olib.st{end+1} = S;

10 elseif iscell(S)

11 if ~all(cellfun(@(x)isa(x,"gds_structure"), S))

12 error("gds_library.add_struct : input cell array member is not a

gds_structure.");

13 end

14 olib.st = [ilib.st, S(:)"]; % make row vector

15 else

16 error("gds_library.add_struct : arguments must be gds_structures or

cell arrays.");

17 end

18 end

19 end

61

ANNEX I. MATLAB CODE EXAMPLES

Listing I.4: Example 1 - while and control flow

1 function [obj, idx] = object(json, idx, tokens)

2 start = idx;

3 obj = containers.Map();

4 if json(idx) ~= "{"

5 error("JSON:parse:object:nobrace", ...

6 ["object must start with "{" (char " num2str(idx) ")"]);

7 end

8 idx = idx+1;

9 idx = next(json, idx);

10 if json(idx) ~= "}"

11 while 1

12 if json(idx) ~= """

13 error("JSON:parse:string:noquote", ...

14 ["string must start with " (char " num2str(idx) ")"]);

15 end

16 [key, idx] = string(json, idx, tokens);

17 idx = next(json, idx);

18 if json(idx) == ":"

19 idx = idx+1;

20 else

21 error("JSON:parse:object:nocolon", ...

22 ["no ":" after object key in "" json(start:idx-1) ...

23 "" (char " num2str(idx) ")"]);

24 end

25 idx = next(json, idx);

26 [val, idx] = value(json, idx, tokens);

27 obj(key) = val;

28 idx = next(json, idx);

29 if json(idx) == ","

30 idx = idx+1;

31 idx = next(json, idx);

32 continue

33 elseif json(idx) == "}"

34 break

35 else

36 error("JSON:parse:object:unknownseparator", ...

37 ["no "," or "}" after entry in "" json(start:idx-1) ...

38 "" (char " num2str(idx) ")"]);

39 end

40 end

41 end

42 idx = idx+1;

43 end

62

Listing I.5: Example 2 - while and control flow

1 function [args, cancelled] = optic_disc_mask(vessel_data, args, prompt)

2

3 (...)

4

5 while true

6 if ~ishandle(h)

7 return;

8 end

9 try

10 [x, y] = getline(h);

11 set(findobj(h, "type", "axes"), ...

12 "ALimMode", "manual", ...

13 "CLimMode", "manual", ...

14 "DataAspectRatioMode", "manual", ...

15 "Drawmode", "fast", ...

16 "PlotBoxAspectRatioMode", "manual", ...

17 "TickDirMode", "manual", ...

18 "XLimMode", "manual", ...

19 "YLimMode", "manual", ...

20 "ZLimMode", "manual", ...

21 "XTickMode", "manual", ...

22 "YTickMode", "manual", ...

23 "ZTickMode", "manual", ...

24 "XTickLabelMode", "manual", ...

25 "YTickLabelMode", "manual", ...

26 "ZTickLabelMode", "manual");

27 catch

28 return;

29 end

30 if numel(x) ~= 2

31 button = questdlg(["Marking the optic disc diameter requires exactly 2

points.", char(10), ...

32 "Click the image once to set the first point, double-click to set

the second."],...

33 "Optic disc mask","Try again","Cancel","Try again");

34 if strcmp(button, "Cancel")

35 return;

36 else

37 continue;

38 end

39 else

40 break;

41 end

42 end

43

44 (...)

45

46 if args.apply_mask

47 set_mask = true;

63

ANNEX I. MATLAB CODE EXAMPLES

48 vessel_data.optic_disc_mask = [args.min_discs, args.max_discs];

49 elseif prompt

50 while true

51 answer = inputdlg({"Minimum number of optic disc diameters (must be >=

0)", ...

52 "Maximum number of optic disc diameters (must be larger

than minimum)"}, ...

53 "Optic disc diameter mask", ...

54 1, ...

55 {num2str(args_default.min_discs), ...

56 num2str(args_default.max_discs)});

57 if isempty(answer)

58 break;

59 end

60 a1 = str2double(answer{1});

61 a2 = str2double(answer{2});

62 if a1 > 0 && a1 < a2

63 args.min_discs = a1;

64 args.max_discs = a2;

65 set_mask = true;

66 vessel_data.optic_disc_mask = [args.min_discs, args.max_discs];

67 break;

68 end

69 end

70 end

71

72 (...)

64

Listing I.6: Example 1 - switch and verification of function arguments

1 function result = getLonAxis(mGridCoordinatesObj)

2 result = [];

3 if nargin < 1, help(mfilename), return, end

4 try

5 switch nargin

6 case 1

7 result=squeeze(mGridCoordinatesObj.myCoordID.getLonAxis());

8 otherwise, error("MATLAB:mGridCoordinates:getLonAxis:Nargin",...

9 "Incorrect number of arguments");

10 end

11 catch %gets the last error generated

12 err = lasterror();

13 disp(err.message);

14 end

15 end

Listing I.7: Example 2 - switch and verification of function arguments

1 function [valid, message] = isSBML_FBC_FluxBound(varargin)

2 switch (nargin)

3 case 4

4 SBMLStructure = varargin{1};

5 level = varargin{2};

6 version = varargin{3};

7 pkgVersion = varargin{4};

8 case 3

9 SBMLStructure = varargin{1};

10 level = varargin{2};

11 version = varargin{3};

12 pkgVersion = 1;

13 case 2

14 SBMLStructure = varargin{1};

15 level = varargin{2};

16 version = 1;

17 pkgVersion = 1;

18 case 1

19 SBMLStructure = varargin{1};

20 level = 3;

21 version = 1;

22 pkgVersion = 1;

23 otherwise

24 error("need at least one argument");

25 end;

26

27 (...)

65

ANNEX I. MATLAB CODE EXAMPLES

Listing I.8: Example 1 - try-catch and console messages

1 function out=nnProc(spd, trq, time, nnFuncs, outputNames, outputUnits)

2 try

3 spd=makeRowArray(spd);

4 catch

5 error("[nnProc.m]: spd array is not correct--please check inputs and try

again")

6 end

7 try

8 trq=makeRowArray(trq);

9 catch

10 error("[nnProc.m]: trq array is not correct--please check inputs and try

again")

11 end

12 try

13 time=makeRowArray(time);

14 catch

15 error("[nnProc.m]: time array is not correct--please check inputs and try

again")

16 end

17 if length(nnFuncs)~=length(outputNames)&length(nnFuncs)~=length(outputUnits)

18 error("[nnProc.m]: outputNames, outputUnits, and nnFuncs must all be of

the same length")

19 end

20 dsdt_05sec=d_dt(spd, time, 5.0); % dspd/dt taken at 5 sec intervals

21 dsdt_10sec=d_dt(spd, time, 10.); % dspd/dt taken at 10 sec intervals

22 dTdt_05sec=d_dt(trq, time, 5.0); % dtrq/dt taken at 5 sec intervals

23 dTdt_10sec=d_dt(trq, time, 10.); % dtrq/dt taken at 10 sec intervals

24 out=[];

25 for i=1:length(nnFuncs)

26 out=setfield(out, outputNames{i}, feval(nnFuncs(i), [spd; dsdt_05sec;

dsdt_10sec; trq; dTdt_05sec; dTdt_10sec]));

27 out=setfield(out, [outputNames{i},"_units"], outputUnits{i});

28 end

29

30 (...)

66

Listing I.9: Example 2 - try-catch and console messages

1 function result = mGeoGridVar(varName, mDatasetObj)

2 import msstate.cstm.data.grid.JGeoGridDataset

3 if nargin < 2 && nargout < 1

4 disp("check input and output arguments!");

5 help mGeoGridVar;

6 return;

7 end

8 if nargout > 0

9 result = [];

10 end

11

12 (...)

13

14 try

15 switch nargin

16 case 2

17 ncID = getJDataset(mDatasetObj);

18 theStruct.myNCid = ncID;

19 switch class(varName)

20 case "char"

21 theStruct.varName = char(varName);

22 GeoGridData = JGeoGridDataset(ncID.getGridDataset(),

varName);

23 theStruct.myGridID = GeoGridData;

24 theStruct.myVarID = ncID.getJNetcdfDataset().

getVariable(varName);

25 myGeoGrid = GeoGridData.getGeoGrid(); % get geogrid

26 otherwise, error("MATLAB:mGeoGridVar",...

27 "varName: Input type char/string");

28 end

29 otherwise, error("MATLAB:mGeoGridVar:Nargin",...

30 "Incorrect number of arguments");

31 end

32 if (isa(myGeoGrid, "ucar.nc2.dt.grid.GeoGrid")) %check for GeoGrid

Object

33 theStruct.myShape = double(transpose(myGeoGrid.getShape()));

34 result=class(theStruct ,"mGeoGridVar"); %create mGeoGridVar object

35 else

36 result=[];

37 error("MATLAB:mGeoGridVar",...

38 "Non-gridded variable. Unable to create mGeoGridVar Object

");

39 end

40 catch %gets the last error generated

41 err = lasterror();

42 disp(err.message);

43 end

44 end

67

ANNEX I. MATLAB CODE EXAMPLES

Listing I.10: Example 1 - try-catch and file i/o

1 function [X,fk,t]=cqt_fw(audio_name)

2

3 (...)

4

5 try

6 load cqt_fw_params.mat

7 catch ME1

8 fprintf("Arquivo cqt_fw_param.mat nao encontrado, Rode a funcao

cqt_fw_precompute\n");

9 exit;

10 end

11

12 (...)

13

14 try

15 load cqt_fw_filter.mat

16 catch ME2

17 fprintf("Arquivo cqt_fw_filter.mat nao encontrado. Gerando os coeficientes

dos filtros.\n");

18 c1=0.3;

19 c2=2.0/3;

20 Q=1/(c1*(power(2,1/precisao)-power(2,-1/precisao)));

21 for i=1:length(k)

22 if i~=1 && i~=length(k)

23 Wp=[fk0a1(i)-c1*(fk0a1(i)-fk0a1(i-1)) fk0a1(i)+c1*(fk0a1(i+1)-

fk0a1(i))];

24 Ws=[fk0a1(i)-c2*(fk0a1(i)-fk0a1(i-1)) fk0a1(i)+c2*(fk0a1(i+1)-

fk0a1(i))];

25 end

26 if i==1

27 Wp=[fk0a1(i)-c1*(fk0a1(i)-fk0a1_prev) fk0a1(i)+c1*(fk0a1(i+1)-

fk0a1(i))];

28 Ws=[fk0a1(i)-c2*(fk0a1(i)-fk0a1_prev) fk0a1(i)+c2*(fk0a1(i+1)-

fk0a1(i))];

29 end

30 if i==length(k)

31 Wp=[fk0a1(i)-c1*(fk0a1(i)-fk0a1(i-1)) fk0a1(i)+c1*(fk0a1_next-

fk0a1(i))];

32 Ws=[fk0a1(i)-c2*(fk0a1(i)-fk0a1(i-1)) fk0a1(i)+c2*(fk0a1_next-

fk0a1(i))];

33 end

34 Rp=0.1;

35 Rs=20;

36 [N,Wn] = cheb1ord(Wp, Ws, Rp, Rs);

37 [b(i,:),a(i,:)] = cheby1(N,Rp,Wn);

38 end

39 end

40

41 (...)

68

42

43 if aplicar_ganho

44 try

45 load cqt_fw_gain;

46 for i=1:length(k)

47 X0(i,:)=X0(i,:)*1.0/power(gain(i),1);

48 end

49 catch ME3

50 fprintf("nao foi possivel aplicar o ganho, arquivo cqt_fw_gain.mat nao

encontrado\n");

51 end

52 end

53

54 (...)

55

56 end

Listing I.11: Example 2 - try-catch and file i/o

1 function [dem,dax,ziro]=sergeicol

2 if ~exist("sergeim")

3 try

4 load(fullfile(getenv("IFILES"),"COLORMAPS","sergeim"))

5 catch

6 load("sergeim")

7 end

8 end

9 reso=128;

10 demreso=nan(reso+1,3);

11 for index=1:3

12 [demreso(:,index),req]=...

13 discinter(sergeil,sergeim(:,index),...

14 unique([0 linspace(min(sergeil),max(sergeil),reso)]));

15 end

16 dem=demreso;

17 dax=minmax(sergeil);

18 ziro=find(req==0);

69

A
n
n
e
x

II
SQL Schema and Queries

Listing II.1: Partial schema of the intelligent repository

1 CREATE TABLE concerns (

2 id_concern INTEGER NOT NULL,

3 name_concern TEXT NOT NULL,

4 desc_concern TEXT NOT NULL,

5 PRIMARY KEY (id_concern)

6) WITHOUT ROWID;

7

8 CREATE TABLE block_types (

9 id_block_type INTEGER NOT NULL,

10 name_block_type TEXT NOT NULL,

11 desc_block_type TEXT NOT NULL,

12 PRIMARY KEY (id_block_type)

13) WITHOUT ROWID;

14

15 CREATE TABLE toolboxes (

16 id_toolbox INTEGER NOT NULL,

17 name_toolbox TEXT NOT NULL,

18 PRIMARY KEY (id_toolbox)

19) WITHOUT ROWID;

20

21 CREATE TABLE tokens (

22 id_token INTEGER NOT NULL,

23 id_concern INTEGER NOT NULL,

24 name_token TEXT UNIQUE NOT NULL,

25 desc_token TEXT NOT NULL,

26 PRIMARY KEY (id_token),

27 FOREIGN KEY (id_concern) REFERENCES concerns

28) WITHOUT ROWID;

29

71

ANNEX II. SQL SCHEMA AND QUERIES

30 CREATE TABLE mfiles (

31 id_mfile INT(10) NOT NULL,

32 id_toolbox INTEGER NOT NULL,

33 name TEXT NOT NULL,

34 PRIMARY KEY (id_mfile),

35 FOREIGN KEY (id_toolbox) REFERENCES toolboxes

36) WITHOUT ROWID;

37

38 CREATE TABLE blocks_mfiles (

39 id_block INTEGER NOT NULL,

40 id_type INTEGER NOT NULL,

41 id_parent_block INTEGER NOT NULL,

42 PRIMARY KEY (id_block),

43 FOREIGN KEY (id_type) REFERENCES block_types (id_block_type),

44 FOREIGN KEY (id_parent_block) REFERENCES blocks_mfiles (id_block)

45) WITHOUT ROWID;

46

47 CREATE TABLE lines_mfiles (

48 id_line INTEGER NOT NULL,

49 line INTEGER NOT NULL,

50 code TEXT NOT NULL,

51 id_mfile INTEGER NOT NULL,

52 PRIMARY KEY (id_line),

53 FOREIGN KEY (id_mfile) REFERENCES mfiles (id_mfile)

54) WITHOUT ROWID;

55

56 CREATE TABLE lines_comments (

57 id_comment INTEGER NOT NULL,

58 id_mfile INTEGER NOT NULL,

59 line INTEGER NOT NULL,

60 code TEXT NOT NULL,

61 PRIMARY KEY (id_comment),

62 FOREIGN KEY (id_mfile) REFERENCES mfiles (id_mfile)

63) WITHOUT ROWID;

64

65 CREATE TABLE lines_tokens (

66 id_line INTEGER NOT NULL,

67 id_block INTEGER NOT NULL,

68 id_token INTEGER NOT NULL,

69 ci INTEGER NOT NULL,

70 cf INTEGER NOT NULL,

71 PRIMARY KEY (id_line, id_token, ci),

72 FOREIGN KEY (id_token) REFERENCES tokens,

73 FOREIGN KEY (id_line) REFERENCES lines_mfiles,

74 FOREIGN KEY (id_block) REFERENCES blocks_mfiles

75) WITHOUT ROWID;

72

Listing II.2: Repository content - files, tokens, lines and blocks

1 select count(*) from mfiles;

2

3 select count(*) from lines_tokens;

4

5 select count(*) from tokens;

6

7 select count(*) from lines_tokens inner join tokens using(id_token) where

id_concern between 1 and 35;

8

9 select count(*) from lines_mfiles;

10

11 select count(*) from blocks_mfiles;

Listing II.3: Repository content - amount of blocks of each type

1 select id_type, count(id_block) from blocks_mfiles inner join block_types on

id_type = id_block_type group by id_type;

Listing II.4: Repository content - block and token co-occurrence

1 select id_token from tokens where name like ’nargin’

2 -- nargin = 1125

3 -- iscell = 1175

4 -- isa = 1181

5 -- isstruct = 1895

6 -- ischar = 1439

7 -- disp = 558

8 -- error = 847

9

10 -- Co-occurrences --

11 select count(id_block) from blocks_mfiles inner join lines_tokens using(

id_block) where id_type = 3 and id_token = 1125

12 -- 3|if

13 -- 4|while

14 -- 5|for

15 -- 6|switch-case

16 -- 7|parfor

17 -- 8|spmd

18 -- 9|try-catch

19

20 -- Token occurrences --

21 select count(*) from lines_tokens where id_token = 1125

73

ANNEX II. SQL SCHEMA AND QUERIES

Listing II.5: Number of files with for if and DTV

1 select count(distinct id_mfile)

2 from blocks_mfiles as p

3 inner join (

4 select distinct id_block, id_parent_block

5 from blocks_mfiles inner join lines_tokens using(id_block) inner join

tokens using(id_token)

6 where id_type = 3 and id_concern between 3 and 4

7) as c

8 on p.id_block = c.id_parent_block

9 where p.id_type = 5

Listing II.6: Number of files with while and Sys-CF

1 with parents as

2 (

3 select id_block, id_type, id_parent_block

4 from blocks_mfiles

5 where id_type = 4

6 union all

7 select b.id_block, b.id_type, b.id_parent_block

8 from blocks_mfiles b inner join parents p

9 on b.id_parent_block = p.id_block

10)

11 select count(distinct id_mfile) FROM blocks_mfiles inner join parents

using(id_block) inner join lines_tokens using(id_block) inner join

tokens using(id_token) where id_concern = 23

Listing II.7: Number of files with switch and VFArg

1 select distinct id_mfile

2 from blocks_mfiles inner join lines_tokens using(id_block) inner join

tokens using(id_token)

3 where id_concern = 1 and id_type = 6

Listing II.8: Number of files with try-catch and CM

1 select distinct id_mfile

2 from blocks_mfiles inner join lines_tokens using(id_block) inner join

tokens using(id_token)

3 where id_type = 9 and id_concern = 6

Listing II.9: Number of files with try-catch and FIO

1 select distinct id_mfile

2 from blocks_mfiles inner join lines_tokens using(id_block) inner join

tokens using(id_token)

3 where id_type = 9 and id_concern = 21

74

Listing II.10: Number of files with if+nargin blocks

1 select count(distinct id_mfile)

2 from blocks_mfiles inner join lines_tokens using(id_block)

3 where id_token = 1125 and id_type = 3

Listing II.11: Number of directly associated concern tokens to if+nargin blocks

1 select count(*)

2 from (

3 select distinct id_block from blocks_mfiles inner join lines_tokens

using(id_block)

4 where id_token = 1125 and id_type = 3

5)

6 inner join lines_tokens using(id_block) inner join tokens using(id_token)

7 where id_concern between 1 and 35;

Listing II.12: Number of hierarchically associated concern tokens to if+nargin blocks

1 with parents as

2 (

3 select id_block, id_type, id_parent_block

4 from (

5 select distinct id_block, id_type, id_parent_block

6 from blocks_mfiles inner join lines_tokens using(id_block)

7 where id_token = 1125 and id_type = 3

8)

9 union all

10 select b.id_block, b.id_type, b.id_parent_block

11 from blocks_mfiles b inner join parents p on b.id_parent_block = p.

id_block

12)

13 select id_concern, count(id_token)

14 from parents inner join lines_tokens using(id_block) inner join tokens

using(id_token)

15 group by id_concern

75

ANNEX II. SQL SCHEMA AND QUERIES

Listing II.13: Number of files with switch+nargin blocks

1 select count(distinct id_mfile) from blocks_mfiles inner join lines_tokens

using(id_block)

2 where id_token = 1125 and id_type = 6

Listing II.14: Number of directly associated concern tokens to switch+nargin blocks

1 select count(*)

2 from (

3 select distinct id_block from blocks_mfiles inner join lines_tokens

using(id_block)

4 where id_token = 1125 and id_type = 6

5)

6 inner join lines_tokens using(id_block) inner join tokens using(id_token)

7 where id_concern between 1 and 35;

Listing II.15: Number of hierarchically associated concern tokens to switch+nargin blocks

1 with parents as

2 (

3 select id_block, id_type, id_parent_block

4 from (

5 select distinct id_block, id_type, id_parent_block

6 from blocks_mfiles inner join lines_tokens using(id_block)

7 where id_token = 1125 and id_type = 6

8)

9 union all

10 select b.id_block, b.id_type, b.id_parent_block

11 from blocks_mfiles b inner join parents p on b.id_parent_block = p.

id_block

12)

13 select id_concern, count(id_token)

14 from parents inner join lines_tokens using(id_block) inner join tokens

using(id_token)

15 group by id_concern

76

A
n
n
e
x

III
Supplementary Data

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.0

0.1

0.2

0.3

0.4

To
ke

n
ra

tio

Block parfor
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

VFArg DTS DTV DP CM Prt Vis FIO Sys MAD Par
Concern

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
ke

n
ra

tio

Block spmd
Repository Total Ratio
Direct Association Ratio
Hierarchical Association Ratio

Figure III.1: Token ratio vs Concern - Parallel Statement Blocks

77

ANNEX III . SUPPLEMENTARY DATA

Table III.1: Mapping between Concerns and corresponding Tokens [8]

1. Verification of function
arguments and return
values

nargchk, nargin, nargout, nargoutchk, varargin, varargout

2. Data type specialization
fi, fimath, int16, int32, int64, int8, quantize, quantizer, sfi, single,
ufi, uint16, uint32, uint64, uint8, double

3. Data type verification

cast, class, intmax, intmin, isa, isboolean, iscell, ischar, iscolumn,
isempty, isfi, isfield, isfimath, isfixed, isfloat, isinf, isinfinite,
isinteger, islogical, isnan, isnumeric, isobject, isquantizer, isreal,
isrow, isscalar, isstr, isstruct, isvector, length, ndims, numel, range,
realmax, realmin, size, typecast, wordlength

4. Dynamic properties eval, evalc, evalin, inline, feval
5. Console messages annotation, assert, disp, display, error, last, lastwarn
6. Printing orient, print, printdlg, printopt

7. Visualization

aaxes, axis, box, cla, clabel, clf, close, datacursormode, datetick,
errorbar, figure, figurepalette, fplot, frame2im, gca, gcbf, gcbo, gco,
getframe, gplot, grid, gtext, hist, histogram, hold, im2frame, image,
imfinfo, imformats, imread, imwrite, ishold, legend, line, loglog, mesh,
meshgrid, movie, newplot, pan, plot, plot3, plotbrowser, plotedit, plottools,
plotyy, polar, propertyeditor, rectangle, reset, rgbplot, rotate, rotate3d,
scatter, semilogx, semilogy, set, showplottool, subplot, surf, texlabel, text,
title, VideoReader, VideoWriter, xlabel, ylabel, zlabel, zoom

8. File I/O
diary, fgetl, fgets, fileformats, fopen, fprintf,fread, fscanf, fwrite, hgload,
hgsave, load, save, saveas, uisave

9. System

addtodate, ans, ba, bafter, batch, break, calendar, calllib, clear, clearvars,
clock, cputime, date, dbcont, dbmex, dbquit, dbstop, ebreak, echo, etime,
exist, inmem, input, inputname, inputParser, isglobal, iskeyword,
isvarname, libfunctionsview, libisloaded, loadlibrary, memory, mex, mexext,
mfilename, mislocked, mlock, munlock, namelengthmax, nanbreak, next,
now, onCleanup, pack, pause, pcode, rbreak, rehash, run, slist, spmd,
start, startat, step, stop, symvar, systems, tbreak, tic, timerfind, timerfindall,
toc, unloadlibrary, wait, weekday, where, who, whos, xbreak, zcbreak

10. Memory allocation/
deallocation

delete, global, ones, persistent, zeros

11. Parallelization

cancel, codistributed, codistributor, createParallelJob,
createTask, defaultParallelConfig, demote, destroy,
detupForParallelExecution, dfeval, dfevalasync, distributed,
gather, gcat, gop, gplus, gpuArray, gpuDevice, gpuDeviceCount,
importParallelConfig, isreplicated, jobStartup, labBarrier,
labBroadcast, labindex, labProbe, matlabpool, mpiLibConf,
mpiprofile, mpiSettings, numlabs, parfor, pctconfig,
pctRunDeployedCleanup, pctRunOnAll, pload, pmode, poolStartup,
promote, psave, redistribute, resume, sparse, submit, subsasgn,
subsref, taskFinish, taskStartup

78

Listing III.1: GitHub project fetcher

1 #!/usr/bin/env python3

2 """GitHub project fetcher

3 REQUIRES: python3

4 REQUIRES: Requests (pip/pip3 install requests)

5 REQUIRES: Unix environment (common utility binaries)

6

7 Automatically fetches GitHub repositories following certain criteria.

8 See -h for usage info.

9 See https://developer.github.com/v3/search/#search-repositories for query

parameter specifications.

10 Example usage:

11 ./getgit.py -n 200 -q "language:matlab" "size:<100" -s stars

12 """

13 import argparse

14 import logging as log

15 import requests

16 import json

17 import subprocess

18 import traceback

19 import re

20 from time import sleep

21

22

23 API_URL = "https://api.github.com/search/repositories?q="

24 REPO_ARCH_SUFFIX = "/archive/master.zip"

25

26

27 def getResults(parms, sort, order, perPage, n, nt, wt):

28

29 results = []

30

31 nextReq = API_URL + "+".join(parms) + ("&sort=" + sort if sort else "") +

("&order=" + order if order else "") + ("&per_page=" + str(perPage) if

perPage else "")

32

33 while len(results) < n:

34

35 if not nextReq:

36 debug.info("No more items!")

37 break

38

39 numRetries = -1

40

41 while True:

42 resp = requests.get(nextReq)

43 log.debug("Made request: " + nextReq + "(" + str(resp.status_code)

+ ")")

44

45

79

ANNEX III . SUPPLEMENTARY DATA

46 if resp.status_code != 200:

47 numRetries += 1

48 log.info("Request failed with status code " + str(resp.

status_code) + " (probably rate limited)")

49

50 if numRetries >= nt:

51 break

52

53 # Wait and try again

54 log.info("Retrying in " + str(wt) + "s")

55 sleep(wt)

56

57 else:

58 break

59

60 # Reached limit, return what we have

61 if numRetries >= nt:

62 log.error("Reached maximum retries; exiting")

63 break

64

65

66 # Get next page

67 hds = resp.headers["Link"].split(",")

68 for s in hds:

69 url = re.search(r"<(.+)>; rel=\"next\"", s)

70

71 if url:

72 nextReq = url[1]

73 break

74

75

76 results += resp.json()["items"]

77

78

79 return results[:n]

80

81 def dlRepos(items, archProc, finalProc):

82 log.info("Starting retrieval")

83

84 lenR = len(items)

85 i = 0

86 for item in items:

87 try:

88 i += 1

89 log.info("Retrieving %s (%d/%d)", item["full_name"], i, lenR)

90

91 url = item["html_url"] + REPO_ARCH_SUFFIX

92 subprocess.run(["wget", url, "-O", "tmp.zip", "-q", "--show-

progress"], check=True, stdout=subprocess.DEVNULL)

93

80

94

95 if not archProc("tmp.zip"):

96 log.info("Exiting after processing compressed repo (processor

returned False)")

97

98 subprocess.run(["rm", "tmp.zip"], check=True, stdout=

subprocess.DEVNULL, stderr=subprocess.DEVNULL)

99 continue

100

101

102 log.info("Unzipping")

103

104

105 # Unzip repo, rename to friendlier version (full name, / replaced

by -)

106 subprocess.run(["unzip", "tmp.zip"], check=True, stdout=subprocess

.DEVNULL, stderr=subprocess.DEVNULL)

107 subprocess.run(["rm", "tmp.zip"], check=True, stdout=subprocess.

DEVNULL, stderr=subprocess.DEVNULL)

108 name = item["full_name"].replace("/", "-")

109 subprocess.run(["mv", item["name"] + "-master", name], check=True,

stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

110

111

112 if not finalProc(name):

113 log.info("Exiting after processing uncompressed repo (

processor returned False)")

114

115 assert(name.find("..") == -1)

116 assert(not re.search(r"\s", name))

117 subprocess.run(["rm", "-rdf", name], check=True, stdout=

subprocess.DEVNULL, stderr=subprocess.DEVNULL)

118 continue

119

120 log.info("Done")

121 except Exception:

122 log.error("", exc_info=True, stack_info=True)

123 log.error("Exception during repository handling; continuing")

124

125

126 def main():

127

128 """Processor for JSON results.

129 main() will discard this result if it returns False.

130

131 e.g.:

132 if result["name"] == "fooRepoName": return False

133 return True

134 """

135 def resProc(result):

81

ANNEX III . SUPPLEMENTARY DATA

136 return True

137

138 """Processor for retrieved repositories which runs before inflation.

139 Args: archive filepath;

140 Example usage: removing unwanted files

141 dlRepos() will skip this repository if it returns False.

142 """

143 def archProc(archPath):

144 return True

145

146 """Processor for retrieved repositories which runs after inflation.

147 Args: repository directory filepath;

148 dlRepos() will skip this repository if it returns False.

149 """

150 def finalProc(repoPath):

151 return True

152

153

154 args = getArgs()

155

156 loglevel = args.log

157 nLoglevel = getattr(log, loglevel)

158 log.basicConfig(level=nLoglevel, format="%(asctime)s: %(levelname)s: %(

message)s", datefmt="%H:%M:%S %d-%m-%Y")

159 log.info("Started at loglevel %s", loglevel)

160

161 parms = args.query

162 log.info("Getting results for %s", parms)

163

164 res = None

165 if args.use_results:

166 log.info("Fetching from " + args.use_results)

167 with open(args.use_results, "r") as f:

168 res = json.load(f)

169 else:

170 res = getResults(parms, args.sort, args.order, args.per_page, args.n,

args.nt, args.wt)

171

172 if args.fetch_results:

173 log.info("Dumping results to " + args.fetch_results)

174 with open(args.fetch_results, "w") as f:

175 json.dump(res, f, indent=2)

176

177 return

178

179

180 log.info("Got " + str(len(res)) + " results")

181

182 res[:] = [r for r in res if resProc(r)]

183 log.info(str(len(res)) + " results after processing")

82

184 log.debug("Results:\n%s", res)

185

186 dlRepos(res, archProc, finalProc)

187 log.info("Exiting")

188

189

190 def integer_positive(a):

191 v = int(a)

192 if v <= 0:

193 raise argparse.ArgumentTypeError(str(a) + " must be a positive integer

")

194 return v

195

196 def getArgs():

197 parser = argparse.ArgumentParser()

198

199 parser.add_argument("--log", type=str, help="logging level", choices=["

DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], default="INFO")

200 parser.add_argument("-q", "--query", type=str, help="query parameters",

nargs="+", required=True)

201 parser.add_argument("-s", "--sort", type=str, help="sort function",

default="")

202 parser.add_argument("-o", "--order", type=str, help="order function",

default="")

203 parser.add_argument("-p", "--per-page", type=integer_positive, help="

results per page", default=100)

204 parser.add_argument("-n", type=integer_positive, help="number of

repositories to retrieve", default=1000)

205 parser.add_argument("-nt", type=integer_positive, help="number of request

retries", default=1)

206 parser.add_argument("-wt", type=integer_positive, help="time in seconds

between retries", default=60)

207

208 results = parser.add_mutually_exclusive_group()

209 results.add_argument("--fetch-results", type=str, help="fetch results only

and dump to file")

210 results.add_argument("--use-results", type=str, help="use results from

file")

211

212 return parser.parse_args()

213

214

215 if __name__ == "__main__":

216 main()

83

ANNEX III . SUPPLEMENTARY DATA

Listing III.2: Non-m-file remover

1 #!/usr/bin/env python3

2 """

3 Module to remove files that do not end with the *.m file extension. Can be

used as standalone script or be imported into existing script.

4 """

5 import os

6

7 def main():

8 for root, dirs, files in os.walk(".", topdown=False):

9 for name in files:

10 if not name.endswith(".m"):

11 os.remove(os.path.join(root, name))

12 elif name.startswith("._"):

13 os.remove(os.path.join(root, name))

14

15 if __name__ == "__main__":

16 main()

84

Listing III.3: Empty folder remover

1 #! /usr/bin/env python

2 """

3 Module to remove empty folders recursively. Can be used as standalone script

or be imported into existing script.

4 """

5 import os, sys

6

7 def removeEmptyFolders(path, removeRoot=True):

8 ’Function to remove empty folders’

9 if not os.path.isdir(path):

10 return

11

12 # remove empty subfolders

13 files = os.listdir(path)

14 if len(files):

15 for f in files:

16 fullpath = os.path.join(path, f)

17 if os.path.isdir(fullpath):

18 removeEmptyFolders(fullpath)

19

20 # if folder empty, delete it

21 files = os.listdir(path)

22 if len(files) == 0 and removeRoot:

23 print "Removing empty folder:", path

24 os.rmdir(path)

25

26 def usageString():

27 ’Return usage string to be output in error cases’

28 return ’Usage: %s directory [removeRoot]’ % sys.argv[0]

29

30 if __name__ == "__main__":

31 removeRoot = True

32

33 if len(sys.argv) < 1:

34 print "Not enough arguments"

35 sys.exit(usageString())

36

37 if not os.path.isdir(sys.argv[1]):

38 print "No such directory %s" % sys.argv[1]

39 sys.exit(usageString())

40

41 if len(sys.argv) == 2 and sys.argv[2] != "False":

42 print "removeRoot must be ’False’ or not set"

43 sys.exit(usageString())

44 else:

45 removeRoot = False

46

47 removeEmptyFolders(sys.argv[1], removeRoot)

85

	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Introduction
	Problem and Motivation
	Approach
	Objectives
	Document Structure

	MATLAB
	About MATLAB
	Syntax
	Variables
	Matrices and Arrays
	Operators
	Statements and Statement blocks
	Functions and Function blocks

	Object-Oriented MATLAB
	Class definition blocks
	Properties blocks
	Methods blocks
	Events blocks
	Enumeration blocks

	M-Files
	Script files
	Function files
	Class files

	Toolboxes
	Summary

	Concerns and Software Modularity
	What is Modularity?
	Concerns
	Cross-Cutting Concerns
	Scattering and Tangling
	Aspect Mining and Aspect-Oriented Programming
	Cross-Cutting Concern Identification
	Cross-Cutting Concern Modularization

	Summary

	A Study on Modularity in MATLAB
	Cross-Cutting Concerns in MATLAB
	A Token-based Aspect Mining Approach
	CCCExlorer Tool
	M-file Repository
	Concern-token mapping
	Token patterns
	Schizophrenic functions
	Intelligent MATLAB code repository

	Aspect-Oriented Extensions of MATLAB
	LARA - MATISSE
	AspectMatlab

	Summary

	System Extension Implementation
	Revising CCCExplorer
	Refactoring decision
	Block feature addition
	Considerations and documentation

	Extending the Intelligent Repository
	Summary

	Code Block Analysis and Results
	Repository Overview
	Blocks
	Concern Tokens

	Blocks and Concerns
	For and If Statement Blocks
	While Statement Block
	Switch Statement Block
	Try-Catch Statement Block

	Schizophrenic Functions
	Summary

	Conclusions and Future Work
	Summary
	Future Work

	Bibliography
	MATLAB Code Examples
	SQL Schema and Queries
	Supplementary Data

