
Nuno Miguel André Pulido

Bachelor in Computer Science

Applying Behavior Driven Development Practices
and Tools to Low-Code Technology

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Informatics Engineering

Adviser: Miguel Carlos Pacheco Afonso Goulão,
Assistant Professor,
NOVA University of Lisbon

Co-adviser: João Rosa Lã Pais Proença, Quality Owner,
OutSystems

Examination Committee

Chairperson: Prof. Pedro Medeiros, FCT-Nova
Members: Prof. João Pascoal Faria, FEUP

Prof. Miguel Goulão, FCT-Nova

September, 2019

Applying Behavior Driven Development Practices and Tools to Low-Code Tech-
nology

Copyright © Nuno Miguel André Pulido, Faculdade de Ciências e Tecnologia, Universi-

dade NOVA de Lisboa.

A Faculdade de Ciências e Tecnologia e a Universidade NOVA de Lisboa têm o direito,

perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de

exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro

meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios

científicos e de admitir a sua cópia e distribuição com objetivos educacionais ou de inves-

tigação, não comerciais, desde que seja dado crédito ao autor e editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

To my family.

Acknowledgements

I would like to start by thanking my advisors, Professor Miguel Goulão from FCT and

João Proença from OutSystems. Thank you Professor for being available to respond to all

my email spam, for regularly visiting me at OutSystems to follow my work, and for all the

help writing this dissertation. Thank you very much for your patience and all the advises

in the reviewing of the report ... I promise I will be careful and try to avoid very long

sentences and the excessive use of the passive voice. Thank you João for always being

by my side (literally) throughout this research, for all the technical support and for the

helpful advice you have been giving, in a topic you were more sensitive than anyone else.

You were undoubtedly the right person to guide this dissertation and I am very grateful

for the opportunity you gave me.

I would also like to give a very special thanks to all the FCT teachers I have been

through during this course. Without their lessons it would not be possible to do this

dissertation. To the people at OutSystems, and especially to the Life-Cycle team members

who have always been available to help me in my work and for welcoming me in the

team, as one of their own. The time spent at the company was very pleasant and I am

genuinely surprised by the positive and helpful spirit that exists at OutSystems. Speaking

of OutSystems, of course I could not forget to thank my mates from the “All-together”

team. We entered as strangers and left as a group of friends for life! Thanks for all

the meal-time deep conversations, billiard sessions, pranks, night outs, concerts, team

lunches, football matches, video calls....

Finally I want give a big thank you my parents for giving me this opportunity to study

away from home and for everything they did for me. Without them none of this would

be possible. A big one also to my friends, both from the Algarve and from the FCT, and

of these last I would like to highlight Pedro and Sergio who always accompanied me

throughout this last five years, without forgetting all the others of course. A big thank

you to Rita and finally a big thank you to Bia aka Quidditch Captain. They are amazing.

vii

“If you are working on something that you really care about,
you do not have to be pushed. The vision pulls you.”

– Steve Jobs

Abstract

One of the main reasons software projects fail is the lack of communication between

stakeholders. Low Code Platforms have been recently growing in the software develop-

ment market. These allow creating state-of-the-art applications with facilitated design

and integration, in a rapid development fashion and as such, avoiding communication

errors among stakeholders is indispensable to avoid regressions. Behavior-Driven Devel-

opment (BDD) is a practice that focuses on developing value-based software, promoting

communication by bringing business people into development.

The BDDFramework is an open-source testing automation framework within the Out-

Systems environment. It allows describing test scenarios using the Gherkin syntax but it

is not focused on enabling the BDD process. Our main challenge is: - How can we apply
the BDD process in Low Code and support it from a technological point of view, considering the
particularities of Low Code environments and having as case study the OutSystems platform?
Is the BDDFramework prepared for this?

We interviewed some people in the domain to understand their development and test-

ing challenges and their experience with the BDDFramework. With the information gath-

ered and after studying other existing BDD process supporting tools for other languages,

we built a prototype that uses the existing BDDFramework and automates it, allowing

scenarios to be described in text files, which helps the introduction of business people in

the process. The prototype generates all the test structure automatically, reusing equal

steps while detecting parameters in the Gherkin descriptions.

We performed some real user testing to validate our prototype and we found that our

solution was faster, easier, with better usability and we obtained more correct tests than

with the previous approach - the BDDFramework alone.

Testing in Low Code is still an area with a lot to explore and errors have a huge impact

when development is very accelerated, so as communication errors tend to decrease we

can start building software even faster and this is what BDD proposes to solve. With this

prototype we have been able to demonstrate that it is possible to build a framework that

will allow us to enable this process by taking advantage of the OutSystems language par-

ticularities to potentiate the BDD practice technologically, while setting a test standard

for the OutSystems language.

xi

Keywords: Low Code Development, Behavior-Driven Development, OutSystems, Gherkin

Scenarios, Automation Frameworks

xii

Resumo

Uma das principais razões para o insucesso dos projectos de software é a falta de co-

municação entre as partes envolvidas. As plataformas Low Code têm vindo a crescer no

mercado do desenvolvimento de software nos últimos anos. Estas permitem criar aplica-

ções recorrendo a uma linguagem visual que facilita o design e a integração num ritmo

de desenvolvimento acelerado, o que faz com que seja fundamental potenciar a boa co-

municação entre as partes interessadas, de forma a evitar regressões. O Behavior-Driven
Development (BDD) é uma prática que tem como objectivo o desenvolvimento de software

com valor, promovendo a comunicação e aproximando as partes envolvidas da fase de

desenvolvimento.

A OutSystems tem uma ferramenta para automação de testes, na qual os cenários são

descritos na síntaxe Gherkin, a BDDFramework. No entanto, e apesar do nome, esta não

foi criada com o propósito de auxiliar na prática do BDD, mas apenas e só para efeitos de

automação de testes. O nosso principal objectivo com esta dissertação é perceber como

podemos potenciar o processo de BDD em OutSystems, de um ponto de vista tecnológico

e perceber se a BDDFramework está preparada para isto.

Entrevistámos várias pessoas no domínio OutSystems para perceber como funcionava

o processo de desenvolvimento e teste, de forma a entendermos quais eram os desafios e a

experiência que tinham com a BDDFramework. Com a informação recolhida e juntamente

com a análise que fizémos a outras ferramentas semelhantes, conhecidas para outras

linguagens de programação, construímos um protótipo que utiliza a BDDFramework mas

que agiliza todo o processo. Permite a descrição de cenários em ficheiros de texto (o que

facilita a participação do negócio) e automatiza a criação de ecrãs de teste, permite o

reaproveitamento de passos e ainda a detecção automática de parâmetros.

Realizámos testes com utilizadores para validar o nosso protótipo e este apresentou

melhor performance em termos de velocidade, facilidade, usabilidade e correcção do que

a BDDFramework.

A área de testes no domínio Low Code é ainda uma área com muito por explorar e

os erros podem ser especialmente penalizadores dada a velocidade de desenvolvimento.

Com este protótipo conseguimos demonstrar que é possível construir uma framework

de automação de testes de BDD neste domínio, tirando proveito das caracteríssticas da

linguagem OutSystems e estabelecendo um standard de teste.

xiii

Contents

List of Figures xix

List of Tables xxiii

Listings xxv

Acronyms xxvii

1 Introduction 1

1.1 Context and Description . 1

1.2 Motivation . 2

1.3 Objectives and Expected Results . 3

1.4 Structure . 4

2 Background 5

2.1 Software Development Processes . 5

2.2 Agile Development . 5

2.3 Test-Driven Development . 6

2.4 Acceptance Test-Driven Development . 7

2.5 Behavior-Driven Development . 7

2.5.1 Advantages . 9

2.5.2 Disadvantages . 9

2.6 User Stories . 10

2.7 Gherkin Scenarios . 10

2.8 BDD vs ADTT vs TDD . 11

2.9 Software Testing . 13

2.10 Test design techniques . 13

2.11 Test Automation . 14

2.12 Regression Testing . 15

2.13 Exploratory Testing . 15

2.14 Continuous Integration, Continuous Delivery and Continuous Deployment 16

2.15 Low Code Model-Driven Development . 16

2.16 OutSystems Architecture . 17

xv

CONTENTS

2.16.1 Service Studio . 17

2.16.2 High-Level Architecture of Applications 19

2.16.3 Visual Language . 21

2.16.4 Testing Methods . 22

2.17 UI Testing . 24

2.18 BDDFramework . 26

2.18.1 Recommended practices . 30

2.18.2 Data-Driven Testing . 31

3 Related Work 33

3.1 Low Code and BDD . 33

3.2 BDD principles and supporting tools . 34

3.2.1 Discussion on the study by Wang and Solís 35

3.3 Software evolution challenges . 37

3.4 Automation frameworks . 38

3.4.1 How BDD frameworks work . 38

3.4.2 Well-known examples . 40

4 Case study and initial considerations 41

4.1 Interviews . 41

4.1.1 Interview Questions . 42

4.1.2 Interview Results . 42

4.2 Analysis of BDD Automation Frameworks 46

4.2.1 Cucumber . 46

4.2.2 SpecFlow . 52

4.2.3 Framework Evaluation Proposal . 54

4.3 Prototype Features Identification . 57

4.4 Prototype Alternatives . 58

4.5 Decision making and strategy adopted . 60

5 Prototype Implementation 63

5.1 Prototype Description . 63

5.2 Implementation Analysis . 71

5.2.1 Architecture Overview . 71

5.2.2 Development process . 73

5.2.3 Implementation Analysis . 73

6 Validation and Results 85

6.1 Planning . 86

6.1.1 Goals . 86

6.1.2 Participants . 88

6.1.3 Materials . 89

xvi

CONTENTS

6.1.4 Tasks . 90

6.1.5 Hypotheses, Parameters and Variables 92

6.1.6 Quasi-experiment Design . 95

6.1.7 Quasi-experiment Procedure . 96

6.2 Results and Analysis . 99

6.3 Discussion . 106

6.4 Comparison with other well-know BDD automation tools 111

7 Conclusions 115

7.1 Overview of the developed work . 115

7.2 Contributions . 117

7.3 Future Work . 117

Bibliography 119

A Appendix 1 Interview Scripts 125

B Appendix 2 Experiment Introductory Scripts 127

I Annex 1 NASA Task Load Index questionnaire 133

II Annex 2 System Usability Scale questionnaire 135

III Annex 3 Task descriptions 137

xvii

List of Figures

2.1 Outside-in development used in BDD[75]. 12

2.2 OutSystems Platform Architecture [54] . 18

2.3 Service Studio . 18

2.4 The Interface tab . 19

2.5 The Logic tab . 20

2.6 The Data tab . 20

2.7 BDD scenario specification to test the Equilateral triangle within Service Studio
using the BDDFramework . 28

2.8 All BDDSteps that constitute the (single) scenario were successfully performed,

culminating in the positive outcome of the scenario. 28

2.9 A BDDStep failed, resulting in a failing scenario. the failure report is displayed

below the failing step. 29

2.10 The expected result was "Equilateral"and the obtained is the value of variable

kind previously assigned in the logic implementing the when clause 29

3.1 The BDD Characteristics support from seven BDD toolkits 35

4.1 The Cucumber Process, as described in The Cucumber For Java Book[63] . . . 47

4.2 The Java FizzBuzz method under test . 47

4.3 Feature File with the plain text description of 2 Gherkin Scenarios, one for the

Fizz case and the other for the Buzz case, as expected results 48

4.4 Test class generated from the feature file with the step definitions already

implemented . 49

4.5 In this two scenarios the values (“missing name error” and “missing email

error”) in the Then clause are introduced manually. These scenarios could be

compressed into a unique scenario using a scenario outline with the examples

table containing the values to replace the variable. 49

4.6 Using the scenario outline we compressed the 2 scenarios into one unique sce-

nario outline that will execute as many times as there are lines in the examples

table. In this particular case 2 times, one for each value of the variable “Error” 50

xix

List of Figures

4.7 The immediate table below the scenario specification represents a data table.

This data is all used within an execution of the scenario and represents the

information retrieved when we search for some word which is in the scenario

outline table below . 50

4.8 The first step of the three scenarios displayed is equal. 51

4.9 In this case it is possible to group the equal steps in a background step that

will be executed for all scenarios considered. 51

4.10 Example of a more complete visual report, obtained with the execution infor-

mation generated by Cucumber, integrated with Jenkins. 52

4.11 Another example of a more complete visual report, obtained with the execu-

tion information generated by Cucumber, integrated with Jenkins 52

4.12 The C# FizzBuzz method under test . 53

4.13 Feature File with the plain text description of 2 Gherkin Scenarios, one for

Fizz and the other for Buzz, as expected results 53

4.14 Test class generated from the feature file with the step definitions already

implemented . 54

4.15 The most used frameworks compared with the BDDFramework in the new pro-

posal of evaluation model. Attributes marked with a check mark are present

in the frameworks. Attributes marked with a X mark are not present in the

frameworks. 56

4.16 Automated generation of the test logic and filling of the BDDFramework sce-

narios and steps process, from the external feature files by the prototype com-

ponent. 59

4.17 eSpace organization inside Service Studio. 59

4.18 Schema that represents Hypothesis 2. 60

5.1 Example of a feature file containing 2 features and 3 scenarios. The first

feature contains two test scenarios and the second only one. The component

parses the file and the highlighted words identify special keywords where new

Features, Scenarios and Gherkin steps begin. 64

5.2 The following test module is obtained when we execute the BDD command

using the previously presented feature file example. 65

5.3 Each sentence in the Gherkin scenario is connected with a screen action con-

taining its implementation. 65

5.4 The Screen Action associated with a Gherkin step calls a Server Action (cen-

tralized) with the same name containing its implementation. There is one
Screen action per Gherkin Step. 66

xx

List of Figures

5.5 The Server Actions hold the centralized implementations of the BDD steps.

There is only one Server Action per different Gherkin step, avoiding action re-

dundancy. Every Gherkin step “I have a valid card” will call the same Server

Action, since their implementation is the same (equal steps). As we can see,

there are 11 Gherkin steps in the example feature file (figure 5.1) but only 6

Server Actions in the generated eSpace, since some of the steps are the same.

In the second and third scenarios, only one of the steps is new. 67

5.6 The textual parameter is replaced by a variable in the sentence. It is ignored

when we compare sentences to check for equality. Its value is passed as an

input parameter for the server action that contains the corresponding step

implementation. 67

5.7 The Server Action (not yet implemented) receives the parameter as an input

and it automatically infers its type, in this case a text containing the error. . . 68

5.8 The NotImplementedException is defined for the generated Server Actions, when

those are created. 69

5.9 The BDDFinalResult block shows how many scenarios have failed during the

execution. 70

5.10 The result of publishing and displaying in the browser the scenario results

from the Withdraw cash from bank account screen. The (single) scenario was

not implemented and as expected the unique scenario fails right on the first

step, where an exception is raised and the other steps are skipped. 70

5.11 The Class Diagram representing the 3 classes which compose the Prototype. 72

5.12 The Generate BDD Scenarios command execution flow. 74

6.1 Scheme of the division of participants into two groups, experimental and

control. 89

6.2 Interface of the Rectangle Area OutSystems application, created to test Task 1. 91

6.3 Scenario description to test the Equilateral Triangle demonstrated in the demo

phase. 92

6.4 Interface of the Triangle Kind OutSystems application, created to test Task 2. 92

6.5 Hypotheses and sub-hypotheses formulated for the desired high level goals. 93

6.6 Visual representation of the quasi-experiment procedures and estimated times

for each phase of the quasi-experiment. The introductory script (1) and the

presentation (2) were different for each approach, while tasks and question-

naires were the same. Phases 1 and 4 were done on paper, while phases 2 and

3 were done using a laptop computer. The estimated duration of the tasks was

60 minutes, although in most cases it was less, since participants were able

to perform the tasks in time. Following phase 4, there was usually an infor-

mal conversation in a more relaxed context (but still important) and outside

the quasi-experiment environment, where participants gave their informal

feedback and opinions about the frameworks and testing processes presented. 97

xxi

List of Figures

6.7 Gherkin scenario given to the user as a test example for the application Type
Of Triangle. 98

6.8 Speed for the BDDFramework (blue) and Prototype (red) in task 1. 100

6.9 Speed for the BDDFramework (blue) and Prototype (red) in task 2. 101

6.10 Gaph comparing the mean score for each of the workload metric in both ap-

proaches. 102

6.11 Boxplot for the Nasa TLX mean classifications for both tools. 102

6.12 Graph representing the mean SUS responses for each item, for both frameworks. 105

6.13 Boxplot for the SUS mean score for both tools. 106

6.14 Mean speed for task 1, for participants with BDDFramework experience (or-

ange) and for participants without BDDFramework experience (blue). 107

6.15 Mean speed for task 2, for participants with BDDFramework experience (or-

ange) and for participants without BDDFramework experience (blue). 108

6.16 The most used BDD frameworks compared with the Prototype and the BDDFrame-
work in the new proposal of evaluation model. Attributes marked with a X

mark are missing. 112

A.1 Script for the interviewees who only had contact with the BDDFramework . 125

A.2 Script for the interviewees who had contact with both the BDD process and

the BDDFramework . 126

B.1 Introductory guide for Approach 1 (BDDFramework), page 1. 128

B.2 Introductory guide for Approach 1 (BDDFramework), page 2. 129

B.3 Introductory guide for Approach 2 (Prototype), page 1. 130

B.4 Introductory guide for Approach 2 (Prototype), page 2. 131

I.1 NASA-TLX questionnaire. 133

II.1 System Usability Scale (SUS) questionnaire. 135

III.1 First task. 137

III.2 Second task. 138

xxii

List of Tables

6.1 Overview of the independent variables. 93

6.2 Overview of the dependent variables. 93

6.3 Speed descriptive statistics for the creation and the reuse tasks. 100

6.4 NASA TLX score interpretation. 101

6.5 NASA TLX mean scores for both tools. 101

6.6 NASA TLX descriptive statistics. 101

6.7 Overview of the correctness results in the BDDFramework and in the Prototype. 103

6.8 Meaning of SUS score. 104

6.9 Mean SUS answer for each question, for the BDDFramework testers. 104

6.10 Mean SUS answer for each question, for the Prototype testers. 105

6.11 SUS descriptive statistics. 106

6.12 Welch t-test for task 1, concerning the speed variable. 108

6.13 Welch t-test for task 2, concerning the speed variable. 109

6.14 Welch t-test for the NASA-TLX, concerning the ease variable. 110

6.15 Welch t-test for SUS mean score. 111

xxiii

Listings

2.1 Gherkin Scenario Example . 10

2.2 Equilateral Triangle Scenario . 27

3.1 Scenario Example . 38

3.2 Given clause . 39

3.3 And clause . 39

3.4 When clause . 39

3.5 Then clause . 40

3.6 Step definition in SpecFlow . 40

xxv

Acronyms

API Application Programming Interface.

ATDD Acceptance Test-Driven Development.

BDD Behaviour-Driven Development.

BDT Behavior-Driven Traceability.

CD Continuous delivery.

CI Continuous Integration.

DDT Data-Driven Testing.

DSL Domain Specific Language.

IDE Integrated Development Environment.

LCMDD Low Code Model-Driven Development.

SUS System Usabibility Scale.

TDD Test-Driven Development.

UI User Interface.

xxvii

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Description

Over the past few years, Low Code platforms have gained increasing popularity in the

software development market. These platforms allow users to create state-of-the-art

web (and mobile) applications using a visual programming language while having little

concern for the complex technologies that implement those applications and having fa-

cilitated design and integration, in a rapid development fashion. OutSystems is a good

example of success among the Low Code platforms, according to recent reports[65].

According to some studies, about half of the software projects fail to deliver in some

way. The Standish Group’s annual CHAOS Report of 2015 found that 52% of the software

projects were delivered late, ran over budget, or simply failed to deliver the requested

features. According to the same source 19% of the software projects were cancelled

entirely[73]. This corresponds to millions of euros lost in developing software that does

not solve the business problems they were intended to solve.

In an attempt of addressing these problems, Behavior-Driven Development (BDD)

has gained increasing popularity even though this a relatively recent practice. BDD was

presented by Dan North in 2003 as an evolution of other existing Agile practices, like Test-

Driven Development among others[45]. It is not a replacement for those methodologies

but instead incorporates and enhances ideas from them and can be integrated and incor-

porated with other practices. It focuses on developing value-based software, promoting

communication and understanding among all stakeholders (technical and business), by

bringing the business into the development process as a way to ensure software success.

In this Agile technique, the development process is thought in terms of behavior, not

in terms of code implementation. Behaviors constitute a form of documentation, in a

language that can be perceived by all, and they are the basis for the testing process. Later

1

CHAPTER 1. INTRODUCTION

on, the behavior descriptions are compared with the final product. These are defined

by all stakeholders. On one hand, the business is more within the development process

and can better perceive the technical limitations of the developers who in turn can better

understand features demanded by the business and their value. This communication

promises to reduce the number of errors that arise from poor communication which is

one of the main causes of failed projects [16]. This and the fact that BDD promotes un-

derstanding, documentation, and enables test automation, leads us to believe that this

methodology can be seen as a software development accelerator for OutSystems given its

characteristics and considering the characteristics of Low Code languages. We considered

this assumption during this dissertation.

In the OutSystems context, there is an open-source framework designed for test au-

tomation purposes, the BDDFramework, which allows the specification of executable

Gherkin scenarios. However, despite its name, it was not built to support the BDD pro-

cess, but only as a test automation tool where scenarios are described with the Gherkin

syntax. One of the main goals of this dissertation will be to analyze the BDDFramework
strengths and weaknesses and assess whether or not it can be improved to potentiate the

practice of BDD in OutSystems.

1.2 Motivation

In Low Code, where development is fast, errors can have a significant impact on soft-

ware development and lead to major regressions. Therefore it is important to write good

software since the beginning, avoiding errors at all cost. The BDDFramework helps us

building the software right and this is promoted by the OutSystems infrastructure, which

raises the level of abstraction and facilitates integration. However, the BDDFramework
does not help us building the right software (i.e. the software user wants). Behavior-

Driven Development can be a valuable help in relation to this. BDD is about promoting

communication between stakeholders through conversations around the expected behav-

iors of the system. From these conversations result features that are further broken down

into scenarios that constitute a form of acceptance criteria of the system (a form of living-

documentation and the basis of automation). We want to enable this from a technological

point of view, with a tool that can assist in this process.

Communication is key in software projects. One of the main causes pointed to the

failure of software projects is the misinterpretation that developers make of the require-

ments, which is a result of poor communication between stakeholders. Developers often

misunderstand the requirements that come from the business who in turn do not know

the capabilities of the developers, nor the technical challenges associated with the require-

ments they are asking for. This the problem that BDD tries to overcome. Simply with

conversations between all the stakeholders, in a language spoken by everyone.

Besides that, due to the fact that Low Code raises the level of abstraction, we experi-

enced that conventional unit-testing is not so prevalent as in other high code languages

2

1.3. OBJECTIVES AND EXPECTED RESULTS

[12]. We need something of a higher level of abstraction to perform and standardize tests,

like the BDD behavioral scenarios, which are great for test automation and documenta-

tion as it is already done with success in other languages and with the aid of powerful

support tools.

One of our biggest motivations and one of the reasons why we consider to be so

important the test automation that is allowed by the BDD process is that it releases the

software testers from the tedious task of repeating the same assignment over and over

again, freeing them to perform other types of tasks and testing that can not be automated,

opening space for creativity, being these some of the factors concluded in said to improve

software testers motivation at work [64].

The world of software development is still coming to terms with the Low Code re-

ality and further research about the best practices to develop software according to its

characteristics and speed of development is required. The literature addressing to this

topic is also scarce and hence the importance of this investigation. We need to fulfill this

gap because other methodologies, although applicable may not be well optimized to Low

Code and sometimes require adaptation.

We will study the BDD process in this particular environment that is the Low Code,

and try to find the best way to do it, enhancing the practice from a technological point of

view.

1.3 Objectives and Expected Results

By the end of this dissertation, we expected to have clearly defined requirements for a Low

Code framework that supports BDD as a development process in OutSystems and that

can also be used for test automation purposes. Those should work for OutSystems, with-

out the need to leave this domain and taking advantage of the platform characteristics to

technologically empower it. The requirements specified, based on the principles of BDD

and Low Code, should culminate in the implementation of a prototype. For that, it will

be necessary to make a properly justified choice: to use and extend the BDDFramework
to support the BDD process in OutSystems like other tools that exist for other languages,

to extend one of those existing test automation tools that use the Gherkin syntax and

integrate it with the OutSystems language or to create a new tool completely from scratch.

During the accomplishment of this work, it is expected the constant contribution of peo-

ple in the field to obtain feedback and for understanding and analyze their development

process, to better understand the needs of developers and the OutSystems platform dy-

namics. This is a very important aspect and this feedback will be obtained on a day to

day basis whether in the form of interviews or informal conversation.

In addition to the description of the whole process, at the end of the development

phase there will also be a phase for the realization of tests with real users. They will use

the developed prototype with the objective of comparing the test approaches carried out

in the past with the approach using the prototype. All the results, as well as the detailed

3

CHAPTER 1. INTRODUCTION

description of the whole process and the choices made, will be described in detail in this

report.

We can summarize the objective of this dissertation as:

Realizing the characteristics of Behavior-Driven Development and Low Code tech-

nologies, we want to develop a test automation framework in the OutSystems

domain that enables the BDD process technologically, having as a starting point

the existing BDDFramework.

It can unfold into 2 main research questions:

• RQ1: What are the main strengths and weaknesses of the BDDFramework and how

could it be improved to support the BDD process?

• RQ2: How can we build a BDD testing automation framework for the OutSystems

language?

1.4 Structure

The remainder of this dissertation report is organized as follows:

• Chapter 2 - Background: this section addresses the main research concepts, being

the main topics the OutSystems Platform, BDD, Automated testing and Automation

frameworks;

• Chapter 3 - Related Work: in this section we will present some related work on

BDD and Low Code, that relate to the context of this dissertation;

• Chapter 4 - Case study and initial considerations: this section describes the in-

terviews conducted, to better understand what are the problems on the field and

describes the options for facing the problem that were left on the table and the

motivation for choosing one of them above the others.

• Chapter 5 - Prototype Implementation: this section describes the implementation

of the prototype, considering all the decisions taken, the procedures and algorithms

used.

• Chapter 6 - Validation and Results: presents the results obtained for this work, both

by the execution of the tool as well as from usability tests performed. Contains a

detailed description of the whole experimental process.

• Chapter 7 - Conclusions: finally a quick overview of the work produced during the

dissertation with some future considerations regarding possible improvements and

features.

4

C
h
a
p
t
e
r

2
Background

2.1 Software Development Processes

A software development process is a structured set of activities required to develop a

software product. There are multiple types of software processes, but all involve the

following phases:

• Specification: defining what the system should do;

• Design: defining the organization of the system;

• Implementation: implementing the system;

• Verification and Validation: checking the correctness of the system and that it does

what the customer wants;

• Evolution: changing the system in response to changing customer needs.

Nowadays, agile methodologies are among the most common approaches used in prac-

tice to conceive software products [74]. In this kind of approach, the planning phase is

incremental and functionalities are developed in iterative development cycles. It is easier

to change the process to reflect upcoming customer requirement changes in opposition to

traditional Plan-driven approaches, in which all the process activities are planned, and

progress is measured against a plan [71]. The customers are more involved in the process

and there is less documentation involved than in plan-driven approaches.

2.2 Agile Development

Agile methods represent iterative and incremental development processes. Their main

goal is to help teams in evolving environments, maintaining focus on fast software

5

CHAPTER 2. BACKGROUND

releases with business value and dealing with constantly changing requirements. Cus-

tomers are involved in the process and participate in an active way for quick feed-

back and reporting requirements. Typically,agile methods work through development

in sprints1. The focus consists in reducing the overall risks associated with long-term

planning and changing requirements, building software that does not serve the customer

[34]. Scrum, eXtreme Programming (XP), Pair Programming are some examples of ag-

ile methodologies. These methods assist teams in responding to the unpredictability of

constructing software and help follow the agile manifesto which is a set of principles

that is based on continuous improvement, flexibility, input of the team and delivery of

results with high quality. Individuals and interactions are prioritized over processes and

tools, working software over comprehensive documentation, customer collaboration over

contract negotiation and finally responding to change over following a plan [36]. The

manifesto argued that we should pay more attention to some aspects, but of course not

neglecting others that were previously considered more important.

2.3 Test-Driven Development

In agile development, one of the most well-known practices to develop the software

code is Test-Driven Development (TDD). In this incremental software development pro-

cess,first the developer writes the test for a given new piece of functionality (a unit).

This test initially fails, as the functionality is not yet implemented. Then, the developer

writes the code that implements the failing functionality, just enough code to make the

test pass. Finally, the developer refactors the new code [7]. In Test-Driven Development

(TDD) automated unit tests are written before the code itself is made. Running these tests

gives developers a fast confirmation of whether the code behaves as it should or not [30].

In some contexts TDD can be difficult to apply in practice and it does not provide a

standardized structure and guidelines on how testing should be developed, but instead a

wide range of recommended practices. This can make testing difficult to understand for

technical workers who are not participating in the process (and even more for business

people). These business stakeholders, such as customers and business analysts, can not

easily contribute to assessing whether the product meets the demanded requirements

which might lead to a frequent misunderstanding about how the software should behave,

leading to delays as it can waste a lot of time in the next sprints correcting things from

the previous ones that must be corrected before advancing[43]. TDD is often associated

with Unit Testing, so the level of abstraction to which TDD refers is usually very low.

Sprints are periods of time during which the defined work and tasks must be com-

pleted by the development teams. In an initial phase the tasks to be implemented during

the sprint are decided and analysed by the teams and planning is done for the time avail-

able (Refinement and Planning phases). In the end of the it, the results are analysed and

1Incremental, iterative work sequences with limited duration in which the tasks to be developed are
previously defined and planned by the development teams

6

2.4. ACCEPTANCE TEST-DRIVEN DEVELOPMENT

the new features are integrated and released after refactoring [62, 66].

2.4 Acceptance Test-Driven Development

An acceptance test is a description of the expected behavior of a software product, usu-

ally expressed as a scenario for automation and documentation purposes. It should be

possible to execute such specifications with automation frameworks. Acceptance test-

ing is a way of functional specification and formal expression of business requirements

in Agile[1, 2].

Acceptance Test-Driven Development (ATDD) is a technique used to bring cus-

tomers into the test design process before coding has even begun. Customers, testers,

and developers define the automated acceptance criteria in a collaborative fashion.

ATDD is related to TDD in the sense that it highlights writing acceptance tests before de-

velopers begin coding. However, the main difference is the emphasis on the collaborative

participation of developers, testers and business people, commonly known as the Three
Amigos[32].

ATDD is a way to ensure that all stakeholders understand what needs to be done

and implemented. Tests are specified in business domain terms and each of them tests

features with measurable business value (software that matters)[19].

So, ATDD is a process in which high-level acceptance tests, designed by all the stake-

holders (including the customer), are automated to initially fail and then developed just

to create enough production code to make them pass (following a TDD fashion). This

constitutes a “contract” between customers and developers as a feature is considered ad-

equate if it passes the acceptance tests. Despite all this, ATDD requires a lot of discipline

and communication to make it worth and this communication should go from the Prod-

uct Owners to the developers and the other way around, in both directions. However, in

the end, we get an easy to read living documentation reflecting how the system behaves.

2.5 Behavior-Driven Development

There are many reasons for software projects to be unsuccessful: delays, poorly calculated

costs, non-compliant end-products, among others. One of the most common problems

in software projects arises from the lack of communication between the development

teams and the business people[16]. Due to this poor communication, often developers

do not quite understand what needs to be done, and the business people misunderstand

what are the capacities of the developers and the implementation difficulties of the soft-

ware they ask for[69].

Behavior-Driven Development (BDD), also known as Specification-by-example was

created by Dan North in 2003 as an evolution of Test-Driven Development to deal with

these communication problems mentioned above and to help developers know where to

start, what to test, how to name their tests and why tests failed[46].

7

CHAPTER 2. BACKGROUND

According to North:

“BDD is a second-generation, outside-in, pull-based, multiple-stakeholder, multiple-scale,
high-automation, agile methodology. It describes a cycle of interactions with well-defined
outputs, resulting in the delivery of working, tested software that matters.”

BDD is about having conversations to help teams avoid misinterpreting requirements,

while promoting a shared knowledge between team members as early as possible in a

user story lifecycle[33]. It is about describing an application by its behavior, from the per-

spective of its stakeholders, in this case, the Three Amigos representing the developer, the

tester and the business. The main difference between BDD and other Agile approaches is

the importance it gives to business value, by including the business people in the conver-

sations about the development process in order to build software that matters, which is

the software the customer wants and avoiding misunderstandings with the development

team – writing proper code from the beginning[45].

North sees BDD as a centered community and not as a bounded one, as BDD presents

a set of principles and values but with undefined borders. In bounded communities it is

much easier to define whether we are doing a given practice, based on a set of principles,

but in a centered one is not that easy[12, 61]. BDD has evolved out of established

agile practices (like TDD and ATDD) and is designed to guide and enable agile software

delivery to teams new to this approach.

When adopting BDD it is important to focus on solving the problems of delivering

the software customers want and not only in testing automation techniques. Sometimes

BDD is seen, incorrectly, as a way of generating automated auto-descriptive tests through

BDD frameworks like Cucumber[18] or SpecFlow[72]. Although this automation is an

important part of the BDD process, the main focus should always be, first on having the

conversations between the Three Amigos and only then in automation.

One of the most important aspects of BDD is the definition of a Ubiquitous Language

that allows communication between the different stakeholders in domain terms perceived

by all. This is crucial since the success of the practice relies on good communication

without misinterpretations, to accelerate the software process and make it less error-

prone[15].

The Ubiquitous Language definition constitutes a Domain Specific Language (DSL)

which is a computer language that allows to provide a solution for a particular class of

problems. Among other things, it makes easier to express domain terms. In BDD this is

usually done in Plain English Text User Stories and Gherkin Scenarios[69].

BDD has a major goal of determining the behavior that is right for the business be-

fore code gets written. However, the resulting Gherkin scenarios that are produced are

convenient for test automation and documentation. This has led to the popularization

of frameworks like Cucumber, JBehave or SpecFlow. These Gherkin frameworks have be-

come also popular outside the context of BDD, for the purpose of test automation alone.

This is due to the fact that some teams see benefits in using Gherkin only for automation:

8

2.5. BEHAVIOR-DRIVEN DEVELOPMENT

the self-descriptive nature of test specifications (documentation), the common under-

standing through an ubiquitous language, the reuse of step implementations and having

a standard to structure tests. The nature of the Gherkin syntax by itself is very appealing,

just in the sense that it provides a standard for everyone to follow when doing certain

levels of test-automation, while assuring that the tests provide a clear documentation of

themselves (living documentation).

2.5.1 Advantages

According to Smart in his book BDD In Action (commended by North), the main advan-

tages of the BDD process are[69]:

• Reduced waste and costs: since there is an increased effort in finding business

valued features and devalue those which do not represent business value, there is

a waste reduction and consequent cost savings, producing software the customer

wants since the beginning;

• Changes are easier to accommodate: since living documentation is generated

through executable specifications in a common language to all stakeholders, the

code becomes easier to understand, perceive and maintain. The kind of documen-

tation makes it easier to understand what each feature represents, the meaning of

the tests and why they fail;

• Faster releases: with test automation it is no longer necessary to spend much time

running tests manually so more time can be invested in exploratory testing and

other kinds of testing which require more skill and attention from the developer.

Releases may come out faster once the testing process is simplified;

2.5.2 Disadvantages

According to Smart, the fact that it is a relatively recent practice that has been gaining

increasing popularity only in recent years makes the literature sparse on this subject.

Also, the fact that it is a second-generation method makes people often confuse it other

technologies like TDD and ATDD that gave rise to it. But, above all, the fact that BDD

is still widely seen only as a form of test automation and not for the importance it

gives to business value, leads to misuse and consequent failure of the method in some

situations[69]. Among the many reasons, the ones that stand out the most are:

• BDD requires high business engagement in order to be efficient and it can be diffi-

cult to implement in large companies or companies that practice“off-shore testing”,

because teams work in separate spaces, making it more difficult to communicate;

• BDD is highly focused on functional requirements not offering many solutions

for non-functional requirements;

9

CHAPTER 2. BACKGROUND

• The use of BDD as a bounded set (“Do this and that and you will succeed”)[61].

BDD is a practice that derives from other agile practices and does not follow a set

of rules or principles and instead follows some baselines, but the process can and

should be tailored to each context and reality;

• Users who wish to use BDD, usually search for available tools and frameworks that

support the process which are often an illusion that a complete and reasoned BDD

process will automatically be followed;

• Scalability can be difficult to achieve in large organizations where communication

between different teams is not easy because of the physical or even geographical

separation of its members.

2.6 User Stories

User stories are feature descriptions told from the perspective of the customer. They

typically follow the structure:

As a < Role >, I want < Goal > So that < Motivation >.

User stories are written for discussion. After a feature is identified, along with its

users (with roles) we can describe scenarios from them that implement and constitute

concrete examples of those features. Scenarios are expressed in a natural like language,

such as Gherkin. User Stories are the basis of the discussion that takes place at the

beginning of each development phase (Sprint) and can be written by any stakeholder

(from a user perspective) [4].

2.7 Gherkin Scenarios

Gherkin is a plain-textual language with the Given, When, Then structure which rep-

resents the initial state, the action and the expected result of the action, respectively.

Gherkin is designed to be easy to learn by non-technical stakeholders and it is used to

express software in behavior terms to make features easier to understand.

The Given clause represents the initial context of the scenario - the various states that

we should verify before we perform the action.

The When clause represents a specific action that must happen to trigger the behavior

represented by the Then clause.

The Then clause describes the expected outcomes of conducting the action/event in

the system. All of these should be written in a simple and clear way for better under-

standing of the behavioral scenarios [24].

Example:

Listing 2.1: Gherkin Scenario Example

1 Scenario - Wrong credit card number

10

2.8. BDD VS ADTT VS TDD

2 GIVEN The user inserts a valid credit card in the ATM machine

3 AND The user inserts a wrong number

4 WHEN The user confirms the number by pressing the green button

5 THEN An error message is displayed

In addition to these main keywords, some descriptions using Gherkin and especially

some software also allow the use of other keywords:

• And: is used to add conditions to our steps. Refers to the previous indicated key-

word (Given, When or Then);

• But: Like the And keyword, it also refers to the previous step, but this keyword

is used to add negative type comments. It is good to use when our step describes

conditions which are not expected, for example when we are expecting some text

or when an element should not be present on the page.

The close relation between specification and acceptance testing allows BDD scenarios

to become the living documentation of the system. In BDD, examples of behavior become

test code and ultimately documentation, with scenarios becoming acceptance tests and

eventually regressions tests.

Once the conversations between stakeholders are happening, they can be captured

using the Gherkin syntax. Then, we can use the captured examples along with automation

tools to develop automated tests, in what is known as an outside-in approach. The main

automation tools that support BDD (such as Cucumber and SpecFlow) work like this:

1. The framework reads a specification file with the scenario descriptions;

2. It translates the formal parts of the scenario’s ubiquitous language (the Gherkin

keywords - given, when, then) breaking each scenario into meaningful individual

clauses (usually called steps);

3. Each clause is then transformed into some method for testing. The generated meth-

ods (step definitions) should then be implemented by the developers;

4. The framework allows executing the test, reporting the results at the end, usually

with information about the scenarios that passed and those that failed.

2.8 BDD vs ADTT vs TDD

BDD is a methodology that originated from TDD and ATDD, among other pratices.

TDD is focused towards building correct software but not on building the software that

the user wants. On the other hand, ATDD focuses on helping developers build the right

software by promoting the collaborative construction of high-level acceptance tests (in-

tegration and acceptance testing), unlike TDD that is used at a lower level of abstraction

11

CHAPTER 2. BACKGROUND

(unit level mostly). Both practices complement each other, acting at different levels of

abstraction. It is sometimes said that unit tests ensure you build the thing right, whereas

acceptance tests ensure you build the right thing. These are also the informal definitions

of verification and validation, respectively.

Figure 2.1: Outside-in development used in BDD[75].

BDD combines these two practices, in an approach called outside-in.The developer

connects a Gherkin scenario (built from conversations between stakeholders) to failing

automation code (not yet implemented). This phase of the process is similar to what

happens in ATDD. The main difference with the ATDD process comes when we go inside

the circle and apply the TDD process, creating unit tests for each software unit needed to

make the outer circle pass. The value of the outside in development approach is that the

developer is guided towards delivering the right software as their focus is to make the

example pass, thus comprising understand the verification and validation phases. ATDD

and TDD are methodologies used within BDD, however, these are more developer-sided

rather than client-sided[75].

BDD leverages the ATDD approach around conversations, collaboration, and automa-

tion to ensure that a team delivers what the business wants [19]. The conversation should

always be over automation. Usually in Behavior-Driven Development we define behav-

ioral scenarios expressed in plain text, in a language perceived by all stakeholders. To ex-

press the scenarios developers combine plain English (or other native language supported)

with the ubiquitous language structured with Gherkin Syntax with Domain-Driven De-

sign (DDD).

BDD is focused on the customer and ATDD is more focused on development, although

it usually also has users participating in the acceptance criteria definition.

12

2.9. SOFTWARE TESTING

2.9 Software Testing

Testing can be performed at different abstraction levels. A software system goes through

several stages of testing before it is available for deployment [8]:

1. Unit level: individual program pieces (units) are tested in isolation;

2. Integration level: integration is the activity of aggregating software units to create

a larger and consolidated component. Integration testing aims at testing the larger

components to guarantee that the pieces that were tested in isolation can now work

together as functional piece;

3. System level: this level includes a wide variety of tests for the system. Verifies that

the system works as a whole and that the software is well-built. It is the last test of

software before it is passed to the customer;

4. Acceptance level: customers perform their own series of tests, based on their expec-

tations for the system. The objective of acceptance testing is to measure the quality

of the product, checking if it validates the intended behavior the customer wanted.

The first three levels of testing are performed by several different technical stakehold-

ers in the development organization, whereas acceptance testing can be performed by

customers or other non-technical stakeholders.

2.10 Test design techniques

The two main concepts relating testing and the availability/accessibility of the code under

test are White-box and Black-box Testing [35]

• White-box testing: we have access to the source code of the system and the test case

approach is based on software implementation. The goal of selecting such test cases

is to cause the execution of specific isolated parts of the software. The expected

results are evaluated under a set of code coverage criteria. Usually applied at unit,

integration and system levels.

• Black-box testing: the internal details of a program are not known (code is not

available), and it is thus treated as a black box. The selection of test cases is based

on the requirement or design specification of the software under test (functional

testing). Functional testing relies on the external behavior of the software. Usually

applied at integration, system and acceptance levels.

Black-box testing is very common in Low Code Platforms. White box testing is often

difficult or even impossible to apply to these since they do not often offer the mechanisms

or flexibility to do so.

13

CHAPTER 2. BACKGROUND

2.11 Test Automation

It is difficult and sometimes not practical to test software manually since tests are vul-

nerable to inaccurate results and manual tests are also slow and difficult to maintain by

developers. In some cases a manual approach might not be the most effective in finding

certain bugs in the software. Test automation has the objective of making the software as

error-free as possible in order to be delivered in the market. Another goal of test automa-

tion is to reduce the work of developers, since in very large projects it is impractical to

do the entire testing process manually. Automation may include:

• Automatic generation of test cases;

• Selection of inputs and computation of outputs and evaluation;

• Automatic execution of tests and regression testing.

It allows that releases are delivered much faster and that less staff is assigned to

manual testing [20]. Often test automation is combined with manual testing for tests that

cannot be automated and this is critical when we are in continuous delivery scenarios.

In test automation, we have four basic components: testers, test automation frame-

works, test cases, and the system under test. Quality engineers interact with the test

automation tools and develop test cases which are then executed using the chosen test

automation tool. The tests exercise the system and the framework provides test reports

for users to interpret. Even though the introduction of test automation often increases

cost for creating tests, the cost of re-running them decreases[28].

In BDD, not all scenarios need automation: some may be difficult to automate cost-

effectively and should be left for manual testing or on the other hand might be just exper-

imental scenarios. Others, may not have much interest to business and might be better

off implemented as unit or integration tests. But usually, given the nature and structure

of the Gherkin syntax, BDD scenarios are a great source for test automation, so it is

necessary to emphasize the importance of writing scenarios carefully, so they can bring

value to the table.

The main positive aspects of test automation using BDD are:

1. Provides the ability to perform tests that are very difficult to execute manually

thus increasing test coverage: test automation frameworks can look inside an ap-

plication and see memory contents, data tables, file contents, and internal program

states to determine if the product is behaving as expected, easily executing thou-

sands of different complex test cases during every test run and providing coverage

levels that are impossible to achieve with manual testing. These tools already have

integrated mechanisms that can simulate many virtual users interacting with the

network, software and web applications, something that was also extremely difficult

to do with manual testing.

14

2.12. REGRESSION TESTING

2. Testers can understand more easily what the automated tests are testing: they

helped designing them, through the collaboration writing the acceptance scenarios.

It also frees testers to perform other types of testing like exploratory testing or

more complex experimental tests.

3. Faster releases: New releases can be delivered faster and new versions are less likely

to introduce regressions as testers can focus their time in other types of testing if the

automated testing process is good. This is very important to continuous integration

and delivery.

4. Scenarios are living documentation - It is easier to monitor results and keep track

of the tests. Most of the tools that perform automated testing support monitoring

and management of test suites offer test reporting mechanisms and in BDD the tests

are self explanatory of themselves given their nature.

5. Improves consistency of test results: Even the most experienced testers will make

mistakes during monotonous manual testing. Automated tests perform the same

steps precisely every time they are executed and never forget to record detailed

results.

2.12 Regression Testing

Whenever developers change their software, either by adding new features or modifying

existing ones, there is always the risk of introducing errors in their programs. Even a small

tweak can have unexpected consequences in the operation of an application and introduce

bugs in features that have not been modified. Regression Testing is a Software Testing

method in which test cases are re-executed when a change is introduced, in order to

check whether the previous functionalities are working fine after we introduce new

changes to software. It is done to make sure that the new code does not have side effects

on the existing functionalities. Repeating a suite of tests each time an update is made is

usually a time-consuming task in medium to large size projects, so a test automation tool

is typically required [40, 60]. Every release usually adds more regression testing to the

next release. This means that a software development organization has to keep increasing

its testing capability every release and adding more people is not a scalable solution, so

regression testing mechanisms and supporting tools are needed.

2.13 Exploratory Testing

In Agile approaches, because of the frequent releases, test automation becomes very

important as developers need to get quick feedback on the status of the application.

The automated executions work as regression tests to ensure that with each release the

software has not regressed. Exploratory Testing focuses on areas that the existing test

15

CHAPTER 2. BACKGROUND

automation frameworks might not cover. It is usually performed by testers, who are more

experienced in the testing phase, unlike the regression tests that are normally automated

by developers. Also due to the short development periods, testing inherently becomes

risk based, and exploratory testing can focus on high risk areas to find potential problems

[3, 37].

2.14 Continuous Integration, Continuous Delivery and

Continuous Deployment

Continuous integration involves automatically building and testing a project whenever

a code change is made. Continuous integration (CI) alerts developers to regressions and

build problems as early as possible. CI relies on a well-designed set of automated tests in

order to be efficient[39].

Continuous delivery is an extension of continuous integration. Whenever a developer

inserts new code into the source, a server compiles the new candidate version to be

released. If this released candidate passes a series of automated regression tests (unit

tests, automated acceptance tests, quality tests), it can go into production as soon the

business stakeholders want. [26].

Continuous deployment is similar to continuous delivery, but without the manual

approval stage. Any candidate release that passes the automated quality checks will

automatically be deployed into production[49, 69].

2.15 Low Code Model-Driven Development

Low Code platforms are software development tools that allow users to develop and de-

ploy software in a fast and efficient way, abstracting many code concepts and making pos-

sible for the developer to accelerate the development process with already pre-designed

and pre-integrated models in a Low Code Model Driven Development (LCMDD) fashion.

The OutSystems Platform is a good example of a Low Code Platform with its own unique

language [49].

Outside the context of the low code, Unit Testing is the basis of Software Testing es-

pecially in approaches that use TDD. In Low Code Languages the code is not sometimes

available to be directly or conveniently tested unit by unit, separately. We are talking

about visual models with higher levels of abstraction, where the details of implementa-

tion are not in sight of the user that news approaches or specific software development

processes[12]. Development in these languages is often similar to what is practiced in

other approaches, with agile practices predominating, in accelerated development cy-

cles in order to put applications into production as soon as possible, exposing them to

their real users, in order to be iterated and continuously improved. New development

16

2.16. OUTSYSTEMS ARCHITECTURE

approaches might emerge that can explore the LCMDD characteristics and the speed of

development.

2.16 OutSystems Architecture

The OutSystems platform allows to create state-of-the-art web and mobile applications,

through a visual programming language, while having little concern for the technologies

that implement those applications. This Low Code service supports development at a

higher abstraction level, simplifying the daily life of IT professionals with a strong focus

on performance, scalability and availability.

The Platform is composed by two main components: the Development Environment
(composed by Service Studio and Integration Studio) that interact with the other main

component through web services, the Platform Server[47]:

• Service Studio: Service Studio is a computer environment where we can build

web and mobile OutSystems applications using visual models in a drag-and-drop

fashion;

• Integration Studio: In the Integration Studio, developers can create components to

integrate existing third-party systems, micro-services and databases, or to extend

the platform with their own sources of code.

• The Platform Server: contains all the components needed to generate, optimize,

compile, and deploy native C# or Java web applications. For mobile applications, it

also builds, packages and deploys native applications for Android and iOS.

We can see the OutSystems Platform architecture in Figure 2.2.

2.16.1 Service Studio

Service Studio is the Integrated Development Environment (IDE) used to develop web

and mobile applications with the OutSystems language. With its visual domain specific

language, the users can define business processes, the interface of the application they

want to implement, the logic behind it, and the data layer of the application. These three

main areas are presented as tabs in the Service Studio’s Interface.

17

CHAPTER 2. BACKGROUND

Figure 2.2: OutSystems Platform Architecture [54]

Figure 2.3: Service Studio

The Interface tab is used to define the UI of applications. In order to do this, develop-

ers can rely on the platform widgets and they can also define his own reusable interface

blocks. Besides using the visual representation of the interface, developers can also have

an overview of the interface tree, and use it to navigate to a certain component, where

they can see and modify its properties. In this tab we can also manage the UI flows of the

18

2.16. OUTSYSTEMS ARCHITECTURE

application to organize our screens into groups and have an overview of interfaces and

interactions. All screens in the same flow share common settings.

Figure 2.4: The Interface tab

The Logic tab allows the definition of Actions. These actions are divided into Client

Actions (executable on mobile devices) and Server Actions (which run on the Server).

The developer has a series of operators he can use to define his actions, which can be

used to execute a broad range of tasks. Server Actions are centralized actions that contain

the visual logic that can be used anywhere in applications and are not only associated

with a screen like the logic in the interface tab. This tab can contain wrappers that add

additional logic to the creation of new server records, as well as actions to handle the

synchronization, or any other actions to be executed either on the client device or on the

server.

The Data tab allows the definition of the data model. It allows the creation of server

entities and the local entities stored in mobile devices. These entities can be static or

dynamic and include a set of predefined logic operations that can be used to create, add,

update and remove records of them, among other things.

The platform also enables the modeling of UIs, Business Processes, Business Logic,

Databases, Integration Components, SOAP and REST Web Services, Security Rules, and

Scheduling activities, among other features.

2.16.2 High-Level Architecture of Applications

In OutSystems a Module is either an eSpace or an Extension.

An application consists of multiple modules, and a Solution consists of multiple

applications.

19

CHAPTER 2. BACKGROUND

Figure 2.5: The Logic tab

Figure 2.6: The Data tab

20

2.16. OUTSYSTEMS ARCHITECTURE

An Extension is some code written in .NET, JAVA, among other languages. These

extensions can be used to extend the functionality of applications.

An eSpace is a module where we develop an application, in which we can create

screens, logic, manage data, expose web services, among other things.

An application is a collection of modules and a Solution is basically everything we

have inside the environment with all the eSpaces we have [49].

2.16.3 Visual Language

OutSystems’ visual language for web development allows users to develop the UI of

applications using web screens and web blocks, managed on the Interface tab. Actions

are also an important part of applications. They contain the functional logic and can be

associated with screens and screen elements (preparation actions and screen actions) and

they are managed in the interface tab. Server actions are another very important type

of actions. . These can be reused inside and outside applications and are on the server

side. Server actions are not associated with screens but instead are associated with the

application itself, and can be exported. They are in the logic tab, like the folder containing

the System exceptions, which can be of various types. Customized user exceptions can

also be added manually. In the context of this investigation we will focus on the 2 tabs

mentioned above (Interface and Logic) and we will now explore a little more of what they

have to offer that can be used in the context of this dissertation:

Web Screens: User interface pages that end-users interact with. They can contain all

kinds of elements including blocks, screen actions, parameters and variables.

Web Blocks: Reusable screen parts that can implement its own logic. These can be

used within screens and within other blocks and contain their own variables (local, input

and output) and their main advantage is that they are reusable.

Screen Actions: Actions that include logic regarding user interactions with screens,

such as clicking on a button or a link. They run in the client side (UI, browser).

Server Actions: In OutSystems we can create Server Actions to encapsulate the logic

that implements the business rules of our applications and use them in other actions, such

as Preparation actions, Screen Actions, other Server Actions or even other applications.

Input/Output Parameters: Input/Output parameters are associated with actions (in-

puts can be also associated with screens) and for those actions to be executed they must

receive values for the inputs that are either computed or directly assigned from the user

and return their values in output parameters.

Local Variables: Local variable to a screen, action or block.

To implement the logic of actions, we have at our disposal a vast set of web logic tools

among which we highlight the following:

Assign Statement: The Assign Statement is used to assign values to variables. The

21

CHAPTER 2. BACKGROUND

Properties Panel shows assignments in variable-value pairs, forming the assignment state-

ments. The value in the statement can be other variable, literal or a computed value.

Raise Exception: throws an existing systems exception or we can create a new one. If

we create a new exception we can customize the message displayed to the end-user. This

is an element that ends the action flow, so it is not possible to define new actions after it,

unlike the Exception Handler.

Run Server Action: Executes an action that runs logic on the server side (Server

Action). Dragging the tool on the action flow will open the Select Action dialogue, for

selecting an existing action or creating a new action. The action will be listed in Logic

tab, under the Server Actions.

If Statement: The If node executes a branch of the action flow if the condition is

evaluated as True and another branch if the condition is evaluated as False. The condition

can be edited in the Properties Pane.

Start Node: Indicates where a flow starts executing.

End Node: When designing the process flow we must terminate the flow paths with

the End node activity which we can drag onto the canvas from the Process Flow Toolbox.

The process execution terminates when all of the flow paths in the main process flow (the

one that begins with the Start process activity) reach their End process activity.

These are the components that we found most important to highlight and that will

be most used in the context of this research, but all others can also be found in the

OutSystems web documentation2.

2.16.4 Testing Methods

Due to the nature of the visual language on par with the continuous integrity validation

built in OutSystems, users do not need to worry so much about some technical integration

challenges, given the abstractions that OutSystems provides, which makes applications

less error prone and freeing developers to worry about other types of errors, like func-

tional and behavioral errors (check if the application behaves as desired).

In OutSystems, the platform is kept partially open so it is compatible with the tools

developers and teams like to use for testing. In fact, this is only partially true since

this only applies to higher level tests. For these cases, the platform is flexible enough

to allow the use of standard tools to test the UI or to perform API testing for example.

Testing is integrated in the continuous delivery cycle so there are no losses in productivity.

However, for lower level testing (Unit Testing, Component Testing) this is not applicable.

There are some tools available that allow the execution of tests for applications created

in OutSystems[48]:

The Unit Testing Framework is an old framework used for implementing, executing

2https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic/
Implementing_Logic/Web_Logic_Tools/

22

 https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic/Implementing_Logic/Web_Logic_Tools/
 https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Logic/Implementing_Logic/Web_Logic_Tools/

2.16. OUTSYSTEMS ARCHITECTURE

and managing OutSystems unit tests. Developers find this approach effective for calcu-

lation engines and business components[53]. The framework was created to address the

problem of managing and accessing test code.

The BDDFramework is an open-source component. It enables the creation and descrip-

tion of BDD test scenarios inside screen templates (blocks), with support for multiple

tests in the same page and report statistics (like the number of successful/failed tests). It

provides an Assertions library (AssertSteps), among other features. It was created to allow

the description of tests in a textual language, promoting automation and test comprehen-

sion even for people who do not know the tests. We will explore this tool in detail in the

next section.

For functional and regression testing in web applications, Selenium[67] can also be

adopted, and any strategy currently used to test traditional web applications applies

as well. Additionally, we have Test Automator[52], a browser (Selenium-based) and unit

(Web Service-based) regression testing tool that helps guarantee the quality of the solution

development, by automating the execution of tests over the application.

Quality Assurance within the Engineering department in OutSystems holds his base

on top of two systems: Dashboard and CINTIA. They are both essential in order to guar-

antee the quality of the software produced at OutSystems:

• Dashboard: Dashboard is a legacy web application built in OutSystems, which

centralizes all the logic related to build processes, test orchestrations and infrastruc-

ture/stack management. It provides a unique view over the state of every living

branch, as it supports running the complete set of tests that run against a particular

version of the product. It is still a fundamental tool in the validation cycle, as its

logic has been developed and maintained over several years.

• CINTIA: Continuous Integration and Intelligent Alert system (CINTIA) is a in-

house developed Continuous Integration system (built also in OutSystems), more

modern and agile than the Dashboard. It allows for developers to have a quicker

feedback on their changes on the most relevant branches, by continuously building

the assets and testing them using a subset of the existing test base, providing a user-

friendly UI with alerts and information on problems that occur on the build/test

pipeline.

To run tests, some open-source frameworks are used, including JUnit, NUnit, the

BDDFramework and legacy tests that were built on top of Dashboard, among others. A

methodology of single branch development is employed. After each commit to the branch,

the following steps are executed through a pipeline process: (1) build→ (2) CINTIA→
(3) Dashoard, after which a conclusion is reached: either the commit succeeded (green)

or failed (red). For the commit to be successful, it must pass all three steps without a

failed build or test. If the build process failed, responsible are asked to solve the problem

as quickly as possible, to allow the activities to progress normally without causing many

23

CHAPTER 2. BACKGROUND

problems. When there are failing tests, the pipeline is not blocked and developers can

still perform changes and commit them. Cyclically, a Code freeze checkpoint is reached,

meaning that there is a new branch created from the last successful commit in the main

development branch which is meant to be released to the outside. After code freeze, typi-

cally there is a phase of stabilization (running the entirety of all tests present in the test

base) and a phase of dogfooding (get the company to use its own product. It is an in-house

product release, installing its new versions on internal systems to be exercised by Out-

Systems employees in their daily work). This phase precedes the public release. When

a candidate version has gone through all these rings and no problems were found, it is

considered ready to be released.

2.17 UI Testing

User Interface (UI) testing refers to ensuring that the User Interface functions properly,

that an application follows the specifications and that bugs are identified, all through the

interface. Other than that, we check that the design elements are good. This involves

checking the screens with the controls like menus, bars, colours, fonts, icons, content,

buttons, among others. To perform UI testing, we usually use various test cases (set of

conditions that will help the tester determine if a system is working as it is supposed

to) and there are 2 ways of conducting this: manually (with a human software tester) or

automatically (with the use of a software program)[31].

Selenium is an open-source UI automation testing tool for web applications across

different web browsers and programming languages. It is one of the most recognized

tools for UI testing and we will use it as a case study in this section because it is widely

used in practice. Selenium is capable of interacting with the HTML elements of a web

application to simulate user activity[13]. All major languages (Java, C#, Ruby, JavaScript,

Python,...), browsers (Chrome, Firefox, Safari, Internet Explorer, Opera, ...) and Operating

Systems are supported, with easy reuse across platforms, parallel execution and with a

huge community, documentation and many releases over the years.

However, not all types of testing can/should be performed using the UI layer of ap-

plications. Unit testing or underlying application logic testing should not be done using

the UI layer (like sub-cutaneous testing3)[21]. In addition, users often complain that UI

automation testing is a time consuming, boring and expensive activity (that also does not

support non web-based applications)[55]. Among the main problems pointed to UI layer

testing we highlight the following::

1. The UI of the applications is continuously changing: As technologies evolve, ap-

plication interfaces are constantly evolving so testing from them may not be easy

3Martin Fowler uses the term subcutaneous test to refer to a test that operates just under the UI of an
application. This is particularly valuable when doing functional testing of an application: when we want to
test end-to-end behavior, but it is difficult to test through the UI itself.

24

2.17. UI TESTING

because of the constant changes, which sometimes makes us want to avoid such

tests;

2. Increasing Complexity of Testing Web Elements: The features we implement in

our web applications can include various web elements which are hard to maintain.

Those elements can be embedded frames and other software products as well, and

sometimes large websites can contain complex flowcharts, diagrams, maps, among

other interface models and patterns;

3. It is a slow process: The problem with running automated tests through the UI

layer is that we have to wait for the browser to launch. Secondly, most modern web

applications have third-party tracking tags which could slow down the page load;

4. Handling multiple errors: Error handling has been an issue with UI automation

testing because whenever there are complex UI test scenarios with tight deadlines,

most time is utilized in creating UI test scripts. Additionally, testers normally

choose manual testing over automation for UI testing. Having said that, error han-

dling becomes extremely difficult when you manually revoke the error messages

and automate them;

5. UI testing makes the code review process harder: Developers involved in an ap-

plication development often have different coding styles. Creating UI automated

tests takes more time than other types of testing and creates heavier coded tests to

perform the browser calls. Without maintaining the coding standards, it will be

extremely challenging to review, modify or maintain this code.

Another important point to note is that in large applications it may sometimes not

be recommended to use a BDD test automation tool like Cucumber (which is the most

known) together with UI testing using Selenium, when there are feature dependencies.

At the time of development, when each feature is developed one by one in each iter-

ation, the feature files would be focused on one feature itself. At some point, when we

have multiple features, we need to start thinking about testing these, not only in isolation

but also creative scenarios where we combine different ones (integration).

UI testing for functional verification is not recommendable but it is for API level

testing with integration tests. It should be reserved for checking the user flows through

the application, or for end-to-end testing, making sure relevant expected modules are

present on the pages as the user navigates from one page to the others.

Another important aspect is that feature files for testing screen transitions that will

combine several features makes no sense and goes against the BDD process, as we are

testing the system and not a single feature. Each feature file in Cucumber typically

represents a single feature.

Briefly, Cucumber is more relevant at the feature level and Selenium for end-to-end

integration testing. It is also not recommended for the same application to use these 2

25

CHAPTER 2. BACKGROUND

technologies separately for each type of testing as this could lead to duplicate testing.

This would go against the benefits of automation and UI testing is never a good idea to

duplicate since they are slow and brittle[23].

2.18 BDDFramework

The BDDFramework is an open-source test automation framework for the OutSystems

Language. It allows users to specify BDD scenarios using the Gherkin syntax within

the development platform (Service Studio) to test OutSystems’ applications. This compo-

nent is available for download in the forge4. Its biggest focus and the reason it was created

back in 2016 was to allow OutSystems developers to write tests in a more structured

and self-descriptive way using the Gherkin syntax and enabling automation, rather

than in support of the BDD practice itself in an OutSystems context (despite its name).

The idea behind the tool was to find a standard way of describing tests in OutSystems

and its structured and self-explanatory nature seemed ideal for this, as these constitute

the basis for test automation and otherwise a form of documentation, respectively. Its

introduction made it easy for developers to understand tests they had not written and to

understand why they were failing more easily.

This component provides the user a set of templates for describing and filling in

Gherkin scenarios within Service Studio. Inside each scenario, a description is requested

and there is space to place the BDDsteps that will fill the Gherkin structure in each sce-

nario, within their respective placeholders (Given, When and Then). Each BDDstep is

composed of a textual description and is implemented by a Screen Action that must con-

tain the code necessary for its implementation. There are also setup and teardown steps

available, which correspond to logic that can be executed before or after the scenario im-

plementation, respectively, for example to create or delete data required for running the

test. In the logic tab a library with various types of AssertSteps (value, positive, negative

or default) is also made available to the user. It is also possible to put in each test screen

the final result block which reports the results of the execution. When the execution is

done statistics of how many of the total scenarios were executed successfully (i.e, all its

steps had the intended result) are available, upon publishing. It is also possible to see

which steps failed for each scenario, and why they are failing[57].

One of the features of the framework is the fact that it allows running tests through

a REST API endpoint. This is particularly useful if we want to have the tests being

triggered by some sort of orchestration process[49, 56]. An important note is that in

the BBDFramework the tests are executed sequentially and inside each scenario the steps

are also performed sequentially in the order they appear arranged (Setup, Given, When,

Then, Teardown).

4https://www.outsystems.com/forge/component-overview/1201/bddframework

26

https://www.outsystems.com/forge/component-overview/1201/bddframework

2.18. BDDFRAMEWORK

To better demonstrate how this tool really works in practice for test automation in

OutSystems, we will demonstrate it a practical example:

We have an OutSystems’ application that returns the kind of a triangle given the

length of the 3 edges. About the application:

• A triangle is called Equilateral if all sides have the same length;

• A triangle is called Isosceles if 2 sides have the same length, and the other is differ-

ent;

• A triangle is called Scalene if all sides have different lengths;

• If we enter lengths that do not form a valid triangle then the application returns

that it is Not a triangle. To form a triangle all sides must be smaller than the sum

of the other 2 (side1 < side2 + side3 ; side2 < side1 + side3 ; side3 < side1 + side2)

and all sides must have length > 0.

We will build a BDD scenario to test the Equilateral triangle:

Listing 2.2: Equilateral Triangle Scenario

1 Scenario - When all edges are valid and have the same size (3) then the result

2 must be Equilateral

3 GIVEN The first edge has length "3"

4 AND The second edge has length "3"

5 AND The third edge has length "3"

6 WHEN The user clicks in the button to calculate the result

7 THEN The result should be "Equilateral"

In figure 2.7 we can now see the scenario described in the development platform using

the BDDFramework:

And in figure 2.8 the results of the test execution obtained when we publish the test

project after all steps have been implemented in the corresponding actions.

27

CHAPTER 2. BACKGROUND

Figure 2.7: BDD scenario specification to test the Equilateral triangle within Service Studio
using the BDDFramework

Figure 2.8: All BDDSteps that constitute the (single) scenario were successfully performed,
culminating in the positive outcome of the scenario.

If any BDDStep was not verified as correct (failed) and had an non error-free execution

then the scenario would fail, like in figure 2.9.

28

2.18. BDDFRAMEWORK

Figure 2.9: A BDDStep failed, resulting in a failing scenario. the failure report is displayed
below the failing step.

In this case the failure was due to the fact that the test was expecting "Equilat-

eral"triangle as output but instead obtained "Equilatero"from the previous steps, causing

that step to fail as it is possible to see in the step implementation (figure 2.10).

Figure 2.10: The expected result was "Equilateral"and the obtained is the value of variable
kind previously assigned in the logic implementing the when clause

In the BDDFramework the developer has the following blocks available:

29

CHAPTER 2. BACKGROUND

BDDScenario: corresponds to the template that represents a scenario individually,

in which it is possible to place its description, the BDDSteps inside each of the clauses

(Given, When, Then) and the setup and teardown steps.

BDDSteps: represent each of the steps that compose the structure of Gherkin. These

are inserted inside one of the scenario placeholders: Given, When or Then. BDDSteps
are associated with an input text widget for the user to enter the step description and are

linked to a screen action that contains the implementation logic of the step.

Setup or Teardown steps: These are the steps that contain the setup or teardown

logic of the scenarios (hook steps that do not belong to the scenario structure but can

be used to create data or perform actions necessary to perform the scenario itself, at the

beginning or at the end of it, respectively)

Final results block: statistics block that tells us how many scenarios failed and in

which steps.

By convention and to standardize the writing and facilitate the comprehension of the

tests, some practices were adopted regarding the structure of BDD tests by OutSystems

developers. Some of these "recommended practices"come from conventions from the

BDD process itself and others from the nature of the OutSystems language.

2.18.1 Recommended practices

For the description of scenarios and test implementation, a testing project should be cre-

ated. It must import the dependencies of the BDDFramework (to have access to its features,

otherwise it will not be possible to test in this way) and the module with the application

to be tested (which should be immediately developed with this kind of testing in mind,

exporting the necessary logic in server actions to run in the test project, making it easier

for the developer to test). By convention, if we are testing the KindOfTriangle application,

the test project should be named KindOfTriangleTests.

Typically each BDDScenario is placed within a (reusable) Web Block. All Web Blocks
that have scenarios that test the same functionality are placed within the same Web Screen.

For example, in the application shown earlier we would have a Web Screen (for the triangle

type functionality) and inside we could have at least 4 web blocks with test scenarios (for

the equilateral, isosceles, scalene and the not a triangle cases). Screen names should be

suggestive of the features and scenarios being implemented, and the description of the

BDDSteps and the scenario itself should be a short, concise and meaningful, as it is in

the nature of BDD that developers can look at the description of a test they did not know

and understand where it is failing and what is the functionality (system behavior) being

tested. Tests should be self-describing as all actions that implement them. In addition to

these cautions, developers at OutSystems also have some naming conventions featuring

some “tricks” like a small code or counter to make it easy to identify tests when they are

run in test suites with many scenarios so they can quickly link them to the corresponding

testing code within Service Studio. Scenarios and the corresponding web blocks should

30

2.18. BDDFRAMEWORK

have identifiers and these identifiers should be acronyms for the methods being tested.

This is very useful, for example, to identify which tests have failed in Continuous Inte-

gration. Regarding actions and their organization: shared behavior between tests should

be abstracted into Server Actions and then used across tests and those should then be

grouped into folders based on a topic (security, authentication, ...) and/or purpose (eg.

given, when, then)[49].

2.18.2 Data-Driven Testing

Data-Driven Testing (DDT) is a test design technique where test scripts read and interpret

test data from some kind of data source. The iterative repetition of the same sequence

of test steps is performed in order to drive the input values of those steps and/or the

expected values while verification steps are performed. Sometimes, there are some data

sets that in which we have to run the same tests on. It is a time-consuming and inefficient

activity to create a different test for each entry of the data set values and DDT helps us in

this case, allowing us to reuse the test implementation code to be fed by a data set [41].

This type of testing can be very useful when we want to test a large set of values

for a single test without defining different scenarios and OutSystems already has some

coverage for this using the BDDFramework, applying some techniques that are facilitated

by language structure[59].

In OutSystems this is done by creating input parameters for the data source variables

that we will use in the test and using expressions in the description of the Gherkin steps

instead of text instantiating the test values, as it was previously done[49].

Finally, we can now easily setup a set of data-driven tests for the Scenario Outlines

by using Static Entities (set of named values, enums or literal values stored in the database

with global scope) and Table Records (widget that displays the records of an Entity in a

tabular layout) [51] [50]. First, we define a static entity containing all of the examples

we want to test and create aWeb screen with Table Records being fed with all of the data

from that Static Entity and showing the Scenario Outlineweb block for each row[49, 59].

This process is not supported by any BDDFramework specific mechanisms but is easily

reachable with the help of the OutSystems structure and characteristics

31

C
h
a
p
t
e
r

3
Related Work

In this section we present and summarize the work of some authors related to the topics

addressed in this dissertation.

3.1 Low Code and BDD

The literature relating Low Code technologies to Behavior Driven Development is very

scarce. However, some research work has been done, as the one conducted by Stephan

Braams that aims to analyze the practice of Behavior-Driven Development in Low Code

Model-Driven Development (LCMDD) with the case study of a company that uses the Low

Code Platform Mendix[12]. Braams argues that nowadays testing is still a big bottleneck

for the software development success, stating that organizations spend about 50% of

their resources at this stage of the development cycle, but the this stage is still seen as

unpopular and boring, and still very susceptible to failures and often the problem is

building software that is not what the customer wanted. Braams considers Unit Testing

as the basis of the testing processes. However, in Low Code, units of code are not often

accessible because the code is not directly or conveniently “handy” to be tested and some

research has to be made to address this in the Low Code domain. In addition to the

setbacks mentioned in this research, the author goes further and argues that many times

people do not define proper priority between features, not measuring accurately what is

value for the client, having as consequence the creation of many non-important features.

Braams justifies that BDD can be a good complement to LCMDD, since by nature Low

Code languages already cover the lower level tests (such as unit and component testing)

as well as tests for non-functional requirements (performance, security, among others)

given the structure and characteristics of these languages. It turns out that the types of

tests that are most needed (not so covered) in this LCMDD domain are precisely the types

33

CHAPTER 3. RELATED WORK

of tests that BDD focuses on: functional testing, scenario/example (acceptance) testing,

exploratory testing, among other types of testing.

One thing that is very important in BDD is the connection between the Gherkin

descriptions and their implementation. It is important that they maintain a close relation-

ship both for reporting purposes and for testing or debugging (traceability). This is not

always achieved as evidenced by the study of Silva, which aims to investigate the use of

ontologies for specifying the automated test using an approach based on Behavior-Driven

Development (BDD)[68]. According to the author failure to trace tests to requirements

is one of the main causes for the failure of software projects. He noticed that traceability

between requirements and tests was rarely maintained in practice and the cause was the

incapacity to update traces when requirements change. One of the reasons was the diffi-

culty to conduct the process manually. The solution according to Silva’s research is to use

the ontological model which describes only behaviors that report steps performing com-

mon actions directly in the User Interface through Interaction Elements. In OutSystems

this is already achieved by the BDDFramework, since the description of steps is linked to

their implementation but we are within the platform. This case may be interesting for

cases where requirements are separated from implementation, or for project management

and issue tracking tools.

3.2 BDD principles and supporting tools

When we start to focus more on the technological part of BDD, especially when we talk

about the concept of test automation, there is much more research done in the area often

perhaps because BDD is frequently associated with test automation. It is true that the

nature of Gherkin and the scenarios that are obtained in the BDD process provide an

excellent basis for test automation but the truth is that BDD is much more than this.

This is one of the main conclusions of the study performed by Wang and Solís[70]. The

authors studied the literature to find the BDD characteristics and then seek support for

them in the most commonly used in pratice BDD testing automation tools, like Cucumber

and SpecFlow. One of the main conclusions reached by Wang and Solís was that these

tools only supported some stages of the BDD process, especially the development phase,

lacking support for the analysis phase (feature definition) but especially for the planning

phase (identification of business values).

The framework comparison results can be found in fugure 3.1:

The methodology used by the authors to find the BDD characteristics represented

was the following: After reviewing several studies and defining an initial set of the BDD

characteristics, they analysed one framework at a time using the same set, recording how

the framework supported them. If they found a characteristic that was not in the list, they

went back to the literature to understand if it could be considered a BDD characteristic

or not.

34

3.2. BDD PRINCIPLES AND SUPPORTING TOOLS

Figure 3.1: The BDD Characteristics support from seven BDD toolkits

The resulting table represents a good basis of comparison for the validation work

that will be performed later in the course of this dissertation. In section 3.2.1 a critical

overview of the results and the criteria chosen to conduct this study and produce this

table will be presented.

3.2.1 Discussion on the study by Wang and Solís

The following is a critical analysis aimed at the study conducted by Wang and Solís [70],

previously described. We believe that this study can be very interesting to support the

validation of our work and include in it the BDDFramework and the Prototype developed

in this dissertation. However, we need to point out some things we do not agree with and

we will do so by individually analyzing each of the criteria considered to draw the final

table.

• Ubiquitous language definition: Although this is a central concept in Behavior-

Driven Development since this language is required to express behaviors in a busi-

ness speaking domain, we disagree that this process should be considered in a test

automation tool. This should be considered in a different phase of the process. The

definition of a ubiquitous language should be taken into account when writing tests

using the Gherkin syntax, but this language must be defined elsewhere, in a more

initial phase of the process. However, it can be complemented during the descrip-

tion of the scenarios, since it is natural that new terms arise constantly. This is

crucial to enhance communication among stakeholders and the main idea here is to

run the tests without depending on an Integrated Development Environment (IDE)

so that anyone involved can write the scenarios, and therefore this definition gains

even more strength outside an automation framework. However, this factor can be

seen as an extra, such as an auxiliary dictionary of terms, either accessible by the

command line or as suggestions in an IDE, but we do not see this as essential, so

much so that none of the tools studied in this investigation covers this point.

• Iterative Decomposition Process: refers to the process of identifying the features

that will be part of the software product to be developed. This process begins with

the identification of business outcomes. In the first place, we define the behaviors

35

CHAPTER 3. RELATED WORK

offered by the system since these are easier to express and to analyze in terms of

value. The functionalities are specified in User Stories from a User point of view and

then in Gherkin scenarios. The implemented features must bring value to the client

and this must be taken into account in the scheduling of the development process.

Again, this is an aspect that may be outside the scope of the automation tool and it is

more important in a project management tool (such as Jira), where priorities among

features can be set. The responsibility of the testing framework should be only to

automate and execute the features that are passed to it (already specified in Gherkin

syntax), allowing, however, complete freedom regarding the execution of scenarios.

The scenarios that will run in each execution must be defined as parameters.

• Plain Text Description with User Story and Scenario Templates: One of the main

purposes of using such tools is to write the structured textual descriptions that

constitute the specification of the functionalities (the user stories from the point of

view of the user and the Gherkin Scenarios, specifying the behavior of the system)

to then be interpreted and converted into test code by the automation tools. This

aspect is therefore very important, especially from the point of view of the scenario

definition as they will form the basis of testing documentation and automation.

• Automated Acceptance Testing with Mapping Rules: It represents the main pur-

pose of the analyzed frameworks: Automated generation of test code for the defined

scenarios, thus making the specifications executable. Each step will be mapped into

a test method. The way this is done can vary slightly from tool to tool, and some

frameworks use more or less complex regular expressions (also depending on the

programming languages supported) that also allow parameter detection. Mapping

rules between method names and phrases in Gherkin can also vary, as well as the

structure and organization of tests in classes that test the same features or not.

• Readable Behavior Oriented Specification Code: In BDD the test code should

be part of the specification of the system (living documentation) and the methods

should be self-explanatory of themselves and describe the functionality so that a

person that looks at the code for the first time easily realizes what it is intended

to do/test. The frameworks support this by generating methods and classes with

the names of the steps and with the description of the Gherkin steps, respectively.

Some also support writing scenarios as code directly, with the aid of annotations.

We do not agree with Wang and Solís’ rating of Cucumber on this one as it is one of

the most complete tools and currently supports this, just like the rest, possibly not

at the time but currently it does.

• Behavior-Driven at Different Phases: Since frameworks do not allow defining

and specifying business outcomes, the authors state that the planning phase is

not supported by any of the tools. However we consider that this may run away

from the scope of what is really needed in the framework, being just a possible

36

3.3. SOFTWARE EVOLUTION CHALLENGES

extra. In the Analysis phase, some tools support the process because they allow

specifying the features through scenarios described with the Gherkin syntax and

some of them even with User Stories. Finally, in the implementation phase, the same

that support the analysis phase also support the automated generation of test classes

and methods. The three table entries concerning this topic (planning, analysis and

implementation) are somewhat repetitive and summarize what was described in

the other topics, clearly dividing the process into distinct phases, which may be

interesting as a conclusion of the table but not that interesting to do within it.

Some of the points taken into account in this study by Wang and Solís are considered

inadequate or non-priority to be relevant in a BDD practice support test automation

framework, namely the first 2, which despite their importance to the process are outside

the scope of a test automation framework and as such should not be considered in this

classification study. In addition some of the tools presented also have a different purpose

than what is intended to be achieved during this thesis and as such will not be considered,

only the two we consider most important, Cucumber and SpecFlow. After a practical

analysis of some commonly used frameworks, we present a new model for evaluating

BDD frameworks.

3.3 Software evolution challenges

One of the biggest challenges inherent in BDD relates to the growth of software being de-

veloped. Over time, many projects tend to get bigger and increase the number of features.

Consequently, the number of User Stories and Scenarios will also grow, which may make

this process difficult to maintain, as stated in a study conducted by Binamungu et al.[9].

They found that the maintenance challenges reported are likely to be less significant if

typical test cases contain a number of scenarios that can be managed by hand. When test

suites are not small, individual manual inspection of all scenarios is a difficult and costly

task. With the growth of software, these maintenance challenges tend to become more

prominent:

1. In large test suites it can be hard to locate the origin of the faults, due to the large

integrations and the large number of files (traceability becomes harder);

2. Changing specification or inserting new features;

3. Duplication detection in BDD specifications;

Some research has been done to address these problems among which the study car-

ried out by Lucassen et al. stands out [10]. They propose the Behavior-Driven Traceability

Method (BDT) that takes a different standpoint on automated traceability: “establishing

ubiquitous traceability between user story requirements and source code by taking advan-

tage of the automated accessibility tests that are created as part of the Behavior-Driven

37

CHAPTER 3. RELATED WORK

Development process”. The proposed BDT method automatically establishes ubiquitous

traceability on top of the BDD process. It relies on two features of BDD: the steps that

define the Gherkin Scenarios and operationalization of these steps on the UI. They ex-

plain how the BDT Method takes advantage of these characteristics and introduce the

BDT Tracer which builds a matrix that records the source code and methods called for

each user story: “When a software development team creates individual BDD tests for

each user story, applying BDT results in a BDT Matrix that allows a developer to request

all the source code invoked to realize a given user story. By applying smart filtering tech-

niques the BDT Matrix can then be used to produce a variety of reports, such as methods

that are never called in the entire test suite to identify dead code (if the test coverage

is good enough), or all the classes involved in a specific user story to inform developers

modifying or refactoring a user story’s code”. On the other hand, in another investigation

by L. Binamungu et al. the authors developed an algorithm to detect duplication of exam-

ples. They state that when the suites of examples are very large, they can be difficult and

expensive to change. Duplication in this case is difficult to detect manually by developers.

The resulting algorithm detected more than 70% of the injected duplicates in the tested

systems[11].

3.4 Automation frameworks

3.4.1 How BDD frameworks work

We saw how to express behavior using the Gherkin Syntax, with the “Given,When,Then”

notation in section 2.7. Many frameworks use this syntax to automate tests. These take

the textual description of the steps defined for each scenario and create methods to exe-

cute the corresponding test code. Tests can be run in different programming languages

and can be implemented at different levels of the application architecture (UI, API, and

so on), according to the framework we are using. All the mostly known frameworks work

in a very similar way which we will present below.

The following examples are based on the examples given in [69]:

Listing 3.1: Scenario Example

1 Scenario: Earning points from an Economy flight in TAP (scenario description)

2

3 GIVEN The flying distance between Lisbon and Faro is 300km (step)

4 AND I am a standard Flyer member (step)

5 WHEN I fly from Lisbon to Faro (step)

6 THEN I should earn 50 points (step)

38

3.4. AUTOMATION FRAMEWORKS

The previous scenario will then be interpreted by the application, step by step, and

the test environment will be set. For example:

Given the flying distance between Lisbon and Faro is 300km

A test database is configured to provide the correct distance between the two portuguese

cities. This can be done in many ways like through an API call, directly through the UI

or manually inserting data into the test database.

When I fly from Lisbon to Faro

In this step we want to record a flight from Lisbon to Faro and check how many points

the member earns. Tools like Cucumber, JBehave or SpecFlow can not turn a text sce-

nario into an automated test by themselves so we need to specify what each of these steps

means in terms of our application and how it must manipulate or query the application

to perform the task. This is called step definition (or step interpretation).

Step definition is essentially a piece of code that interprets the text in a feature file

and specifies each step in a test method like this:

Listing 3.2: Given clause

1 @Given("The�flying�distance�between�$departure�and�$destination�is�$distance�km
2 ")

3 public void flyingDistance(String departure,

4 String destination,

5 int distance) {

6

7 //prepare the data for this trip

8

9 }

Listing 3.3: And clause

1 @And("I�am�a�$status�flyer�member")
2 public void defineMember(String status) {

3

4 //prepare the data for this member

5 }

Listing 3.4: When clause

1 @When("I�fly�from�$departure�to�$destination")
2 public void flightFrom(String departure, String destination) {

3

4 //add flight to member

5 }

39

CHAPTER 3. RELATED WORK

Listing 3.5: Then clause

1 @Then("I�should�earn�$points")
2 public void pointsCalculation(int points) {

3

4 //calculates the points earned

5

6 }

Step definitions can be implemented in many programming languages depending on

the frameworks. For example, in SpecFlow step definition might look like this:

Listing 3.6: Step definition in SpecFlow

1 [Given(@"The�flying�distance�between�(.*)�and�(.*)�is�(.*)�km")]
2 public void defineTheFlyingDistanceForATrip(String departure,

3 String destination,

4 int distance) {

5 ...

6 }

The step definitions do whatever it needs to perform the steps, although we can also

tell the frameworks how the data extraction is done into the step definition method. It is

a good practice to keep step definitions simple and meaningful[69].

3.4.2 Well-known examples

Cucumber is a very popular BDD test automation framework originally created for Ruby[17,

38]. It supports several languages for the definition of scenarios. An example is Cucumber-

JVM which is a recent Java implementation of Cucumber that allows writing and defining

steps in Java and other JVM languages. Cucumber also supports Python and JavaScript.

Another cucumber extension, Cucumber-JS, lets us define scenarios in JavaScript which

is gaining increasing importance in modern web development. On the other hand, if we

are in a .NET environment our best option may probably be SpecFlow [72]. SpecFlow is

an open-source Visual Studio extension in the .NET and Windows development system

which allows us to automate gherkin scenarios. Another important tool is JBehave [44].

It was developed by Dan North, the founder of BDD, and allows to define steps in Java,

Scala and other JVM languages. Although these tools are applied to different languages,

their operation is very similar and is based on the steps specified in section 2.7. Some of

these tools will be explored in more detail in the next chapter.

40

C
h
a
p
t
e
r

4
Case study and initial considerations

Throughout this section, we will detail the practical work that was done at the beginning

of this dissertation, how the problem was addressed, and how we adopted our approach to

face the problem. We will also summarize the information collected with the interviews

made to people in the area who deal with testing in OutSystems on a regular basis to

understand what is missing and what this dissertation can do to help them. Finally, we

will be detailing some features that we conclude are necessary to address in the framework

prototype.

As a case study for this research, we have the real example of OutSystems R&D, with

which it was possible to establish direct contact since this research was carried out at its

facilities. As such, our investigation has been very focused on this platform and its specific

characteristics. After learning the OutSystems language, testing with the BDDFramework
and investigating the principles of BDD, we will analyse this real case example, through

the realization of the mentioned interviews. With these, we hope to realize how both

the development and testing processes work and get some useful feedback in order to

understand what is lacking or what can be improved.

After this process we had to decide between some implementation approaches. It will

be all described in this chapter.

4.1 Interviews

The interview questions covered the development process and especially the testing phase

that is practiced in OutSystems, either about the BDD process itself or the experience

with the BDDFramework. The respondents include two Outsystems’ Quality Owners1,

1Developers who have responsibilities related to the quality area, namely to organize the testing process
within teams.

41

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

two product developers, an external contact in an OutSystems client that applies BDD

as a development process, and a contact in the United States that works for OutSystems

with important knowledge concerning both BDD as a process and the framework.

4.1.1 Interview Questions

We customized the questions according to the respondent experience with BDD and

the framework. For instance, the only contact that the elements of the productivity

teams had with the BDDFramework was for test automation purposes and not with the

BDD process itself and their knowledge is restricted to the use of the tool. On the other

hand, Quality Owners have a more global view of all stages of the process. However,

the proposed questions were very much around the testing process carried out with and

without the tool for the interviewees who had only used the framework. For the ones with

more knowledge about the BDD process itself, we asked more questions regarding the

type of software and phases to which the BDD refers, its applicability in the context of

OutSystems and also which features should be included in the framework. Appendix 1

Interview Scripts contains the interview scripts, although in most of the interviews these

were deepened according to the answers, experience and the direction of the conversation.

4.1.2 Interview Results

According to the results it was clear that there was a test documentation problem. When-

ever it was necessary to look at a test (e.g. when it failed) there was a high probability that

the test would be misinterpreted because people often looked at tests that they had not

designed and had never seen before and it was difficult to understand them. The frame-

work has helped developers to design and document tests. With the introduction of the

BDDFramework, just by looking at the report of the test, developers were able to realize

how the tested functionality should work and what each test is supposed to verify be-

cause of its description and the step definition in the Gherkin syntax, with plain English

text. This constitutes a form of living documentation with self-explained tests. The

complexity of the testing process has been substantially reduced and the process accel-

erated, with respect to tests made with the OutSystems language - the ones addressed

by the framework. Developers in OutSystems have no standardized way of testing, each

team tests as it works better for them, so this framework brought something new: one

tool for test automation specific for this language which has the potential to become the

test standard for OutSystems.

It was also verified that the testing phase is a little underestimated by developers,

as it was described as a “boring” and time-consuming activity. Many developers have

no training in testing and the fact that OutSystems is a Low Code language may give

the (wrong) illusion that this phase is less important than in other languages (although

this is true for some kinds of integration testing). In OutSystems, an Agile development

approach is followed and testing is performed by the developers. There are no “testers”

42

4.1. INTERVIEWS

to verify and validate software. Regarding the name of the framework (BDDFramework),

it can also be misleading since it was chosen because the behavior scenarios are described

with the Gherkin syntax but not in reference to the BDD process itself. This tool was

not designed to be an assistant to the BDD process, but instead to automate tests using

the Gherkin with the OutSystems Platform.

In relation to other tools in other programming languages, like Cucumber or SpecFlow,

which are two of the most popular ones, the fact that the BDDFramework is in the same

environment as the development platform (Service Studio) can make the task for the

developer simpler, but on the other hand can make it more difficult for business people

to participate in the scenario description process in a more active way, since using Service

Studio might not be as adequate for their profile as a regular text editor to write the

scenarios.

In the mentioned tools, the description of scenarios is done in plain text files that are

automatically converted to testing methods and classes, which is good for the integration

of the business and can also be interesting from the point of view of the developers,

since the steps already known by the system would be possible to reuse and this is not

currently supported by the BDDFramework. At this moment, developers need to analyze

the manually defined steps, even to use them in other scenarios. Such reuse would be

possible with the definition of a ubiquitous language and direct mapping from text to test

code. With the BDDFramework, the logic that implements the steps is defined manually.

Therefore, it takes the services of a developer to make the conversion.

In terms of the negative aspects, as already mentioned the framework name can be a

little “inappropriate” and lead to misinterpretations. Not everyone knows what the BDD

process is or what is the Gherkin syntax, so when using the BDDFramework people may

mistakenly think they are applying BDD as a process, but in OutSystems this process

is still not used in practice, although there are plans for future experiences in some

development teams. In addition to this aspect, there is still a learning curve involved

and some say that the process is very laborious and that the results do not compensate

the work. The tests tend to be neglected, although in practice we find that this does not

make much sense, especially from a software behavior point of view (which is precisely

the basis of BDD) and functional testing.

The interviewed members of productivity teams also mentioned that the framework

could offer some more complete monitoring and test coverage information, although

this last issue is already a bit beyond the scope of what is intended with the framework.

Integration with some tools like JIRA, for project management and issue tracking, was also

requested. Another important thing to keep in mind is that the framework only works for

Back-End testing. Speaking of scalability, interviewees also suggested the functionality

that allows performing setup and teardown hooks at test suite level and not only for

each Gherkin scenario individually. Another current limitation of the BDD Framework is

that sometimes the way OutSystems code is done following “recurring practices” of the

language can generate some problems and make it harder to test, although this is more of

43

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

a platform issue. For example, if we do an abort transaction operation in the database, the

framework loses all asserts that have been made so far in that step. Within OutSystems

the tool is only used by some teams. Most of the teams integrate different languages and

technologies, so it is not practical to test using the BDDFramework and to write BDD tests.

Some teams also did not adopt the tool because they were working on ongoing projects

and they would have to redo the tests in BDD which would be a lot of work. These were

the main reasons that made some of the teams not adopting the framework, but it should

be noted that some of these suggestions are beyond the purpose of it.

One of the interviewees, who applies BDD as a process in an OutSystems’ client, de-

spite not using the BDDFramework, stated that the results were quite satisfactory and that

User Stories played a fundamental role in the development process. These describe

the features to implement and result from the conversation between the stakeholders.

They are a form of communication that can be perceived by everyone. At the end of each

Sprint, Product Owners2 review what has been developed and compare it with the previ-

ously defined User Stories, which constitute a Product Acceptance Stamp. The example

of this interviewee shows us that there is at least one example of BDD being applied as

a process that brings value to OutSystems-based development. He said that the reason

they started practicing BDD was the value it brings to the business. He described that

at the beginning of each sprint, all stakeholders try to perceive and interpret together

the values for the business. The User Stories are sent early to interpretation and are only

closed and given as completed after properly tested. According to him, Product Owners

are already able to describe scenarios in Gherkin syntax too. In this case, the framework

used is SpecFlow for the description and automation of tests. SpecFlow allows, among

other things, the integration with other software that enables business to monitor the

progress of development, in this particular case Microsoft’s Visual Studio Team Services.

Here the client can see the state of the project, namely keep track of which functionalities

are already developed. It is important to note that they are using another framework

(SpecFlow) in an OutSystems project because all the implementation of steps is done in

another technology to use WebDriver to interact with the User Interface (UI) of the Out-

Systems applications. UI tests tend to be brittle, slow and hard to maintain (see section

2.17). Implementations of SpecFlow with OutSystems will always be interactions with UI

or APIs in OutSystems applications because of the language barrier and there is a clear

separation between scenarios and test code. If we try to perform a test under the UI of

the application (sub cutaneous testing [21, 22]) with Gherkin in OutSystems, we need to

have our application fully prepared to expose the features by APIs (which is often not

feasible). We want a solution for low code implementations in OutSystems since we do

not want to jump to a non low code context to do BDD testing.

On Low Code platforms, development is fast so it is important that communication

is well managed to guarantee that the speed of development is well employed and to

2Team members representing the business

44

4.1. INTERVIEWS

minimize the risk of failure and regression. If the testing process is slow or very likely

to detect faults then the regressions during the development phase will be very pro-

nounced in cases of error since testing cannot keep up with this pace. The code that will

have to be redone can be extensive because it corresponds to old phases and everything

that has been done since then can potentially be incorrect.

The interviewed OutSystems’ contact in the United States that works closely with the

practice of BDD argues that the BDDFramework can become a vital vehicle for having

customers doing two things: pushing testing activities closer to the moment when devel-

opment is done over user stories, and establishing a standardized way for developers and

testers to have a conversation over tests and behaviors. He also admits the future possibil-

ity of including the business people and thus having the full Three Amigos involved in the

process. According to him, most customers think in requirements first, then develop-

ment and only at the end in testing. In his opinion, it is vital to approximate these stages

and especially the testing phase should be done alongside development. In fact, testing

should be a part of the development process and developers themselves should test the

software and know how to do it properly. The BDD can take a huge part in this, bringing

the business to Sprints, always with the aim of “Write correctly from the first try”, cre-

ating tests that check if the software is correct and if it works the way customers want.

Another important aspect that was mentioned in this interview is that in OutSystems

development is fast, which is very good but raises some challenges to the testing phase,

hence again the need of associating testing to development and discovering discrepancies

as early as possible that can have a greater impact given the speed of development. He

also argues that automation is the starting point for BDD and that the BDDFramework
is ideal for functional testing and a good tool for the practice, even though he considers

that it should have more extensions that allow integration with other software.

To sum up all the information, the main strengths of the BDD Framework from the

point of view of its users are:

• Self-explanatory tests which constitute a form of living documentation of the sys-

tem;

• Standard for test design in OutSystems;

• Testing process acceleration in case of errors;

• Tests run automatically and can be organized into test suites;

• API testing.

And the main weaknesses are:

• The fact that scenarios are described within service studio, although it can be argued

that it facilitates the developer (because it is the same development environment),

45

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

makes it difficult for business people to participate. In other tools the steps that

make up the scenarios are described in text files;

• Does not support direct reuse of steps. The developer always has to manually detect

if the steps are equal to reuse the same logic. With text to code mapping this is not

required;

• Integration with other tools (like JIRA for example) could be supported to help in

project management and issue tracking.

4.2 Analysis of BDD Automation Frameworks

In this section we will present two of the most commonly referenced automation frame-

works during this dissertation. Both are well-known BDD process support tools. We

focused particularly on them, as they are two of the most used today in practice and

we consider that they are an excellent outline of what we intend with an automation

tool. They, together with the interviews, were a valuable help in the specification of the

prototype functionalities we developed during this dissertation.

4.2.1 Cucumber

Cucumber is perhaps the most widely used BDD testing automation framework. It

was originally created as a command-line tool by members of the Ruby community. It

has, since then, been translated into several development languages, including Java and

JavaScript. When we run Cucumber, it reads our specifications from plain-language text

files called Feature Files, parsing them to find scenarios and to generate the test skeleton

(step definitions) automatically. Cucumber also supports running the scenarios against

our applications. Each scenario is a list of steps for Cucumber to work through. Cucumber
can understand these feature files, which follow some basic syntax rules - Gherkin. Along

with the features, we give Cucumber a set of step definitions, which map the business-

readable language of each step into code to carry out the action which is being described

by the step. Usually in a test suite, the step definition itself will probably just be a few

lines of code that call a library of support code, specific to the domain of our application.

Sometimes that may involve using an automation library, like Selenium, to interact with

the system itself. Note that the Given, When and Then annotations do not matter for

pattern matching. If the code in the step definition executes without error, Cucumber
proceeds to the next step in the scenario. If it gets to the end of the scenario without any

of the steps failing, the scenario passes. If any of the steps in the scenario fail, however,

Cucumber marks the scenario as having failed and moves on to the next one. As the sce-

narios run, Cucumber prints out the results showing exactly what is working and what is

not. It is a very complete tool: we can write specifications in more than forty different

46

4.2. ANALYSIS OF BDD AUTOMATION FRAMEWORKS

spoken languages, use tags to organize and group scenarios and we can easily integrate

with a host of high-quality automation libraries to drive almost any kind of application.

In short, Cucumber was designed specifically to help business stakeholders get in-

volved in writing acceptance tests. Each test case in Cucumber is called a scenario, and

scenarios are grouped into features. Each scenario contains several steps. The business-

facing parts of a Cucumber test suite, stored in feature files, must be written according to

Gherkin syntax rules so that Cucumber can read them [63].

The cucumber process can be summarized with the scheme of figure4.1.

Figure 4.1: The Cucumber Process, as described in The Cucumber For Java Book[63]

To better understand how the framework works, a small example problem was used

to perform Java tests using the IDE IntelliJ. The problem is a variant of the well-known

FizzBuzz problem. This small project contains a function that takes a number: if it is

multiple of 3 it returns Fizz. If it is multiple of 5 returns Buzz, as you can see in figure

4.2.

Figure 4.2: The Java FizzBuzz method under test

47

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

Two test scenarios were created: one to test "Fizz"and the other "Buzz"in a text file as

shown in figure 4.3.

Note: For demonstration purposes we only created 2 test scenarios. In a real test

scenario we could (and should) create more and also test the case if it is neither Fizz
nor Buzz. We can see that Cucumber detects numbers and words in quotation marks as

parameters.

Figure 4.3: Feature File with the plain text description of 2 Gherkin Scenarios, one for
the Fizz case and the other for the Buzz case, as expected results

From this scenario descriptions it is possible to automatically generate the class with

the definition of the steps, not initially implemented, but with the methods corresponding

to the Gherkin sentences ready to be implemented. As you can see in the 4.4 figure

Cucumber recognizes the same sentences (which have the same implementation) and

reuses, without duplicating the methods.

48

4.2. ANALYSIS OF BDD AUTOMATION FRAMEWORKS

Figure 4.4: Test class generated from the feature file with the step definitions already
implemented

In addition, Cucumber also supports some features that can complement the descrip-

tion of scenarios and aid the testing process, speeding it up, including test data manipu-

lation mechanisms:

• Scenario Outlines: replace each variable in the scenario step with the value from

the examples table. Each row in the table is considered to be a scenario. The unique

scenario will be executed for each line. In figures 4.5 and 4.6 we have an example

scenario with and without the scenario outlines;

Figure 4.5: In this two scenarios the values (“missing name error” and “missing email
error”) in the Then clause are introduced manually. These scenarios could be compressed
into a unique scenario using a scenario outline with the examples table containing the
values to replace the variable.

49

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

Figure 4.6: Using the scenario outline we compressed the 2 scenarios into one unique
scenario outline that will execute as many times as there are lines in the examples table.
In this particular case 2 times, one for each value of the variable “Error”

• Steps Table: step tables or data tables differ from scenario outlines since their data

is all used together in each execution. Data tables are not looped through. Their

data is all used in at once. In figure 4.5 we have an example scenario with and

without the scenario outlines;

Figure 4.7: The immediate table below the scenario specification represents a data table.
This data is all used within an execution of the scenario and represents the information
retrieved when we search for some word which is in the scenario outline table below

• Background: background is used when the scenario’s first step (or steps) are equal.

It executes the step (or steps) before the other scenario steps are executed and it is

abstracted from each scenario individually. Only described once but executed for all

scenarios. In figures 4.8 and 4.9 we have an example with a small scenario file with

and without background to group similar staring steps, respectively. Background is

very similar to hooks but at the test suite level and not each scenario individually.

50

4.2. ANALYSIS OF BDD AUTOMATION FRAMEWORKS

Figure 4.8: The first step of the three scenarios displayed is equal.

Figure 4.9: In this case it is possible to group the equal steps in a background step that
will be executed for all scenarios considered.

Cucumber allows the use of reporter plugins to produce reports containing the infor-

mation about which scenarios have passed or failed during an execution, about execution

times, among other metrics. Some of there plugins are built-in, others have to be installed

separately, like third-party plugins. These vary with the programming language we are

using. Although Cucumber does not have an integrated sophisticated reporting mecha-

nism as executions also dependent on the environment where tests are being run, it offers

ways to enable the generation of more complete visual reports more complete than simple

ones presented to the user in the execution runs. Since these are very basic reports, using

their output, we can build more detailed HTML reports. In figures 4.10 and 4.11 we can

see examples of visual reports obtained from Cucumber’s integration with Jenkins.

51

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

Figure 4.10: Example of a more complete visual report, obtained with the execution
information generated by Cucumber, integrated with Jenkins.

Figure 4.11: Another example of a more complete visual report, obtained with the execu-
tion information generated by Cucumber, integrated with Jenkins

4.2.2 SpecFlow

SpecFlow is The Cucumber for .NET. It is a “port” of Cucumber for .NET that also uses

Gherkin syntax files but wires them up to C# code. SpecFlow builds on existing unit test-

ing frameworks like NUnit and MsTest. SpecFlow+ Runner is a dedicated test runner for

SpecFlow (Windows only) and integrates directly with Visual Studio. SpecFlow+ replaces

general purpose testing frameworks with a dedicated solution and introduces additional

features, such as enhanced test execution options and execution reports. However, and

despite the similarities, both frameworks are different. First of all Cucumber has a global

namespace (Given, When and Then are interchangeable) as mentioned in section 4.2.1. In

SpecFlow namespaces are independent (Given, When and Then are treated differently).

52

4.2. ANALYSIS OF BDD AUTOMATION FRAMEWORKS

SpecFlow also features a greater diversity of Hooks (setup/teardown steps), with

different levels: before and after steps, before and after scenarios, before and after features,

before and after execution, among others. Cucumber Hooks are more limited.

As with the previous tool, we used the same small example problem (a variant of

FizzBuzz) to better understand how the tool works in practice. The code is in figure 4.12.

Figure 4.12: The C# FizzBuzz method under test

A feature file was created: one scenario to test "Fizz"and the other "Buzz"in a text file

as shown in figure 4.13.

Figure 4.13: Feature File with the plain text description of 2 Gherkin Scenarios, one for
Fizz and the other for Buzz, as expected results

SpecFlow also detects parameters in the steps as we can see in the automatically

generated step definitions already implemented in figure 4.14

53

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

Figure 4.14: Test class generated from the feature file with the step definitions already
implemented

As with Cucumber SpecFlow also enables detailed execution reports with information

about the scenarios and their steps. These can be generated in a variety of ways and

formats, either through direct SpecFlow integrations (with NUnit for example) or third

party services.

In an OutSystems context SpecFlow may be the most interesting framework since its

implementation works with C# code, which is the basis of the OutSystems language and

under which the platform is built.

4.2.3 Framework Evaluation Proposal

Following the review of the study by Wang and Solís in section 3.2.1, we decided to

create a new comparative table, with some aspects that we consider to be important to

evaluate in a BDD automation framework. These were chosen on the assumption that

a supporting test automation tool for the BDD process serves only for this purpose: to

support the conduct of BDD by allowing test automation but not covering all Behavior-

Driven Development procedures since the most important part of it (conversations and

discussion around functionalities) should be taken beforehand, involving all stakeholders,

and out of this automation context. As such and from the interviews conducted and the

study of the main tools we culminate with the proposal of the following features that we

consider appropriate to figure in this type of framework:

• Feature and Scenario description in textual files: description of functionalities

and scenarios in a structured and simple textual language such as Gherkin, to de-

scribe product behaviors. These descriptions constitute a form of documentation

54

4.2. ANALYSIS OF BDD AUTOMATION FRAMEWORKS

and are the basis for automation and it must be possible to write them in textual

files usually called feature files and import them feature from outside an IDE;

• Step Definition Generation (Testing classes and methods): interpretation and au-

tomatic generation of test methods for each step present in the Gherkin scenarios,

in a structured and standardized way, mapping the scenarios (documentation) to

implementation.

• Parameterization of Inputs in the Gherkin sentences: the tools must be able to

automatically detect parameters in the Gherkin sentences and they should create

input variables for the these parameters (parameterization of testing data);

• Scenario Outlines: Prepare groups of testing data for each scenario;

• Hooks (Setup/Teardown): Extra steps designed to prepare/remove the configura-

tions and data necessary for a scenario or a set of scenarios;

• Step Reuse Detection: Detection and use of equal steps by the framework, having

a centralized implementation for a step that can be used in several different places,

reducing the manual work of the developers in relation to already implemented

steps;

• Automated Execution: BDD scenarios must run automatically when executed and

this execution must be fully customizable and parameterizable in relation to the

scenarios to be executed;

• Integration with Management/report Tools: It should be possible to integrate with

project management tools to import/export the feature files and to provide more

traceability to the functionalities that are being developed.

Other criteria, considered less important:

• Parameter Type Inference: refers to inferring the type of the variables present in

the description of the scenarios in order to facilitate the work of the developer and

automate the process. Although this is a good feature, the most important aspect is

actually finding the parameters in the sentences and creating variables to support

them. If the type is immediately right, better but if not, it can still be easily changed.

• Step Aggregation: Aggregation of common steps within a feature to avoid redun-

dancy and repetition of equal steps. It avoids some repetition of steps in the de-

scriptions.

This brings us to the following evaluation model (which already fits the BDDFrame-
work):

55

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

Figure 4.15: The most used frameworks compared with the BDDFramework in the new
proposal of evaluation model. Attributes marked with a check mark are present in the
frameworks. Attributes marked with a X mark are not present in the frameworks.

Notes about the table: Parameter type inference is not supported in the BDDFrame-
work but this attribute is a direct consequence of the previous one (we can not infer

parameter types if we have no parameter detection). Regarding scenario outlines (*1),

the BDDFramework does not support them directly but the way the OutSystems language

is built and the way it works it is possible to perform these kind of tests with relatively

ease in the BDDFramework. There is even some documentation teaching how to perform

Data-Driven Testing in OutSystems with the BDDFramework[59]. Integration with other

tools is also partially supported (*2). Although the BDDFramework lacks more complete

reporting mechanisms about the detailed current state of the tests in a project, we have

some ways available (with the support of the REST API BDDFramework[58]), to manage

some information reporting how many test scenarios failed and passed in the executions

(with detailed information about the failing ones).

56

4.3. PROTOTYPE FEATURES IDENTIFICATION

4.3 Prototype Features Identification

In this section we will present the features we identified as being important to implement

in the developed prototype:

• Conversion from plain textual feature file specifications using Gherkin to Out-

Systems’ logic testing code: this will make it easier for both business and devel-

opers to get involved in the process because the scenario description phase can be

done outside Service Studio, and text specifications are mapped directly into test

code by the framework, leaving just the test logic implementation to be done by the

developer in the test implementation phase, automating the process and facilitating

his work;

• Allow the automated generation of test screens and scenarios in a structured

manner and following the recommended practices for test organization: indi-

vidual scenarios are placed within Web Blocks (to allow reuse and association of

variables/parameters) and all the scenario blocks that test the same feature are

placed inside the same Web Screen . Like this, the screens are divided by features,

each of which will contain the scenarios that implement that feature. This allows

developers to follow a test design standard that previously had to be done manually,

with risk of test architecture disorganization;

• The product to be developed should be able to recognize and reuse equal steps

automatically: this will allow reusing implementations and saving the developer

some time, especially when a lot of test code is already implemented and many of

the upcoming steps are repeated. In the BDD Framework, as it is at this moment,

this is not supported and developers need to manually identify identical steps and

reuse them by hand;

• Parameterization of the implementation from placeholders in the Gherkin steps:

currently in the BDDFramework to do this it is necessary developer involvement. In

other existing tools variables can be parameterized immediately in the feature file

description. For instance, we may have a sentence that checks whether a book exists

in a database. The book title can be parameterized in the scenario description

(e.g.“Given There is a book whose title is <title>”). This, once again, can encourage

the participation of business people because they can specify explicit variables in a

textual way (“Given There is a book whose title is Don Quixote”, for example, and

the implementations validates if the book with the name Don Quixote exists in the

database) and this also enables a more powerful reuse of steps;

• Integration with reporting and project management tools (like Jira [5]) for project

management and issue tracking. It will allow to list all the Gherkin scenarios imple-

mented in the context of a user story. Business people would be able monitor the

57

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

implementation of features through this software and check when a user story is

implemented, validating the scenarios to accept the feature or not. This integration

is already possible in frameworks like Cucumber[18] with extensions like Xray[76]

and was pointed out as something very valuable by the interviewee that spoke to us

about his experience of practicing BDD in an OutSystems project.

4.4 Prototype Alternatives

After identifying the prototype desired features, we needed to analyze how we would

implement those, the pros and cons of each alternative, and immediately came up with 2

prototype options:

• Alternative 1: Start from the existing BDDFramework and build a new compo-

nent around it. It will use the features already provided by the BDDFramework,

such as the Gherkin scenario templates and all the blocks for the description and

implementation of BDD steps, as well as the BDDFramework AssertSteps library and

information about test execution. With this alternative we would still be in the Low

Code OutSystems domain and would have already implemented the basis for the

description of scenarios as it already exists in the BDDFramework. The challenge

here would be more focused on automating the screen test logic generation (step

definitions), as well as reusing actions, all from feature textual files. The strengths

of this alternative would be: the previously mentioned fact that we remain in the

Low Code domain, without having to leave it to perform BDD testing. This can be a

crucial aspect, as it would allow developers to stay in the development environment

(the test specification and implementation would be very close to the code under

test) and we would use the already known BDDFramework that would be leveraged

by the component but will continue to exist on its own, just like before. It would not

be replaced. The learning curve would therefore be supposedly shorter for devel-

opers who already know OutSystems and the BDDFramework and also by allowing

scenarios to be described in text files that automatically populate the scenario tem-

plates (before we had to drag the steps, type in the descriptions and place the blocks

in their corresponding placeholder within Service Studio). This would significantly

simplify the entire process. Anyone can easily use a simple text file, including

business people, who previously had to install Service Studio to participate in the

scenario description process. Moreover this tool would be unique and developed

specifically for the language. We can find a schema that represents this solution in

figure 4.16 and the test eSpace generated general structure and organization inside

Service Studio in figure 4.17.

58

4.4. PROTOTYPE ALTERNATIVES

Figure 4.16: Automated generation of the test logic and filling of the BDDFramework
scenarios and steps process, from the external feature files by the prototype component.

Figure 4.17: eSpace organization inside Service Studio.

• Alternative 2: Integrate SpecFlow with OutSystems. The idea is to take advantage

of an already developed engine and apply it to perform BDD tests. This approach

involves the development of a component that enables the integration between

scenarios interpreted by SpecFlow and their implementation in OutSystems logic.

SpecFlow engine already supports the automated generation of test classes and

step definitions for the corresponding feature files and scenarios, respectively. It

also supports the parameterization of inputs with type inference as well as various

mechanisms of step aggregation and data manipulation for testing. SpecFlow also

supports step reuse for equal steps and it supports integration with other tools (al-

though like in Alternative 1 we will need it anyway for an OutSystems domain).

It also can be executed from the terminal without any IDE to generate the step

definitions and return the test results (with the generateall 3 command).To do this,

3The generateall command can be used to re-generate outdated unit test classes based on out feature files.
This can be useful when upgrading to a newer SpecFlow version, or if feature files are modified outside of
Visual Studio. This does not apply to the newest version, SpecFlow 3.

59

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

the idea would be to have SpecFlow C# classes invoking actions of an OutSystems

eSpace directly (in runtime). The SpecFlow C# code would just be wrappers for

actions to be invoked in an eSpace, thus the step implementation would be done

in OutSystems code. To achieve this, we need to built: (1) a code generation mech-

anism (close to Alternative 1) just to create an eSpace with Server Actions where

the step implementation would be done; (2) a C# library that would allow us to

easily call the eSpace server actions in runtime; (3) a code generation application

that would populate the SpecFlow generated C# classes (with the step implemen-

tations) with the appropriate calls to the library in item 2. In short, the idea would

be to take advantage of the SpecFlow features as they are, to be able to generate

the OutSystems project with the test code. The main advantage of this approach is

that the main engine is already built and quite complete with lots of features, but

also the fact that the SpecFlow community is large, and it allows integration with

other tools as well as command line execution. We would have found to be a way of

generating output between SpecFlow, that deals with the feature files and scenarios,

and Service Studio, where the test code is implemented. The main challenges would

be: beyond the crossover between both platforms, the already mentioned code gen-

eration mechanism (which we have already found applicable in this context) to

insert code invokers to OutSystems actions in the generated .cs files with the step

definitions and a library to handle those files with the inserted parameters and in-

voker functions to allow the automated generation of eSpaces, screens, actions and

parameters in an OutSystems domain. Finally, a way to generate the test outputs

across platforms. Figure 4.18 represents this approach.

Figure 4.18: Schema that represents Hypothesis 2.

4.5 Decision making and strategy adopted

Then, after carefully analyzing the implications and feasibility of each approach, we made

another round of interviews, this time only to 2 people, both previously interviewed. One

of them works with the BDDFramework regularly and is very used to this tool, either

to create or debug BDD tests. The other interviewee is the external contact who uses

SpecFlow, successfully, to perform BDD testing on OutSystems projects. However, he

uses Selenium to do UI layer testing (which is not what we intend). We want a framework

that works for other types of testing (including functional testing), without having to

60

4.5. DECISION MAKING AND STRATEGY ADOPTED

prepare our code for UI testing, which has its problems as we could see in section 2.17.

We considered that the contribution of these two people could be important in order

to make a decision, so, we presented both hypotheses to them and discussed in more

detail their testing processes, to better understand their daily testing and debugging

experience, something that was not possible to realize in detail in the first interview,

since it was not its purpose back then.

With the interview that was done to the BDDFramework user and the research that had

been done beforehand, it was possible to realize that the developer experience for those

who use the BDDFramework is good: it is easy to establish a connection between the

sentences that make up the Gherkin scenarios and its corresponding implementation

in OutSystems’ logic, since there is a direct mapping between them, thus making it easy

to navigate through feature files and quickly access the code as they are both in the

same place (Service Studio). This was precisely one of the most important aspects to

understand from the external contact interview: how important is the navigation from

the Gherkin scenarios to the step definitions code, when debugging the failing scenarios

using SpecFlow with OutSystems? We are afraid that this approach we are proposing

might break this experience, since the Gherkin scenarios are in Visual Studio, outside

the OutSystems development tool (Service Studio).

According to this interviewee, the ability to immediately identify what is failing in

a test, from the report generated by SpecFlow and where the failure occurred depends

on the granularity of the Gherkin scenarios and the experience of the developer. Usu-

ally, if they are very generic sentences they become harder to analyze. However, if the

developer is experienced and knowledgeable about the code he usually debug it directly.

Many of the bugs and problems he faces also relate to the UI layer (objects not found) and

the very nature of the tests that are performed using Selenium. The overload of the test

tool itself also plays a relevant role in this domain and can be a determining factor in its

execution. Most problems are due to changes that are being made in development that

are not yet reflected in testing.

Regarding the debugging process itself, the first step the interviewee takes is to check

whether or not the failing object is found by SpecFlow (most recurring error) and if the

error does not come from it, a breakpoint 4 is placed in the implementation of the step

that is failing (isolating the code, commenting the unnecessary lines). If the error is

not found the developer will see if the step in question is dependent on any previous

steps by navigating through the code. Data is passed and shared between steps through

global variables, not via the scenario we are running.

We presented the possibility of developing a tool that uses SpecFlow for OutSystems

in this dissertation and that is not designed specifically for UI testing using Selenium,

but instead also allows functional/logical testing under the UI layer of applications. This

4A breakpoint is an intentional stopping or pausing place in a program, put in place for debugging
purposes

61

CHAPTER 4. CASE STUDY AND INITIAL CONSIDERATIONS

component should be able to read feature files and transform them straight into test spec-

ifications in the OutSystems language (Alternative 2). As it is currently the case with

SpecFlow, the developer will only have to worry about implementing the test code for the

new steps, and the application itself would allow the reuse of equal steps existing steps.

The respondent noted that this could be interesting as it would take the load off the UI

and could make the testing process faster and more efficient, both in development and in

execution. The interviewee also pointed out that this would broaden the test spectrum

and make it easier to test the logic of applications, although he also considered that

allowing testing under the UI layer of applications might not be as interesting from a

business point of view as we thought. All of this could also be achieved with alternative

1: extending BDDFramework to use a mechanism similar to SpecFlow, capable of im-

porting Gherkin scenarios described in text files outside of Service Studio and filling the

BDDFramework templates with them, as well as allowing automatic generation of step

definitions in OutSystems’ logic. Regarding the two prototype approaches presented,

both respondents agreed that if SpecFlow is used to read the feature files and used to

invoke the OutSystems’ logic, it may be difficult and impractical to navigate from one

tool to another (SpecFlow kept the feature files and Service Studio the OutSystems’ code),

in separate domains. There could be some lack of traceability. This is the problem with

this approach: it can degrade the development and troubleshooting experience. On

the other hand with the other approach of extending BDDFramework this problem no

longer exists as this experience of browsing through feature files and direct mapping to

code is preserved and can be done directly within Service Studio, in the development

environment. With SpecFlow we have an engine that works outside of OutSystems. If

we do not have a Gherkin editor in service studio it becomes more difficult to relate

scenarios to code and hence, the debugging experience.

As we have already mentioned, the developer experience of those who use the BDDFrame-
work is good (we see things happening). Since SpecFlow works outside Service Studio,

making the bridge between the description of scenarios and their implementation can

be difficult, which complicates the development and debugging processes for less experi-

enced developers and people looking at test they did not write. With the BDDFramework

it is all in one single place without degrading the developer experience as we have Gherkin

scenarios and their implementation side by side in Service Studio, making code and test-

ing progress easier to track and maintain and this is the main reason for choosing

Alternative 1 over Alternative 2. In addition, this solution can possibly establish itself as

a test standard made specifically for OutSystems and using the existing BDDFramework
that many users already know, without changing it or changing the OutSystems product

itself.

62

C
h
a
p
t
e
r

5
Prototype Implementation

In this chapter we will describe the whole implementation process of the Prototype pro-

duced during this dissertation. In a first step, we will start by describing its features

and architecture, and then we will explain all the procedures, giving an overview of the

implementation and how it was done, present the main algorithms used, justifying our

choices and describing the difficulties we faced along the implementation phase.

5.1 Prototype Description

The software component produced during this dissertation was implemented incremen-

tally, in small development sprints, and it works as a Service Studio command that

automatically generates the step definition screens and actions from text files containing

the BDD scenarios, just like any other well-know BDD tool, but in OutSystems. This com-

ponent uses the existing BDDFramework, with the difference that, through the prototype,

its templates are now automatically filled, based on external feature files that contain the

scenario descriptions, organized by features, as you can see in figure 5.1. This will allow

business people to participate in the scenario description process more easily and actively,

and also make it easier for developers, who can now integrate new scenarios in the test

suites, which came from project management tools, by simply running a command to

enter them into Service Studio.

63

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.1: Example of a feature file containing 2 features and 3 scenarios. The first
feature contains two test scenarios and the second only one. The component parses the
file and the highlighted words identify special keywords where new Features, Scenarios
and Gherkin steps begin.

The description placed in front of the Feature keyword will serve to name a Web

Screen that will contain scenarios testing that feature. The scenario description, like all

descriptions placed in front of the Gherkin syntax keywords (Given, When, Then and

And) will be used to fill the BDDScenarios and will name the implementation actions.

In addition to enabling this automation and consequent acceleration in the process of

importing and populating the scenarios, this component also automatically generates:

• Test Screens: For each feature under test described in the feature file, a Web Screen

is created. It will contain inside all scenarios corresponding to that same function-

ality. At the bottom of each feature screen is placed a Final Result block, which

reports how many scenarios are failing from the current screen;

• Scenario Blocks: each BDDScenario is properly filled with the scenario description

and the Gherkin steps from the feature file, and it is placed inside a Web Block

(reusable) within the Web Screen of the corresponding feature;

• OutSystems actions that will contain the implementation of the Gherkin steps:

for each sentence in the Gherkin text, a Screen Action that is associated with it is

created, and it calls the corresponding Server Action (with the same name) that

will contain the logic of the implementation for that respective sentence.

The structure and organization of the test eSpace (which we can see in figures 5.2

and 5.3) was thought according to some recommended practices given by OutSystems’

quality experts, to standardize the way BDD tests are conceived and designed, as we can

remind in section 2.18.1.

64

5.1. PROTOTYPE DESCRIPTION

Figure 5.2: The following test module is obtained when we execute the BDD command
using the previously presented feature file example.

Figure 5.3: Each sentence in the Gherkin scenario is connected with a screen action
containing its implementation.

We will now present some fundamental features considered for the developed com-

ponent, related to test implementation efficiency:

• Step reuse: As the complexity of applications grows, it is expected an increasing

number of test scenarios and a resultant redundancy of steps. As such, it is critical

that our component can detect equal steps and be able to reuse their implemen-

tation code, which must be implemented in a single place, avoiding redundancy of

actions and making the developer work as facilitated as possible, preferably without

having to worry about this reuse process. In the past, with the BDDFramework, step

reuse had to be done manually by developers. We found a way to automate this:

65

CHAPTER 5. PROTOTYPE IMPLEMENTATION

each Screen Action (figure 5.4), instead of directly containing the corresponding

step implementation code, will instead call a (centralized) Server Action with the

same name (figure 5.5). If the Server Action does not already exist in the system

(meaning that the step is new) our component creates a new one. Otherwise, the

existing one is called inside the Screen Action connected to the step. Therefore, the

Server Actions will contain the step implementation logic and so, we guarantee that

once the sentence logic is defined the first time, from now on all the equal steps

that come up will be already implemented in a single centralized action. For people

writing scenarios to take advantage of this reuse they should write equal steps with

exactly the same description.

• Parameter Detection and Type Inference: The component detects what is enclosed

in quotation marks as a parameter, and then creates corresponding input param-

eters in the server actions that implement those steps (figures 5.6 and 5.7). Note:

For reuse purposes, the sentences: The user removes "10"bananas from the cart and

The user removes "15"bananas from the cart are equal since the parameter is ignored

and is not taken into account when comparing the sentences. The parameter type

is also automatically inferred by the application.

Figure 5.4: The Screen Action associated with a Gherkin step calls a Server Action (cen-
tralized) with the same name containing its implementation. There is one Screen action
per Gherkin Step.

66

5.1. PROTOTYPE DESCRIPTION

Figure 5.5: The Server Actions hold the centralized implementations of the BDD steps.
There is only one Server Action per different Gherkin step, avoiding action redundancy.
Every Gherkin step “I have a valid card” will call the same Server Action, since their
implementation is the same (equal steps). As we can see, there are 11 Gherkin steps in
the example feature file (figure 5.1) but only 6 Server Actions in the generated eSpace,
since some of the steps are the same. In the second and third scenarios, only one of the
steps is new.

Figure 5.6: The textual parameter is replaced by a variable in the sentence. It is ignored
when we compare sentences to check for equality. Its value is passed as an input parame-
ter for the server action that contains the corresponding step implementation.

67

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.7: The Server Action (not yet implemented) receives the parameter as an input
and it automatically infers its type, in this case a text containing the error.

As expected, the Server actions that implement the Gherkin steps are not initially

defined (except for already implemented sentences, where the implementation is auto-

matically reused by the application as we previously saw) and this work is later up to

the developer. As such, we automatically generate an OutSystems exception (NotIm-
plementedException) which is the only logic initially present in the Server Actions, to

demonstrate that they have not yet been implemented, as we can see in figure 5.8. These

exceptions should then be replaced by the test logic. It is recommended that developers

implement applications with this type of testing in mind and taking in consideration

that the core logic of applications must be implemented in Server Actions so they can be

exported and used across the test projects.

68

5.1. PROTOTYPE DESCRIPTION

Figure 5.8: The NotImplementedException is defined for the generated Server Actions,
when those are created.

Regarding the operation of the Prototype, the command is executed by right-clicking

the UI Flow (inside Service Studio’s Interface tab) and clicking the “Generate BDD Sce-

narios” option. The test module must have the BDDFramework dependencies already

imported. To do this, it is necessary to first download the component in its OutSystems

forge page 1 and set up its dependencies (in the Manage dependencies menu) on the mod-

ule where tests will be made, within Service Studio. In order to see the results of the test

executions we need to publish the module and open it in the browser, where we can see

each scenario screen with the corresponding scenarios individually displayed along with

the BDDFinalResult block at the bottom of each screen (figure 5.10).

1https://www.outsystems.com/forge/component-overview/1201/bddframework

69

https://www.outsystems.com/forge/component-overview/1201/bddframework

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.9: The BDDFinalResult block shows how many scenarios have failed during the
execution.

Figure 5.10: The result of publishing and displaying in the browser the scenario re-
sults from the Withdraw cash from bank account screen. The (single) scenario was not
implemented and as expected the unique scenario fails right on the first step, where an
exception is raised and the other steps are skipped.

In order to edit, add or remove scenarios we must make the desired changes directly

on the feature file. The file must be saved for the changes to take effect, then we need

to simply re-run the command again in Service Studio. The command can be executed

successive times and nothing that was already in eSpace will be duplicated. Only scenar-

ios that were removed from the feature file, before the execution, will be deleted, as well

70

5.2. IMPLEMENTATION ANALYSIS

as any screens and actions that were left behind that are no longer needed (for example

screens of features from which all test scenarios were deleted and they are now empty, or

actions that are unused since the scenarios containing their sentences got deleted). New

scenarios that were added into the file will also be introduced into the project. Regarding

the edition of scenarios, developers have complete freedom to edit the test implementa-

tion code as many times as they need. Nothing that is modified in the implementation

will be lost and actions will still be properly linked to the respective steps. It is also pos-

sible for the developer to add more logic to the blocks by adding more actions, whether

these are BDDFramework setup or teardown actions or other types of actions within Ser-

vice Studio, and these will be saved successfully as scenarios are kept and maintained

in the eSpace linked to the corresponding Web Block even when we rerun the command

(if they are kept in the feature file by the user). The idea was to make the command as

efficient as possible and so, we needed to avoid regenerating the components. When the

user changes a Gherkin sentence in the feature file, the idea would be to change it within

Service Studio scenarios but without touching the implementation since with the current

implementation a new action is created (because the sentence is different) and as such,

the scenario is considered different. However, this presents a minor problem as only this

sentence will be reinitialized and not the entire scenario. we have the infrastructure for

this but we are not currently doing it: if the scenario description remains the same (which

means the scenario is the same) and a sentence changes then we just change the text of

it, regardless of whether we keep the old one and create a new one with the same code.

In turn, the scenario description (the identifier) must be unique as we assume that two

scenarios with the same description are equal and such duplication is not allowed. So, if

we edit the description we are creating another scenario that is of course the same if the

Gherkin steps remain untouched, and due to the reuse mechanisms we have it will be

reused in its entirety if the actions are not deleted.

5.2 Implementation Analysis

5.2.1 Architecture Overview

The Prototype was developed in .NET and integrated with the platform code, as a Service

Studio command component, without changing the platform structure and organization.

Figure 5.11 represents the class diagram of the component. This was generated using the

Class Designer of Visual Studio 2019, the editor in which this project was developed.

71

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.11: The Class Diagram representing the 3 classes which compose the Prototype.

Now we will give some more insight about the classes that make up our solution:

• Scenario Class: As its name suggests, this class represents a BDD scenario which

is composed of a description, a set of given, when and then classes, and tests a

specific feature. This is a very simple class and it is the basis for the creation of

scenarios that come from the feature file.

• FeatureFilesReader Class: this class reads the feature file. Basically, it works as a

parser of files written in Gherkin. The main method of the class (readFile) ensures

the logic responsible for identifying in the sentences the Gherkin keywords (Given,

When, Then) as well as the keywords that indicate the beginning of a Scenario or

a new feature (Scenario and Feature, respectively). The sentences (or textual de-

scriptions) that are placed in front of the keywords are saved in the Scenario objects.

Each scenario is then placed in a dictionary representing the feature file, where the

Key is the feature name and the value is the list of scenarios that implement the

feature. This class iterates over the entire text file until it completely populates the

dictionary that will be used to read the scenarios when we execute the command.

• BDD Class: This is the main class of our program. This is where most of the

computation related to the entire screen generation process is centered, and it is

where most of the data structures responsible for storing screens, nodes, and actions

are located. It consists of a major method (InnerExecute) that contains the code

responsible for the command execution in Service Studio and a set of auxiliary

methods responsible for filling the list of scenarios, data structures and the eSpace

objects to be considered in the next execution, already filtered according to what

72

5.2. IMPLEMENTATION ANALYSIS

was present in eSpace and read at the beginning of the method. The logic containing

parameter reading and type inference is also present in this class as well as the entire

process of programmatic search and completion of the BDDFramework templates in

Service Studio.

5.2.2 Development process

As it was already mentioned in previous sections, the prototype was produced incre-

mentally, in developmental sprints of approximately 3 weeks. The order between tasks

was established by value of features. In the first phase we focused on understanding

the programmatic generation of test screens and blocks, which we considered to be the

most valuable feature initially. For this we used dummy scenarios, statically placed in the

code, since we did not have the file reader that was developed in a second phase. At this

moment, the scenarios were read from the text file and it was already possible to create

the test Web Blocks and Web Screens containing the BDDFramework templates, with the

corresponding Screen Actions that implement the Gherkin steps. Then, we developed the

centralized actions that came at the top of our priorities: after being able to generate the

tests from a scenario file, our priority became the reuse of equal steps. This was achieved

by introducing Server Actions to store the steps’ implementation. The next step was the

parameterization and the development of mechanisms to allow detecting the parameters

present in the Gherkin sentences. Finally, our focus was on reusing nodes between execu-

tions: at an early stage we deleted all the blocks and screens and regenerated each time

the command was executed, as this simplified the reading logic of eSpaces (because we

did not need to worry about which nodes were already present in there or what would

be deleted, as we just read the feature file all over again). Server Actions were the only

ones that could be saved, allowing us to reuse their implementation code. The goal now

was not to delete nodes and screens that were reused, both between runs and when

Service Studio was closed and all variable data in memory was lost. This was achieved

with some logic and test eSpace interpretation mechanisms. Finally, we left to the end

some details like some nomenclature associated with the actions and scenarios (to be

able to edit the name of the directly in the feature file), the visualization of the execu-

tion results and some editing aspects of the scenarios, which are considered secondary

aspects or that the idea came up after the development phase.

5.2.3 Implementation Analysis

In this section we will analyze the execution flow that the test eSpace gets through when

the command is executed, analyzing in detail the crucial phases of the execution and

all the main mechanisms and algorithms used for the solution implementation, using

pseudo-code to demonstrate our choices and justify the correctness of our decisions.

Figure 5.12 represents in a small scheme with main stages of the execution flow

happening when the command is executed.

73

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Figure 5.12: The Generate BDD Scenarios command execution flow.

When the command is executed, the first step performed in the process is the parsing

of the text file containing the features. The readFile method of the FeatureFilesReader

class is called, which works as presented in algorithm 1.

The idea behind this algorithm is to read the text file, line by line, and build the

Scenario objects from it. By finding the Gherkin keywords (Given, When, Then and And),

along with the Feature and Scenario keywords, which represent a new feature and a new

Scenario, respectively, we fill in their descriptions with the rest of the sentence (substring)

which is in front of the keyword. Of course we have to keep in mind a few details: If we

find the keyword Feature (which marks the start of a new feature) and this word was not

found for the first time (which means this is at least the second feature found) in the file,

then we can add the scenario that was being built to that feature’s list of scenarios and

put the list at the respective dictionary position, thus closing the previous feature and

restarting the current feature and its scenario list; If we find the Scenario keyword we add

the scenario that was being built to the scenario list and start a new one with the current

description; If we find the keyword And we have to be aware of the current type, hence

the need to store it in a variable, which is updated when we arrive at a new type (Given,

When or Then). Finally, after the loop it is necessary to close and save the last scenario

because we will not go back to the cycle and at the end of reading the file we will have

filled the dictionary representing the feature file, organized by features and respective

scenarios, ready to use by the component within Service Studio.

After completing the dictionary that represents the user’s feature file, some logic that

will populate the data structures that store the screens, blocks, and actions is executed.

This is necessary since, once Service Studio is restarted, these structures are also reset,

but nodes and flows can be stored in the test module and as such it is necessary to fill

these structures before generating the new ones, to avoid duplicates. The logic behind

this mechanism is presented in the algorithm 2.

74

5.2. IMPLEMENTATION ANALYSIS

Algorithm 1 Feature File Reading

1: procedure ReadFile()
2: f eatureFile← dictionary that will represent the feature file, where the key is
3: the feature name and the value is the list of feature scenarios;
4: currentFeature← current feature being read;
5: currentT ype← type of the last Gherkin clause read, to use in the And clauses;
6: currentScenario← scenario currently being built;
7: scenarios← list of scenarios to add to the current feature;
8: line← represents a line of the file;
9:

10: for each line in textFile do
11: if line starts with "Feature" then
12: if currentFeature is not null then
13: scenarios← scenarios ∪ currentScenario;
14: f eatureFile← f eatureFile ∪ (currentFeature, scenarios);
15: currentScenario← null;
16: end if
17: scenarios← { };
18: currentFeature← f eatureName; . Where featureName represents the

textual description in front of the word "Feature"
19: else if line starts with "Scenario" then
20: if currentScenario is not null then
21: scenarios← scenarios ∪ currentScenario;
22: end if
23: currentScenario← new Scenario();
24: currentScenario.description← description;. Where description represents

the text in front of the word "Scenario"
25: currentScenario.f eature← currentFeature;
26: else if line starts with type then . Where type represents a Gherkin keyword

(Given, When, Then)
27: currentScenario.type← currentScenario.type ∪ sentence; . Where

sentence represents the textual description in front of the type
28: currentT ype← type;
29: else if line starts with "And" then
30: if currentType is type then . Where type represents a Gherkin keyword

(Given, When, Then)
31: currentScenario.type← currentScenario.type ∪ sentence; . Where

sentence represents the textual description in front of the type
32: end if
33: end if
34: if currentFeature is not null then
35: scenarios← scenarios ∪ currentScenario;
36: f eatureFile← f eatureFile ∪ (currentFeature, scenarios);
37: end if
38: end for
39: end procedure

75

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Algorithm 2 Filling Data Structures

1: procedure fillStructures(Flows.WebFlowtarget)
2: scenarioBlocks← set of Web Blocks identified by Scenario description;
3: f eatureScreens← set of Web Screens identified by Feature description;
4: serverActions← set of Server Action flows identified by step description;
5:

6: for each node in Nodes.WebBlock do . Where Nodes.WebBlock is the set of Web
Blocks in the module

7: if node < scenarioBlocks then
8: scenarioBlocks← scenarioBlocks ∪ (node.description,node); . Where the

description of Nodes.WebBlock nodes represents a scenario description
9: end if

10: end for
11: for each node in Nodes.WebScreen do . Where Nodes.WebScreen is the set of Web

Screens in the module
12: if node < featureScreens then
13: f eatureScreens← f eatureScreens ∪ (node.description,node); . Where the

description of Nodes.WebScreen nodes represents a feaure name
14: end if
15: end for
16: for each action in Flows.UserActions do . Where Flows.UserAction is the set of

Server Actions in the Logic tab
17: if action < serverActions then
18: serverActions← serverActions ∪ (action.description,action); . Where the

description of Flows.UserAction flows represents a Gherkin step description
19: end if
20: end for
21: end procedure

Before processing the scenarios we got from the user at the beginning of the command

execution, we first need to consider a few things: not everything that comes from the

Feature File needs to be processed. Some scenarios may already be in the test module

and as such they do not need to be processed again. Others can be there but they might

not be exactly the same, having suffered some kind of edition in the sentences and as

such we need to deal with it, replacing the old ones with the new ones (in fact editing the

differences). We must also remove from the list of scenarios to execute, those that are not

in the feature file. This results in a list of scenarios to process (scenariosToRun), which

comes from what was already in it and from the dictionary we had previously obtained.

This requires a dictionary to list conversion which simplifies our process because reading

the feature file was easier to do in the form of a dictionary (due to the text file structure)

but processing scenarios with a list is more practical and is sufficient as Scenario objects

have their respective feature field, which allows us to identify it without needing the key.

The pseudo-code for this part is presented in algorithm 3.

We could read the scenarios from the feature file as it came and it will still be correct

because when the screens themselves are actually generated, mechanisms that avoid

76

5.2. IMPLEMENTATION ANALYSIS

Algorithm 3 Scenarios to run preparation

1: procedure fillScenarios()
2: scenariosT oRun← List of scenarios to use in this execution;
3: f eatureFile← set of scenarios read with the readFile method;
4:

5: for each scenario in featureFile do
6: if scenariosToRun is null then
7: scenarios← { };
8: end if
9: if scenario < scenariosToRun then

10: scenarioT oReplace ← scenariosT oRun.Where(i => i.description ==
scenario.description);

11: if scenarioToReplace is not null then
12: scenariosT oRun← scenariosT oRun / scenarioT oReplace; . We replace

the old scenario with the new (edited) one
13: end if
14: scenariosT oRun← scenariosT oRun ∪ scenario;
15: end if
16: end for
17: scenariosT oRun ← scenariosT oRun / scenariosT oRun.Where(i => i <

f eatureFile);
18: end procedure

duplication are taken into account but the editing of scenarios and the overwriting of

existing ones is taken into account at this stage hence the importance of it. For that we

developed a Scenario comparator that does not simply compare scenario descriptions

(which are the identifiers) but also the Gherkin step arrays and the main idea is to detect

those cases, in which a sentence is modified, to replace only what changed (keeping the

scenario skeleton).

Later, all Web Screens that are no longer needed (i.e. no longer contain scenarios)

and Web Blocks with scenarios that are no longer in the feature file, do not need to be

in eSpace and as such, can be removed. For that, we iterate over the eSpace Nodes and

for each one we will see if it is present in the scenariosToRun list. If so, we mark the node

as not to delete. If not, then we first delete all references to it on both screens and data

structures and finally remove the node. This is done first for Web Blocks and then for

Web Screens, in ascending order of screen hierarchy, as it is possible to see in algorithm 4.

The logic for deleting unused Server Actions (because the scenarios that used them

were deleted) will only be taken into account at the end of the command execution flow,

contrary to what we just saw with the Nodes (Screens and Blocks). We opted to delete

this nodes, although it can be argued that it can be safe to keep this actions, even if it

demands manual work by developers if they want to erase the action and can cause some

disorganization in the eSpace, because, for example, in the case of someone making a

mistake in a feature file, renaming one of the steps and the corresponding Server Action.

Then, the real action gets erased if we do not save it and if it has no other referers and

77

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Algorithm 4 Unused Screens and Blocks removal

1: procedure removeUnusedNodes()
2: scenariosT oRun← list of scenarios to process in the current execution
3: scenarioBlocks← set of Web Blocks identified by Scenario description;
4: f eatureScreens← set of Web Screens identified by Feature description;
5: existsScenario← boolean representing whether or not a Web block contains a
6: scenario to be processed (contained in scenariosToRun);
7: existsScreen← boolean representing whether or not a Web Screen contains a feature
8: present in at least a scenario of scenariosToRun;
9:

10: for each node in Nodes.WebBlock do . Where Nodes.WebBlock is the set of Web
Blocks in the module

11: existsScenario← f alse;
12: for each scenario in scenariosToRun do
13: if scenario ⊂ node then
14: existsScenario← true;
15: end if
16: end for
17: if existsScenario is false then
18: for each referer in node.Referers do
19: referer.Delete();
20: end for
21: if node ∈ scenarioBlocks then
22: scenarioBlocks← scenarioBlocks / node;
23: end if
24: node.Delete();
25: end if
26: end for
27:

28: for each node in Nodes.WebScreen do . Where Nodes.WebScreen is the set of Web
Screens in the module

29: existsScreen← f alse;
30: for each scenario in scenariosToRun do
31: if scenario.feature == node.description then
32: existsScreen← true;
33: end if
34: end for
35: if existsScreen is false then
36: if node ∈ featureScreens then
37: f eatureScreens← f eatureScreens / node;
38: end if
39: node.Delete()
40: end if
41: end for
42: end procedure

78

5.2. IMPLEMENTATION ANALYSIS

so we lose the code. We chose to build this in a way that takes a little of both opinions

into account. We only delete the unused Server Actions at the very end of the command

execution and this will allow that, even if some actions appear to be unnecessary at some

point in the scenario processing progress, if later in the scenario list appears one that

implements some of these actions, those actions are still in the system and can be reused,

before they are deleted. Otherwise, if they were initially deleted, then this specific case

of reuse would not be taken into account. So, in the end, we check if the actions are used

somewhere (if they have referers) and if they do not have, they are deleted from the flow

and from the structure that keeps them (serverActions). If they have referers they are not

deleted and are added to the (serverActions) structure if they are not already there. The

pseudo-code for this mechanism is presented in algorithm 5.

Algorithm 5 Server Actions Removal

1: procedure removeUnusedActions()
2: serverActions← set of Server Actions, identified by Scenario description;
3: Flows.UserActions← set of Server Actions present in the Test ESpace at the moment;
4:

5: for each node in Flows.UserActions do
6: if node.Referers is empty then
7: Flows.UserActions← Flows.UserActions / node;
8: if node ∈ serverActions then
9: serverActions← serverActions / action;

10: end if
11: else
12: if node < serverActions then
13: serverActions← serverActions ∪ node;
14: end if
15: end if
16: end for
17: end procedure

We now move on to the eSpace generation phase, with the creation (or reuse) of screens

(algorithm 6) and blocks (algorithm 7).

At this stage we will go through the scenariosToRun list and process each scenario

individually, starting with the feature, which should generate a new Web Screen if it

does not already exist, and then moving on to the Web Block generation that should

contain the properly filled BDD templates inside. Also, it should also be generated only

if it does not already exist. During the Web Block generation phase we deal with the

generation of Screen and Server Actions. We link the last ones to the BDD steps, already

with the respective parameters on both sides. The presented pseudo-code represents a

very simplified view of this extensive process.

Some decisions, concerning the nomenclature used for screens, blocks and actions,

had to be taken into account at this stage. All the suggestions and best practices that the

users of the BDDFramework presented in the interviews were considered in this phase.

79

CHAPTER 5. PROTOTYPE IMPLEMENTATION

Although, some had to be adapted given that now the generation is automated and there

are some limitations of nomenclature in the display names of nodes and widgets in Out-

Systems. Some text boxes can not have white spaces, others have length or character

limitations, but the general idea was to name Web Screens according to the tested feature

(placing underscore characters where no spacing is allowed), to name scenarios in numeri-

cal order (there is a future possibility of allowing a priori scenario name editing directly in

the feature file by placing an optional tag below the description, but we will talk about it

in the future work) and assigning Screen Actions the corresponding Gherkin phrase type

along with a number representing their order in the scenario structure and the sentence

description. (For example if we have 2 Given clauses, one will be Given1_sentence and

the other Given1_sentence, respectively). These numbers in the Screen Actions only refer

to the one scenario inside each Web Block and as such will not cause phrase identification

problems as they do not mix with the actions of the other blocks, unlike Server Actions

which are all mixed in the Logic tab (but are not numbered). In these, the idea is that

they are named according to the sentences they implement and as such can be identified

and possibly grouped within folders that organize the actions by test component.

Algorithm 6 Web Screens Generation

1: procedure screensGeneration()
2: scenariosT oRun← list of scenarios to process in this execution
3: f eatureScreens← set of Web Screens identified by feature description;
4:

5: for each scenario in scenariosToRun do
6: if scenario.feature < featureScreens then
7: testScreen← new WebScreen(scenario.f eature); . The argument

represents the screen name and it will be named after the feature it tests.
8: f eatureScreens← f eatureScreens ∪ (f eatureName,testScreen);
9: end if

10: testScreen← f eatureScreens[f eatureName]; . In case the screen already
exists, we will use it

11: end for
12: end procedure

Parameter detection is achieved through a set of string operations. This process is

performed for each sentence individually and starts before the generation of Screen and

Server Actions, since in the mentioned sections the Gherkin sentences are used as identi-

fiers for the data structures and as a display name for actions in Service Studio. Therefore,

it is necessary to first deal with the parameters since they must be ignored for the purpose

of comparing and reusing sentences. If the sentences are detected as having parameters

(by the use of quotation marks), we first extract them into a list, recursively iterating over

the sentence and applying the extraction method to the substring that begins at the end

of the last parameter found, until we find all the parameters of the sentence. This will

result in a list in which parameters are first stored as strings. Later in the process we will

80

5.2. IMPLEMENTATION ANALYSIS

Algorithm 7 Web Blocks Generation

1: procedure blocksGeneration()
2: scenariosT oRun← List of scenarios to use in this execution
3: scenarioBlocks← dictionary of Web Blocks identified by Scenario description;
4: screenActions← set of Screen Actions, identified by Scenario description;
5: serverActions← set of Server Actions, identified by Scenario description;
6: BDDScenario← reference BDDScenario block from the BDDFramework
7: scenarioCounter← number that represents the number of scenarios
8:

9: for each scenario in scenariosToRun do
10: if scenario < scenarioBlocks then
11: testBlock← new WebBlock(scenarioCounter); . The argument represents

the Web Block displayed name in this case it will be named according to the scenario
number it represents.

12: bddScenario← new BDDScenario(testBlock); . The argument represents
the parent Web Block for the BDDScenario, created in the previous line.

13: (Section to get and fill the placeholders concerning the scenario
description, in the BDDScenario block.)

14: for each step in scenario.steps do
15: stepCounter ← integer that represents the number of steps from the

specified Gherkin type
16: (Section to verify if the step has any parameter.)
17: screenAction← new ScreenAction(testBlock,T ype+ counter);

. The arguments are the parent block and the action name, represented by the
Gherkin type concatenated with the counter.

18: (Logic that defines the content of the screen action created, composed
of Start and End nodes and a Run Server Action node, which will call the action
(Server) that implements the step we are processing.)

19: if step < serverActions then
20: serverAction← new ServerAction(step.name);
21: (Logic that defines the content of the server action created,

composed of a Start node and a Raise Exception node, representing that the action
is not yet implemented - NotImplementedException.)

22: action← serverAction . The created Server Action is assigned to
the Run Server Action present in the Screen Action previously defined.

23: serverActions← serverActions ∪ (name,action);
24: (Section with the logic that implements the parameter type

inference and applies it to the generated Screen and Server actions generated, to
allow parameters to pass between actions with the correct type, avoiding type
errors on the platform side.)

25: end if
26: bddStep← new BDDStep(bddScenario);
27: (Section with the logic that implements the placeholder search in the

BDDScenario template and the definition of the BDDstep.)
28: bddStep.Destination← screenActions[step.name]; . The

BDDStep template within BDDScenario is connected to a Screen Action that contains
its implementation.

29: end for
30: end if
31: scenarioBlocks← scenarioBlocks ∪ (testBlock.name, testBlock);
32: end for
33: end procedure

81

CHAPTER 5. PROTOTYPE IMPLEMENTATION

discover their type, but for now anything between pairs of quotation marks is considered

a parameter and it is stored in the list. After that, we will replace the parameters in the

sentences with variables with the help of a counter. These variables denote the presence

of the parameters in the implementation of the sentences. For example, in the sentence

- I have “10” bananas and “12” lemons - will be stored as - I have X1 bananas and X2

lemons - and that will be the name of the corresponding actions. With this, we made

our implementation extensible and test code easy to reuse in Server Actions, regardless

of the input values that are passed. These are stored in the list of values and will not be

ignored: they will be passed through the Screen Actions as input parameters expected

in the Server Actions. This is possible because Screen Actions are directly linked to the

Gherkin sentences (in a one-to-one fashion) and correspond to a specific instance with

values, which are then passed to the Server Actions that implement those steps (in a

many-to-on fashion). These, automatically receive these values and use their values for

each scenario individually, during execution.

For the inference of the parameter types in OutSystems, we loop through each value

in the parameter list of each step and create an input for each list entry while we see if the

value matches any of the following OutSystems types: Phone, Decimal, Date, Integer,

Long, Boolean or Text. We check it in this order as some parameters can fit more than

one type so we first check the most specific types like the phone number since one can

also be stored in an integer (for example) but the opposite might not be verified, before

moving on to the most generic types. These validations are made through tests that verify

if it is possible to convert the parameter to a certain format, either with the help of the

functions provided by the basic types of the programming language used and also with

the help of regular expressions for the compound and structured types, such as phone

numbers which have length restrictions and dates that have formatting restrictions. If

the conversion attempt for a given type fails, we move on to the next, and so on. Finally,

if the value does not "fit"in any type, we store it with the Text type (default).

At the end of each Web Screen is placed a BDDFramework block (BDDFinalResult)
which, as the name implies, summarizes the test execution results for the scenarios in the

Web Screen where the block is placed. It shows how many scenarios have failed from the

ones which were run. This allows us to see the overall result of running the BDD tests

for each feature and having this block at the end of the screen is a requirement for the

BDDFramework Test Execution API to work properly. However, this process needs to take

into account some aspects, such as: this block is inserted just before we change the feature

we are processing, that is when we are processing the scenarios and one is going to be

placed in a different Web Screen. In this case we put the block at the end of the screen we

were processing and this will not cause any problem in the same run since the scenarios

are grouped under the feature they belong in the feature file and they will be processed in

the same order. However, the command may be executed over and over again and as such

it should be noted that the feature file may change and more scenarios may be added. So,

for screens that are already defined with scenarios inside, if new scenarios are introduced

82

5.2. IMPLEMENTATION ANALYSIS

in them, it is necessary to avoid duplication of test blocks. We managed this by changing

the position of the block with the final result to the bottom of the page, after the last test

scenario. Therefore the blocks are not duplicated and they always appear at the bottom

of the page, where they belong. This, and certain special cases: like just having a single

test screen (feature) - we can not just insert the block when the feature changes (because

it never will, like when we have multiple features) - had to be considered in the algorithm

implementation. This also applies to when we are about to insert the BDDFinalResult
Block at the bottom of the last test screen (when we have multiple features): we need

a mechanism to deal with this and insert the block at the end of the last screen. The

pseudo-code for this is presented in algorithm 8.

Algorithm 8 Final Result Block Placement

1: procedure finalResultBlock()
2: testScreen← the current Web Screen being processed;
3:

4: for each scenario in scenariosToRun do
5: (...)
6: (In the end of processing each scenario...)
7: if BDDFinalResultBlock 1 testScreen then
8: f inalResultBlock← new BDDFinalResultBlock(testScreen);
9: else

10: f inalResultBlock.MoveT oEnd(); . If a Final Result Block already exists in
the current screen we just move it to the end of the Web Screen page.

11: end if
12: end for
13: end procedure

83

C
h
a
p
t
e
r

6
Validation and Results

In this chapter we will describe the testing process that was performed for the Prototype

validation and analyze in detail the obtained results. We conducted a quasi-experiment

with real users, that we describe in this chapter. This quasi-experiment makes a direct

comparison across performance, correctness and usability metrics with the existing ap-

proach (BDDFramework), among others, since the developed prototype is not supposed

to be direct competition or even replace BDDFramework. It is just a component that uses

the BDDFramework and enables other purposes, namely the BDD practice, allowing more

automation in the testing process and broadening the user audience (as it enables the

introduction of people without the same technical skills as the OutSystems developers,

through facilitating the task of writing and filling in the scenarios), and potentiating the

BDD process from a technological point of view. This is what we want to assess with this

quasi-experiment. So, the formal and informal user feedback will be very important in

understanding whether or not the objectives have been truly achieved. We will remember

our initial goals and answer the research questions we asked ourselves in the beginning

of this dissertation, illustrating, analyzing and discussing all the results.

In this chapter we present the experimental protocol used in all the conducted quasi-

experiments, following Jedlitschka et al. guidelines [29] on how to report quasi-experiments

in Software Engineering.

We will also go back to the framework comparison model presented in section 4.2.3

and introduce our prototype in it. This analysis will allow us to frame our component

alongside its true competition (other BDD test automation frameworks like Cucumber

and SpecFlow). The validation phase was preceded by a (functional) verification process

of the framework that was done in parallel with production to detect bugs and failures,

as well as the integration of all features with Service Studio.

85

CHAPTER 6. VALIDATION AND RESULTS

6.1 Planning

With this quasi-experiment, we tried to understand whether or not the developed compo-

nent can bring advantages to the OutSystems’ testing process, compared to the existing

baseline - the BDDFramework. A user quasi-experiment has been set up with real-world

test scenarios that are designed to be simple enough to be able to accomplish in a short

period while utilizing the key features of the frameworks and putting into practice the

fundamental principles of BDD, using the capabilities of the tools to make the process

as fast and correct as possible. Some metrics were measured, such as task completion

times, ease of the tools and correctness of solutions, but also some informal final feedback

collected in the form of questionnaires.

6.1.1 Goals

Recalling the objectives mentioned in section 1.3, we started from the premise that BDD

could be valuable to apply in an OutSystems context. We wanted to study and understand

how to produce a testing tool to assist in this process. OutSystems has the BDDFramework,

but it has some limitations as we can recall from section 4.1.2, and it can be improved to

support the BDD process. With this in mind, we have opted for an approach that uses the

BDDFramework to produce test scenarios in OutSystems but in a more automated way,

focusing on facilitating the BDD process and close to what is done with other frameworks

in other languages. As such, we want to understand if this goal was successfully achieved,

comparing the testing processes with both approaches, the new and the old one.

We used the GQM research goal template to define the goals of our quasi-experiment[6].

The high level goal of our quasi-experiments can be defined as follows:

Generic Goal: Analyze the effect of the developed Prototype in the BDD testing

phase (in comparison with the BDDFramework approach), For the purpose eval-

uation, With respect to the creation and reuse of BDD test scenarios, From the

view point of researchers, In the context of quasi-experiments conducted in the

OutSystems R&Da office, by professional OutSystems developers.

aResearch and Development

This objective can then be divided into the following two sub-objectives we we aim to

achieve during this quasi-experiment:

86

6.1. PLANNING

Goal 1: Analyze the effect of the developed Prototype in the BDD testing phase (in

comparison with the BDDFramework approach), For the purpose evaluation, With respect

to the creation of new BDD test scenarios, From the view point of researchers, In the

context of quasi-experiments conducted in the OutSystems R&D1 office, by professional

OutSystems developers.

Goal 2: Analyze the effect of the developed Prototype in the BDD testing phase (in

comparison with the BDDFramework approach), For the purpose evaluation, With respect

to the reuse of existing BDD test scenarios, From the view point of researchers, In the

context of quasi-experiments conducted in the OutSystems R&D2 office, by professional

OutSystems developers.

Goal 3: Analyze the effect of the developed Prototype in the BDD testing phase (in

comparison with the BDDFramework approach), For the purpose evaluation, With respect

to the usability, From the view point of researchers, In the context of quasi-experiments

conducted in the OutSystems R&D3 office, by professional OutSystems developers.

Goal 4: Analyze the effect of the developed Prototype in the BDD testing phase

(in comparison with the BDDFramework approach), For the purpose evaluation, With

respect to the ease of utilization, From the view point of researchers, In the context of

quasi-experiments conducted in the OutSystems R&D4 office, by professional OutSystems

developers.

Goal 5: Analyze the effect of the developed Prototype in the BDD testing phase (in

comparison with the BDDFramework approach), For the purpose evaluation, With respect

to the correctness of the BDD tests, From the view point of researchers, In the context of

quasi-experiments conducted in the OutSystems R&D5 office, by professional OutSystems

developers.

1Research and Development
2Research and Development
3Research and Development
4Research and Development
5Research and Development

87

CHAPTER 6. VALIDATION AND RESULTS

6.1.2 Participants

The quasi-experiment was performed on 14 subjects6, divided into 2 test groups (with

seven users each). One group experimented with the existing approach, using the

BDDFramework only (control group7), and the other tested the developed Prototype (ex-

perimental group8). The subjects had experience with the OutSystems language, and

they were recruited voluntarily from the R&D staff of OutSystems (in the office of Linda-

a-Velha, Lisboa, local where this dissertation was carried out). All subjects participated

with full consent and attended to help evaluating the tool developed in the scope of this

dissertation, without any kind of reward. Participants were guaranteed the anonymity of

their identity and responses, through a verbal agreement made prior to the start of the

test.

Knowing the OutSystems language was a necessary condition for participating in

the quasi-experiment since implementing the test code requires language knowledge.

As already mentioned, the participants were voluntarily selected. However, we tried

to find a way to have both: individuals with experience using the BDDFramework and

individuals without experience using with BDDFramework, equally distributed among

the test groups: of the 6 participants with experience, half (3) were placed in each group,

and the remaining 8 individuals (without BDDFramework context) were placed 4 in

each group. This separation for each of the groups was made randomly. We considered

that this intra-group diversity of individuals in the test samples (despite the inter-group

balance) could be enriching to understand several perspectives: How is the adaptation of
novice users to the developed component, in relation to how they adapt to the BDDFramework?
How is the transition from the BDDFramework to the developed component from the point of
view of an experienced user?.

In addition to the 14 people already mentioned, there were also 2 pilots (not ac-

counted for the results), one for each approach, which served to tune the testing materials,

the quasi-experiment estimated duration and ultimate the details for the real tests. The

representation of the participants in the quasi-experiment and their distribution among

the 2 independent groups can be found in the figure 6.1.

6 We used 14 subjects given the availability of people with BDDFramework experience and since we
wanted to have a balanced quasi-experiment

7the group experimenting with the existing approach
8the group experimenting with the new approach

88

6.1. PLANNING

Figure 6.1: Scheme of the division of participants into two groups, experimental and
control.

6.1.3 Materials

The quasi-experiments were conducted under the same conditions and experimental

material. The participant did not need to bring anything with them, as all necessary

equipment was made available. The quasi-experiments took place in meeting rooms at

OutSystems’ office in Linda-a-Velha, one participant at a time. The materials used in the

quasi-experiments were:

• One introductory guide for each approach, briefly describing the subject of the

thesis, the problem we had in hands and some basic concepts of Behavior-Driven

Development development (in particular the Gherkin syntax needed to describe

the scenarios). This first part of the document (which has a total of one and a half

pages) is common to both approaches, and the final part of it varies, depending on

the approach: in the case of users doing the test with the existing methodology then

the script presents a brief description of the BDDFramework and in the case of the

approach that uses the component that was developed in this dissertation, a brief

description of it is presented. The guides are available in Appendix B;

• One laptop, with presentation support, Service Studio 11 installed and with Inter-

net connection to be able to deploy the application and view the execution results

in the browser;

• Two questionnaires: NASA-TLX (annex I[42]) and the System Usability Scale (SUS),

in annex II[14];

• One presentation containing a practical example of the process using the tool (ac-

cording to the approach in question) and the problems statement as well as some

89

CHAPTER 6. VALIDATION AND RESULTS

useful information about the tests, like some notes on how to publish the mod-

ule. This, as well as the introductory guide, are the only materials allowed for the

participants to consult during the quasi-experiment;

• Two published OutSystems applications for the user to visually explore. Those

correspond to the applications under test in the problem resolution phase.

• One block to take notes on test results (record the times, point out errors and

suggestions at the end);

• One stopwatch to track activity time.

The last two materials presented were only used by the quasi-experiment host.

6.1.4 Tasks

The requested tasks were the same for both approaches, considering we wanted to com-

pare the frameworks, and as such, the problem should be the same, so the obtained results

are not biased.

In total, each participant performed two challenges (limited in time). These were

designed so that the total duration of the quasi-experiment did not exceed 60 minutes

per participant, including the response time for both questionnaires, the reading time

for the brief introduction and also the demonstration of the framework (BDDFramework
alone in the case of approach 1 or Prototype in the case of approach 2) that preceded

the realization of the tasks. As such, the challenges had to be relatively simple and

straightforward, with easy-to-interpret problems so that they do not give participants

any interpretation problems. Questions were not allowed while performing the tasks,

but participants could ask questions before the start of the activities, if there were any

questions when reading the task description. At the same time tasks should test the

various features of the developed Prototype and the characteristics identified as being

fundamental in a BDD test automation framework, so that we can analyze our component

against the BDDFramework, under the same conditions.

The actual descriptions of the tasks presented to the participants can be found in

annex III:

• Task 1: We gave the participant an OutSystems’ application (Rectangle Area), which

can be seen in figure 6.2. The deployed app was available for the user to examine,

but also the OutSystems application module (both could be consulted during the

quasi-experiment). The participant was asked to implement one test scenario in a

test module created for this purpose, that already contained the BDDFramework de-

pendencies as well as the Rectangle Area project dependencies. This application asks

for a length and a height for a rectangle, and by clicking the button to calculate the

result, the area of the corresponding rectangle is calculated (length x height). The

90

6.1. PLANNING

test scenario that the participants were asked to implement should test valid length

and height values (for instance 20 x 30) and must confirm that the returned result

is correct. In this example, it should be 600. The task is considered to be complete

when the test project is published, and the scenario passed with a positive result, in-

cluding, obviously, the implementation of the test logic. This task has a maximum

duration of 15 minutes and is focused on the writing and implementation of a

BDD scenario from scratch, on a test project with nothing in it.

Figure 6.2: Interface of the Rectangle Area OutSystems application, created to test Task 1.

• Task 2: In this task, we return to the application covered in the demo part of

the quasi-experiment, Triangle Kind, which can be seen in figure 6.4. This ap-

plication, such as the one used in Task 1, was previously developed before the

quasi-experiment, but unlike the previous one, a test scenario had already been

implemented (the example implemented in the demonstration before the quasi-

experiment). The application was available in the browser and kept open in Service

Studio with everything properly imported and participants were asked to imple-

ment a test scenario in the same module that had been used for the demonstration

(and therefore already had a scenario). Like in the previous task, the important

logic was available in Server Actions to make the developer work easier in the test

code implementation phase. The Triangle Type application, given the length of the

3 sides of a triangle, calculates its type: Equilateral, Isosceles, or Scalene: A triangle

is called Equilateral if all sides are the same length; A triangle is called Isosceles if 2

sides are the same length, the other being different; A triangle is called Scalene if all

sides have different lengths; If you enter lengths that do not form a valid triangle

then the application returns that it is Not a Triangle. To build a triangle, all sides

must be smaller than the sum of the others 2 sides. The example in the demo was

the creation of a test scenario for the equilateral triangle, and the scenario was de-

scribed as shown in the figure 6.3. Since this scenario already existed in the system

(and was already implemented) the idea was now to take advantage of this imple-

mentation for the Scalene triangle test. The task is considered completed when the

test project is published, and the scenario passed with a positive result, including

91

CHAPTER 6. VALIDATION AND RESULTS

the implementation of the test logic. This task has a maximum duration of 10 min-

utes (the idea was to choose a duration that would made the user consider shortcuts

like reuse sentences and to be able to accomplish the task in the allotted time) and

is focused on reusing existing phrases and implementations.

Figure 6.3: Scenario description to test the Equilateral Triangle demonstrated in the demo
phase.

Figure 6.4: Interface of the Triangle Kind OutSystems application, created to test Task 2.

6.1.5 Hypotheses, Parameters and Variables

For the high level goals presented in section 6.1.1 we define the null (H0) and alternative

hypotheses (H1):

92

6.1. PLANNING

Figure 6.5: Hypotheses and sub-hypotheses formulated for the desired high level goals.

The independent variables are presented in table 6.1.

Name Values
Approach BDDFramework, Prototype

User Experience
BDDFramework experienced user,
BDDFramework non-experienced user

Task creation (1), reuse (2)

Table 6.1: Overview of the independent variables.

The dependent variables for the hypothesis defined are presented in table 6.2.

Name Values
Speed time taken to complete each task
Ease NASA TLX score
Correctness Score
Usability SUS score

Table 6.2: Overview of the dependent variables.

For the evaluation of the time taken to perform each task (speed), we collected the

duration of it (completion time - start time), which allows measuring the efficiency each

93

CHAPTER 6. VALIDATION AND RESULTS

framework in the two tasks (creation and reuse).

At the same time a static correctness assessment was also made according to the

final solution presented by the user, joining the 2 tasks (creation and reuse) in a single

score, as both are part of the test process as a whole and the tasks are undifferentiated

regarding the correctness of the solutions found. This evaluation was based on the BDD

characteristics presented in the course of this dissertation and the recommended practices

of structuring of a BDD test in an OutSystems eSpace (section 2.18.1). All the evaluated

point were presented to the participants during the quasi-experiment presentations and

were applied in the demonstration. The result of this analysis was taken into account

by assigning a dichotomous score of 0 or 1 for each of the following aspects in the final

published project:

• Self-descriptive Gherkin steps: as the name implies a step is considered self-

describing if it is self-explanatory of what it is testing (these should be short and

summary, indicating concrete test values if any);

• Correct eSpace organization: 1 Web Screen for each feature, 1 Web Block for each

scenario. The Web Blocks must be inside the Web Screen of the corresponding

features;

• Equal steps must have the same description: when a new scenario is introduced,

the same steps should have the same description (e.g. in the case of the triangle, all

tests should use the phrase "Side 1 measures X"when indicating the length of the

first edge if it is how it was initially described);

• Reuse of test actions for equal steps: in the case of the BDDFramework through

shortcuts namely copy-paste of actions to reuse their implementation or with the

creation of centralized Server Actions (like it is done in the Prototype). In the

developed prototype it is dependent on the previous point: if equal new steps have

the same description of the existing ones then the server actions implementing it

are reused, without intervention required.

• Assignment of meaningful names to screens/blocks: for navigation in the Service

Studio code purposes (these should not just be given to the descriptions in the

scenarios) or when we need to return to the failing scenarios after we check the

results report;

• Use of the available Server Actions exporting the application code: To truly test

an application we must use its implementation logic to run the test instances, not a

replication of it or simulating it on the test project side. Hence the need to export the

main actions of applications in Server Actions that allow the logic they implement

to be used for testing purposes in the test projects;

94

6.1. PLANNING

• Tests run successfully: observable from the output obtained when the test was

published. This point concerns the 2 tasks since we have different applications for

each task.

Note that mostly aspects related to the BDD process and the recommended practices of

BDD testing in OutSystems are evaluated, therefore the correction of the implementation

logic is not the main evaluation focus considered for the correctness. It is also important

to note that the test may pass even if it is not well implemented: the scenarios may not

be testing what they are supposed to test or they may not be covering well certain under

test functionality (for example not using the project application exported logic but using

an implemented logic on the test project side). Even if the test passes in the desired time

it may always be the case that the test logic is not well implemented and this happened

as we will see in the results.

For the evaluation of the ease of the process we use the NASA TLX questionnaire.

This measures the perception of cognitive effort spent on the task through 6 metrics, with

a weighted final result: Mental Demand, Physical Demand, Temporal Demand, Effort,

Performance, Frustration. This questionnaire is presented in the end and takes into

account the framework used and it is task independent as we refer to the process as a

whole here. We will use the unweighted (raw) version of the test and later we will explain

why in the upcoming sections.

Finally, a usability analysis is also performed using the System Usability Scale (SUS)

test presented to the participants.

6.1.6 Quasi-experiment Design

As mentioned in previous sections, the sample of participants was randomly collected

with the only requirement being to have an even number of participants, all of them

with OutSystems experience and some of them also having BDDFramework experience

(also in even number). Participants were randomly assigned to tasks: four subjects with-

out BDDFramework experience for approach 1 and the other four for approach 2 and

three subjects with BDDFramework experience for approach 1 and the same number for

approach 2 (if a participant performed the BDDFramework tasks (creation and reuse),

the next participant would be allocated to the Prototype quasi-experiment, so that the

number of participants performing each task would be balanced).

We chose a Between-subjects9 study design type of quasi-experiment because we

wanted ask the same problems (tasks) for everyone and it is always hard and subjective

to find a problem with equivalent difficulty and to minimize the learning effect of the

participant. Since we are using similar processes the learning and knowledge factor will

always have an impact because our approach also uses the BDDFramework. In addition,

9different people tested each approach, so that each person is only exposed to a single interface.

95

CHAPTER 6. VALIDATION AND RESULTS

the implementation code (which is part of the task) will be the same and we use time met-

rics that need to be as accurate as possible. Even if we tried to do an Within-subjects10

experimental design with the order of the tasks being changed between participants (half

of the participants starting with approach 1 and the others with approach 2) as an attempt

to balance the effects of learning and memorization, the results may still be affected by

the ordering. Also, Between-subjects studies have shorter sessions than within-subject

ones [25]. Of course we lose out on the number of people who did each test (with a within

subject approach we could have more results, 14 per approach) and we lose some com-

parative feedback which can be very useful but we thought that everything considered a

Between-subjects approach would be better. We tried to reduce the effect of the compara-

tive feedback loss by showing at the end of the quasi-experiment how the other approach

was and asking for informal feedback regarding both (for users with BDDFramework expe-

rience who have taken the approach using the prototype this is not even necessary as they

already know the tool and this was one of the reasons we wanted some of our participants

experienced people, to enrich the informal feedback). Regarding the observations and

metrics that were taken from the quasi-experiments, these were exactly the same for each

approach, as were the final questionnaires.

6.1.7 Quasi-experiment Procedure

One participant at a time made the quasi-experiment and these were carried out in the

OutSystems’ R&D office, in isolated meeting rooms booked for 1 hour and a half time-slots

per participant. The quasi-experiments were meant to last about 60 minutes but counting

on eventual delays or conversations we preferred to reserve the room for a little longer.

We tried to make all quasi-experiments in the same room and choose the ones as remote

and quiet as possible, however this was not possible due to the large number of advance

reservations for those. We scheduled sessions according to the limited availability of each

participant so this 14 quasi-experiments evaluation period lasted on for about 2 weeks.

This process is summarized in the scheme shown in figure 6.6.

10the same person tests all the processes (interfaces).

96

6.1. PLANNING

Figure 6.6: Visual representation of the quasi-experiment procedures and estimated times
for each phase of the quasi-experiment. The introductory script (1) and the presenta-
tion (2) were different for each approach, while tasks and questionnaires were the same.
Phases 1 and 4 were done on paper, while phases 2 and 3 were done using a laptop
computer. The estimated duration of the tasks was 60 minutes, although in most cases
it was less, since participants were able to perform the tasks in time. Following phase 4,
there was usually an informal conversation in a more relaxed context (but still important)
and outside the quasi-experiment environment, where participants gave their informal
feedback and opinions about the frameworks and testing processes presented.

When the participant arrived in the quasi-experiment room, we first gave some thanks

for their presence and then we began by giving the participant an introductory guide (1,5

pages) explaining the problem that led to the dissertation and the main objectives of the

quasi-experiment. In this script, we also explained what is Behavior-Driven Development,

with special emphasis on its purpose and describing in detail the Gherkin syntax, which

was indispensable for the accomplishment of the tasks. The final section of this docu-

ment concerned about the test framework that would be used in the quasi-experiment

(BDDFramework or Prototype) and provided a brief description of its functionality.

At the end of this reading phase, the participant already had a bit more context, and

so we explained which approach he would take during the quasi-experiment and we

briefly described how the quasi-experiments would be carried by the participants: half

of the participants to use the approach 1 (BDDFramework) and the other half approach

2 (Prototype), to accomplish the 2 BDD tasks requested. We concluded this phase by

asking the participant if there were any questions so far and if they had understood well

the concepts of BDD and Gherkin.

With no further questions, we would now approach the computer phase and tell the

participant that we would now see how the process and assigned framework worked in

practice (for the approach he was testing), through examples. To do so, we first presented

97

CHAPTER 6. VALIDATION AND RESULTS

a test application, Triangle Type, which we described and demonstrated opening its imple-

mentation in Service Studio and its interface in the browser for the participant to explore

at will. This applications returns the type of a triangle given the size its 3 edges. Then,

we presented a test for the application (The Equilateral Triangle) as a Gherkin scenario:

Figure 6.7: Gherkin scenario given to the user as a test example for the application Type
Of Triangle.

Note: The previous image was placed directly as it was presented to the user, as well

as some of the materials that are illustrated throughout this section and as such they are

in Portuguese language since it was like that we made the quasi-experiment materials

available to users, since some of them might not be very comfortable with the English

language especially in some more technical terms and we did not want that to be an

obstacle in the comprehension and realization of the test.

Then we presented a snapshot of the referred scenario within Service Studio (a print

inside the presentation), indicating the templates used and displaying the features of

the BDDFramework, like the AssertSteps library and block templates. Some important

mentions regarding the frameworks on how scenarios should be described and how the

structure of the tests should be organized as well as how the reuse could be achieved and

the use of parameters (reuse and parameters only in the case of the Prototype approach)

were also made.

After this phase, we made a small demo where the user was shown how to test, step-

by-step, the exemplified functionality (Equilateral Triangle), using directly the Gherkin

descriptions presented to save some time. In both demos (BDDFramework or Prototype

depending on the approach that the participant would validate), we covered the entire

testing process, from scenario description to test code implementation (using the Triangle
Type application code as well) and we published it in the browser as well, where we

verified that the test obtained positive result (passed). The project under test was also

made available to the participant for consulting, and the important logic duly exported

98

6.2. RESULTS AND ANALYSIS

in Server Actions so they can be available to use in the test project (TriangleTests).

After the demo, we finally moved on to the task resolution phase: first, we presented

task 1 and its statement. This task had a maximum time of completion of 15 minutes.

We asked the user to test a scenario for another OutSystems application (Rectangle Area),

which was also available for the user to explore, both in the browser and in Service Stu-

dio. Also, the user had a test project (RectangleTests) ready with all the dependencies

(BDDFramework and Rectangle Area) imported. We created and imported the dependen-

cies for them because this phase is not important for evaluation purposes and we can

save some unnecessary time. When the user completed the first task (or the time was

up), we moved on to task 2 (reuse), where the user was asked to implement one more

scenario in the demo application, Triangle Type, in the same test project used in the demo

phase, that already had a fully implemented test scenario (Equilateral Triangle). During

the realization of the tasks no questions were allowed, as we did not want to influence

and bias the test result.

Upon completion of the tasks, the user was asked to answer two questionnaires. First,

the NASA TLX and then the System Usability Scale (SUS). The users were asked for some

data such as their name and the date the quasi-experiment took place. In the meantime

we pointed out in a notes block the results of both the correction of the tests and the time

taken for each task.

In the end there was still time for some informal feedback the user wanted to give or

recommendations.

6.2 Results and Analysis

In this section we will present the results of the quasi-experiments performed. For the

analysis and comparison of speed between the two tools in the two tasks performed, we

will use some descriptive metrics and also the Welch’s t-test, which is a robust variant of

Student’s t-test, to test whether our prototype is an improvement to the existing frame-

work, with the help of some visual schemes so that we can visually analyze the differences.

In addition to speed, we will also evaluate the ease and the correctness of the solution

achieved with the different tools. This last one by conducting a custom study based on

the principles of BDD and BDD testing standards in OutSystems to assess correctness

(ease and correctness are task independent). To evaluate the ease of the process we will

evaluate the results of the NASA TLX questionnaire and we will also perform the also the

Welch’s t-test. Finally we will also analyze the results for the usability with the results

from the SUS test and the Welch’s t-test.

Table 6.3 summarizes some descriptive statistics for the speed evaluation, for the

creation and the reuse tasks.

99

CHAPTER 6. VALIDATION AND RESULTS

Task Tool # Mean SD Minimum Maximum Skew. Kurt.

Speed(s)

Creation
(1)

BDDFramework 7 660,14 81,28 576,00 765,00 0,35 -1,75
Prototype 7 472,86 102,36 300,00 600,00 -0,49 -0,10

Reuse
(2)

BDDFramework 7 419,00 125,14 275,00 600,00 -0,29 -1,59
Prototype 7 169,57 53,58 90,00 241,00 -0,48 -0,87

Table 6.3: Speed descriptive statistics for the creation and the reuse tasks.

These differences are easier to see visually with the aid of the 6.8 and 6.9 boxplots.

Figure 6.8: Speed for the BDDFramework (blue) and Prototype (red) in task 1.

Concerning the ease evaluation, after completing the 2 tasks, participants answered

the NASA TLX questionnaire, which can be found in annex I. The results for both tools

are presented below. We opted to use unweighted scores for the workload calculation to

reduce the amount of time needed to perform the TLX test and not lengthen the quasi-

experiment even more and also because several studies have compared raw NASA TLX

scores to weighted NASA TLX scores and have found mixed results. Some say we gain

better sensitivity when removing weights, others say the contrary[27]. The questionnaire

presents a scale (0 to 100) for 6 measures that ultimately result in a score that evaluates

the workload, in this case the tool we are using. The interpretation of the results is made

with table 6.4.

Table 6.5 and presents the workload results for both tools.

Table 6.6 summarizes some descriptive statistics for the ease evaluation, for both

tools.

In the graph of figure 6.10 we compare the workload score for each one of the 6 NASA

TLX workload metric, individually, and in the boxplot in figure 6.11 we compare the

mean workload score with both approaches.

100

6.2. RESULTS AND ANALYSIS

Figure 6.9: Speed for the BDDFramework (blue) and Prototype (red) in task 2.

Workload Value
Low 0-9

Medium 10-29
Somewhat High 30-49

High 50-79
Very high 80-10

Table 6.4: NASA TLX score interpretation.

Category BDDFramework Prototype
Mental Demand 50,00 20

Physical Demand 5,00 5,71
Temporal Demand 48,57 15

Performance 21,43 13,57
Effort 57,14 15

Frustration 64,29 7,86
Mean Score (Unweighted) 41,07 12,86

Table 6.5: NASA TLX mean scores for both tools.

Tool Mean SD Minimum Maximum Skew. Kurt.
BDDFramework 41,07 22,89 5,00 64,29 -0,92 -0,62
Prototype 12,86 5,23 5,71 20,00 -0,22 -0,75

Table 6.6: NASA TLX descriptive statistics.

101

CHAPTER 6. VALIDATION AND RESULTS

Figure 6.10: Gaph comparing the mean score for each of the workload metric in both
approaches.

Figure 6.11: Boxplot for the Nasa TLX mean classifications for both tools.

102

6.2. RESULTS AND ANALYSIS

Concerning the correctness evaluation, we kept the responses (test eSpaces) of each

of the the participants (with their consent) for each task and analyzed them, evaluating

their BDD tests on a dichotomous scale (yes or no), regarding whether or not each of the

correctness requirements was met. These requirements, as mentioned earlier (in section

6.1.5), result from the principles of BDD as well as some recommended practices for

BDD testing in OutSystems. All of these were presented to the user during the trial

presentation phase and during the demo. Table 6.7 shows the percentage of correct

answers for each of the evaluated correctness requirements, for the BDDFramework and

for the Prototype, respectively.

Question
Correct rate (%)

BDDFramework Prototype
1. The participant wrote self-descriptive
Gherkin steps.

71,43 71,43

2. The participant created a Web Screen for each
feature. Each BDDScenario was placed inside a
Web Block that must be within the Web Screen
of the corresponding feature.

71,43 100

3. The participant used the same sentences
for equal step descriptions.

57,14 85,71

4. The participant used mechanisms/shortcuts
to reuse the actions with the implementation
logic for equal steps.

57,14 100

5. The participant assigned meaningful names
to test screens/blocks.

85,71 100

6. The participant used the exported Server
Actions from the tested application.

85,71 85,71

7. The participant published the test project
for task 1 and tests successfully run.

100 100

8. The participant published the test project
for task 2 and tests successfully run.

100 100

Mean 78,57 92,86

Table 6.7: Overview of the correctness results in the BDDFramework and in the Prototype.

Complementing the tasks, at the end of the quasi-experiment we made a System Us-

ability Scale (SUS) test to each one of the the participants, regarding the framework used

(BDDFramework or Prototype), to evaluate usability. This test is task-independent since it

is focused on the usability of the tools. SUS is a simple, ten-item questionnaire that offers

a global view of subjective assessments of usability indicating the degree of agreement

or disagreement with each one of the 10 items on a five point scale (1-Strongly disagree,

5-Strongly agree), as we can see in figure 6.8[14].The SUS questionnaire presented to the

participants can be found in Annex II

Each item’s score contribution will range from 0 to 4. For items 1,3,5,7, and 9 the score

contribution is the scale position minus one and for items 2,4,6,8 and 10 the contribution

103

CHAPTER 6. VALIDATION AND RESULTS

is 5 minus the scale position). We should multiply the sum of the scores by 2.5 to obtain

the final SUS score. Odd items have higher values as the most favorable response, while

even items have lower values as the most favorable response. The questionnaire is de-

signed in this way to avoid biasing the answers by giving the participant that the highest

results are always better, or always worse[14]. By applying these transformations to the

score values we get a more uniform scale, and it was after applying these transformations

that we drew the following tables and graphs.

Score Rating

<25
Worst imaginable
(Not Acceptable)

26-49
Poor

(Not Acceptable)

50-52
Ok

(Not Acceptable

53-73
Good

(Marginal)

74-85
Excellent

(Acceptable)

86-100
Best imaginable

(Acceptable)

Table 6.8: Meaning of SUS score.

Tables 6.9 and 6.10 show us the mean classification given by the participants to each

SUS question, for the BDDFramework and for the Prototype approaches, respectively.

Item Mean answer
1. I think that I would like to use this system frequently 2,00
2. I found the system unnecessarily complex. 1,43
3. I thought the system was easy to use. 2,29
4. I think that I would need the support of a technical person to be
able to use this system.

2,14

5. I found the various functions in this system were well integrated. 2,43
6. I thought there was too much inconsistency in this system. 3,00
7. I would imagine that most people would learn to use this system
very quickly.

2,00

8. I found the system very cumbersome to use. 1,14
9. I felt very confident using the system. 1,86
10. I needed to learn a lot of things before I could get going with
this system.

1,71

Table 6.9: Mean SUS answer for each question, for the BDDFramework testers.

Figure 6.12 shows us a graph comparing the mean classifications for each SUS item,

in both quasi-experiment approaches.

Table 6.11 represents the descriptive statistics recorded for the SUS test and figure

104

6.2. RESULTS AND ANALYSIS

]

Item Mean answer
1. I think that I would like to use this system frequently 3,71
2. I found the system unnecessarily complex. 4
3. I thought the system was easy to use. 3,86
4. I think that I would need the support of a technical person to be
able to use this system.

3,57

5. I found the various functions in this system were well integrated. 4
6. I thought there was too much inconsistency in this system. 4
7. I would imagine that most people would learn to use this system
very quickly.

3,71

8. I found the system very cumbersome to use. 3,71
9. I felt very confident using the system. 3,71
10. I needed to learn a lot of things before I could get going with
this system.

3,71

Table 6.10: Mean SUS answer for each question, for the Prototype testers.

Figure 6.12: Graph representing the mean SUS responses for each item, for both frame-
works.

105

CHAPTER 6. VALIDATION AND RESULTS

6.13 the boxplot with the distribution of the results.

Tool # Mean SD Minimum Maximum Skew. Kurt.
BDDFramework 7 50,00 9,79 37,50 65,00 0,47 -0,88
Prototype 7 95,00 5,95 85,00 100,00 -0,83 -0,72

Table 6.11: SUS descriptive statistics.

In the boxplot in figure 6.13 we can visually compare the mean SUS score of both

approaches.

Figure 6.13: Boxplot for the SUS mean score for both tools.

6.3 Discussion

Concerning the speed assessment. As we can see from the table 6.3, for the creation task,

BDDFramework users performed the exercise in an average time of 660.14 seconds and

Prototype users in an average time of 472.86 seconds, considerably faster. For the reuse

task, BDDFramework users performed the exercise in an average time of 419 seconds and

Prototype users in a considerably faster average time of 169.57 seconds. The variance

of the results is not very pronounced, being more significant for BDDFramework in the

reuse task. This was the most unstable and inaccurate combination of factors (Coefficient

of variation = 125.14 / 419.00, approximately 0.3), and this may be due to the fact that

there may presumably be some variability caused by factors such as participants’ experi-

ence and above all the fact that BDDFramework has no defined reuse mechanisms and as

such, to face this challenge each participant opted for different approaches and shortcut

strategies (copy and paste of scenarios for example) while others made the process slower.

106

6.3. DISCUSSION

As can be seen in the boxplots in figures 6.8 and 6.9, there is no inter-quartile range

(IQR) interception, which in itself demonstrates that the differences are noticeable be-

tween both task 1 and task 2 approaches. In such small sampling there is always a high

probability that the results will be affected by factors external to the experience such

as the developers individual skill or even the mood of the test taker (may have felt the

pressure of being evaluated), but these are factors that we can not easily control.

One of the factors that can affect variance among participants is the experience factor.

As noted earlier, each sample of 7 users, who tested each of the tools, had 3 experienced

users. In figures 6.14 and 6.15 you can see the graphs with the average times for each

approach, in the two tasks performed, organized by user experience. The differences

between experienced and non-experienced users are not very significant even though they

exist (experienced users were slightly faster) and were more noticeable in approaches

using BDDFramework, especially in the reuse task. This can mean several things like

what has been said earlier about the faster ways to reuse that people with extensive user

experience already have. Since the tool does not support it directly, nor does it have

mechanisms for it, novice users tend to have a harder time doing it quickly. Also, the

fact that, probably, the developed prototype is easier to understand and learn on a first

contact, because of the automation that exists in the structuring and creation of the tests,

and in the prototype the user makes most of the interactions with Gherkin in the feature

file, not the development platform, simplifying the process further. We will see this later

in this section with the analysis of the NASA TLX questionnaire to evaluate the ease of

using the tools.

Figure 6.14: Mean speed for task 1, for participants with BDDFramework experience
(orange) and for participants without BDDFramework experience (blue).

Sometimes when participants published the test application at the end of the test to

107

CHAPTER 6. VALIDATION AND RESULTS

Figure 6.15: Mean speed for task 2, for participants with BDDFramework experience
(orange) and for participants without BDDFramework experience (blue).

see results (time only stopped when the scenario passed with a positive result) and real-

ized that they had not given permission to the Anonymous user role or they had no add

Entry Point node in the application they could not see their results and had to publish

again when they noticed this. The fact that the Prototype already does this automati-

cally facilitates the process avoiding this kind of error. These and other factors may have

slightly influenced the time differences, which are still small if we compare the 15 and 10

minute timeboxes for the first and second tasks, respectively (the minimum duration for

task 1 using the BDDFramework was 567 seconds and the maximum duration was 765

seconds, minimum duration for task 1 using Prototype was 300 seconds and the maxi-

mum duration was 600 seconds, minimum duration for task 2 using BDDFramework was

275 seconds and the maximum duration was 600 seconds; for task 2 using the prototype

the minimum duration was 90 seconds and the maximum duration was 241 seconds).

Statistic df1 df2 Sig.
Welch 14.37 1 11.41 .003

Table 6.12: Welch t-test for task 1, concerning the speed variable.

An independent-samples Welch t-test was conducted to compare speed in BDDFrame-

work and Prototype conditions (table 6.12) in the creation task. There was a significant

difference in the scores for the Prototype (M=472.86, SD=102.36) and the BDDFrame-

work (M=660.14, SD=81.28) conditions; t(11.41)=14.37, p = 0.003. These results suggest

that Prototype really does have an effect on speed of completion of task 1 (creation).

108

6.3. DISCUSSION

Specifically, our results suggest that when users use our Prototype, they can create sce-

narios faster then what they can with the BDDFramework.

Statistic df1 df2 Sig.
Welch 23.50 1 8.13 .001

Table 6.13: Welch t-test for task 2, concerning the speed variable.

An independent-samples Welch t-test was conducted to compare speed in BDDFrame-

work and Prototype conditions (table 6.13) in the reuse task. There was a significant dif-

ference in the scores for the Prototype (M=169.57, SD=53.58) and the BDDFramework

(M=419.00, SD=125.14) conditions; t(8.13)=23.50, p = 0.001. These results suggest that

Prototype really does have an effect on speed of completion of task 2 (reuse). Specif-

ically, our results suggest that when users use our Prototype, they can reuse scenarios

faster then what they can with the BDDFramework.

It is expected that these speed difference results could have an even greater significant

impact on larger problems, although we cannot state it with statistical certainty given that

the problem only calls for the implementation of 2 simple scenarios for different problems.

In practice, test projects should have many more scenarios and if this time saving we add

on the quasi-experiments is constant then the time saved at the end for bigger projects

will be very significant. However, we can not state this for sure (just assume) as we do

not have data to support it and it may also be the case that the differences subside as

BDDFramework has a slightly higher level of complexity and workload, and with time

to learn its users can recover some time (in this quasi-experiment some people were

completely new to the tool). Although this can be true, we do can not be sure of that as

the Prototype has reuse mechanisms which for large projects will at some point make the

scenarios automatically reused only by equality of Gherkin steps. Repeating sentences

added to the system are already implemented most of the time and in the BDDFramework
this automated reuse is not supported, there always has to be manual developer work.

Concerning the ease assessment. As we can see in tables 6.5 and 6.6, the Prototype

mean workload is 12,86 which is considered Medium with the classifications from table

6.4. This workload is significantly less than the BDDFramework workload which is 41,07

(Somewhat High). If we look at the metrics individually, Prototype has a smaller workload

on all of them. The main differences are mainly in Mental Demand, Temporal Demand,

Effort and Frustration. The differences in physical demand and performance are are not

so sharp as neither of the tools is physically demanding. In terms of performance the

small gain of the prototype may be due to the participants being able to come up with the

most correct solutions but in both approaches all participants were able to accomplish

the tasks with high success.

109

CHAPTER 6. VALIDATION AND RESULTS

Statistic df1 df2 Sig.
Welch 8,66 1 5,52 0,029

Table 6.14: Welch t-test for the NASA-TLX, concerning the ease variable.

An independent-samples Welch t-test was conducted to compare the ease in BDDFrame-
work and Prototype conditions (table 6.14). There was a significant difference in the

scores for the Prototype (M=41.07, SD=22.89) and the BDDFramework (M=12.86, SD=5.23)

conditions; t(5.52)=8.66, p = 0.029. These results suggest that Prototype really does

have an effect on the ease of the framework. Specifically, our results suggest that when

users use our Prototype, they can perform BDD tests easier then what they can with the

BDDFramework alone.

Concerning the correctness assessment. As we can see in table 6.7, the correctness

is higher in the Prototype (92.86%) than in the BDDFramework (78.57%). This may be

due to the fact that some of these selected requirements are already automatically met

by the prototype thanks to automation, which can lead to the major differences that are

mainly found in questions 2 and 4. In question 2 it is natural since the process of creating

the blocks and dragging/copying them to the appropriate locations can lead to some

errors, especially for less experienced users. The most common mistake in this regard

was placing BDDScenarios from the BDDFramework directly on Web Screens, other than

within a reusable Web Block. This is a bad practice which the user would not easily notice

he made as it would not cause problems to perform this specific tasks and so it would

pass unnoticed. Requirement 4 had the greatest discrepancy in the responses. Again this

is a point that is automatically guaranteed in the Prototype but it is directly up to the

participant to describe the same steps with the same sentences, which did happen to all

participants in Prototype, except for one. This is something that is not achieved directly

just by using the Prototype. Sentence description has to be done anyway but it is expected

to be more motivating to write in a text editor the user likes (not in the context of the

quasi-experiment since they had no choice) than in Service Studio inside placeholders.

However, the errors in the scenario description were the same in both cases (requirement

1). In any case, in point 4 we had 100 % correctness in the reuse of actions, although

we did not have full correctness in point 3 (in the Prototype). This may be because the

participant manually reused Server Action for different steps. However, this could have

been achieved directly if the descriptions were the same.

It should also be noted that if we exclude inexperienced users, the correction results

would be quite identical in both approaches. It is noteworthy that all participants were

able to complete both challenges within the time limit, hence the ratings of questions

7 and 8 are 100 % (the test is only considered completed when it is published and the

scenarios pass all), although some were short in time in the end (near the limit). It was

110

6.4. COMPARISON WITH OTHER WELL-KNOW BDD AUTOMATION TOOLS

intended that the time limit was comfortable as we wanted to give the participant the

opportunity to complete the test and obtain more complete results and to perform the

test calmly (even if timed) and to do so without feeling too pressured. However, imposing

a limit was necessary to force the participant to pay some attention to that factor and also

because we did not want to lengthen the quasi-experiment too much.

Concerning the usability assessment. The result obtained for the mean SUS score

of the Prototype was 95 which is a very promising result according to table 6.8. The

BDDFramework SUS score by itself is 50 which is OK (according to table 6.8), but still

far from the prototype in terms of usability.

Statistic df1 df2 Sig.
Welch 108,00 1 9,90 0,000

Table 6.15: Welch t-test for SUS mean score.

An independent-samples Welch t-test was conducted to compare SUS scores in BDDFrame-
work and Prototype conditions (table 6.15). There was a significant difference in the scores

for Prototype (M=95.00, SD=5.95) and BDDFramework (M=50.00, SD=9.79) conditions;

t(9.90)=108.00, p = 0.000. These results suggest that Prototype really does have an effect

on usability. Specifically, our results suggest that when users use our Prototype, they

have a better usability experience then what they can with the BDDFramework.

6.4 Comparison with other well-know BDD automation tools

After validating our solution in the OutSystems context and verifying that our prototype

is an improvement for the BDD process over the BDDFramework alone, it is time now to

see what the prototype looks like compared to other well-know BDD test automation tools

that exist for other programming languages. To do so, we took the study of Wang and

Solís, presented in sections 3.2 and 3.2.1, and decided to insert the developed Prototype

into it, with the new evaluation model proposed in section 4.2.3. The comparison is made

in table 6.16.

Notes about the table: Parameter type inference is not supported in the BDDFrame-

work but this attribute is a direct consequence of the previous one (we can not infer

parameter types if we have no parameter detection). Regarding scenario outlines (*1),

both the BDDFramework and the Prototype do not support them directly but the way the

OutSystems language is built and the way it works it is possible to perform these kind of

tests with relatively ease in the BDDFramework. There is even some documentation teach-

ing how to perform Data-Driven Testing in OutSystems with the BDDFramework.[59]

and consequently in the Prototype. Integration with other tools is also partially sup-

ported (*2). Although the BDDFramework and the Prototype both lack more complete

111

CHAPTER 6. VALIDATION AND RESULTS

Figure 6.16: The most used BDD frameworks compared with the Prototype and the
BDDFramework in the new proposal of evaluation model. Attributes marked with a X
mark are missing.

reporting mechanisms about the detailed current state of the tests in a project, we have

some ways available (with the support of the REST API BDDFramework[58]), to manage

some information reporting how many test scenarios failed and passed in the executions

(with detailed information about the failing ones). In this particular aspect, the Prototype

may even have some advantage in relation to the BDDFramework, since it works with

text files, which can be easier to integrate with other tools, unlike the BDDFramework,

where scenarios are described within Service Studio.

As we could see, many of the features that we defined as important in a BDD test au-

tomation tool that were present in some of the more complete tools are now also available

in the prototype we developed which uses the BDDFramework. It is now possible to de-

scribe scenarios and features in text files and import them directly into the development

platform, with automatic generation of test screens and step definitions in OutSystems

112

6.4. COMPARISON WITH OTHER WELL-KNOW BDD AUTOMATION TOOLS

actions, following a standard organization and structure that allows reuse of existing

sentences and consequent reuse of the code. Another aspect that was not previously

supported is parameterization, which is now possible and which supports inference of

data types. One problem we did not address was the lack of integration with other tools

to allow more complete report mechanisms about the BDD scenarios of a test project,

although the text files that the prototype deals with are more manageable in this aspect.

The Prototype lacks as well some Data management mechanisms across scenarios (we

have available the BDDFramework hooks) such as step aggregations and outlines, despite

the fact that the OutSystems language already provides some mechanisms that make it

easier to naturally perform this kind of testing than in other languages[59].

113

C
h
a
p
t
e
r

7
Conclusions

In this section, we will first revisit the work that has been done throughout this disserta-

tion. Next we will see the contributions made and finally, present some suggestions for

future work.

7.1 Overview of the developed work

OutSystems provides a low-code application delivery platform that comprises and simpli-

fies every stage of app development and delivery process. OutSystems enables fast, agile

and continuous development, delivery and management of web and mobile applications.

One of the fundamental aspects of this low-code language is that it has a fast develop-

ment speed hence the importance of pushing testing activities closer to the moment when

development is done. Also, establishing a standardized way for developers and testers to

have a conversation over tests and behaviors, having in sight the possibility of including

the business people and thus having the full Three Amigos involved in the process. Many

customers think in requirements first, then development and only at the end in testing. It

is vital to approximate these development stages and especially the testing phase should

be done alongside development. In fact, testing should be a part of the development

process and developers themselves should test software and know how to do it properly.

BDD can take a huge part in this, bringing the business into development, always with

the aim of “building things right”, creating tests that check if the software is correct and

above all if it works as the customer wants (acceptance criteria). Discovering errors as

early as possible to avoid regressions can have a great impact given the speed of devel-

opment. The BDDFramework is a good starting point. This tool allowed, among other

things to establish a test standard for the OutSystems language, making tests easier to

understand, even for people who had not designed them. However, to support the BDD

115

CHAPTER 7. CONCLUSIONS

process it still needed some changes, like being accessible to all stakeholders and some

automation mechanisms.

We wanted a framework capable of promoting the BDD process, helping to bring

the software stages together as well as the people involved in them, promoting team

enablement and automation. Therefore, after understanding the principles of BDD and

how it could be used to enhance the characteristics of the OutSystems language, we

conducted a set of interviews to various people in the OutSystems domain. With these we

could verify what was missing in the BDDFramework and what could be improved if we

wanted to have a BDD process supporting framework as there is in other languages: it was

restricted to technical stakeholders (developers and testers) and needed automation

mechanisms at the time of scenario generation (with the BDDFramework it was all done

by hand from the creation of test screens, to the logic that will implement the steps,

including their reuse which goes against the high speed of development) and also, the lack

of integration with management tools and test reporting mechanisms. These problems

led us to investigate other tools in order to understand how we could reverse the situation.

Among several alternatives that came up, we opted for the development of a compo-

nent that uses the BDDFramework, without modifying it, and that will use the widgets

already provided by it to fill in the scenarios, but allowing to automate the process, from

the text files where the scenarios are described. We chose to extend the BDDFramework
because we wanted to stay in the OutSystems domain, taking advantage of the good

things the BDDFramework offers and using a tool that can continue to be used on its own

in various contexts and already known by the community. The developed component

currently functions as a command in Service Studio. With one click, it automates the

process of screen creation and test logic, detecting equal steps to which it assigns the

same (centralized) implementation, and also dealing with parameters.

To validate that the objectives were successfully achieved we performed tests with real

users (OutSystems developers) to understand if the prototype we implemented served

the purposes it had proposed to solve. The tests results suggest that the prototype was

successful in improving several aspects, when compared to the BDDFramework: speed,

ease, correctness and usability. Of course, it would be ideal if we had an evaluation that

involved all the stages of the process in a larger time frame and with teams using the pro-

totype for their daily testing activities, with all the Three Amigos involved in conversations

leading to a joint interpretation and decomposition of functionalities, later described in

the form of scenarios. However, this was not possible given available resources, but we

are still pleased with the results obtained.

We started this dissertation with the following objective:

116

7.2. CONTRIBUTIONS

Realizing the characteristics of Behavior-Driven Development and Low Code tech-

nologies, we want to develop a test automation framework in the OutSystems

domain that enables the BDD process technologically, having as a starting point

the existing BDDFramework.

Based on the results we are in position to state that the objective was successfully

achieved.

7.2 Contributions

This dissertation includes the following contributions:

• A set of requirements that serves as a basis for the development of BDD testing

automation frameworks;

• A set of interviews conducted with stakeholders from various fields related to Out-

Systems and testing, which resulted in a compilation of needs associated with the

testing process and a detailed analysis of the BDDFramework. They also produced

various testimonials and different views on testing as well as real case examples of

people using BDD in OutSystems with other tools;

• A component that works as a command in Service Studio and uses some of the

BDDFramework features to support the BDD process. This takes advantage of all

that BDDFramework has to offer but allows the use of feature files described out-

side of Service Studio and automates the process of scenario generation and test

logic creation, dealing with parameterization and reuse of scenarios. The developers

only have to worry about code implementation when new scenarios are introduced

into the system;

• Establishment of a structured test design standard in OutSystems, as the compo-

nent automatically organizes scenarios in the same way and respecting the recom-

mended practices for BDD test design in OutSystems, by organizing widgets and

actions within the test projects and through naming conventions designed to make

the work easier for developers and taking this weight off them;

• Performance, ease, correctness and usability studies for the BDDFramework and

the developed Prototype;

7.3 Future Work

Regarding possible future extensions to this work, we highlight the following:

117

CHAPTER 7. CONCLUSIONS

• The component could be executed from the command line or through an executable

app outside of Service Studio. This would further enable business people to inte-

grate into the process as they could run the tests themselves and view the execution

report. Another important aspect is that with this, we would be able to automati-

cally generate updated eSpaces every time feature files are updated, thus streamlin-

ing the process of test specification from the business person to the developers. In

OutSystems this can be achieved via command line command;

• More integration with test management mechanisms to ensure greater test coverage

and more information on the implemented tests. Integration is currently possible

through the BDDFramework REST API (also available in the Prototype) which pro-

vides some information such as the number of tests that are failing and information

about them in execution time but this information may be more complete to allow

for better process management by product owners, to have an overall view of the

system;

• Addition mechanisms for scenario-level test data management to allow direct inte-

gration of outlines, aggregations, among others. Some of these aspects are facilitated

by the language and the BDDFramework (setup and teardown hooks) but can still

be improved to allow easier Data-Driven Testing integration;

• The Prototype could give the user more freedom and allow more block customiza-

tion right from the feature file, without having to do it through Service Studio, such

as renaming Web Blocks. This may be possible by adding tags to the text file to

allow titles to be added to blocks. These would be optional and the user only used

if he wanted;

• There could be more reciprocal communication between feature files and Service

Studio. As things are now done, power is on the side of text files, but it can be

practical from the developer experience point of view, that a scenario, when deleted

from Service Studio, is also from the text file with the scenarios. Currently, the way

things are done this does not happen and in the next run the deleted scenario will

be reinserted, thus forcing the developer to go to the feature file to permanently

delete it.

118

Bibliography

[1] Acceptance Test Driven Development (ATDD). url: https://www.agilealliance.

org/glossary/atdd/ (visited on 02/07/2019).

[2] G. Adzic. Bridging the Communication Gap: Specification by Example and Agile Accep-
tance Testing. Neuri Limited, 2009. isbn: 9780955683619. url: https://books.

google.pt/books?id=SZtkPgAACAAJ.

[3] A. Alliance. Exploratory Testing. visited on 15/06/2019. url: https : / / www .

agilealliance.org/glossary/exploratory-testing/.

[4] S. W. Ambler. User Stories: An Agile Introduction. url: http://www.agilemodeling.

com/artifacts/userStory.htm.

[5] Atlassian. Jira Software. url: https://www.atlassian.com/software/jira.

[6] V. R. Basili and H. D. Rombach. “The TAME project: towards improvement-

oriented software environments.” In: IEEE Transactions on Software Engineering
14.6 (1988), pp. 758–773. doi: 10.1109/32.6156.

[7] K. Beck. “Test-Driven Development By Example.” In: (2002).

[8] A. Bertolino and E Marchelli. “A Brief Essay on Software Testing.” In: Software
Engineering 1 (2005).

[9] L. P. Binamungu, S. M. Embury, and N. Konstantinou. “Maintaining behaviour

driven development specifications: Challenges and opportunities.” In: 2018 IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (SANER).
2018, pp. 175–184. doi: 10.1109/SANER.2018.8330207.

[10] L. P. Binamungu, S. M. Embury, and N. Konstantinou. “Behavior-Driven Require-

ments Traceability via Automated Acceptance Tests.” In: 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Workshops (2017).

[11] L. P. Binamungu, S. M. Embury, and N. Konstantinou. Detecting Duplicate Examples
in Behaviour Driven Development Specications. Tech. rep. 2018.

[12] S. Braams. Developing a Software Quality Framework for Low-Code Model Driven
Development Platforms Based on Behaviour Driven Development Methodology. Tech.

rep. 2017.

119

https://www.agilealliance.org/glossary/atdd/
https://www.agilealliance.org/glossary/atdd/
https://books.google.pt/books?id=SZtkPgAACAAJ
https://books.google.pt/books?id=SZtkPgAACAAJ
https://www.agilealliance.org/glossary/exploratory-testing/
https://www.agilealliance.org/glossary/exploratory-testing/
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm
https://www.atlassian.com/software/jira
http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.1109/SANER.2018.8330207

BIBLIOGRAPHY

[13] Brian. Best Automation Testing Tools for 2019. url: https : / / medium . com /

@briananderson2209/best-automation-testing-tools-for-2018-top-10-

reviews-8a4a19f664d2.

[14] J. Brooke et al. “SUS-A quick and dirty usability scale.” In: Usability evaluation in
industry 189.194 (1996).

[15] R. Bussenot, H. Leblanc, and C. Percebois. “Orchestration of Domain Specific Test

Languages with a Behavior Driven Development approach.” In: 2018, pp. 431–437.

doi: 10.1109/SYSOSE.2018.8428788.

[16] R. N. Charette. “Why software fails [software failure].” In: IEEE Spectrum 42.9

(2005), pp. 42–49. doi: 10.1109/MSPEC.2005.1502528.

[17] Cucumber. url: https://cucumber.io/.

[18] Cucumber Documentation. url: https://docs.cucumber.io/.

[19] Differences between TDD, ATDD and BDD. url: https://gaboesquivel.com/

blog/2014/differences-between-tdd-atdd-and-bdd/.

[20] E. Çelik, S. Eren, E. Çini and Keleş. “Software test automation and a sample prac-

tice for an enterprise business software.” In: International Conference on Computer
Science and Engineering (UBMK) (2017).

[21] M. Fowler. Subcutaneous Testing. 2011. url: https://martinfowler.com/bliki/

SubcutaneousTest.html.

[22] M. Fowler and H. Vocke. The Practical Test Pyramid. 2018. url: https : / /

martinfowler.com/articles/practical-test-pyramid.html (visited on 02/01/2019).

[23] A. Ghahrai. Why Selenium and Cucumber Should Not Be Used Together. 2019. url:

https://www.testingexcellence.com/selenium-and-cucumber-ui-automation-

challenges/.

[24] Gherkin Reference. url: https://docs.cucumber.io/gherkin/reference/.

[25] N. N. Group. Between-Subjects vs. Within-Subjects Study Design. 2018. url: https:

//www.nngroup.com/articles/between-within-subjects/ (visited on 09/10/2019).

[26] S. Hardy. Continuous Delivery. 2008. url: https://continuousdelivery.com/.

[27] S. G. Hart. “NASA-task load index (NASA-TLX); 20 years later.” In: Proceedings of
the human factors and ergonomics society annual meeting. Vol. 50. 9. Sage publica-

tions Sage CA: Los Angeles, CA. 2006, pp. 904–908.

[28] D. Homan. “Cost Benets Analysis of Test Automation.” In: (1999).

[29] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. “Reporting Experiments in Software

Engineering.” In: Jan. 2008, pp. 201–228. doi: 10.1007/978-1-84800-044-5_8.

[30] R. Jeffries and G. Melnik. “TDD–The art of fearless programming.” In: Ieee Software
24.3 (2007), pp. 24–30.

120

https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
https://medium.com/@briananderson2209/best-automation-testing-tools-for-2018-top-10-reviews-8a4a19f664d2
http://dx.doi.org/10.1109/SYSOSE.2018.8428788
http://dx.doi.org/10.1109/MSPEC.2005.1502528
https://cucumber.io/
https://docs.cucumber.io/
https://gaboesquivel.com/blog/2014/differences-between-tdd-atdd-and-bdd/
https://gaboesquivel.com/blog/2014/differences-between-tdd-atdd-and-bdd/
https://martinfowler.com/bliki/SubcutaneousTest.html
https://martinfowler.com/bliki/SubcutaneousTest.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://martinfowler.com/articles/practical-test-pyramid.html
https://www.testingexcellence.com/selenium-and-cucumber-ui-automation-challenges/
https://www.testingexcellence.com/selenium-and-cucumber-ui-automation-challenges/
https://docs.cucumber.io/gherkin/reference/
https://www.nngroup.com/articles/between-within-subjects/
https://www.nngroup.com/articles/between-within-subjects/
https://continuousdelivery.com/
http://dx.doi.org/10.1007/978-1-84800-044-5_8

BIBLIOGRAPHY

[31] L. Karam. A guide to UI Testing. url: https://apiumhub.com/tech- blog-

barcelona/ui-testing/.

[32] Kent Beck. Test Driven Development: By Example. 2003.

[33] K. Kudryashov. The Beginners Guide to BDD. Tech. rep. 2015. url: https://

inviqa.com/blog/bdd-guide.

[34] T. Linchpin. A Beginners Guide To The Agile Method & Scrums. 2019. url: https:

//linchpinseo.com/the-agile-method/ (visited on 07/29/2019).

[35] M. Ehmer and F. Khan. “A Comparative Study of White Box, Black Box and Grey

Box Testing Techniques.” In: 3 (2012), pp. 12–15.

[36] Manifesto for Agile Software Development. 2001. url: https://agilemanifesto.

org/.

[37] B. Marick. Exploration Through Example. url: http://www.exampler.com/old-

blog/2003/08/21/.

[38] W. Matt and A. Hellesoy. The Cucumber Book. Ed. by P. Bookshelf. 2012.

[39] M. Meyer. “Continuous Integration and Its Tools.” In: IEEE Software 31.3 (2014),

pp. 14–16. issn: 0740-7459. doi: 10.1109/MS.2014.58.

[40] N. M. Minhas, K. Petersen, N. B. Ali, and K. Wnuk. “Regression Testing Goals -

View of Practitioners and Researchers.” In: Asia-Pacific Software Engineering Con-
ference Workshops (APSECW) (2017).

[41] C. Nagle. Test Automation Frameworks. url: http://safsdev.sourceforge.net/

FRAMESDataDrivenTestAutomationFrameworks.htm.

[42] Nasa. Nasa Tlx - Task Load Index. url: https://humansystems.arc.nasa.gov/

groups/TLX/.

[43] A. S. Nezhad, J. J. Lukkien, and R. H. Mak. “Behavior-driven Development for

Real-time Embedded Systems.” In: 2018 IEEE 23rd International Conference on
Emerging Technologies and Factory Automation (ETFA). Vol. 1. 2018, pp. 59–66. doi:

10.1109/ETFA.2018.8502653.

[44] D. North. JBehave. url: https://jbehave.org/.

[45] D. North. Introducing BDD. 2006. url: https://dannorth.net/introducing-

bdd/.

[46] D. North. “Agile specifications, BDD and Testing eXchange.” In: 2009.

[47] OutSystems. Architecture. url: https://www.outsystems.com/evaluation-

guide/architecture/.

[48] OutSystems. How does OutSystems support testing and quality assurance? url: https:

//www.outsystems.com/evaluation-guide/how-does-outsystems-support-

testing-and-quality-assurance/?origin=d.

121

https://apiumhub.com/tech-blog-barcelona/ui-testing/
https://apiumhub.com/tech-blog-barcelona/ui-testing/
https://inviqa.com/blog/bdd-guide
https://inviqa.com/blog/bdd-guide
https://linchpinseo.com/the-agile-method/
https://linchpinseo.com/the-agile-method/
https://agilemanifesto.org/
https://agilemanifesto.org/
http://www.exampler.com/old-blog/2003/08/21/
http://www.exampler.com/old-blog/2003/08/21/
http://dx.doi.org/10.1109/MS.2014.58
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm
http://safsdev.sourceforge.net/FRAMESDataDrivenTestAutomationFrameworks.htm
https://humansystems.arc.nasa.gov/groups/TLX/
https://humansystems.arc.nasa.gov/groups/TLX/
http://dx.doi.org/10.1109/ETFA.2018.8502653
https://jbehave.org/
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
https://www.outsystems.com/evaluation-guide/architecture/
https://www.outsystems.com/evaluation-guide/architecture/
https://www.outsystems.com/evaluation-guide/how-does-outsystems-support-testing-and-quality-assurance/?origin=d
https://www.outsystems.com/evaluation-guide/how-does-outsystems-support-testing-and-quality-assurance/?origin=d
https://www.outsystems.com/evaluation-guide/how-does-outsystems-support-testing-and-quality-assurance/?origin=d

BIBLIOGRAPHY

[49] OutSystems. Internal documentation.

[50] OutSystems. Static Entities. url: https://success.outsystems.com/Documentation/

11/Developing_an_Application/Use_Data/Data_Modeling/Static_Entities.

[51] OutSystems. Table Records Widget. url: https://success.outsystems.com/

Documentation/11/Reference/OutSystems_Language/Web_Interfaces/Designing_

Screens/Table_Records_Widget.

[52] OutSystems. Test Automator Team. url: https://www.outsystems.com/forge/

component-details/82/Test+Automator/.

[53] OutSystems. Unit and Regression Testing with OutSystems. url: https://www.

outsystems.com/evaluation-guide/unit-and-regression-testing-with-

outsystems/.

[54] OutSystems tools and components. url: https : / / success . outsystems . com /

Evaluation/Architecture/1{_}OutSystems{_}Platform{_}tools{_}and{_

}components (visited on 01/07/2019).

[55] S. Pratik. How to Overcome UI Automation Testing Challenges? 2017. url: https:

//www.utest.com/articles/how- to- overcome- ui- automation- testing-

challenges?comments=3.

[56] J. Proença. BDDFramework. url: https://www.outsystems.com/forge/1201/.

[57] J. Proença. How to Automate BDD Testing in OutSystems, Part 1: An Introduction
to the BDDFramework. 2019. url: https://www.outsystems.com/blog/posts/

intro-bddframework-testing/.

[58] J. Proença. How to Automate BDD Testing in OutSystems, Part 2: The BDDFrame-
works Test-Execution REST API. 2019. url: https://www.outsystems.com/blog/

posts/automate-bddframework-testing/.

[59] J. Proença. How to Automate BDD Testing in OutSystems, Part 3: Data-Driven API
Tests With the BDDFramework. 2019. url: https://www.outsystems.com/blog/

posts/bddframework-data-testing/.

[60] J. S. Rajal and S. Sharma. “A Review on Various Techniques for Regression Testing

and Test Case Prioritization.” In: 2015.

[61] P. Rayner. BDD is a Centered Community Rather than a Bounded Community. url:

http://thepaulrayner.com/bdd-is-a-centered-rather-than-a-bounded-

community/.

[62] M. Rehkopf. Sprints. url: https://www.atlassian.com/agile/scrum/sprints.

[63] S. Rose, M. Wynne, and A. Hellesøy. The Cucumber for Java Book: Behaviour-driven
Development for Testers and Developers. Pragmatic programmers. Pragmatic Book-

shelf, 2015. Chap. 1, pp. 7–8. isbn: 9781941222294. url: https : / / books .

google.pt/books?id=zQ2voQEACAAJ.

122

https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Data_Modeling/Static_Entities
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Data_Modeling/Static_Entities
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Web_Interfaces/Designing_Screens/Table_Records_Widget
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Web_Interfaces/Designing_Screens/Table_Records_Widget
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Web_Interfaces/Designing_Screens/Table_Records_Widget
https://www.outsystems. com/forge/component-details/82/Test+Automator/
https://www.outsystems. com/forge/component-details/82/Test+Automator/
https://www.outsystems.com/evaluation-guide/unit-and-regression-testing-with-outsystems/
https://www.outsystems.com/evaluation-guide/unit-and-regression-testing-with-outsystems/
https://www.outsystems.com/evaluation-guide/unit-and-regression-testing-with-outsystems/
https://success.outsystems.com/Evaluation/Architecture/1{_}OutSystems{_}Platform{_}tools{_}and{_}components
https://success.outsystems.com/Evaluation/Architecture/1{_}OutSystems{_}Platform{_}tools{_}and{_}components
https://success.outsystems.com/Evaluation/Architecture/1{_}OutSystems{_}Platform{_}tools{_}and{_}components
https://www.utest.com/articles/how-to-overcome-ui-automation-testing-challenges?comments=3
https://www.utest.com/articles/how-to-overcome-ui-automation-testing-challenges?comments=3
https://www.utest.com/articles/how-to-overcome-ui-automation-testing-challenges?comments=3
https://www.outsystems.com/forge/1201/
https://www.outsystems.com/blog/posts/intro-bddframework-testing/
https://www.outsystems.com/blog/posts/intro-bddframework-testing/
https://www.outsystems.com/blog/posts/automate-bddframework-testing/
https://www.outsystems.com/blog/posts/automate-bddframework-testing/
https://www.outsystems.com/blog/posts/bddframework-data-testing/
https://www.outsystems.com/blog/posts/bddframework-data-testing/
http://thepaulrayner.com/bdd-is-a-centered-rather-than-a-bounded-community/
http://thepaulrayner.com/bdd-is-a-centered-rather-than-a-bounded-community/
https://www.atlassian.com/agile/scrum/sprints
https://books.google.pt/books?id=zQ2voQEACAAJ
https://books.google.pt/books?id=zQ2voQEACAAJ

BIBLIOGRAPHY

[64] R.Santos, C. de Magalhaes, J.Correia-Neto, F.Silva, and L.Capretz. “WouldYou

Like to Motivate Software Testers? Ask Them How.” In: Electrical and Computer
Engineering Publications 114 (2017), pp. 95–104.

[65] J. R. Rymer and R. Koplowitz. “The Forrester Wave: Low-Code Development Plat-

forms For ADD Professionals, Q1 2019.” In: (2019).

[66] K. Schwaber. “SCRUM Development Process.” In: Proceedings of the 10th Annual
ACM Conference on Object Oriented Programming Systems, Languages, and Applica-
tions (OOPSLA). 1995, pp. 117–134.

[67] SeleniumHQ Browser Automation. visited on 05/06/2019. url: https://www.

seleniumhq.org/.

[68] T. R. Silva. Definition of a behavior-driven model for requirements specification and
testing of interactive. Tech. rep. Toulouse, France: Université Paul Sabatier, 2016.

[69] J. F. Smart. BDD In Action: Behavior-Driven Development for the whole software
lifecycle. 2014.

[70] C. Solis and X. Wang. “A study of the characteristics of behaviour driven develop-

ment.” In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications. IEEE. 2011, pp. 383–387.

[71] I. Sommerville. Software Engineering. 9th ed. 2011, chapters 3, 4.

[72] SpecFlow. url: https://specflow.org/.

[73] I. The Standish Group International. “Chaos Report 2015.” In: (2015). url: https:

//www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.

pdf.

[74] A. P. Veiga. Project Success in Agile Development Projects. Tech. rep. 2017.

[75] M. Winteringham. The difference between ATDD and BDD. visited on 05/06/2019.

url: https://www.hindsightsoftware.com/blog/atdd-vs-bdd.

[76] Xpand IT. Xray Test Management for Jira. url: https://marketplace.atlassian.

com/apps/1211769/xray- test- management- for- jira?hosting=cloud{\&

}tab=overview.

123

https://www.seleniumhq.org/
https://www.seleniumhq.org/
https://specflow.org/
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://www.hindsightsoftware.com/blog/atdd-vs-bdd
https://marketplace.atlassian.com/apps/1211769/xray-test-management-for-jira?hosting=cloud{\&}tab=overview
https://marketplace.atlassian.com/apps/1211769/xray-test-management-for-jira?hosting=cloud{\&}tab=overview
https://marketplace.atlassian.com/apps/1211769/xray-test-management-for-jira?hosting=cloud{\&}tab=overview

A
p
p
e
n
d
i
x

A
Appendix 1 Interview Scripts

Figure A.1: Script for the interviewees who only had contact with the BDDFramework

125

APPENDIX A. APPENDIX 1 INTERVIEW SCRIPTS

Figure A.2: Script for the interviewees who had contact with both the BDD process and
the BDDFramework

126

A
p
p
e
n
d
i
x

B
Appendix 2 Experiment Introductory

Scripts

127

APPENDIX B. APPENDIX 2 EXPERIMENT INTRODUCTORY SCRIPTS

Figure B.1: Introductory guide for Approach 1 (BDDFramework), page 1.

128

Figure B.2: Introductory guide for Approach 1 (BDDFramework), page 2.

129

APPENDIX B. APPENDIX 2 EXPERIMENT INTRODUCTORY SCRIPTS

Figure B.3: Introductory guide for Approach 2 (Prototype), page 1.

130

Figure B.4: Introductory guide for Approach 2 (Prototype), page 2.

131

A
n
n
e
x

I
Annex 1 NASA Task Load Index

questionnaire

Figure I.1: NASA-TLX questionnaire.

133

A
n
n
e
x

II
Annex 2 System Usability Scale

questionnaire

Figure II.1: System Usability Scale (SUS) questionnaire.

135

A
n
n
e
x

III
Annex 3 Task descriptions

Figure III.1: First task.

137

ANNEX III . ANNEX 3 TASK DESCRIPTIONS

Figure III.2: Second task.

138

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and Description
	Motivation
	Objectives and Expected Results
	Structure

	Background
	Software Development Processes
	Agile Development
	Test-Driven Development
	Acceptance Test-Driven Development
	Behavior-Driven Development
	Advantages
	Disadvantages

	User Stories
	Gherkin Scenarios
	BDD vs ADTT vs TDD
	Software Testing
	Test design techniques
	Test Automation
	Regression Testing
	Exploratory Testing
	Continuous Integration, Continuous Delivery and Continuous Deployment
	Low Code Model-Driven Development
	OutSystems Architecture
	Service Studio
	High-Level Architecture of Applications
	Visual Language
	Testing Methods

	UI Testing
	BDDFramework
	Recommended practices
	Data-Driven Testing

	Related Work
	Low Code and BDD
	BDD principles and supporting tools
	Discussion on the study by Wang and Solís

	Software evolution challenges
	Automation frameworks
	How BDD frameworks work
	Well-known examples

	Case study and initial considerations
	Interviews
	Interview Questions
	Interview Results

	Analysis of BDD Automation Frameworks
	Cucumber
	SpecFlow
	Framework Evaluation Proposal

	Prototype Features Identification
	Prototype Alternatives
	Decision making and strategy adopted

	Prototype Implementation
	Prototype Description
	Implementation Analysis
	Architecture Overview
	Development process
	Implementation Analysis

	Validation and Results
	Planning
	Goals
	Participants
	Materials
	Tasks
	Hypotheses, Parameters and Variables
	Quasi-experiment Design
	Quasi-experiment Procedure

	Results and Analysis
	Discussion
	Comparison with other well-know BDD automation tools

	Conclusions
	Overview of the developed work
	Contributions
	Future Work

	Bibliography
	Appendix 1 Interview Scripts
	Appendix 2 Experiment Introductory Scripts
	Annex 1 NASA Task Load Index questionnaire
	Annex 2 System Usability Scale questionnaire
	Annex 3 Task descriptions

